Tuning of the Radium Biodistribution by Dietary Supplements in a CD1 Mice Model

Ján Kozempel, M. Vlk, E. Kukleva, P. Suchánková, L. Jandová, J. Merhautová, K. Ficenzová,
Czech Technical University in Prague, Czech Republic
UJV Řež, Czech Republic

jan.kozempel@fjfi.cvut.cz
www.kozempel.com
Summary

- Current status of 223Ra
- Physical and chemical properties of Radium
- Study design
- Animal experiment protocols
- Results
- Conclusion
Current status of Ra-223

First EMA & FDA approved alpha-emitter „in vivo generator“ introduced by Bayer.

+ simple formulation of radium chloride, Ra and Pb self-targeted to bone tissue
- other organs accumulation, not fully known interactions, cost/effectiveness
 (1 dose ≈ 4000 € in comparison with <500 € for 18F-FDG and <100 € for 99mTc)

Since 2017 - Bayer and EMA informed on increased risk of death and fractures with Zytiga and prednisone /prednisolone - significant limit in the use of 223Ra
Physical and chemical properties of Ra

Alkaline earth element
- complex chemistry (no chelator available)
- favorable decay properties
- self targeting to bone tissue
- total decay energy of ≈ 27 MeV
 - $4x \alpha$
 - $2x \beta$
- nuclear recoil effect is not always an issue

Kozempel et al. *Molecules* 2018, 23(3), 581; DOI:10.3390/molecules23030581
Study design

Attempt to modify Ra biodistribution in vivo by application of dietary supplements - Ca2+ / vitamin D\textsubscript{3} or co-treatment with zoledronic acid

Basic premises:

1. Ra metabolism should follow Ca
2. Increase of Ca2+ concentration should normally promote Ra elimination
3. commercially available and Pharma grade preparates should be tested

Radium chloride stock prepared from 227Ac/227Th/223Ra generator (Guseva 2004)
CaCl\textsubscript{2}, vitamin D\textsubscript{3}, zoledronic acid – commercial & pharma grade

Animals: healthy outbred CD1-Foxn1nu ♀ (Charles River)

All experiments were performed according to the animal protection act No.:246/1992. and were approved by the ethical committee of the Ministry of Health No.46/2014.

5 animals per group, individually caged, 12h light /dark regime, 26-28°C controled atmosphere, 1 day starving before Ra application
sterile conditions
Animal experiment protocols

10 mice premedicated with CaCl\(_2\) (1.11 g/L). The solution was offered as drinking water *ad-libitum*

15 mice premedicated with vitamin D\(_3\), 125 IU/mouse (0.02 ml solution on a biscuit, 3x a week).

5 mice refused intake of vitamin-doped biscuit - excluded from the study

10 mice premedicated with zolendronic acid (0.1 mL solution/mouse of 4 mg/100 ml subcutaneous injection twice a week

10 mice as control group without any additional treatment

Premedication was performed for one week prior to Ra application

\(^{223}\)Radium chloride (200 kBq/animal in 0.05 mL phys. saline applied into *vena caudalis*)

½ sacrificed at 24 h, second half at 96 h timepoint - major organs were analyzed
Results: $^{223}\text{RaCl}_2 + \text{CaCl}_2 \text{ – 24 h.}$

(one-way ANOVA, *P = 0.05; **P = 0.01; n = 5)
Results: $^{223}\text{RaCl}_2 + \text{CaCl}_2$ – 96 h.

(one-way ANOVA, *P = 0.05; **P = 0.01; n = 5)
Results: Vitamin D$_3$ – 24h.

No statistically significant difference.
Results: Vitamin D₃ – 96 h.

(one-way ANOVA, *P = 0.05; **P = 0.01; n = 5)
Results: Zoledronic acid – 24 h.

(one-way ANOVA, *P = 0.05; **P = 0.01; n = 5)
Results: Zoledronic acid – 96 h.

(one-way ANOVA, *P = 0.05; **P = 0.01; n = 5)
Ra excretion

U – urine, F – feces
Conclusions – take home message

- Radium metabolism can be significantly affected by dietary supplements and other compounds related to Calcium metabolism.

- Calcium at applied concentration did not cause increased elimination of Radium.

- Further studies are needed - slight improvement in Ra biodistribution could possibly be further improved by optimizing the pre-treatment protocols.

- Thus, 223RaCl$_2$ is „not dead“, but we should better understand its metabolic pathways and interactions to further improve bone lesions treatment.

Disclosure – Authors filed an EU patent application.
Thank you for attention!

CTU, Prague
M. Vlk
P. Suchánková
E. Kukleva
E. Nykl
M. Sakmár
E. Shaskova
K. Belešová
M. Palušák
L. Ondrák
K. Fialová
Z. Sobkuliaková
M. Skálová

UJV, Rez
L. Marešová
L. Jandová
H. Merhautová
K. Ficenzová

TAČR
TA03010027

Thank you for attention!