
Firehose Project

Full-Stack Web Development 

Contents
 
Introduction

Welcome 5

Become a Full-Stack Web Developer 5

Methods

Exercises 7

Videos 7

Challenges 7

Quizzes 7

Best Practices

Pay Attention to Detail 9

Take Your Time 9

Take Frequent Breaks 9

Treat People with Respect 9

Ask for Help 10

Support

1-on-1 Training 12

Technical Feedback 13

Immediate Support 13

Member Support 14

Syllabus

Full-Stack Web Development 16

Intro to Software Engineering 17

Technical Immersion 18

Development Process and Structure 19

Employable Experience 20

Technical Evaluation 21

Developer Validation 22

Real Team Experience 23

Showcase Yourself 24

Admissions

Program Breaks 26

Program Extensions 26

Program Plans 26

Leaving the Program 26

3.0 Last edited on December 4, 2017

Introduction 

INTRODUCTION

Welcome

We’re excited to have you starting your coding journey with us. Learning to code can be challenging,
fun, and extremely rewarding. We’re here to help you out along the way and ask in return that you
dedicate your time and energy to this program. Doing so will help you get the most out of this program
and set you on the path to pursue a new career.

Become a Full-Stack Web Developer

It’s a difficult journey to learn how to code. It’s going to involve a lot of work. It might be easy for you at
times, it might be hard for you at times, just know that everyone has a different experience and certain
concepts come easier than others. However, with hard work and focus you can learn to code, just like
hundreds of our Firehose members and graduates.

Ruby — The Ruby language was designed with one main principle in mind: developer happiness. It’s a
programming language that was designed to be easy to read, fast to learn, and simple for developers to
use to solve complex problems. The learning curve to master Ruby is less steep in comparison to other
programming languages, and after just a short period, you will be able to write and execute Ruby
programs and solve complex algorithm challenges. In addition, mastering Ruby first provides you with an
ideal springboard to learn another programming language.

The open source Ruby community is massive, very active, and welcoming to people of all skill levels.
When your programming craft is backed by an active, worldwide community, it means you have ample
opportunities to find and work on interesting projects with awesome people.

JavaScript — Today’s user interfaces depend heavily on JavaScript to create a smooth user experience.
JavaScript skills are an essential software engineering skill for today and tomorrow. While JavaScript is a
powerful and efficient programming language, it’s notoriously difficult to learn as a first programming
language. Instead, it’s perfect for your second language.

In-demand software engineers know multiple programming languages; they’re polyglot programmers.
When you have experience with more than one programming language, you enable yourself to choose
the right tool for the job rather than use the same tool for every job. Having the ability to draw on this
flexibility and experience is exactly what will make you in demand.

The following orientation will break down general tips and best practices for learning how to code, as
well as the different channels of support that you can use during the Firehose program to get help. 

�5

Methods 

METHODS

Exercises

The written curriculum includes most of the
information and teaching material. This is how we
teach the concepts you’ll learn in order to work
on the projects, solve coding challenges, and get
a job as a developer!

You’ll be coding alongside the lessons as you
work through them, so you’ll be able to use the
instruction and compare your results to the
expected results outlined in the lessons. If your
code or project doesn’t look like it should, it’s
time to put on your problem solving hat! The best
developers dive into problems to see where they
might have made a mistake or where there’s a
better solution, but we know you’re just starting
out so we have a lot of support to help you get
unstuck if you need it.

Videos

The video lessons are recordings of short lectures
that walk you through high level concepts and
overviews of material. These are meant to provide
more clarity on complex topics and really help
you connect the puzzle pieces. We'll give you
pointers throughout the course so you know
when it makes sense to watch each video.

Challenges

Throughout the program, you'll work through a
handful of challenges to practice what you're
learning. Just like a developer on a team in the
real world, you'll submit your code for review after

completing each challenge. Our team of
engineers will review your code and email you
with feedback and suggestions for how you can
refactor or improve your code.

Quizzes

Quizzes are short activities that allow you to show
us what you've been learning and a allow us to
evaluate your progress. We'll ask you to complete
coding quizzes at specific points throughout our
program.

The coding quizzes are meant to make sure
you're on track and retaining the material that you
should up to this point. If you consistently pass
the coding quizzes, know that you're on the right
track and well on your way to achieving your
goals. 

�7

Best Practices 

BEST PRACTICES

Pay Attention to Detail

Attention to detail is extremely important. When
following instructions, it’s helpful to always
double check that what you’re doing is exactly
the same as the instructions.

The smallest differences between what the
instructions tell you to do, and what you do, can
cause major problems. Sometimes it may seem
like things are working initially, but not following
the instructions carefully could cause problems
later on in the course.

So when following a step, review the lesson
material and right after you do a step, compare
the step you’ve done with the result and make
sure it’s exactly the same. It can be helpful to try
to look for differences in what you’re doing and
what the instructions say.

Take Your Time

The Firehose Project has a lot of material. It can
be tempting to try to rush through things to
complete things. Rushing is bad for a variety of
reasons:

First, if you rush through the material too fast
you’ll likely find yourself making mistakes. Even
small typos can cause problems when you’re
writing code. Fixing these mistakes will often
take longer than if you spend time with each
step initially and go through the material at a
steady pace.

Second, if you skip reading sections, or only
skim sections, you will not retain the material as
well. We have a variety of Challenge exercises
that make sure you’ve understood important
concepts. Rushing through the guided
curriculum will often cause you to take more
time completing the challenges than you saved
from rushing through the material.

In the end, it just doesn’t pay off, so it’s
important to go through the material at a slow
and steady pace.

Take Frequent Breaks

Sometimes you might get frustrated. You might
see error messages or things might not work the
way you expect them to - remember, coding is
hard. It’s important to put aside anger or
frustration to work through the problem
logically when you get frustrated. Sometimes
taking a break, like going on a quick walk, will
allow you to return to the challenge with a clear
head and fresh eyes on the problem.

Treat People with Respect

It’s important to always treat the people who are
helping you out with respect. If you’re frustrated
about code, it can be easy to forget this fact, but
make sure to treat everyone you interact with,
with respect. We’re real people and our main
goal is to help you as best we can with any
questions or problems that might arise.

This is also important because in the real world
you might be asked tough coding challenges on

�9

BEST PRACTICES

a technical interview. If/when this happens, you’ll
want to be in the habit of communicating in a
thoughtful, friendly way, even when working
with complex coding challenges.

Ask for Help

It’s most effective to over communicate about
the issues you’re facing. The more detailed you
can get, the better we can help you solve the
issue. Vague questions like, “it doesn’t work” are
impossible for us to investigate further and
provide suggestions. If we don’t receive
enough information about the issue, it typically
requires a lot of back-and-forth which means it’ll
be longer before you’re “unstuck” and back to
coding up a storm.

Detailed communication about the issue from
the beginning can help reduce the time to solve
the issue and prevent confusion or frustration.

In any questions you ask, include all the details:

• What steps have you already done?
• What problem are you seeing?
• Can you include a screenshot?

Make sure to include all these details, and more
that might be relevant in your question. 

�10

Support 

SUPPORT

1-on-1 Training

Whether it be questions on your career path, or
technical concepts, your trainer is here to coach
you through it all.

Personal 1-on-1 trainer sessions are a
fundamental part of the Firehose experience and
complement our core coding curriculum.
Together with your trainer you will accelerate your
web development skills and learn how to work
with an experienced programmer.

Your trainer will work regularly with you 1-on-1 to
help you reach your coding goals. You trainer will
structure your sessions around your personal
needs and goals, and you can expect them to
challenge you, assign additional work to you, and
guide you through the complex world of
professional web development.

Trainer Pairing — We personally match you with
the trainer who is the best fit for you based on
several variables, including your personal coding
goals, your technical background, and your
performance in the prep course.

We'll email you an introduction to your trainer
during your first week in the program so you can
schedule your first trainer session.

Session Format — Each trainer session is one
hour long. Generally speaking, your trainer will
structure each of your sessions for maximum
impact. This means you’ll usually spend the first
10 minutes going over your list of questions, then
take the remainder of the session to work on
additional topics that are designed to help you
reach your coding goals. Often times, that

includes pair programming, going through your
algorithm code, and building out additional
features for your web application.

Session Preparation — Trainer sessions can push
your knowledge to the next level and allow you to
learn additional skills. This can only happen if you
arrive prepared. This means you should have
worked on your web application in the days
leading up to your trainership session and have
your assignments completed. You should also
make sure you have a list of high-level questions
ready and reviewed.

Session Schedule — You should schedule
sessions at a time that is convenient for both you
and your trainer, and it is very important that you
schedule sessions consistently and avoid letting
multiple weeks go by without a trainer session.

Session Arrival — You need to arrive on time to
every trainership session. If you are not in the
video hangout within the first 5 minutes of your
scheduled session, your trainer will reach out via
email to check in with you. If they don't hear
anything back, they will assume you’ve opted to
miss this session and will officially disconnect the
video chat 15 minutes after the scheduled
starting time.

Session Extensions — Trainer sessions are
intentionally scheduled to last for 1 hour.
Sometimes, trainers volunteer to go over the
standard hour time slot to ensure you are all set
on the right track and ready to go. However, this
is at the discretion of each individual trainer and
it’s not uncommon for your trainer to have
another session scheduled immediately after your
session ends.  

�12

SUPPORT

Be respectful of your trainer’s time and be
cognizant of how you’re spending your session
time. To ensure all your questions get answered
and that you leave the session all set to continue
learning, ask your biggest and most important
questions at the beginning of your trainer session
and not 5 minutes before the end of your session.

Session Rescheduling — Your trainer prepares
for each of your sessions in advance and has
dedicated their time to helping and teaching you.
If you can't make it to your scheduled trainership
session, please let your trainer know at least 6
hours in advance of your scheduled session. If
you miss the 6-hour mark, your trainer will count
your session in full. (This will count as your one
"excuse wildcard" if you haven't used it.)

Session Absences — We know life can be
unpredictable, and you shouldn’t have to miss out
on a full trainer session because of something
beyond your control. That’s why we grant one
“excuse wildcard” per member that you can use if
you have to miss a trainership session due to an
emergency.  
 
If you miss scheduling a session at any point, you
should work with your trainer to make up that
session as soon as possible.

If your trainer isn't in your video hangout within
the first 5 minutes of a scheduled session, please
reach out to them via email to check in. If you
don't hear back from them within the first 15
minutes of your scheduled session, or cancels a
session less that 6 hours before the scheduled
start time, email us
at hilary@thefirehoseproject.com to let us know.

Unused Sessions — All trainer sessions must be
used before your graduation date. Unused
sessions will expire when you graduate.

Technical Feedback

This is where we teach you to think like a
developer. We'll walk through your code, and
your process to help you think about problem
solving in the right way.

When you complete a project or challenge, you’ll
submit it through the Firehose platform for
personal code review from the Firehose team.
Code reviews help you learn with constructive
feedback and improve your coding as you
continue through the course. As a developer,
you’ll receive frequent code reviews from your
team, so it’s a great opportunity to practice
receiving and implementing feedback.

Immediate Support

When you're stuck on a problem, every course
comes with immediate support to keep you
moving in the right direction.

The technical forum at the bottom of each lesson
is available to provide specific steps to fix specific
problems in the project that you’re working on.
The forum is designed to quickly get you
“unstuck” and back on track so you can continue
coding up a storm.

Asking Questions — Before posting questions in
the forum, you should try to work for 20-30
minutes to solve problems on your own. This

�13

SUPPORT

helps you prepare to get to a self-sufficient
developer status, which is so important because
after graduation from the accelerator, you want to
make sure you have the skills to code and solve
problems on your own.

When you do post a question in the forum, make
sure to read each reply carefully and double
check you're doing things that are asked or
suggested. Remember, be detail oriented!
Skipping steps in the forum answers will cause
more back-and-forth and ultimately take longer to
get you “unstuck.”

Getting Answers — We generally check the
forum several times each day and answer all
questions. To get a fast answer, be thoughtful and
detailed in writing your question and explaining
your problem.

Since we have a small team supporting all of the
members in the forum, you can expect specific
step-by-step instructions to get unstuck with the
problem at hand, but most learning should be
done via other channels.

Keep in mind that Firehose trainer sessions, office
hours, and the Firehose Slack channels are great
ways to discuss more complex topics and
continue learning outside of the written and
video lessons.

Complex Questions — We recommend saving
your bigger concept and high-level questions for
your trainer and using the forum if you need help
troubleshooting a specific, time-sensitive error.
There is always a dedicated team member
providing support in the forum, so for time-
sensitive help, the forum is much faster.

Member Support

You don't have to go through it alone. Find fellow
career shifters who are on the same journey and
connect with people who get it.

Once you begin the full accelerator, you’ll be
invited to join our Firehose Slack channels. Slack
is a tool that developers use to communicate
whether they’re working on projects in the office
together or coding on a remote team.

Our member Slack is very active and a great
place to chat with other members, seek help, and
help others out. We recommend being logged
into your Firehose Slack account whenever you're
coding. Participating on Slack is a great way to
meet some of your fellow Firehose members,
graduates, and trainers.

Our member Slack has a #Coding-Help channel,
where members ask questions when they’re stuck
and help each other out. Asking questions in this
channel is a great way to get help and insight
from your Firehose peers.

�14

Syllabus 

SYLLABUS

Full-Stack Web Development

The best way to retain knowledge is by doing. Our Program will teach you to think like a developer and
problem solve like one. We've taken years of on-the-job learnings and transformed them into
deliberately constructed lessons to teach members the skills they need to enter an actual web developer
role.

Phase I — Build
In this phase, we will work together to build your foundational skill set.
1. Intro to Software Engineering
2. Technical Immersion
3. Development Process and Structure

Phase II — Apply
Now that you have your foundation, we will apply your skills to make you employable.
4. Employable Experience
5. Technical Evaluation
6. Developer Validation

Phase III — Execute
We will take all of your skills and apply them within a real world setting.
7. Real Team Experience
8. Showcase Yourself 

�16

SYLLABUS

Intro to Software Engineering

Duration: 15 — 30 hours
Contents: 43 steps, 5 challenges

Learn the Fundamentals
You'll work with us to build multiple scripts in Ruby. We'll provide you the technical feedback as you learn
how to write programs, manage flow control, and use Ruby methods. At the end of this course, you'll
have a live portfolio website to showcase your work. 

�17

SYLLABUS

Technical Immersion

Duration: 15 — 30 hours
Contents: 19 steps, 11 videos, 2 assignments

Use the Tools 
You'll dive in the deep end by building a database-driven application using the Rails framework. You’ll
learn how to manage version control using real developer tools, and host an application online. At the
end of this course, you'll have a custom quote generator to showcase your newly acquired skills.

�18

SYLLABUS

Development Process and Structure

Duration: 90 — 105 hours
Contents: 51 steps, 4 challenges, 12 videos, 1 quiz

Refine the Skills 
You'll learn how to use algorithms, object-oriented programming, and APIs, which employers will look for
when hiring web developers. You'll data structures this knowledge to build features like user
authentication, comments and ratings, and image uploading.

�19

SYLLABUS

Employable Experience

Duration: 120 — 135 hours
Contents: 39 steps, 2 challenges, 34 videos, 2 quizzes

Build a Video Streaming Platform 
You’ll take your foundational skills and take them to the next level. You'll learn how to design complex
user interfaces, architect advanced database relationships, and link it all together with by solving
challenging algorithms. At the end of this course you will have developed a custom marketplace with
payments.

�20

SYLLABUS

Technical Evaluation

Duration: 90 — 105 hours
Contents: 21 steps, 5 challenges

Test the Skills 
You'll learn how crucial testing is to the development process. You’ll build automated software tests,
ensure good test coverage, and release tested code at an advanced level. At the end of this course, you'll
will have grasped the test-driven development process.

�21

SYLLABUS

Developer Validation

Duration: 105 — 120 hours
Contents: 20 steps, 9 challenges

Apply the Knowledge 
You'll take the skills you've learned and apply them to a completely different programming language to
showcase your versatility as a developer. At the end of this course, you will build an entire dynamic
application through JavaScript.

�22

SYLLABUS

Real Team Experience

Duration: 120 — 150 hours
Contents: 3 steps, 8 sessions

Prove You’re a Developer 
You'll transition from individual developer to contributing team member. You'll work with other members
and a scrum master, meeting weekly to discuss objectives and divide tasks. During this course, you will
build a complex chess app using the agile methodology to demonstrate to employers that you can
operate within a professional work environment because you've worked with other developers in a
meaningful way on a complex project. 

�23

SYLLABUS

Showcase Yourself

Duration: 135 — 150 hours
Contents: 52 steps, 17 challenges, 2 downloads

Conquer the Job Search 
You'll now be fully-equiped to change careers and we're here to help you get there. We'll guide you
through the current job landscape and work together to craft a true-developer resume, write a cohesive
cover letter, and present your work in the best light possible. This will help you develop your unique story
to stand out to employers.

�24

Admissions 

ADMISSIONS

Program Breaks

Keep in mind that taking a break will affect your
learning. We generally encourage members
who decide to take a break to only take as much
time as is necessary, and we only allow each
member to take one break. This is because of
the additional time and effort it takes to get back
to your previous level of coding after a break.

If you need to take a break from the program for
any reason, we have the below two options
available.

Option 1: Pause — A pause is a short break of
less than two weeks. Your graduation date will
be adjusted according to the length of your
pause and once you return, you will work with
your same trainer. During your pause, you will
not have access to the lessons, resource videos,
or coding challenges.

Option 2: Freeze — A freeze is a break that is
between two weeks and six months long. A
freeze can begin on the date of your choosing
and will end on either a date of your choosing
or six months after your freeze begins,
whichever occurs first.

Once you have chosen your return date, your
graduation date will be adjusted according to
the length of your freeze. We will try to match
you with your same trainer after your freeze, but
we cannot guarantee their availability. If
necessary, we will assign you to a new trainer.
During your freeze, you will not have access to
the lessons, resource videos, or coding
challenges.

To end your freeze, contact your Trainer at least
one week in advance of your chosen return
date.

Program Extensions

All program extensions include continued
access to office hours and use of the forum.
Please contact your Trainer to determine which
option best fits your needs.

Program Plans

If you have any questions or concerns about
your current pacing plan or are interested in
switching plans, please contact your Trainer.

Leaving the Program

We try our best to meet the needs of all of our
members, but we understand that sometimes
members need to leave the program. If you
need to leave the program for any reason,
please email brita@thefirehoseproject.com.  
 
Our refund policy depends on the length of
time a member has spent in the program. For
the purposes of determining your refund, the
date we consider you to leave the program is
the date that you email Brita your decision to
leave.

�26

	Introduction
	Welcome
	Become a Full-Stack Web Developer
	Methods
	Exercises
	Videos
	Challenges
	Quizzes
	Best Practices
	Pay Attention to Detail
	Take Your Time
	Take Frequent Breaks
	Treat People with Respect
	Ask for Help
	Support
	1-on-1 Training
	Technical Feedback
	Immediate Support
	Member Support
	Syllabus
	Full-Stack Web Development
	Intro to Software Engineering
	Technical Immersion
	Development Process and Structure
	Employable Experience
	Technical Evaluation
	Developer Validation
	Real Team Experience
	Showcase Yourself
	Admissions
	Program Breaks
	Program Extensions
	Program Plans
	Leaving the Program

