Nanoparticles for the treatment of metastatic NSCLC with 225Ac

Charles A. Maitz, DVM, PhD, DACVR-RO
Assistant Professor of Radiation Oncology
Department of Veterinary Medicine & Surgery
MURR Research Scientist
University of Missouri – Columbia
Non small cell lung cancer

- 40% metastatic at diagnosis
- <20% 5-year survival, lower with metastasis
- Pulmonary metastatic disease

Actinium-225 as an *in vivo* generator
Challenge of Extending \textit{in vivo} Alpha Generator Radiotherapy to Other Tissues: Sequestering Daughters

\begin{itemize}
 \item Ac-225 α Fr-221 10 d
 \item Fr-221 α At-217 5 m
 \item At-217 α Po-213 32 ms
 \item Po-213 β Bi-209 46 m
 \item Bi-209 β Pb-209 2 m
 \item Pb-209 β Bi-209 3 h
\end{itemize}

Biomolecule

Receptor

Cancer Cell

\textit{Courtesy: Dave Robertson}
Goals of TAT Nanoparticle

- Retain radioactive daughters
- No loss in effectiveness of emitted alpha particles
- Well established chemistry to attach antibodies and peptides to gold surface
- Simple synthesis with high yields
Lanthanum phosphate nanoparticles for Targeted Alpha Therapy

Retention of ^{221}Fr over time in solution
Targeted 225Ac-LnPO$_4$ Nanoparticles

Targeted $^{225}\text{Ac-LnPO}_4$ Nanoparticles

Biodistribution of AuLaGdPO$_4$ Nanoparticles (%ID/g)

- Liver
- Spleen
- Kidney
- Lung

- Mab 201B + NP
- Competition Assay
- Bare NPs
Retention of 213Bi in vivo

Excess 213Bi in kidney

<table>
<thead>
<tr>
<th>Time</th>
<th>extra Bi %ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 hr</td>
<td>2.79</td>
</tr>
<tr>
<td>24 hr</td>
<td>1.52</td>
</tr>
</tbody>
</table>

Proximity model of metastatic lung cancer

A

PBS

225Ac NP + competition

201 B-targeted NPs

Colonies = 78 ± 34.5

Colonies = 57 ± 22.3

Colonies = 21 ± 7.5

B

C

Targeting NSCLC

- Anti mucin1 antibody (MUC1)
- “Pan-carcinoma”
- Orthotopic A549 mouse model
Coming work

- Mouse biodistribution
- SPECT/CT Imaging with dosimetry modeling
- Therapeutic studies
 - 225Ac-LnPO$_4$ NPs
 - 177Lu-LnPO$_4$ NPs
- Other Models and/or Targets
 - Canine sinonasal tumors
 - Hypoxia
Acknowledgements

- COREL Laboratory (U. of MO)
 - Senthil Kumar
 - Jeffrey N. Bryan
- MURR (U. of MO)
 - Dave Robertson
 - Nicholas Sobol
 - Mark McLaughlin
 - Mary Embree
- Radiopharmaceutical Sciences Institute (U. of MO)
- Outside Collaborators
 - Saed Mirzadeh (ORNL)
 - Paul Pevsner
 - Stephen Kennel (UT)
 - Cristina Rodriguez-Rodriguez (UBC)
Translational Precision Medicine Complex (TPMC)