Potential Impacts of Emergent Technologies on Freight-Related Land Uses in Urban Areas

Dr. Catherine T. Lawson
University at Albany
& Jeff Wojtowicz
Rensselaer Polytechnic Institute
Urbanism Next
Portland, Oregon
May 9, 2019
Tracking Freight Flows

- Traditional fleet-based management systems
 - Telematics
 - Communications with individual trucks
 - Global Positioning Systems (GPS) feeds
- Modern communications
 - App-based
 - Machine-learning algorithms
 - Real-time management
 - Archived data streams
Understanding Where is the Freight Coming From and Going To?

- Evolution over time:
 - Early interest – 1970s Conference on Urban Commodity Flows
 - Deregulation of trucking – 1980s
 - Just-in-time deliveries – 1990s – 2000s
 - E-commerce w/rapid delivery - current

- Traditional Land Use Planning
 - Little attention to freight activities
 - Local focus with individual jurisdiction regulations
Traditional Land Use Planning

• Euclidean Zoning
 • Broadly describes industrial activities that produce truck trips.
 • Limited opportunities to facilitate freight activities, particularly in commercial and residential areas.

• Comprehensive Plans
 • Solicit public input for a community-wide vision of the future.
 • Often exclude freight activities from discussions.
Regional Land-Use Data Program

- Jurisdiction-specific codes aren’t useful for regional analyses
 - Analysis between regions does not sync, therefore, supply chain analysis can’t be done.
- Land-Based Classification Standards (LBCS).
 - Developed by FHWA, APA and other federal agencies in late 1990s.
 - Five harmonized dimensions with codes and definitions based on parcels:
 - Activity
 - Function
 - Structure Type
 - Site Development Characteristics
 - Ownership
 - Available at https://www.planning.org/lbcs/

Goes on top of regular zoning
Tools to Add Estimated Freight Movements

• NCFRP Reports 19 and 37 provide estimation parameters for freight generation (FG), freight trip generation (FTG), and service trip generation (STG) using NAICS codes.

• Cross-walk NAICS code information (from commercial source e.g., Dunn & Bradstreet, InfoUSA) to LBCS function codes.

• Use LBCS + Truck Trips to create parcel-based FG, FTG, and STG estimations across the landscape, tied to local jurisdictions.
LBCS+Freight Data Program

- Jurisdictions can add estimated freight activities (using freight production/attraction estimation equations) based on land use functions by parcel across an entire region.
When Freight Is Not Integrated into the Urban Fabric
Freight Integrated into the Urban Fabric

https://www.minnpost.com/minnesota-blog-cabin/2015/10/want-make-our-transportation-network-more-efficient-create-bustruck-only/
Proactive Land Use Planning Tools

• Research focus on land use practices and freight
 • Overlays with specific adaptations for freight behaviors
 • Form-based/Hybrid codes
 • Special Districts
 • Logistics Zones

• Need for “model language” to facilitate adoption
 • Will require evidence-based data support
Overlay Zones

• Easier to enact or amend than Euclidean zoning, but still require local legislative action.
• Less subject to court action.
• Designed to cater to explicit needs.
• Used to successfully address freight issues.
Form-Based Zoning

- Disappointment with traditional zoning prompts attempts to control outcome of development through descriptions and illustrations.
 - Illustrated in three dimensions.
 - Requires intensive public outreach to adopt, but reduces need for legislative actions going forward.
 - Relies on a transect concept that marginalizes freight activities.
Hybrid Zoning

• Creates a mix of traditional and form-based zoning.
• Has been successfully used to describe and illustrate freight activities.
 • Albany, New York
• Requires intensive public outreach to adopt, but reduces need for legislative actions going forward.
Hybrid Zoning for Active Freight Functions

Table 375-2-30: I-1 Light Industrial
See Section 375-4(A) for more details

<table>
<thead>
<tr>
<th>Lot Standards</th>
<th>B</th>
<th>Impervious lot coverage, maximum</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot width, minimum</td>
<td></td>
<td>25 ft.</td>
<td></td>
</tr>
<tr>
<td>Setbacks</td>
<td></td>
<td>Front, minimum</td>
<td>0 ft.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Side, minimum</td>
<td>10 ft.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rear, minimum</td>
<td>20 ft.</td>
</tr>
<tr>
<td>Building Standards</td>
<td></td>
<td>Height, principal building, maximum</td>
<td>2 stories</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Height, accessory buildings, maximum</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 375-2-32: I-2 General Industrial
See Section 375-4(A) for more details

<table>
<thead>
<tr>
<th>Lot Standards</th>
<th>B</th>
<th>Impervious lot coverage, maximum</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot width, minimum</td>
<td></td>
<td>50 ft.</td>
<td></td>
</tr>
<tr>
<td>Setbacks</td>
<td></td>
<td>Front, minimum</td>
<td>10 ft.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Side, minimum</td>
<td>15 ft.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rear, minimum</td>
<td>40 ft.</td>
</tr>
<tr>
<td>Building Standards</td>
<td></td>
<td>Height, principal building, maximum</td>
<td>8 stories</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Height, accessory buildings, maximum</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Designated Logistics Zones

- Port-centric Logistics Zones
- Logistics Support Zones
- Urban Distribution Centers
- Urban Consolidation Centers
- Freight Villages

Data Traces from Freight Flows

- Current technologies generate data traces from on-board operations at a fine grain.
- Harvesting, post-processing and anonymizing data traces:
 - National Performance Management Research Data Set (NPMRDS)
 - 5-minute average speeds from trucks on National Highway System
 - Additional of local roads (available from commercial vendors)
Assistive Intelligence (AI) Programs

• NCFRP Report 29 – ‘Making Trucks Count’ describes mobile apps to aid truck activities.

• Use two-app communications to control:
 • Scheduling, transactions and reservations
 • Which trucks arrive on-site at what time
 • Length of time they can park

• Leverage app information:
 • Conduct analysis on app “traces” to determine program effectiveness and policy modifications, when needed.
 • Require monitoring and cumulative impact analysis as part of land use applications for new development or redevelopment.
Freight Efficient Land Use Planning

• Form new partnerships between Metropolitan Planning Organizations (MPOs) and local planning agencies to address freight.

• Enhance Hybrid Zoning by incorporating performance monitoring and truck trip generation aggregations into ordinances.

• Conduct outreach to the freight community members to identify benefits (e.g., higher productivity for carriers).
Questions?

Contact info:

Catherine T. Lawson
lawsonc@albany.edu

Jeff Wojtowicz
wojtoj@rpi.edu