HERITAGE RAILWAY ASSOCIATION

GUIDANCE NOTE

PLATEWORK

Purpose
This document describes good practice in relation to its subject to be followed by Heritage Railways, Tramways and similar bodies to whom this document applies

Endorsement
This document has been developed with and is fully endorsed by Her Majesty’s Railway Inspectorate, a directorate of the Office of Rail Regulation (ORR).

Disclaimer
The Heritage Railway Association has used its best endeavours to ensure that the content of this document is accurate, complete and suitable for its stated purpose. However it makes no warranties, express or implied, that compliance with the contents of this document shall be sufficient to ensure safe systems of work or operation. Accordingly the Heritage Railway Association will not be liable for its content or any subsequent use to which this document may be put.

Supply
This document is published by the Heritage Railway Association (HRA).
Copies are available electronically via our website www.heritagerailways.com
Table of Contents

<table>
<thead>
<tr>
<th>SECTION</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction ..</td>
<td>4</td>
</tr>
<tr>
<td>2. Units ...</td>
<td>4</td>
</tr>
<tr>
<td>3. Personal Protective Equipment ..</td>
<td>4</td>
</tr>
<tr>
<td>4. Inspection ...</td>
<td>4</td>
</tr>
<tr>
<td>5. Conventions & Terminology ...</td>
<td>4</td>
</tr>
<tr>
<td>6. Materials ..</td>
<td>5</td>
</tr>
<tr>
<td>Existing Materials ...</td>
<td>5</td>
</tr>
<tr>
<td>Copper ...</td>
<td>5</td>
</tr>
<tr>
<td>Steel ...</td>
<td>5</td>
</tr>
<tr>
<td>Traceability ...</td>
<td>5</td>
</tr>
<tr>
<td>Notes on plate defects ...</td>
<td>5</td>
</tr>
<tr>
<td>Lamination in existing shell plates ..</td>
<td>6</td>
</tr>
<tr>
<td>Mill Scale ...</td>
<td>7</td>
</tr>
<tr>
<td>Handling ...</td>
<td>7</td>
</tr>
<tr>
<td>Plate Edges ...</td>
<td>8</td>
</tr>
<tr>
<td>Freedom from oil and grease ...</td>
<td>8</td>
</tr>
<tr>
<td>7. Building Up ..</td>
<td>8</td>
</tr>
<tr>
<td>8. Cracking ...</td>
<td>8</td>
</tr>
<tr>
<td>Detection ..</td>
<td>8</td>
</tr>
<tr>
<td>Cracks in flat plates ...</td>
<td>9</td>
</tr>
<tr>
<td>Cracks in tube plates ..</td>
<td>9</td>
</tr>
<tr>
<td>Cracks in flange radii ...</td>
<td>9</td>
</tr>
<tr>
<td>Star cracking of stay holes ...</td>
<td>10</td>
</tr>
<tr>
<td>A crack connecting two stay holes ...</td>
<td>11</td>
</tr>
<tr>
<td>Crack propagating along several holes</td>
<td>12</td>
</tr>
<tr>
<td>9. Patches & Inserts ..</td>
<td>12</td>
</tr>
<tr>
<td>Mismatching ..</td>
<td>13</td>
</tr>
<tr>
<td>Barrel Patches ..</td>
<td>14</td>
</tr>
<tr>
<td>Weld Peaking ...</td>
<td>15</td>
</tr>
<tr>
<td>10. Production of Formed Plates ...</td>
<td>16</td>
</tr>
<tr>
<td>Hot or Cold Working Copper ..</td>
<td>16</td>
</tr>
<tr>
<td>Hot or Cold Working Steel ...</td>
<td>16</td>
</tr>
<tr>
<td>Plate Rolling ..</td>
<td>17</td>
</tr>
<tr>
<td>Press Braking ..</td>
<td>17</td>
</tr>
<tr>
<td>Cylinders and cylindrical sections ...</td>
<td>17</td>
</tr>
</tbody>
</table>
1. Tapered Barrel Sections ... 18
2. Production of Flanged Plates ... 18
3. Circular Flanged Plates (Tubeplates) ... 20
4. Improvement to Copper Tube Plate Flanges .. 20
5. Post Flanging Processes .. 20
6. Heat Treatment ... 21
7. Heat Treatment of Boiler Plates Post Forming 21
8. Steel Boiler Plate ... 21
9. Copper Boiler Plate .. 22
11. Lapped Joints and Seams ... 22
12. Riveted Seams .. 22
13. Building up of lap edges ... 24
14. Fullering / Caulking ... 24
15. Welded Joints and Fabrications ... 25
16. Welded Joints ... 25
17. Welded fabrications ... 25
18. NDT .. 25
19. Further information ... 25
20. References .. 26
21. Colour of Steel Materials in relation to Temperature 26
1. Introduction

This Guidance Note is one of a series dealing with Locomotive Boilers that were produced by the “Steam Locomotive Boiler Codes of Practice” practitioners meetings.

Railway locomotive boilers are designed to create, store and distribute steam at high pressure. The working life of such a boiler can be considerably shortened if due care is not taken at all stages of inspection, repair, running maintenance and day-to-day running.

In the past there have been a series of accidents and explosions due to work being undertaken without having due regard to the inherent risks involved. It is with that in mind that H.M.R.I. and H.R.A. set up the series of meetings of boiler practitioners to discuss the issues; distil good practice and codify it into this series of Guidance Notes.

This guidance is written for the assistance of people competent to perform these tasks. In places the terminology used may be specific to such practitioners.

This guidance will also be useful to those in a supervisory or more general role, however no work should be undertaken unless the people concerned are deemed competent to do so.

Where managements decide to take actions that are not in agreement with these recommendations, following appropriate risk assessments or for other reasons, it is recommended that those decisions are reviewed by the senior management body of the organisation and a formal minute is recorded of both the reasons for and the decision reached.

2. Units

The dimensions in this document are variously described in a mixture of imperial and metric units. Where practical equivalent dimensions have been shown but in some cases the dimensions do not easily equate and so the units in force at the time the original designs were documented have been used.

3. Personal Protective Equipment

Before undertaking any works a risk assessment must be conducted.

Protective equipment is to be supplied and used at work wherever there are risks to health and safety that cannot be adequately controlled in other ways.

The equipment must be

- In accordance with the latest Personal Protective Equipment regulations.
- Properly assessed before use to ensure it is suitable.
- Maintained and stored properly
- Provided with instructions on how to use it safely
- Used correctly by those undertaking the work.

4. Inspection

In the event of any doubt as to any process or the condition of any part; seek guidance from the boiler Competent Person before proceeding.

5. Conventions & Terminology

In this document the described parts of the boiler shall be as the simplified sketch to the right.
6. Materials

Existing Materials
Care must be taken to identify the parent materials when repairing boilers. It may be necessary to analyse existing boiler materials to ascertain the parentage. Older boilers may have been made with wrought iron plates or other materials which are prone to internal defects or that are not readily weldable. It may be necessary to take samples for chemical or mechanical analysis to be sure of the make up of the original material.

Copper
Copper plate for boiler work should be phosphorus deoxidised arsenical copper to BS C107 or equivalent.

<table>
<thead>
<tr>
<th>ISO Designation</th>
<th>British Standard</th>
<th>ASTM Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu Asp</td>
<td>C107 (formerly BS2875)</td>
<td>C14200</td>
</tr>
</tbody>
</table>

This alloy contains between 0.30 and 0.50 percent of arsenic in solid solution and is supplied in the deoxidised condition.

The small addition of arsenic in C107 provides the alloy with enhanced strength properties that are retained at elevated temperatures. Apart from increasing the softening resistance, the arsenic addition also enhances corrosion resistance in specific environments.

Some fireboxes may be made from C105 or tough pitch copper, it may be necessary to analyse the parent material before carrying repairs to ensure the correct material is used. It is extremely difficult to achieve welds of a sufficient quality in tough pitch or C105 copper and other repair methods should be adopted where these materials are present.

Steel
Steel boiler plate should be carbon steel plate to grade BS1501 161 430A/B or equivalent.

<table>
<thead>
<tr>
<th>British</th>
<th>Indian</th>
<th>German</th>
<th>American</th>
<th>Euro</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS:1501 161 430 A</td>
<td>IS:2041</td>
<td>DIN:17155 HII</td>
<td>ASTM A516 gr 60</td>
<td>EN 10028 P265GH</td>
</tr>
<tr>
<td>IS:2100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Traceability
Certificates of conformity for all materials used must be obtained and retained by the responsible person. Copies of all certificates should be sent to the competent person on completion of the repairs.

When receiving materials at the works, check the material for its identifying mark and relate it to any documentation accompanying the material.

All identifying markings must be transferred promptly and accurately when materials are cut. In certain applications the transfer of markings may need to be witnessed by the responsible person.

Marks should be made where they will be visible on an exterior surface of the plate after fitting to the boiler.

Wherever possible, marks should be made where they will cause least stress to the material after any manipulation has been carried out, i.e. away from curves, holes or laps. Soft stamps should be used to mark plate i.e. the letters are of a design, or font, where they do not have sharp edges or corners which can act as stress raisers.

If an identifying mark is altered through further work (drilling, welding etc.), the mark must be re made in a suitable location.
Notes on plate defects

Though rare, it pays to be aware of defects which can occur in rolled plates. Below are some of the more common defects that may be encountered.

Laminations are usually caused by blow holes in the ingot when cast. If the plate is in great length in proportion to its width then the lamination will follow a similar path. Thus in plates, while laminations from blow holes rarely extend more than a few inches across, they may be several feet in length.

Another form of lamination may be caused by the rolls folding over the end of the bloom when rolling it into a plate. When finishing the plate this folded section is rolled tight together and sometimes not entirely sheared off. These laminations may be detected by a faint line along the edge of the plate. Laminations of this kind will generally run across the full length of the edge of the plate but not extend to a great depth.

Lamination failure in modern copper boiler plate

Ultrasonic inspection can be used to diagnose or assess the extent of laminations in new or old boiler plates.

Another class of defect is caused by small cracks in the sides of the ingots when cast. These fractures are flattened down into the plate and are usually detected by a faint irregular line running across or along the plate. When chipped or ground out it is found to extend in a wedge shape to a slight depth into the plate and terminate.

Another defect results from oxide being rolled into the plate and causing pitting. These defects if not immediately apparent, generally show themselves by scale cracking off as the plates are formed. Foreign material is also sometimes rolled into the plate, causing deep sharp pitting and embedding grit into the plate. Care must be taken when selecting plate for pressure vessel applications to ensure it is of the highest quality and free of defects.

In wrought iron boiler plates, lamination can result from improper welding together of the layers of which the plate is formed.
Lamination in existing shell plates

There are probably many boilers in service with undetected laminations however these can come to light during routine inspections particularly when carrying out a random ultrasonic thickness survey. Untreated laminations can blister or bulge particularly in furnace or firebox parts.

The separation at the defective part restricts the transmission of heat and so leads to overheating of the outer layer of plate, which first blisters or bulges and then splits off.

Lamination in firebox

Bulging of the plate due to overheating

Eventually the plate splits away entirely

Laminations must be reported to the competent person who will make a decision on the course of action. He must consider the location, size and expected stresses to which the area in question will be subjected.

If lamination is discovered on any inner firebox plate or smoke tube or flue tube or other area which is directly heated, the area in question must be replaced.

Mill Scale

Mill scale should be removed from plates prior to working and fitting to the boiler. If it is impractical to descale the whole plate, at the very least all mating surfaces must be free of scale.

Handling

Surface damage, such as gouges, in plates can be the starting points for cracks, pitting or grooving. Every effort must be made to avoid, gouging or denting plates. Avoid dragging plates when moving them, or dropping them.

Plate clamps can leave teeth marks in plates when lifting, avoid using such types of clamps where possible or leave excess plate for gripping which can be removed at a later date.
Plate Edges

All plates must have machined edges (i.e., milled or ground). Plates with flame cut or guillotined edges must not be fitted to boilers. Plate must be trimmed at least 10mm back from a guillotined edge. Flame cut edges should be dressed back to remove notches, slag and scale before welding.

Freedom from oil and grease

A layer of oil on the water side of a firebox plate can have a serious effect on the heat transfer in said area of plate. Every effort must be made to prevent oil contamination inside a boiler. Avoid excessive use of oil based cutting compounds or consider using water based cutting and tapping fluids. Any oil spills on boiler plate must be thoroughly removed before steaming.

7. Building Up

Small areas of thinning; pitting and grooving of boiler plates may be built up by welding to restore the area to its original thickness.

On barrel plates no one area of pitting of over 6 sq” (2” X 3” for example) should be repaired by welding nor should the total amount of welding in any one foot square of plate exceed 6 sq”. The total area of welding in any one barrel plate should not exceed 24 sq”.

Building up of steel plate in the outer shell should be restricted to pitting and grooving which is not deeper than half the original plate thickness.

Building up of copper plates is only permissible where the copper plate is not reduced below 5/16” in thickness.

Care should be taken to minimise the impact of heat during the welding process. Welded areas must be chipped or ground flat and flush after welding is completed.

Preheating the weld area before welding can be advantageous however extreme care will be required, especially in cylindrical plates, to avoid distorting the plate.

Building up by welding must be carried out by a competent welder who should be approved by the competent person. It is recommended built up areas are examined by NDT to ensure the weld metal is free of defects.

Records of areas built up by welding must be maintained and no areas already built up in the past should be built up again at a later date. Subsequent repairs must also comply with the total allowable areas of weld repair as shown above.

8. Cracking

Upon removal of stays, rivets and studs, all holes should be examined for signs of cracking. Plate edges that were not prepared properly before fitting are also prone to cracking and suspect areas should be examined carefully.

Cracks may only be welded by a coded welder. A record of the location of cracks and methods used should be retained by the responsible person. Crack repair should be approached in the same way as new welded joints with regards procedures and materials used.

The competent person must be informed as to the extent of cracking and the method of repair to be adopted.

Detection

While some cracking is visible to the naked eye this is usually only later on in the life of the crack. Most cracking originates on the water side of boilerplates.

Early detection and repair is of utmost importance. Mud holes and mirrors can give a limited view of the water space for examination. There are now mobile cameras available, which may be inserted into the boiler to make the task much easier.
Modern portable digital camera with built in monitor

NDT will also facilitate crack detection; NDT should be carried out by a suitably skilled person with the agreement of the competent person. Both Dye Penetration and Magnetic Particle inspections are cost effective and simple methods of initial diagnosis.

Cracks in flat plates

A crack in a flat area of plate may be repaired by welding or patching. The crack must be fully ground out. NDT should be employed to confirm the crack is fully removed; MPI is the preferred method for crack detection. The crack may then be welded up by a coded welder in accordance with the approved procedure. The weld should be ground flush with the surface of the plate once welding is complete. The integrity of the weld should be confirmed by NDT once the repairs are complete.

Cracks in tube plates

Cracks in tube plate ligaments should be ‘veed’ out and welded appropriately. Each weld should be allowed to cool completely before starting another to minimise the stresses imposed on the tube plate. After welding the tube holes should be checked to ensure they have not been pulled out of round.

Cracks in flange radii

It is common for cracks to form in the radius of a flange these can be more extensive and numerous than maybe found in flat plates and therefore may not be suitable for repair by welding. Where cracks are simple and few, repairs may be carried out as for flat plates. The competent person should be informed and approval sought before carrying out repairs to flange radii.
Cracks in a backhead radius, this type of cracking cannot be repaired by welding.

The same radius pressed flat to show the severity of the cracking.

Front tubeplate radius showing cracking caused by stress corrosion.

Star cracking of stay holes

Star cracking is a common problem in boiler stay holes. Isolated cases may be repaired by welding.
- Take out the stay and chip out a V on the crack (1 & 2)
- Weld up the cracks and plug the hole with horizontal passes (3)
- Chip off or grind flush the welded deposit
- Drill and tap the hole
- Replace the stay

Cracks emanating only a short distance from the hole may also be repaired by the following method which may also be used to restore oversized stay holes to a smaller size. Be sure all cracks have been removed by reaming and countersinking before welding.

Alternative method for repairing cracked or oversize stay holes

A crack connecting two stay holes

Where cracks have connected two stay holes the following procedure should be adopted.

- Take out the stays in the crack line also those in the vicinity so as to give some liberty for the plate to accommodate in view of the welding stresses.
- Bevel out the holes and make a V on the cracks (2 & 3)
- Weld first the principle crack (2), then weld the smaller cracks, finish by plugging the holes with horizontal passes (4) as for star cracking.
- Drill tap and fit the stays.
Crack propagating along several holes

Carry out the repair in upward passes as shown, in 'steps' namely 2 to 1, followed by 3 to 2 etc.

- Take out the stay and "V" out the crack completely
- Weld up the principle crack, then any smaller cracks and plug the hole with horizontal passes (as for star cracking)
- Chip off or grind flush the welded deposit
- Drill and tap the hole
- Replace the stay

9. Patches & Inserts

The responsible person should submit a proposal for fitting any patches or inserts to the competent person. The competent person should give his written consent to any patching or to the fitting of inserts and should confirm approval regarding the use of materials and the method of work.

Patches may be joined to the parent metal by means of rivets or welding to the appropriate standards or in limited cases, patch screws. Lapped joints rely not only on the shear strength of rivets for joint integrity but also the high level of friction produced between the plates as the rivets cool and shrink pulling the joint tightly together. Wherever practical replace rivets with rivets.

Firebox patches may be any shape providing they are adequately supported by stays, rivets, tubes or other supporting structures.

Patches in stayed plates should be arranged so the weld passes equidistant between stay rows wherever possible. If it is not possible to avoid stay holes then the weld should bisect the hole rather than passing very close to it.

Patches should be made from material equal in thickness to the original plate, it may be necessary to taper the plate edges to avoid misalignment at the welded joint.

All rectangular or angled welded patches must have adequate radii at the corners; the minimum radius should not be less than three times the plate thickness.

It may be helpful when fitting large plate patches to be welded from one side to give the plate a slightly spherical form before fitting to the boiler. The contraction of the weld will pull the plate flat once the welding is complete.
Care must be taken when choosing a patch design. The following photo shows a patch fitted to a throatplate. The choice of patch design is poor and likely to lead to a reduced lifespan; the welded seam runs along the top of the foundation ring. This is a stressed area due to the rigidity of the foundation ring and prone to grooving, a far better solution here would be to remove the foundation ring rivets and extend the patch to the bottom of the foundation ring.

![Photo of poorly designed patch repair](image)

Mismatching

Sometimes, when fitting patches to a boiler, there will be an inevitable element of mismatch in thickness between the plates. The new patch must be made of material the same thickness as that originally fitted to the boiler; however the parent material to which the patch will be fixed may be thinner.

The maximum allowable offset between the two plate edges shall be 1.5mm (1/16"). If the mismatch is more than this the plate edge must be tapered away from the joint to create a gradual transition of thickness.

Wherever possible the plate faces should be set flush on the waterside, especially so on plates exposed directly to the fire.
Welding of mismatched plates should be carried out in accordance with BS 2790:1992. Welding must be carried out by a coded welder to approved procedures.

Barrel Patches

Where the boiler barrel is too heavily pitted or cracked to allow a repair by building up with weld, replacement of barrel sections may be advised.

The best method of repair is to cut longitudinally along the barrel above the level of the affected area of plate for the full length of the barrel segment. A rolled barrel plate can then be let in and welded. The rivets at the front and back of the barrel section can be replaced.

Consider splitting the barrel along the longitudinal riveted seam on one side and cutting on the other, this means only one welded joint in the barrel and less resultant distortion.

If replacement of the full length of the barrel segment is not possible you may consider fitting a 'D' patch to the affected area of the barrel (often the area near to the front tube plate). Care needs to be taken choosing the shape of the patch and weld procedure to minimise stresses placed on the joint. 'D' patches have a tendency to shrink when welded and care must be taken to maintain a true radius in keeping with the rest of the barrel once the weld is complete.

It is also possible to fit a riveted reinforcing patch over the affected area of the barrel. Riveted patches must be fitted to the outside of the original plate. The plate patch must fully encompass the defective area of plate and the rivets must be fitted through sound plate.
Weld Peaking

A common problem encountered when fitting welded patches to cylinders, especially D patches, is that of weld peaking, or flat spots adjacent to the weld caused by the shrinkage of the weld. This shrinkage can also result in ovality of the barrel or even a reduction in final diameter of the cylinder.

Extent of peaking is calculated as the angle resulting from the intersection of tangents taken from the surface of the two components being welded. The depth of peaking is measured from the true circumference of the barrel to the highest point of the peak ignoring the depth of weld reinforcing.

To enable peaking to be measured externally a profile gauge should be made for each size of boiler to be examined. (Details of the gauge are shown above). The minimum arc length should be 0.175 Do (20° of arc), where Do is the external diameter of the boiler. This diameter should be checked by measurement of the actual boiler shell.

SAFed document SBG2, chapter 4 gives comprehensive advice on assessing the extent of peaking in longitudinal welded seams. BS2790, 1992, section 4.4.2.2 gives information on what extent of peaking is allowable before action is necessary.
The image below shows the stresses exerted on a positively peaked weld in service. Under pressure the cylinder tries to revert to a true circular shape, this places stress on the root of the weld as shown by the red shading. These areas will be extremely liable to cracking or grooving under continued service. Negatively peaked joints act in a similar way to an arch against the pressure and do not exhibit the same problematic symptoms as a positive peak.

ANY patch joint which shows deflection from the true circumference exceeding the levels set in BS2790, 1992, section 4.4.2.2, must be rejected and rectified before the vessel is put into service. Any patch showing positive peaking must be recorded by the responsible person and should be subjected to regular NDT examination at no more than 5 yearly intervals.

Distortion may be reduced by selecting a welding sequence which will suitably distribute the stresses so that they tend to cancel each other out. Choice of a suitable welding sequence is probably the most effective method of overcoming distortion, although an unsuitable sequence could exaggerate it. Simultaneous welding on both sides of the joint by two welders is often successful in eliminating distortion.

10. Production of Formed Plates

Hot or Cold Working Copper

Copper plate may be worked hot or cold. When working hot the plate should be worked while at a temperature of around 850°C.

It is necessary to observe the copper carefully, so that when it has reached the right temperature it may be withdrawn from the heat. This is important, for if the copper is heated too high, or is left in the heat at the ordinary temperature of annealing too long, it is burnt. Copper that has been burnt is yellow, coarsely granular, and exceedingly brittle; even more brittle at a red heat than when cold.

Copper may be worked cold but will rapidly work harden and require annealing before each subsequent stage of working. Copper can be annealed by heating to a temperature of around 500°C and then cooling in air or by quenching in water.

Hot or Cold Working Steel

Due to its properties steel boiler plate may be worked hot or cold. Simple bending operations can be carried out cold and do not necessarily require post operation heat treatment. Document EN 13445-4 (2002), clause 9 gives information on the extent of deformation allowed when cold working plates before heat treatment must be applied after forming is complete.

Working or forming of steel plate must not be carried out between the temperatures of 90°C and 550°C (Dark to Blood Red), in this range the steel will be in a brittle state, working plate in this temperature range may result in internal stresses and fractures forming.

Steel boiler plate should not be heated, for the purposes of flanging or forging, above 950°C (orange).
Modern remote infra red thermometers make temperature monitoring much easier

See appendix 1 for more information of temperatures and comparative colours of steel materials.

Plate Rolling

Curved plates such as side plates and wrapper plates are best formed by rolling. This will ensure smooth curves and transitions.

Press Braking

Where rolling of plates is not possible press brake development may be required. Wherever possible try to use full form tools for the bending of plate. Press braking with a narrow tool leads to a faceted curve (a) and stresses along each bend line. If it is not possible to avoid press braking then use large radius tools (b) to eliminate point loading of the plate during forming. Increase the number of press increments and reduce the depth of each press stroke to keep the curve smooth.

Incorrect (a) and suitable method (b) for press braking of boiler plates

If press braking is to be used for the forming of boiler plates the competent person should approve the process of manufacture and intended application of the plates.

Cylinders and cylindrical sections

Cylinders and cylinder sections will usually be found as boiler barrels or barrel repair patches on locomotives or as shell plates or flues in other types of boiler.

Each entire cylinder should be constructed of one plate. Joints should wherever possible be arranged to fall within the steam space. Some older boilers were constructed with the seam below the water line, if it is possible consider moving the seam above the water line when replacing entire barrel sections.

Cylindrical plates should be shaped to a true cylindrical form by rolls or similar suitable machine. BS2790, 1992, 4.4.2.2 give the acceptable limits for deviation from circularity when rolling boiler shells.
When thicker plates are rolled to smaller diameters, say 1" thick plate bent to a diameter of 4ft of less it is recommended the plates are normalised after forming. Plates rolled to a larger diameter should not usually need heat treatment after forming.

The best cylinder design will be rolled with a welded longitudinal seam. In a riveted lap joint at a longitudinal seam the transmission of stress is not direct along the plate and there is a tendency grooving and stress cracking at the edge of the lap of the seam.

If a riveted seam is desired then a cylinder should be rolled with a butt joint with doubling plates inside and out will provide a better solution than a rolled and lapped design. Butt joints with single doubling plates should be avoided.

Doubling plates should be made from the same thickness material as the cylinder and made from rolled plates with diameters corresponding to their placement on the cylinder. The thinning of butt straps for fitting under other plates at the ends is best performed by machining rather than heating and hammering.

Where two cylinders are joined care must be taken to ensure a snug fit of the larger cylinder over the smaller. There should be no clearance at the lap of the ring seam before riveting is commenced.

Cylinder sections, such as for repairing barrels should be rolled, be aware some roll configurations require a sacrificial area at each end of the radius which will remain flat, allow extra material so this may be removed once the rolling is complete.

Tapered Barrel Sections

Many boilers have one or more tapered or conical barrel sections, these may take the form of a true cone, an oblique cone where say the bottom of the barrel is flat and the top of the barrel tapers or an irregular cone where the top and bottom both taper but at different rates.

The ideal method of producing cones or conical sections is with the use of a vertical hydraulic plate bending machine or horizontal rolls. If neither option is feasible then it is possible to press brake the sections however the same precautions must be observed as in the earlier section on press braking.

11. Production of Flanged Plates

The process of flanging usually involves stretching the plate. Unless carried out carefully and the proper thickness of plate allowed local or general thinning of the plate may result. Where the flanging has been carried out at an improper temperature or has been roughly done or flanged around too tight a corner fractures may result on the inside or outside of the radius.

Care is necessary to ensure the full thickness of the plate is heated through before the forming process commences. The plate needs sufficient soaking time in the furnace or fire to allow the heat to penetrate the full thickness of the material.

Flanged plates should have as large a radius as circumstances will allow. Flanges with sharp bends or a small radius are much more liable to give problems due to grooving. Wherever possible the radius should be at least four times the thickness of the plate.

The preferred method of producing flanges is to hot press the plates in one operation. A male and female former should be produced to match the dimensions of the plates required. The plate should be heated to a uniform temperature and sufficient pressing force applied to effect the forming. Heat maybe applied to the edges of the plate being formed if the capacity to heat the whole plate is not available.
Copper may be machine flanged hot or cold. If the work is carried out cold it should be carried out in multiple steps. As the copper is pressed it will work harden and become brittle or tear. The copper must be annealed at appropriate stages during the flanging process.

With care quite acceptable flanges can be achieved by hand flanging. A male former should be produced to match the dimensions of the plates required. The plate is placed onto the former and localised heating applied. The flanges are then formed by hammering the plate over the former.

Care must be exercised to control the heat applied to the plate to avoid overheating or burning of the plate. The total number of heatings should be kept to a minimum. The plate must only be worked while it is at a suitable temperature. Careful use of the hammer must be exercised to avoid thinning the plate or damaging the surface of the plate.

Choosing an appropriate material for your hammer will help to achieve the best possible finish when hand flanging. Consider using hammers made from wood, aluminium, nylon, copper or lead to protect the plate surface.

Copper plate can be hand flanged while cold. As the plate is formed it will work harden and will need to be annealed at appropriate intervals. The plate should not be worked in the while in the hard state.
When cutting the plate before fitting to the male former care must be taken to allow enough material to properly effect the draw of the plate without excess material being present which may lead to crumpling of the plate especially around tight corners.

Circular Flanged Plates (Tubeplates)

Circular flanged plates may be pressed or hand flanged. Though not the preferred method in certain situations it may be possible to fabricate a tubeplate by welding a rolled flange to a circular profile. The competent person must approve the design and construction process.

Locomotives with angle ring mounted tube plates may have a flange welded to a flat plate. This flange is external to the pressure vessel and used to support the smoke box. The welding must still be carried out by a competent person as this flange still may form an integral part of the overall structure or support the boiler itself.

Improvement to Copper Tube Plate Flanges

Common locomotive tube plate designs include a thick tube nest area, say 1 1/4", with a throat plate and flange thickness of say 5/8". Originally this thinning was achieved by forging the blank plate in the relevant areas prior to forming. Modern machining techniques have superseded this process and plates can be milled to the correct form with relative ease.

Flange cracking has always been a common problem. By ensuring the thinned part of the flange does not coincide with the most severely stressed areas significant improvements in tube plate life can be achieved.

Fig. a below represents the section through an existing copper tube plate flange, fig. b shows a suggested modification to the thickness.

![Diagram](image.png)

Post Flanging Processes

The work of flanging usually warps a plate more or less, though the work of straightening can frequently be done before the plate goes for heat treatment.

After flanging the plates can be reheated and set to template gauges or where these facilities are not available it may be necessary to make final adjustments to the fit of the plate in situ using localised heating. Originally flanged plates were placed in a large furnace, heated red, and drawn out on a level floor of cast-iron slabs to be straightened by mauls and flatters.
12. Heat Treatment

Heat Treatment of Boiler Plates Post Forming

It is noteworthy that while the term heat treatment applies only to processes where the heating and cooling are done for the specific purpose of altering properties intentionally, heating and cooling often occur incidentally during other manufacturing processes such as hot forming or welding.

Steel Boiler Plate

Definitions:

- **Full annealing**: Average boiler plate is heated to approximately 900 °C for around half an hour; this assures all the ferrite transforms into austenite (although cementite might still exist if the carbon content is greater than the eutectoid). The steel must then be cooled slowly, in the realm of 38 °C per hour. Usually it is just furnace cooled, where the furnace is turned off with the steel still inside. This results in a coarse pearlitic structure, which means the “bands” of pearlite are thick. Fully-annealed steel is soft and ductile, with no internal stresses, which is often necessary for cost-effective forming.

- **Normalizing**: Average boiler plate is heated to approximately 915 °C for around half an hour; this assures the steel completely transforms to austenite. The steel is then air-cooled, which is a cooling rate of approximately 38 °C (100 °F) per minute. This results in a fine pearlitic structure, and a more uniform structure. Normalized steel has a higher strength than annealed steel; it has a relatively high strength and ductility.

Exact times and temperatures will vary depending on the exact composition of the material and dimensions of the piece being treated. As a rule the higher the carbon content, the lower the treatment temperature required.

The process chosen will depend on the nature of work carried out on the plate in question and the intended final use of the plate.

Plates which have been formed through a process involving multiple heatings (i.e. hand flanging) should be normalized after production to ensure a uniformity throughout the material.

If localised heating was used during a single heat forming process, plates should be normalized after forming as there will be differentials in the material qualities, especially in the heat transition zones.

<table>
<thead>
<tr>
<th>Colour</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>°F</td>
</tr>
<tr>
<td>Faint red visible in dark</td>
<td>750</td>
</tr>
<tr>
<td>Faint red</td>
<td>900</td>
</tr>
<tr>
<td>Blood red</td>
<td>1050</td>
</tr>
<tr>
<td>Dark Cherry</td>
<td>1075</td>
</tr>
<tr>
<td>Medium Cherry</td>
<td>1250</td>
</tr>
<tr>
<td>Cherry of full red</td>
<td>1375</td>
</tr>
<tr>
<td>Bright red</td>
<td>1550</td>
</tr>
<tr>
<td>Salmon</td>
<td>1650</td>
</tr>
<tr>
<td>Orange</td>
<td>1725</td>
</tr>
<tr>
<td>Lemon</td>
<td>1825</td>
</tr>
<tr>
<td>Light yellow</td>
<td>1975</td>
</tr>
<tr>
<td>White</td>
<td>2200</td>
</tr>
<tr>
<td>Dazzling white</td>
<td>2350</td>
</tr>
</tbody>
</table>
Copper Boiler Plate

Copper plates are commonly worked cold. It is important that once the final forming operation has been completed the affected areas are annealed, ideally in a furnace.

Copper becomes hard and brittle when mechanically worked; however, it can be made soft again by annealing. The annealing temperature for copper boiler plate is between 370ºc and 480ºc. Copper may be cooled rapidly or slowly since the cooling rate has little effect on the heat treatment. The one drawback experienced in annealing copper is the phenomenon called "hot shortness". At about 480ºc, copper loses its tensile strength, and if not properly supported, it could fracture.

Heat Treatment of Boiler Plates Post Welding

Areas of welded repairs and welded seams inevitably hold stresses and may shrink contorting the parent materials. It is advisable that these plates are stress relieved once the welding processes are complete. It may be necessary to brace the plates in the correct position before heat treating so that the desired form is maintained once the process is complete.

Where it is deemed necessary to carry out heat treatment of boiler components after welding it should be carried out in accordance with the standards set in BS2790 (1992) chapter 5.5.2.

It is not necessary that the work piece be taken to the heat source for treatment; there are companies who specialise in mobile heat treatment using induction heating or other processes.

13. Lapped Joints and Seams

Riveted Seams

The design of riveted joints should be such that it does not subject any part to unduly high stress and must be arranged to ensure a tight joint and permit satisfactory work while riveting.

Too wide a pitch of rivets will allow the plate to spring up between the rivets preventing proper fullering or caulking.

Rivets which are placed too closely together will reduce the plate section at the joint and result in a weaker joint. Larger rivets pitched closely together can result in the plate overheating during the riveting process leading to loose or leaky joints. The recommended minimum rivet pitches are given overleaf.
RIVETING MINIMUM PITCH

<table>
<thead>
<tr>
<th>Size of rivet hole</th>
<th>Single riveting</th>
<th>Double riveting</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4"</td>
<td>1 3/4"</td>
<td>2"</td>
</tr>
<tr>
<td>13/16"</td>
<td>2"</td>
<td>2 1/4"</td>
</tr>
<tr>
<td>7/8"</td>
<td>2 1/8"</td>
<td>2 1/2"</td>
</tr>
<tr>
<td>15/16"</td>
<td>2 1/4"</td>
<td>2 3/4"</td>
</tr>
</tbody>
</table>

The lap of the plate, that is the distance from the centre of the rivet hole to the nearest edge of the plate, should be one and a half times the diameter of the rivet hole.

All holes in the pressure vessel plates must be made by drilling. Punching is not acceptable in boiler construction. The holes should be made after the plates are formed and are fixed together in the position they will occupy when finally riveted up.

Care must be taken when trimming flanged plates to length such that there must be sufficient overlap of the plates to allow for proper pitching of the rivet holes. Similarly flanges which are too long will be impossible to caulk and could impinge on other features such as stay holes.

After the holes have been drilled the plate work should be taken apart and the rough, sharp, edges, formed in drilling the holes, should be taken off or de-burred, so that no burr remains such as might lie between the plates and prevent a tight joint being made. Riveted joints must be clean and free from scale paint or other contaminants.
Building up of lap edges

Where the edges of the lap have been burnt away, reducing the distance between the rivet hole and the lap edge, it may be possible to repair the lap edge by welding. Once the welding is complete the edge can be ground to the correct profile.

The best method of repair, for more severely wasted edges, is to weld a strip of similar to renew the affected area of lap. Once the weld is complete the excess material can be carefully removed until the correct profile is achieved. Welding must be carried out by a competent welder with the approval of the competent person.

Lap edge repair by building up and repair showing edging strip welded to reduced edge

If the weld has bonded to the opposite plate to that being welded, the seam must not be caulked or fullered once complete.

Heat from welding may loosen the rivets, the rivets should be removed from the joint prior to welding and replaced once the welding process is complete.

14. Fullering / Caulking

Riveted plate seams are made pressure tight through the process of fullering or caulking; that is hammering the bevelled edge of the plate into the seam. Fullering is the process of sealing the plate seam with a wide faced tool acting across the full plate thickness, Caulking is the process of sealing with a narrow faced tool. Both methods of sealing are most effective when carried out with a pneumatic hammer.

The plate edge should be prepared with an edge tapered at around 7-10°. The joints must be clean and free of scale, paint or other contaminants. The plate edges should be tight together prior to riveting. These joints rely on the correct rivet pitch and spacing being adhered to.

Joint prepared for caulking
Fullering with a wide faced tool
Caulking with a narrow faced tool

Great care must be taken when caulking to avoid injuring the edge of the plate. Excessive caulking will result in opening of the joint between the extreme edge and point where it is held by the rivet, for this reason fullering is the preferred method.

Ingress or seepage of boiler water into the lapped seam can lead to deterioration of the plates. Seams should be sealed on the waterside as well as the air side, particularly below the water line.
When the longitudinal seams of cylinders are caulked on the inside, particularly in smaller diameter cylinders, care must be taken to avoid indentation of the plate alongside the seam. The sweep of the plate prevents the tool being held in a tangential position (a). To avoid indentation or nicking the plate the tools used should be of a bent form with rounded corners (b). The use of improper tools and the resultant grooving is likely to result in cracks forming in the damaged plate.

15. Welded Joints and Fabrications

Welded Joints
The preferred method of welded construction is flanged and welded. The weld should be placed to be sufficiently far enough away from the flange radius and the stresses in that area. When fitting patches to boiler plates the patch should be located a suitable distance from the radius edge.

Welded fabrications
Where it is not possible to flange plates there may be no option but to produce fabricated plates, these may be fabricated from multiple flats or multiple pre formed plates or a combination. Care must be taken over the design of fabricated plates such that welds are not placed in areas of elevated stress such as close to radii or stiffening plates. The design of fabricated plates must be approved by the competent person.

NDT
Wherever possible welds should be 100% examined by a suitable NDT method when complete. Records of procedure and NDT should be retained by the responsible person with copies sent to the competent person.

Further information
Further information on the correct welding procedures and design can be found in the Heritage Railway Association Guidance Note ‘Welding’ and ‘BS 2790:1992; Specification for design and manufacture of shell boilers of welded construction’.
16. References

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Year</th>
<th>Publisher</th>
</tr>
</thead>
<tbody>
<tr>
<td>British Railways</td>
<td>Instructions Relative To Boilers</td>
<td>1959</td>
<td>British Railways</td>
</tr>
<tr>
<td>L D Porta</td>
<td>The thermo-mechanical behaviour of the steam locomotive boiler firebox-an overall view</td>
<td>1984</td>
<td></td>
</tr>
<tr>
<td>Maurice Cook</td>
<td>Copper and copper alloys for locomotive firebox construction</td>
<td>1938</td>
<td>The institution of locomotive engineers</td>
</tr>
<tr>
<td>Norman W. Henley</td>
<td>Henley's Twentieth Century Formulas, Recipes And Processes</td>
<td>1916</td>
<td>The Norman W. Henley Publishing Company</td>
</tr>
<tr>
<td>HSE</td>
<td>The management of steam locomotive boilers</td>
<td>2005</td>
<td>HSE Books</td>
</tr>
<tr>
<td>A. R. Bell, Sir Henry Fowler et al</td>
<td>Railway mechanical engineering Vol 2</td>
<td>1923</td>
<td>The Gresham Publishing Company</td>
</tr>
<tr>
<td>Andrew Jameson</td>
<td>A text book on steam and steam engines, including turbines and boilers</td>
<td>1909</td>
<td>Charles Griffin & Co Ltd</td>
</tr>
<tr>
<td>Edward G Hillier</td>
<td>Steam Boiler Construction</td>
<td>1931</td>
<td>Charlton & Knowles</td>
</tr>
<tr>
<td>Edward G Hillier</td>
<td>Stokers Manual</td>
<td>1927</td>
<td>Eyre & Spottiswoode Ltd</td>
</tr>
<tr>
<td>Y. V. R. K. Prasad, S. Sasidhara</td>
<td>Hot working guide: a compendium of processing maps</td>
<td>1977</td>
<td>ASM International</td>
</tr>
<tr>
<td>J Dudley Jevons</td>
<td>The metallurgy of deep drawing and pressing</td>
<td>1940</td>
<td>Chapman & Hall</td>
</tr>
<tr>
<td>J W Thompson</td>
<td>The Taper Boiler</td>
<td>1936</td>
<td>Institute of Locomotive Engineers</td>
</tr>
</tbody>
</table>

17. Colour of Steel Materials in relation to Temperature

The chart shown overleaf gives an indication of the colour of steel materials in relation to temperature. However due to variation in monitor or printer settings it should only be used as an approximate guide, it should not replace proper temperature measurement by appropriate means. A more accurate printed version of this document may be purchased from Tempil.

Tempil, an ITW Company, 2901 Hamilton Blvd, South Plainfield, NJ 07080
Phone: 1-800-757-8301 ++1-908-757-8300 Fax: 1-908-757-9273 tempil@tempil.com