Cerebrovascular anatomy for speech-language pathologists

W. Tyler Ketchabaw
Cognitive Recovery Lab, Georgetown University
Presented July 18, 2022
Outline & Objectives

1. Explain why cerebrovascular anatomy is important

2. Identify the major arteries supplying the brain, including their origin and what parts of the brain they supply
 - Circle of Willis & the major cerebral arteries
 - Cerebellar arteries and small vessels
 - Branches of MCA & PCA

3. Explain the pathophysiology of stroke and how it relates to cerebrovascular anatomy
 - Pathophysiology & angiography of ischemic stroke (thrombotic & embolic)
 - Pathophysiology of hemorrhagic stroke (subarachnoid & intracerebral hemorrhage)
Perfusing the brain is critical

- The brain:
 - Receives 15-20% of the blood pumped by the heart (cardiac output)
 - Accounts for ~20% of the energy used by the entire body
 - Is only ~2% of the total body mass
- Vulnerable neurons begin to die ~5 minutes after ischemia onset
 - Compare to 20+ minutes for cardiomyocytes or hepatic cells
- So ensuring that blood constantly gets to the brain is really important
Overview of cerebrovascular system
Cerebral arteries & Circle of Willis

- **Circle of Willis** – redundancy!
 - If part of CoW is obstructed, can still get some flow through alternate routes
- Major cerebral arteries (MCA, PCA, ACA) come off of Circle of Willis
 - Cover most of the cortex

Source: physio-pedia.com
Source: lecturio.com
Cerebral arteries & Circle of Willis

- **Circle of Willis** – redundancy!
 - If part of CoW is obstructed, can still get some flow through alternate routes
- Major cerebral arteries (MCA, PCA, ACA) come off of Circle of Willis
 - Cover most of the cortex
- But what about subcortical structures, cerebellum?

Source: John Lynch via Wikimedia
Cerebellar arteries and small vessels

Source: Netter's Atlas of Neuroscience

Source: Neuroanatomy: An Illustrated Colour Text
Branches of MCA and PCA
Overview of cerebrovascular system

Source: Netter's Atlas of Neuroscience
Overview of cerebrovascular system

Source: Netter's Atlas of Neuroscience
Clinical correlates: Pathophysiology of stroke
Ischemic stroke – how does a clot form?
Thrombotic ischemic stroke

- Occurs when a clot forms in a blood vessel that supplies the brain

- Occurs most commonly in places where blood vessels bifurcate/split off
 - Turbulent flow

- Atherosclerosis is the most common cause of thrombotic stroke
 - Hyperlipidemia → plaque formation
 - Plaque ruptures → inflammatory response, clot formed
Embolic ischemic stroke

- Occurs when a clot (or other occlusion) forms upstream and is carried through circulation into the cerebral arteries

- Atrial fibrillation (AFib) is a common cause of cardioembolic stroke
 - Heart arrhythmia – discoordinated contraction of atria due to “faulty wiring”
Embolic ischemic stroke

- Occurs when a clot (or other occlusion) forms upstream and is carried through circulation into the cerebral arteries

- Atrial fibrillation (AFib) is a common cause of cardioembolic stroke
 ○ Heart arrhythmia – discoordinated contraction of atria due to “faulty wiring”

- Results in atrial blood stasis (pooling) → triggers thrombosis (clotting)
 ○ Embolized clot can then be passed through left ventricle → aorta → straight to brain
Angiography and ischemic stroke
Hemorrhagic stroke

Subarachnoid hemorrhage (ruptured aneurysm)

Intracerebral hemorrhage (hypertensive)

Source: Netter’s Atlas of Neuroscience
Intracerebral hemorrhage (ICH)

- Roughly 2-3x as common as subarachnoid hemorrhage (SAH)
 - About 10% of all strokes in the U.S.

- Primary ICH caused by:
 1. High blood pressure (hypertension)
 - Associated with hemorrhage deeper in the brain
 2. Amyloid deposition (cerebral amyloid angiopathy, CAA)
 - Associated with more superficial hemorrhage
Aneurysm and subarachnoid hemorrhage (SAH)

- Constitutes ~5% of all strokes; high chance of poor outcome or mortality
- Most commonly results from ruptured saccular [“berry”] aneurysm
 - Outpouching of artery formed by high pressure and turbulent flow
- Saccular aneurysm most frequently occurs in anterior circulation (85%), particularly in ACA and at bifurcation of MCA
Summary
Thank you!

Questions?