Revolutionary alpha particle brachytherapy

LIOR ARAZI

BEN-GURION UNIVERSITY OF THE NEGEV

T. Cooks1, M. Schmidt2, A. Popovtzer3, E. Rosenfeld3, A. Mizrachi3, Y. Keisari1,4, I. Kelson1,4

1Ben-Gurion University, 2Alpha TAU Medical, 3Rabin Medical Center, 4Tel Aviv University

Conflict of interest: L. Arazi is co-inventor of Alpha-DaRT, minor share-holder of Alpha TAU Medical and recipient of a research grant from the company.
The DaRT seed emits from its surface a chain of alpha emitting atoms. The atoms disperse by diffusion, creating a ‘kill region’ over several mm.
The decay chain of ^{224}Ra includes:

- ^{228}Th decays by alpha emission with a half-life of 1.91 years to ^{224}Ra.
- ^{224}Ra decays by alpha emission with a half-life of 3.66 days to ^{220}Rn.
- ^{220}Rn decays by alpha emission with a half-life of 55.6 seconds to ^{216}Po.
- ^{216}Po decays by alpha emission with a half-life of 0.15 seconds to ^{212}Pb.
- ^{212}Pb decays by beta emission with a half-life of 10.64 hours to ^{212}Bi.
- ^{212}Bi decays by alpha emission with a half-life of 60.6 minutes to ^{212}Po.
- ^{212}Po decays by alpha emission with a half-life of 0.3 microseconds to ^{208}Pb.

- ^{208}Pb is stable.

^{224}Ra is a short-lived radionuclide that is short enough for rapid clinical effect and long enough for handling and shipping. Replace generators in factory every ~2 years.
Source preparation: electrostatic collection of ^{224}Ra
Quadruple generator
Source preparation:
224Ra embedding on source

Electrostatic collection

Heat treatment
Preclinical studies

<table>
<thead>
<tr>
<th>Cancer</th>
<th>Murine Tumor Cells</th>
<th>Human Tumor Cells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in Mice</td>
<td>in Nude Mice</td>
</tr>
<tr>
<td>Squamous Cell Carcinoma</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lung Squamous Cell Carcinoma</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Lung Adenocarcinoma</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pancreas adenocarcinoma</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Prostate Adenocarcinoma</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Breast Carcinoma</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Glioblastoma multiforme</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>B-Cell Lymphoma</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Melanoma</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Colon Carcinoma</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Preclinical outcomes on mice

All tumor types respond to the treatment, from growth retardation to cure

DaRT+ chemotherapy increases tumor growth retardation and prolongs survival

Ablation of tumors by DaRT renders mice resistant to a second tumor cell injection
Autoradiography of treated tumors in mice

212Pb measurements in histological sections of squamous cell carcinoma (SQ2) tumors
Diffusion can be modeled, with parameters extracted from autoradiography data.
Dose modeling based on data from mice

- Therapeutic alpha dose up to ~2.5 mm from source
- Meaningful beta dose in region already covered by alpha, negligible ~2 mm away from source
- Negligible gamma dose everywhere
DaRT TG43 models

Beta+gamma dose (Gy)

\[A_{Ra} = 2.5 \, \mu \text{Ci/cm} \]
\[P_{\text{leak}}(\text{Pb}) = 0.2 \]

X [mm]

Y [mm]

Alpha dose (Gy)

\[A_{Ra} = 2.5 \, \mu \text{Ci/cm} \]
\[L_{\text{Pb}} = 0.65 \, \text{mm} \]
\[P_{\text{leak}}(\text{Pb}) = 0.5 \]

X [mm]

Y [mm]
Alpha model dose contours – hexagonal lattice

\[L_{Rn} = 0.3 \text{ mm} \]
\[L_{Pb} = 0.6 \text{ mm} \]
\[P_{\text{leak}}(Pb) = 0.3 \]

5 mm spacing
3 \(\mu \text{Ci} \) \(^{224}\text{Ra/cm} \)
> 20 Gy everywhere
Safety – adjacent healthy tissue

Negligible beta and gamma dose; rapid clearance of 212Pb by ordered vasculature limits the kill region diameter to ~ 2 mm.
Safety – distant organs

Distant organs: ^{212}Pb leaving tumor through blood spreads throughout the body. Biokinetic + internal dosimetry calculations show that organ doses in typical treatment are 1-2 orders of magnitude below tolerance levels.
Clinical study: Rabin Medical Center and IRST

On-going trials in Rabin Medical Center and Italy: squamous cell carcinoma of the skin and oral cavity

Trials focus on tumors which failed prior surgery or RT and on non-resectable tumors (or where resection would result in massive disfiguration)

Patient population 60-102 y, tumor size < 5 cm

Seed activity 2-3 μCi 224Ra, apply between a few to ~170 seeds (>5 μCi per gram tumor)

Seeds removed 2 weeks after treatment
Clinical study outcomes

First 15 patients which completed follow-up: 100% positive response, of which 73% complete response

No observable local or systemic radiation-induced side effects

Tumors shrink within days

Blood measurements consistent with biokinetic model
Clinical study outcomes

21/3/2017

1/6/2017
Clinical study outcomes
New clinical trials

- Rabin Medical Center: Cutaneous and mucosal tumors. Started
- Memorial Sloan Kettering: Cutaneous and mucosal tumors. Final approval by the FDA
- Istituto Dermatologico San Gallicano (IRCCS) at IFO, Rome: Cutaneous and mucosal tumors. Approved by local IRB, awaiting approval of Italian MoH.
- Azienda Policlinico Umberto I - Roma, Sapienza Università di Roma: SCC in the skin. Approved by local IRB, awaiting approval of Italian MoH.
- Rambam Medical Center: Cutaneous and mucosal tumors. Approved by IRB, will commence shortly.
Clinical targets (protocols exist or under preparation)

- SCC of the Skin and oral cavity
- Cutaneous and Mucosal Neoplasia
- Prostate
- Breast
- GYN (Cervical, Vulvar)
- Pancreas
- Renal
- Liver
- Rectal
- Soft tissue sarcomas
- Lung
Regulatory approvals

- Approval by the Commonwealth of Massachusetts Radiation control program as a sealed source medical device for treatment of patients
- Approval in Japan by the MHLW as a medical device
- Final audit for CE mark as a medical device
- Approval of the Israel Ministry of Health for the treatment of cutaneous tumors
- Approval of the Italian Ministry of Health for the treatment of SCC
Clinical studies in 63 distinguished cancer centers
Summary

DaRT is the first form of brachytherapy utilizing alpha particles against solid tumors

Effective against radio-resistant/hypoxic tumors

Procedure is simple and can be done in relatively short time

Tumors shrink within days with **no observable radiation-induced adverse effects**

So far 100% positive response, 73% complete response

Partial response can be ‘fixed’ by re-application

Treatment planning is challenging, but simple modeling appears to provide a good starting point

Can be combined with other methods, e.g. boosting EBRT or together with immunotherapy
Backup slides
The diffusion-leakage model

Simplifying assumptions:

• The tumor tissue is homogeneous, isotropic and does not change with time

• Chaotic nature of tumor vasculature allows describing convective spread as effective diffusion

• Only ^{220}Rn and ^{212}Pb diffusion should be modeled, their short-lived daughters are in local secular equilibrium

• ^{220}Rn decays inside the tumor, ^{212}Pb removal by the blood modeled as a uniform “sink” term
The diffusion-leakage model: Space and time behavior of 220Rn and 212Pb

\[
\frac{\partial n_{Rn}}{\partial t} - D_{Rn} \nabla^2 n_{Rn} = s_{Rn} - \lambda_{Rn} n_{Rn}
\]

Effective diffusion coefficient
Source term (release from seed surface)
Radioactive decay

\[
\frac{\partial n_{Pb}}{\partial t} - D_{Pb} \nabla^2 n_{Pb} = s_{Pb} - \lambda_{Pb} n_{Pb} - \alpha_{Pb} n_{Pb}
\]

Effective diffusion coefficient
Source term
Radioactive decay
212Pb removal by blood
Average removal time $1/\alpha_{Pb}$

\[
s_{Rn}(r, t) = P_{des}(Rn) \Gamma_{Ra}^{src}(0) e^{-\lambda_{Ra} t} \delta(r)
\]

\[
s_{Pb}(r, t) = \lambda_{Rn} n_{Rn} + \left[P_{des}^{eff}(Pb) - P_{des}(Rn) \right] \Gamma_{Ra}^{src}(0) e^{-\lambda_{Ra} t} \delta(r)
\]
Approximate analytical point-source solution for the alpha particle dose: 220Rn + 216Po

$$Dose_{\alpha}^{asy} (^{220}\text{Rn} + ^{216}\text{Po}; r) = \frac{1}{4\pi} \cdot P_{des}(\text{Rn}) \Gamma_{Ra}^{src} (0) \tau_{Ra} \cdot \frac{E_{\alpha}(^{220}\text{Rn} + ^{216}\text{Po})}{\rho L_{Rn}^3} \cdot \frac{e^{-r/L_{Rn}}}{r/L_{Rn}}$$

- Total number of 220Rn atoms released into the tumor
- Typical dose contributed by 220Rn + 216Po decay
- Spatial distribution factor

$$Dose_{\alpha}^{asy} (^{212}\text{Bi} / ^{212}\text{Po}; r) \approx \frac{1}{4\pi} \cdot [1 - P_{\text{leak}}(\text{Pb})] \cdot P_{des}^{eff} (\text{Pb}) \Gamma_{Ra}^{src} (0) \tau_{Ra} \cdot \frac{E_{\alpha}(^{212}\text{Bi} / ^{212}\text{Po})}{\rho L_{Pb}^3} \cdot \frac{e^{-r/L_{Pb}}}{r/L_{Pb}}$$

- Fraction of 212Pb atoms remaining in tumor
- Total number of 212Pb atoms released into the tumor
- Typical dose contributed by 212Bi or 212Po decay
- Spatial distribution factor
Diffusion lengths of ^{220}Rn and ^{212}Pb

The diffusion lengths determine the spatial extent of the treatment

- ^{220}Rn diffusion length:
 \[L_{\text{Rn}} = \sqrt{D_{\text{Rn}} \tau_{\text{Rn}}} \]
 where $\tau_{\text{Rn}} = 1/\lambda_{\text{Rn}}$ is the mean radioactive decay lifetime of ^{220}Rn

- ^{212}Pb diffusion length:
 \[L_{\text{Pb}} = \sqrt{D_{\text{Pb}} \tau_{\text{Pb}}^{\text{eff}}} \]
 where $(\tau_{\text{Pb}}^{\text{eff}})^{-1} = \lambda_{\text{Pb}} + \alpha_{\text{Pb}}$ is the effective mean lifetime of ^{212}Pb including radioactive decay and removal by blood

Reasonable values: $L_{\text{Rn}} \sim 0.2 - 0.4$ mm, $L_{\text{Pb}} \sim 0.4 - 0.8$ mm
Estimated dose correlates with tissue necrosis → 10 Gy is a good number!

1. Estimated necrotic area: 12.7 mm²
 Corresponding dose: 5-11 Gy
 \(S_{Rn}(0) = 0.40 \, \mu\text{Ci} \)

2. Estimated necrotic area: 18.4 mm²
 Corresponding dose: 6-15 Gy
 \(S_{Rn}(0) = 0.52 \, \mu\text{Ci} \)
Organ dose example

4 cm diameter spherical tumor, 30% 212Pb leakage, 10 μCi 224Ra per gram of tumor tissue (*conservative estimates*)

<table>
<thead>
<tr>
<th>Organ</th>
<th>Alpha Dose (Gy)</th>
<th>Treatment dose/tolerance dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kidneys</td>
<td>0.35</td>
<td>< 0.09</td>
</tr>
<tr>
<td>Red bone marrow</td>
<td>0.06</td>
<td>< 0.08</td>
</tr>
<tr>
<td>Ovaries</td>
<td>0.02</td>
<td>< 0.04</td>
</tr>
<tr>
<td>Liver</td>
<td>0.09</td>
<td>< 0.013</td>
</tr>
<tr>
<td>Heart Wall</td>
<td>0.09</td>
<td>< 0.011</td>
</tr>
<tr>
<td>Testes</td>
<td>0.01</td>
<td>< 0.009</td>
</tr>
<tr>
<td>Lungs</td>
<td>0.08</td>
<td>< 0.008</td>
</tr>
</tbody>
</table>
Clinical trials - RMC

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age</th>
<th>Tumor Location</th>
<th>Previous RT</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>87</td>
<td>Sub-Mandibular + Mandible</td>
<td>Yes</td>
<td>Partial</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>Ear</td>
<td>Yes</td>
<td>Complete</td>
</tr>
<tr>
<td>3</td>
<td>94</td>
<td>Tongue</td>
<td>Yes (x2)</td>
<td>Complete</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>Lip</td>
<td>Yes</td>
<td>Partial</td>
</tr>
<tr>
<td>5</td>
<td>75</td>
<td>Parotid</td>
<td>Yes</td>
<td>Partial</td>
</tr>
<tr>
<td>6</td>
<td>94</td>
<td>Tongue</td>
<td>Yes</td>
<td>Complete</td>
</tr>
<tr>
<td>7</td>
<td>69</td>
<td>Nose</td>
<td>Yes</td>
<td>Complete</td>
</tr>
<tr>
<td>8</td>
<td>81</td>
<td>Ear</td>
<td>Yes</td>
<td>Complete</td>
</tr>
<tr>
<td>9</td>
<td>91</td>
<td>Tongue</td>
<td>Yes</td>
<td>Complete</td>
</tr>
<tr>
<td>10</td>
<td>76</td>
<td>Cheek</td>
<td>No</td>
<td>Complete</td>
</tr>
<tr>
<td>11</td>
<td>78</td>
<td>Lip</td>
<td>Yes</td>
<td>Complete</td>
</tr>
<tr>
<td>12</td>
<td>70</td>
<td>Forehead</td>
<td>No</td>
<td>Partial</td>
</tr>
<tr>
<td>13</td>
<td>66</td>
<td>Lip</td>
<td>No</td>
<td>Complete</td>
</tr>
<tr>
<td>14</td>
<td>88</td>
<td>Parotid</td>
<td>Yes</td>
<td>Unknown</td>
</tr>
</tbody>
</table>