U.S. DOE Tri-Lab Production Effort to Provide Accelerator-Produced 225Ac for Radiotherapy

Kevin John
Los Alamos National Laboratory

April 3rd, 2019
11th International Symposium on Targeted-Alpha-Therapy (TAT11)

LA-UR-19-22030
Current worldwide supply of ^{225}Ac from $^{229}\text{Th}/^{225}\text{Ac}$ generators is estimated at 1200-1700 mCi/yr*

Patient doses, as informed by clinical trials, are estimated at:

^{225}Ac: 2-8 μCi per patient kg
(160-640 μCi/patient)

^{213}Bi: 1 mCi per patient kg
(Optimum generator loading estimated at 100-150 mCi ^{225}Ac)

Addressing the Supply Chain: Various $^{225}\text{Ac}/^{229}\text{Th}$ Production Routes

<table>
<thead>
<tr>
<th>Facility</th>
<th>Nuclear Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactor (thermal neutrons)</td>
<td>$^{226}\text{Ra}(3n,\gamma)^{229}\text{Ra} \rightarrow ^{229}\text{Ac} \rightarrow ^{229}\text{Th}$ (plus ^{228}Ra target)</td>
</tr>
<tr>
<td>Accelerator (electrons)</td>
<td>$^{226}\text{Ra}(\gamma,\text{n})^{225}\text{Ra} \rightarrow ^{225}\text{Ac}$</td>
</tr>
<tr>
<td>Accelerator (low energy particles)</td>
<td>$^{226}\text{Ra}(\text{p,2n})^{225}\text{Ac}$ $^{226}\text{Ra}(\alpha,\text{n})^{229}\text{Th}$ $^{226}\text{Ra}(\text{p, pn})^{225}\text{Ra}$ $^{232}\text{Th}(\text{p,x})^{229}\text{Th}$</td>
</tr>
<tr>
<td>Accelerator (high energy protons)</td>
<td>$^{232}\text{Th}(\text{p,x})^{225}\text{Ac}$ $^{232}\text{Th}(\text{p,x})^{225}\text{Ra} \rightarrow ^{225}\text{Ac}$</td>
</tr>
<tr>
<td>Accelerator (high energy neutrons)</td>
<td>$^{226}\text{Ra}(\text{n,2n})^{225}\text{Ra}$</td>
</tr>
<tr>
<td>Hot Cell Facility (^{233}U processing)</td>
<td>^{229}Th decay to ^{225}Ac</td>
</tr>
</tbody>
</table>
Accelerator Production via 232Th(p,x)225Ac – Initial R&D Promised Significant Impact

Facility Anticipated Single Target Ac-225 Yields (10 day irradiation)

<table>
<thead>
<tr>
<th>Facility</th>
<th>Anticipated Single Target Ac-225 Yields (10 day irradiation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LANL (100 MeV, 250-450 µA)</td>
<td>1.3-2.3* Ci</td>
</tr>
<tr>
<td>BNL (200 MeV, 165 µA)</td>
<td>2.2 Ci</td>
</tr>
</tbody>
</table>

* Theoretical maximum value assumed for production with 450 µA on target resulting from recent facility investments.

Facility investments at IPF and BLIP have increased our projected production capacity
Basis of the Tri-Lab Effort: Leveraging Unique Isotope Program Facilities, Capabilities and Expertise to Address 225Ac Supply

LANL Isotope Production Facility (IPF) at LANSCE; 100 MeV incident energy up to 275 mA for routine production

BNL Linac at the Brookhaven Linac Isotope Producer (BLIP) 165 µA intensity to targets at incident energies ranging from 66-202 MeV

ORNL - Approximately 25 years of experience in the isolation of 225Ac from fissile 233U via 229Th
Past DOE Tri-Lab Stage 1 Effort Focused on Research with Emphasis on Technical Feasibility and Logistics

Significant technical progress related to target design experience and chemical process optimization

Stage 1 irradiations have provided us with invaluable logistical experience and delivered a means to supply ^{225}Ac material for materials evaluation campaigns and bio-distribution, dosimetry, toxicity studies.
Current and Future Effort Focused on Scaled-Up Production and GMP Implementation

STAGE 2
50-100 mCi

- Continued Production/Processing
- Implement Facility Mods and ES&H/QA Policies
- Receive DOT Type B Container
- Implement Chemistry/Targetry Scale-up

Oct, 2017

STAGE 3
100-1000 mCi

- Complete Facility Mods
- Final Prep for Routine Production
- Complete ES&H/QA Documents

Sept, 2020

Routine, Ci-scale Production

- Project Complete

April, 2024

SG-1

SG-2

SG-3

SG-4

April, 2025

Current and Future Effort Focused on Scaled-Up Production and GMP Implementation

- Current and Future Effort Focused on Scaled-Up Production and GMP Implementation

- Routine, Ci-scale Production

- April, 2024

- April, 2025

- Project Complete

- Current and Future Effort Focused on Scaled-Up Production and GMP Implementation

- Routine, Ci-scale Production

- April, 2024

- April, 2025

- Project Complete
Stage 2 Focus

General focus on increasing production frequency and volume in support of clinical R&D and clinical trials

Continued improvements to the design and preparation of thorium targets and radiochemical processing optimization

Continued improvement of shipping capabilities and shipping performance

Submittal of a Drug Master File to inform the FDA - helps our customer base, and protects our process

Starting to execute facility vision with eye toward Stage 3 large scale production

Continued focus on stakeholder and customer interactions.

Clemens Kratochwil, University Hospital Heidelberg – J. Nuc. Med., v57, 2016, pp 1941-1944

225Ac-PSMA-617 derived from a 229Th-cow
FDA and End-User Interactions

Accelerator-produced 225Ac for direct labeling and 213Bi generator application will be viewed by FDA as Active Pharmaceutical Ingredients (API)

The Tri-Lab Effort has supported initial dosimetry/toxicity studies aimed at determining impact of 227Ac content; ultimate determination rests on drug developers as they develop their Investigational New Drug Applications (IND)

Dadachova ER et al.

TAT11 International Symposium – Dosimetry Session
Actinium Biokinetics and Dosimetry: What is the Impact of Ac-227 in Accelerator-Produced Ac-225?
Abergel, R et al.

TAT11 International Symposium – Poster Session
Pre-Clinical Evaluation of 225Ac-DOTATOC Pharmacokinetics, Dosimetry, and Histopathology to Enable Phase-1 Clinical Trial in Patients with Neuroendocrine Tumors
Norenberg, JP et al.

FDA has urged us to develop an accelerator-produced 225Ac Drug Master File
-DMF development is in process and will be submitted this year

We will continue to work with DOE and the 225Ac user community to address technical and logistical issues
General Accelerator-Produced 225Ac Product Conclusions

Accelerator-produced 225Ac performs similar to 229Th-derived 225Ac

- direct labeling efficiencies are comparable
- 213Bi generator performance is the same
- the impact of 227Ac content on dosimetry has been demonstrated to be negligible

Challenges remain with respect to the logistical considerations associated with the 227Ac co-product

- facility licensing (decommissioning funding plans)
- discussions ongoing with the NRC to potentially obtain an exemption as previously done for 68Ge
- patient waste (likely not an issue for an approved drug)
We have positioned ourselves to ensure a strong, reliable supply that meets the quality requirements and quantities needed for clinical application.
The Tri-Lab effort is routinely producing ^{225}Ac and product is available for end users and shipments to multiple users have been completed.

We have distributed over 250 mCi of accelerator produced ^{225}Ac to evaluators.

^{213}Bi derived from accelerator-produced ^{225}Ac generators exhibits equivalent performance relative to ^{229}Th derived material.

^{227}Ac content is clinically insignificant from a dosimetry/toxicity perspective – but challenges with perception and regulatory compliance remain; we have a well-defined forward path to address these challenges with DOE.

We are working with companies and research hospitals in preparation to support Phase I trials - DMF development is underway.
Acknowledgments

Funded by the US DOE Office of Science, Office of Nuclear Physics Isotope Program

BNL Team
Cathy Cutler
Jonathan Fitzsimmons
Dohyun Kim
Dmitri Medvedev

LANL Team
Eva Birnbaum
Mark Brugh
Michael Fassbender
Kevin John (kjohn@lanl.gov)
F. Meiring Nortier
Gannon Parker
David Reass
Etienne Vermeulen

ORNL Team
Rose Boll
Roy Copping
Ashley Dame
Sandra Davern
David Denton
Kevin Gaddis
Justin Griswold
Saed Mirzadeh
Karen Murphy
Allison Peacock
Daniel Stracener
Lance Wyant

NIDC (www.isotopes.gov)
Ariel Brown
Mitch Ferren
Kevin Felker
Karen Sikes
Acknowledgments

Ac Tri-Lab Effort Alumni
Jonathan Engle (U. Wisconsin)
Tara Mastren (U. Utah)
Leonard Mausner (BNL, Retired)
Phil Pile (BNL, Retired)
Dennis Phillips (DOE, Retired)
Val Radchenko (TRIUMF)
Wolfgang Runde

Project Controls and Budget
Donna Ault
John Cunningham
Matthew Galea
Criselda Manalo
Steve McKee
Maura Mullaney
Peter Selgrad

US DOE
Luisa Romero