How Are Uber/Lyft Shaping Municipal On-Street Parking Revenue?

Benjamin Y. Clark
@BenClarkPHD
Associate Professor
School of Planning, Public Policy and Management
University of Oregon
bclark2@uoregon.edu
orcid.org/0000-0002-8627-7857
This project was funded by the National Institute for Transportation and Communities (NITC; grant number 1174 - 2452A0), a U.S. DOT University Transportation Center. Funding support was also provided by the University of Oregon’s Urbanism Next Research Initiative and the Oregon Policy Lab.
“...Cities are struggling to find the human and financial capacity to deliver more projects— and the right actions are not yet clear or urgent enough...”
FIG. 3 Barriers to Cities’ AV Efforts

Lack of funds
No capacity to manage pilots
Unclear what issues require city action
No urgency or consensus to act
National or state/provincial regulation
Lack of private sector interest
Local opposition
No planning or policymaking capacity

Data: Survey results as of April, 2017 with 30 cities responding
What happens to revenue when we drive + park less?
Study Shaping Factors

• 2012-2016
• TNC Pickup/Dropoff (both Uber and Lyft)
• Parking revenue + occupancy + avg %/hour
• Census Tracts in Seattle with paid on-street parking (33 in total)
About the data and $ figures (quickly)

• Geography—Census Tracts
• Time—three time blocks (Morning; Mid-Day; Evening)
• Day of week in a month

→ All Monday mornings in January are added together for each Tract
Rapid Growth of TNCs in Seattle

TNC Month-Over-Month Percent Increases In Rides Taken

- Median Increase
- Mean Increase
Revenue is predicted to peak at about 3 to 4 times the 2016 TNC ridership
TNC Trips Effects on Parking Revenue
With 95% Confidence Interval

Morning

Afternoon

Evening

All Day Combined

With 95% Confidence Interval
Each neighborhood is unique
TNC Trips Effects on Parking Revenue--By Neighborhood

With 95% Confidence Interval

<table>
<thead>
<tr>
<th>Neighborhood</th>
<th># of TNC Trips</th>
<th>Revenue in $'s</th>
<th>Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uptown Triangle</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Uptown</td>
<td>0</td>
<td>2,000</td>
<td></td>
</tr>
<tr>
<td>University District</td>
<td>0</td>
<td>4,000</td>
<td></td>
</tr>
<tr>
<td>12th Ave</td>
<td>0</td>
<td>6,000</td>
<td></td>
</tr>
<tr>
<td>South Lake Union</td>
<td>0</td>
<td>8,000</td>
<td></td>
</tr>
<tr>
<td>Roosevelt</td>
<td>0</td>
<td>10,000</td>
<td></td>
</tr>
<tr>
<td>Pioneer Square</td>
<td>0</td>
<td>12,000</td>
<td></td>
</tr>
<tr>
<td>Pike-Pine</td>
<td>0</td>
<td>14,000</td>
<td></td>
</tr>
<tr>
<td>Greenlake</td>
<td>0</td>
<td>16,000</td>
<td></td>
</tr>
<tr>
<td>Fremont</td>
<td>0</td>
<td>18,000</td>
<td></td>
</tr>
<tr>
<td>First Hill</td>
<td>0</td>
<td>20,000</td>
<td></td>
</tr>
<tr>
<td>Denny Triangle</td>
<td>0</td>
<td>22,000</td>
<td></td>
</tr>
<tr>
<td>Commercial Core</td>
<td>0</td>
<td>24,000</td>
<td></td>
</tr>
<tr>
<td>Chinatown</td>
<td>0</td>
<td>26,000</td>
<td></td>
</tr>
<tr>
<td>Cherry Hill</td>
<td>0</td>
<td>28,000</td>
<td></td>
</tr>
<tr>
<td>Capital Hill</td>
<td>0</td>
<td>30,000</td>
<td></td>
</tr>
<tr>
<td>Belltown</td>
<td>0</td>
<td>32,000</td>
<td></td>
</tr>
<tr>
<td>Ballard</td>
<td>0</td>
<td>34,000</td>
<td></td>
</tr>
</tbody>
</table>
Uncertainty remains
TNC Pick-Up and Drop-Off Effects on Parking Revenue

Predicted # of Pick-Ups
With 95% Confidence Interval

Predicted # of Drop-Offs
With 95% Confidence Interval

Mean
Max
Effect of the Population Density Parking Revenue

Revenue in $'s vs Population Density (1000 people per sq mile)
Benjamin Y. Clark
Associate Professor
School of Planning, Public Policy and Management
University of Oregon
bclark2@uoregon.edu
orcid.org/0000-0002-8627-7857