The right hemisphere: Why it should not be neglected even if it may be clinically silent

Anna Greenwald, PhD
(as2266@georgetown.edu)
Left vs. Right Brain?
Left vs. Right Brain?

I am the left brain.
I am a scientist. A mathematician.
I love the familiar. I categorize. I am accurate. Linear.
Analytical. Strategic. I am practical.
Always in control. A master of words and language.
Realistic. I calculate equations and play with numbers.
I am order. I am logic.
I know exactly who I am.

I am the right brain.
I am the right brain.
I am a sculptor. A mathematician.
I love the familiar. I categorize. I am accurate. Linear.
Analytical. Strategic. I am practical.
Always in control. A master of words and language.
Realistic. I calculate equations and play with numbers.
I am order. I am logic.
I know exactly who I am.

Anna Greenwald, Center for Brain Plasticity and Recovery, Georgetown University Medical Center and MedStar National Rehabilitation Hospital
The LH is the “eloquent” one

Broca (1865)

"nous parlons avec l’hémisphère gauche"

(with the left hemisphere)

Anna Greenwald, Center for Brain Plasticity and Recovery, Georgetown University Medical Center and MedStar National Rehabilitation Hospital
The concept of left hemisphere dominance was applied at first only to language functions. However, as continuing clinical study indicated that the left hemisphere apparently subserved a number of other aspects of mentation and cognition, the concept was broadened considerably. [...] The designation of the left hemisphere as ‘major’ implied, of course, that the right hemisphere was the minor hemisphere. In this context, the term ‘minor’ evidently had a number of interrelated meanings. [...] Finally, the term ‘minor,’ as applied to the right hemisphere, implied that it had no distinctive functions. It shared certain functional properties with the left hemisphere but, at least with respect to higher-level performances, whatever it could do, the left hemisphere could do better.
Minor = unimportant?

Wada Test -- This test is done to determine which hemisphere (side of the brain) is dominant, or most responsible, for critical functions such as speech and memory. If the seizure focus and speech or memory center are on the same side, the surgery may be slightly altered to avoid damaging or removing the speech/memory area of the brain. During this test, each hemisphere is alternately injected with a medication to "put it to sleep." While one side is asleep, the awake side is tested for memory, speech, and ability to understand speech. The patient may need to stay in the hospital overnight.

Section on “Tests before epilepsy surgery” from https://www.webmd.com/epilepsy/presurgical-evaluation#1
Stroke diagnostics emphasize LH stroke symptoms

<table>
<thead>
<tr>
<th>NIHSS item</th>
<th>max score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Level of Consciousness</td>
<td></td>
</tr>
<tr>
<td>1a Responsiveness</td>
<td>3</td>
</tr>
<tr>
<td>1b Questions</td>
<td>2</td>
</tr>
<tr>
<td>1c Commands</td>
<td>2</td>
</tr>
<tr>
<td>2 Gaze</td>
<td>2</td>
</tr>
<tr>
<td>3 Visual Fields</td>
<td>3</td>
</tr>
<tr>
<td>4 Facial Palsy</td>
<td>3</td>
</tr>
<tr>
<td>5 Motor Arm</td>
<td></td>
</tr>
<tr>
<td>5a right arm</td>
<td>4</td>
</tr>
<tr>
<td>5b left arm</td>
<td>4</td>
</tr>
<tr>
<td>6 Motor Leg</td>
<td></td>
</tr>
<tr>
<td>6a right leg</td>
<td>4</td>
</tr>
<tr>
<td>6b left leg</td>
<td>4</td>
</tr>
<tr>
<td>7 Limb ataxia</td>
<td>2</td>
</tr>
<tr>
<td>8 Sensory</td>
<td>2</td>
</tr>
<tr>
<td>9 Language</td>
<td>3</td>
</tr>
<tr>
<td>10 Dysarthria</td>
<td>2</td>
</tr>
<tr>
<td>11 Extinction and Inattention</td>
<td>2</td>
</tr>
</tbody>
</table>

Favors LH stroke
Favors RH stroke
RH injury is underdiagnosed

Baseline silent cerebral infarction in the Asymptomatic Carotid Atherosclerosis Study.

BACKGROUND AND PURPOSE: In a group of patients with high-grade asymptomatic carotid artery stenosis, we prospectively determined the prevalence and radiological characteristics of clinically asymptomatic brain infarction evident on computed tomography. Risk factors and extent of carotid disease were also determined.

RESULTS: Among 1132 patients, 848 had no history of stroke; 284 patients (15%) had a silent infarct; 95 (11%) had one, 24 (2%) had two, one lobe for 1 (0.5%). The silent infarcts were evenly distributed: were significantly more frequent in the right hemisphere.

<table>
<thead>
<tr>
<th>TABLE 3. Location of Silent Cerebral Infarction by Computed Tomography</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
</tr>
<tr>
<td>Ipsilateral to study artery</td>
</tr>
<tr>
<td>Contralateral to study artery</td>
</tr>
<tr>
<td>Right</td>
</tr>
<tr>
<td>Left</td>
</tr>
</tbody>
</table>
RH injury’s severity is underestimated.

“For each 5-point category of the NIHSS score <20, the median volume of right hemisphere strokes was approximately double the median volume of left hemisphere strokes.”

Note: This Left/Right difference is driven specifically by MCA strokes (Vitti et al., 2015)
Underdiagnosed \rightarrow undertreated?
Patients with RH injury are underserved

Of 289 patients treated with rt-PA for acute stroke, only 111 (38.4%) had RH stroke.

The impact of lesion side on acute stroke treatment.

Di Legge S¹, Fang J, Saposnik G, Hachinski V.
Patients with RH injury are underserved.
Because the RH has no obvious role in language, it is regarded as “clinically silent”, which is too often equated with “unimportant.”

Current stroke diagnostics emphasize language symptoms.

→ RH stroke is underdiagnosed and its severity underestimated:
 • More RH infarcts go undetected
 • Among diagnosed strokes, those affecting the RH have larger lesion volumes and lower NIHSS scores at the same time

→ RH stroke is undertreated:
 • Patients with RH infarcts are less likely to receive t-PA
 • It takes a larger lesion volume and higher symptom severity to be admitted to a hospital with RH stroke
But does it matter?
Outcomes of RH injury may be worse than those of LH injury

Unilateral spatial neglect and recovery from hemiplegia: a follow-up study.

Denes G, Semenza C, Stoppa E, Lis A.

A follow-up study was undertaken in order to investigate the outcome of recovery from right and left hemiplegia on simple motor function and activities of daily living. The role of concomitant neurophysiological deficits was also investigated. The main results indicate that after six months from onset, left hemiplegics show a lesser degree of improvement in independence and social adjustment coupled with a tendency to a poorer recovery of motor function than the corresponding group of right hemiplegics. Unilateral spatial neglect, which is more frequent and severe in the group of left hemiplegics, seems to be crucial in hampering their performance.

Factors predictive of stroke outcome in a rehabilitation setting.

Wenn JE¹, Alexander MP, D'Esposito M, Roberts M.

Ischemic stroke: relation of age, lesion location, and initial neurologic deficit to functional outcome.

Macciochhi SN¹, Diamond PT, Alves WM, Mertz T.
Hemispatial neglect

“A failure to report, respond, or orient to contralateral stimuli that is not caused by an elemental sensorimotor deficit” (Heilman et al., 2000)

Cancellation Task

Line Bisection Task
Hemispatial neglect
Hemispatial neglect

original

light table copy
Ego- vs. allocentric neglect

person-centered object-centered

Figure from Hillis et al. (2005)
“Neglect is a heterogeneous disorder with many variations [...] most commonly attributable to a disorder of spatial attention, but it involves other types of disorders as well, including deficits of intention, a disinclination to move in and toward neglected space; deficits in arousal, which limit the capacity of attention and sensory integration; deficits in spatial working memory that impair visual and manual search [...].

[...] signs and symptoms of neglect may change over time.”
A footnote on “hemispatial” neglect

Neglect

- doesn’t have to be left-sided, unilateral, or limited to specific spatial locations

- can be dissociable for
 - different modalities (e.g. vision vs. touch; external stimuli vs. internal representations),
 - different spaces (e.g., peripersonal vs. extrapersonal),
 - perception vs. action

- can occur after lesions in a vast range of locations (including subcortical ones)
Neglect and long-term outcomes

Functional disability and rehabilitation outcome in right hemisphere damaged patients with and without unilateral spatial neglect.

Katz N¹, Hartman-Maeir A, Ring H, Soroker N.

PATIENTS: Forty consecutive admissions of adult right-handed patients with a first, single, right hemispheric stroke proven by computed tomography. Based on their total score in the Behavioral Inattention Test for neglect, patients were divided into two groups: 19 with neglect (USN+) and 21 without neglect (USN-).

<table>
<thead>
<tr>
<th>Days in hospital</th>
<th>% ADL independent at discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>No neglect</td>
<td>100%</td>
</tr>
<tr>
<td>Neglect</td>
<td>80%</td>
</tr>
<tr>
<td>No neglect</td>
<td>60%</td>
</tr>
<tr>
<td>Neglect</td>
<td>50%</td>
</tr>
</tbody>
</table>

Table 3: Length of Stay in the Rehabilitation Hospital and Discharge ADL Status of RHD Patients With and Without USN

<table>
<thead>
<tr>
<th></th>
<th>USN+</th>
<th>USN-</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of stay (days)</td>
<td>118.7 ± 48.7</td>
<td>78.4 ± 52.4</td>
<td>2.48</td>
<td><.02</td>
</tr>
<tr>
<td>Discharge ADL status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Home—-independent</td>
<td>15.8%</td>
<td>81.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Home—with caregiver</td>
<td>78.9%</td>
<td>19.0%</td>
<td></td>
<td><.0000</td>
</tr>
<tr>
<td>Nursing home</td>
<td>5.3%</td>
<td>—</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Anna Greenwald, Center for Brain Plasticity and Recovery, Georgetown University Medical Center and MedStar National Rehabilitation Hospital
Neglect and long-term outcomes

Recovery of functional status after right hemisphere stroke: relationship with unilateral neglect.

Cherney LR¹, Halper AS, Kwasnica CM, Harvey RL, Zhang M.

PATIENTS: Fifty-two consecutive admissions of adult right-handed patients with a single, right hemispheric stroke, confirmed by computed tomography scan.

“Severity of neglect was correlated with total, motor, and cognitive FIM scores at admission, discharge, and follow-up.” (3 months post-stroke)

“FIM outcomes were significantly different for subject groups with more severe neglect.”

Table 6: Pearson’s Product Moment Correlations and Significance Levels Obtained Between BIT¹² Conventional Subtest Score and FIM Measures at Admission, Discharge, and Follow-Up

<table>
<thead>
<tr>
<th></th>
<th>Total FIM (18 Items)</th>
<th>FIM Motor (13 Items)</th>
<th>FIM Cognitive (5 Items)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admission (n = 52)</td>
<td>.54*</td>
<td>.55*</td>
<td>.39*</td>
</tr>
<tr>
<td>Discharge (n = 48)</td>
<td>.51*</td>
<td>.48*</td>
<td>.42*</td>
</tr>
<tr>
<td>Follow-up (n = 40)</td>
<td>.36†</td>
<td>.33†</td>
<td>.40*</td>
</tr>
</tbody>
</table>
Neglect and long-term outcomes

Hemispatial neglect: Subtypes, neuroanatomy, and disability.

Buxbaum LJ, Ferraro MK, Veramonti T, Farne A, Whyte J, Ladavas E, Frassinetti F, Coslett HB.

METHODS: The authors assessed 166 rehabilitation inpatients and outpatients with right hemisphere stroke with measures of neglect and neglect subtypes, attention, motor and sensory function, functional disability, and family burden. Detailed lesion analyses were also performed.

RESULTS: Neglect was present in 48% of right hemisphere stroke patients. Patients with neglect had more motor impairment, sensory dysfunction, visual extinction, basic (nonlateralized) attention deficit, and anosognosia than did patients without neglect. Personal neglect occurred in 1% and peripersonal neglect in 27%, motor neglect in 17%, and perceptual neglect in 21%. Neglect severity predicted scores on the Functional Independence Measure and Family Burden Questionnaire more accurately than did number of lesioned regions.
Anosognosia

https://www.facebook.com/Anosognosiasupport/

Interim summary II

• Long-term functional outcomes of RH strokes tend to be worse than those of comparable LH strokes
• This is often ascribed to hemispatial neglect
• "Neglect" is a very heterogeneous disorder with many dissociable, but often co-occurring variations, not all of which are lateralized, or even "spatial"
• Associated lesion locations are not well understood yet, but behaviorally, neglect severity is a predictor of functional outcomes beyond lesion size
• Anosognosia further exacerbates the problem

Monty Python & The Holy Grail
Constructional apraxia

“I KNOW these. We used to draw them in school all the time! You just make two boxes, and then you connect them.”
Constructional apraxia
Dressing apraxia

Table 3. Correlation matrix for the behavioral deficits in the right hemisphere stroke patients* (N = 41)

<table>
<thead>
<tr>
<th>Deficit</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Hemianopia</td>
<td>46%</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>2. Arm weakness</td>
<td>88%</td>
<td>08</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Leg weakness</td>
<td>80%</td>
<td>38†</td>
<td>38†</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Extinction</td>
<td>63%</td>
<td>23</td>
<td>10</td>
<td>31†</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Neglect</td>
<td>85%</td>
<td>44†</td>
<td>21</td>
<td>23</td>
<td>50†</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Denial</td>
<td>36%</td>
<td>27</td>
<td>36†</td>
<td>53‡</td>
<td>46†</td>
<td>42†</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Impersistence</td>
<td>46%</td>
<td>24</td>
<td>38†</td>
<td>52‡</td>
<td>53†</td>
<td>48†</td>
<td>82†</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Face naming</td>
<td>44%</td>
<td>38†</td>
<td>08</td>
<td>29</td>
<td>25</td>
<td>58‡</td>
<td>46†</td>
<td>47†</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Rey figure</td>
<td>93%</td>
<td>45†</td>
<td>44†</td>
<td>51‡</td>
<td>25</td>
<td>56</td>
<td>42†</td>
<td>41†</td>
<td>36†</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Block design</td>
<td>32†</td>
<td>24</td>
<td>27</td>
<td>40‡</td>
<td>49†</td>
<td>37‡</td>
<td>38‡</td>
<td>47†</td>
<td>79†</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. USND</td>
<td>85%</td>
<td>35†</td>
<td>26</td>
<td>17</td>
<td>12</td>
<td>33‡</td>
<td>25</td>
<td>24</td>
<td>21</td>
<td>69†</td>
<td>63†</td>
<td>—</td>
</tr>
<tr>
<td>12. Dressing apraxia</td>
<td>51%</td>
<td>47†</td>
<td>12</td>
<td>25</td>
<td>64‡</td>
<td>62‡</td>
<td>51‡</td>
<td>56‡</td>
<td>56‡</td>
<td>56‡</td>
<td>56‡</td>
<td>40†</td>
</tr>
</tbody>
</table>

* Decimal points deleted.
† p < 0.05, two-tailed t tests, df = 39.

Hier et al. (1983)

https://www.youtube.com/watch?v=xjm0AAvEOUs

Anna Greenwald, Center for Brain Plasticity and Recovery, Georgetown University Medical Center and MedStar National Rehabilitation Hospital
Prosopagnosia

Table 1. Patients’ performance on face tests

<table>
<thead>
<tr>
<th>Test</th>
<th>C</th>
<th>P.A.</th>
<th>O.R.</th>
<th>L.M.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Unknown face matching</td>
<td>15 27*</td>
<td>14 27*</td>
<td>22 41</td>
<td></td>
</tr>
<tr>
<td>2. Age estimation</td>
<td>8 96</td>
<td>26 96*</td>
<td>4 56</td>
<td></td>
</tr>
<tr>
<td>3. Familiar face recognition</td>
<td>13 36*</td>
<td>17 36*</td>
<td>9 20*</td>
<td></td>
</tr>
<tr>
<td>4. Face recognition</td>
<td>7 32*</td>
<td>12 32*</td>
<td>8 20*</td>
<td></td>
</tr>
</tbody>
</table>

The numbers given for each test correspond to the errors made by the patient and to the maximum number of possible errors.

*Means that the error score exceeded the cut-off score determined in normals.

De Renzi et al. (1994)

Anna Greenwald, Center for Brain Plasticity and Recovery, Georgetown University Medical Center and MedStar National Rehabilitation Hospital
Emotion recognition / expression

Spontaneous quotes from right-brain stroke survivors:

“You know, I’ve often wondered whether the stroke somehow gave me autism. Like… it threw me up in the ether, and when I came down, I landed somewhere on the spectrum.”

“Sorry, direct eye contact hasn’t really been one of my strengths since the stroke.”

Spontaneous quote from a spouse:

He’s different. I know it’s hard for him, being dependent on me for so many things. But it’s like he doesn’t care at all about how hard this is on me, too.

He says he hates being a burden on me, but the way he says it is... more like he’s angry than that he feels bad for me.

And when I’m sad or tired or about to lose it, he doesn’t even seem to notice.
RH stroke is closely associated with emotion recognition impairments

Alexithymic features in stroke: effects of laterality and gender.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Right Hemisphere (N = 21)</th>
<th>Left Hemisphere (N = 27)</th>
<th>t</th>
<th>χ²</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAS-20, mean ± SD (range)</td>
<td>60.5 ± 7.5 (45–74)</td>
<td>54.7 ± 7.7 (39–71)</td>
<td>2.60</td>
<td>.012</td>
<td></td>
</tr>
<tr>
<td>F1 (identifying)</td>
<td>20.8 ± 5.4 (10–31)</td>
<td>17.4 ± 5.7 (9–30)</td>
<td>2.01</td>
<td>.041</td>
<td></td>
</tr>
<tr>
<td>F2 (describing)</td>
<td>16.7 ± 4.0 (8–24)</td>
<td>14.1 ± 3.9 (6–21)</td>
<td>2.26</td>
<td>.028</td>
<td></td>
</tr>
<tr>
<td>F3 (externally oriented)</td>
<td>23.0 ± 4.9 (15–32)</td>
<td>23.2 ± 4.6 (14–35)</td>
<td>−0.16</td>
<td>.872</td>
<td></td>
</tr>
<tr>
<td>Nonalexithymic, N (%)</td>
<td>1 (4.8)</td>
<td>8 (29.6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borderline alexithymic, N (%)</td>
<td>10 (47.6)</td>
<td>13 (48.1)</td>
<td></td>
<td>6.182</td>
<td>.045</td>
</tr>
<tr>
<td>Alexithymic, N (%)</td>
<td>10 (47.6)</td>
<td>6 (22.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RESULTS: The 21 stroke patients with a lesion in the right hemisphere were more alexithymic than the 27 patients with a lesion in the left hemisphere. This evidence was strengthened by the categorical analysis: 48% of the patients with a right-hemisphere lesion had alexithymia, compared with 22% of patients with a left-hemisphere lesion. Univariate analyses of covariance showed significant differences between the...
The case for a link to stroke outcomes

• Emotion recognition impairments are associated with poor social support
 (e.g., Posse et al., 2002; Knox & Douglas, 2008)

• Social support is a key determinant of
 • health (Uchino, 2006)
 • mortality (Berkman & Syme, 1979; Holt-Lunstad et al., 2015)
 • functional status (Newsome & Schulz, 1996)
 • likelihood of institutionalization (Steinbach, 1992)
 • quality of life (Newsome & Schulz, 1996)
 • stroke recovery (Eslinger et al., 2002; Glass et al., 1993; Tsouna-Hadjis et al., 2000)
Emotion recognition impairment after stroke is associated with lower retention of social activities

Multimodal emotion recognition test

Schlegel & Scherer (2016)

O’Connell et al. (2021)

$p = 0.037$
Emotion recognition impairment after stroke is associated with lower retention of social activities

Schlegel & Scherer (2016)
Baum & Edwards (2008)

O’Connell et al. (2021)
In addition to hemispatial neglect and anosognosia, constructional apraxia, dressing apraxia, and impairments of emotion recognition and expression are also common after RH stroke.

There are plausible links (and demonstrated correlations) with long-term outcomes:

- These deficits have potential diagnostic power
- Targeting them during rehabilitation might improve long-term outcomes for RH stroke survivors
The role of the RH in communication - Prosody

<table>
<thead>
<tr>
<th>Domain **</th>
<th>Left hemisphere stroke survivor</th>
<th>Right hemisphere stroke survivor</th>
<th>Caregiver of left stroke survivor</th>
<th>Caregiver of right stroke survivor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word retrieval</td>
<td>43</td>
<td>0</td>
<td>57</td>
<td>0</td>
</tr>
<tr>
<td>Reading</td>
<td>50</td>
<td>21</td>
<td>50</td>
<td>36</td>
</tr>
<tr>
<td>Writing/spelling</td>
<td>71</td>
<td>0</td>
<td>71</td>
<td>43</td>
</tr>
<tr>
<td>Memory</td>
<td>21</td>
<td>0</td>
<td>50</td>
<td>43</td>
</tr>
<tr>
<td>Energy (fatigue)</td>
<td>43</td>
<td>21</td>
<td>50</td>
<td>43</td>
</tr>
<tr>
<td>Mood</td>
<td>29</td>
<td>21</td>
<td>57</td>
<td>43</td>
</tr>
<tr>
<td>Walking</td>
<td>50</td>
<td>14</td>
<td>36</td>
<td>29</td>
</tr>
<tr>
<td>Right motor function</td>
<td>57</td>
<td>0</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Left motor function</td>
<td>0</td>
<td>21</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>Prosody</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>Empathy</td>
<td>0</td>
<td>14</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>Spatial attention</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>Other cognitive</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>43</td>
</tr>
<tr>
<td>Personality/behavior</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>43</td>
</tr>
<tr>
<td>Sexual function</td>
<td>36</td>
<td>21</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: testing on average 22.2 months after stroke

Hillis & Tippet (2014)
The role of the RH in communication - Prosody

Right hemisphere dysfunction is better predicted by emotional prosody impairments as compared to neglect.

Dara C¹, Bang J², Gottlesman RF³, Hillis AE⁴.

METHODS: We tested 28 right hemisphere stroke (RHS) patients and 24 hospitalized age and education matched controls with MRI, prosody testing and a hemispatial neglect battery.

RESULTS: ROC analyses revealed that the Prosody Score was more effective than the Neglect Battery Score in distinguishing stroke patients from controls, as measured by area under the curve (AUC); Prosody Score = 0.84; Neglect Battery Score =0. 57. The Prosody Score correctly classified 78.9%, while Neglect Score correctly classified 55.8% of participants as patients versus controls.

Note: testing within 48 hours of admission
The role of the RH in communication - Prosody

Subjects were given paragraphs to read that provided context given which a content-neutral sentence (like “He will be here tomorrow”) was supposed to be read in happy, sad, or neutral tone.

The sentences were then played to 4 listeners who tried to discern if the speaker was trying to sound happy, neutral, or sad.

Confusion matrix for RHD

<table>
<thead>
<tr>
<th></th>
<th>Happy</th>
<th>Neutral</th>
<th>Sad</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Happy</td>
<td>315</td>
<td>373</td>
<td>68</td>
<td>756</td>
</tr>
<tr>
<td>Neutral</td>
<td>153</td>
<td>472</td>
<td>131</td>
<td>756</td>
</tr>
<tr>
<td>Sad</td>
<td>64</td>
<td>430</td>
<td>262</td>
<td>756</td>
</tr>
<tr>
<td>Total</td>
<td>532</td>
<td>1275</td>
<td>461</td>
<td>2268</td>
</tr>
</tbody>
</table>

Gandour et al. (1995)

Chance level = 33%
The role of the RH in communication - Prosody

Fig. 1 – F_o variation in utterances with different emotional coloring: patients and control group.

Guranski & Podemski (2015)
“aprosodic deficits following acute focal RBD have analogous functional-anatomic correlations to aphasic deficits following acute focal LBD”

Ross & Monnot (2008)
The role of the RH in communication - Prosody

Stimulus-driven:
Studies contrasting listening to emotional and neutral prosody.

Lateralization:
Original – flipped ALE maps

Witteeman et al. (2012)

Anna Greenwald, Center for Brain Plasticity and Recovery, Georgetown University Medical Center and MedStar National Rehabilitation Hospital
The role of the RH in communication - Prosody

Task-driven:
Studies contrasting conditions in which participants perform an emotion task with a control condition in which they do not (but stimuli are held constant)

Witteman et al. (2012)
The role of the RH in communication - pragmatics

Right hemisphere and communication

- Taking turns at talking.
- Introducing and maintaining a topic.
- Fix the conversation if it breaks down.
- Rhythm and sound of speech.
- Sense of humour and sarcasm.
- Facial expressions.

https://twitter.com/nhsfife/status/1200100791937359875/photo/1
The role of the RH in communication – pragmatics

Trupe & Hillis (1985)

Digressions (highlights) "...probably cleaning up after a meal. I suppose the meal was an excellent one, very similar to those I am provided...

Related, but inaccurate content (highlights) "She's fixing lunch... boy is putting dishes away... handing dishes up...he's tasting cookies"

Tangential content (highlights) "Well, it's on 8½ x 11 inch paper overall covered by plastic. Looks like it may have been done in drawing pens and India ink on white paper. It's less than 20 lb. paper."

1) Unnecessary detail (highlights) 1) "She has already dried one plate and two cups. So she evidently has two more plates to go..."

2) Digressions 2) "They have a garden in other words, so they probably have to do watering each morning, or maybe after sundown in the afternoon..."
The role of the RH in communication – pragmatics

Mark: “What a great football game.”
Wayne: “So you’re glad I invited you.”

Joe came to work and immediately began to work.
Joe’s boss noticed his behavior and said, “Joe, don’t work too hard!”

Joe came to work, and instead of beginning to work, he sat down to rest.

Did Mark think the game was good?
Is Wayne pleased that he asked Mark to the game?

Did Joe work hard?
Did Joe’s boss think Joe was working hard?

McDonald & Pearce (1996), see also Kaplan et al. (1990)

Shamay-Tsoory et al. (2005)

Anna Greenwald, Center for Brain Plasticity and Recovery, Georgetown University Medical Center and MedStar National Rehabilitation Hospital
The role of the RH in communication – pragmatics

“That’s just great” (sarcasm)

“That’s just great” (sincerity)

Task 1: Which ear was the sarcastic version in?
Task 2: Which ear was the sincere version in?

Mean Percentage of Correct Responses and SD (in parentheses) for the Sarcasm and Sincerity Tasks as a Function of Ear of Presentation

<table>
<thead>
<tr>
<th>Task</th>
<th>Left ear</th>
<th>Right ear</th>
<th>Cohen’s d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarcasm</td>
<td>75.6 (13.3)</td>
<td>66.3 (11.9)</td>
<td>-0.87</td>
</tr>
<tr>
<td>Sincere</td>
<td>67.5 (15.3)</td>
<td>76.2 (14.3)</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Voyer et al., (2008)

Cope et al., (2015)
The role of the RH in communication – pragmatics

Does damage to the white matter tracts of the RH predict error rate on a sarcasm comprehension task?

Sarcasm (prosody) task:

“That looks like a safe boat”
(spoken in sincere or sarcastic tone)

Task: Was that sincere or sarcastic?

Diffusion assessment in acute ischemic stroke
(RH white matter regions of interest):

Lesions in the right sagittal stratum predict poor performance on the sarcasm task.

Davis et al., (2016)
Jim cleaned the yard all day. He didn’t take any breaks. Mother said, “Jim, maybe you should eat something.”

George went to Betty’s party. Only two others came. He said, “It’s really crowded here.”

Laura was out sick for a week. Johnny called her every day. Laura said, “You are a mother hen.”
The role of the RH in communication – pragmatics

“A heavy heart can really make a difference”

Winner & Gardner (1977)
The role of the RH in communication – automatic speech

Densely aphasic patients can often flawlessly say their prayers, recite nursing rhymes and poems, or highly overlearned sequences (ABC, 123, Monday Tuesday Wednesday, January February March, etc. (Wernicke, 1874; Hughlings-Jackson, 1878))

Disruption of automatic speech following a right basal ganglia lesion.

Speedie LJ, Wertman E, Ta'ir J, Heilman KM.

Abstract

Following a right basal ganglia lesion, a right-handed man, age 75, was unable to recite familiar verses. Serial automatic speech, singing, recitation of rhymes, and swearing were impaired, and only idioms and social greetings were preserved. Speech no longer contained overused phrases and he could comprehend automatic speech. In contrast, propositional speech was preserved in both French and Hebrew. Right basal ganglia lesions may impair production but not comprehension of automatic speech.

Neurology. 1993 Sep;43(9):1768-74.

Ryding at al.(1987)

rCBF increase from Rest
Reciting weekdays
a nursery rhyme
Interim summary IV

• The RH is heavily involved in
 • Prosody (comprehension and production)
 • Pragmatics
 • Automatic speech

RH lesions can result in communication issues despite fluent language
 • Apparent lack of empathy / emotional responsivity (can be misinterpreted as depression)
 • Digressions / ineffective communication
 • Misunderstandings due to literal interpretations of language
 • Disruption of automatic speech
Final Summary

- RH injury is underdiagnosed and undertreated

- While the associated impairments are less obvious, their impact on functional outcomes is as significant as that of impairments following LH injury

- Areas to pay particular attention to in diagnosis and treatment of RH stroke are
 - Neglect (not just left-sided, not just visual, not just spatial)
 - Anosognosia
 - Constructional apraxia and other “non-neglect” visuospatial impairments
 - Emotion recognition impairment
 - RH communication disorders

Anna Greenwald, Center for Brain Plasticity and Recovery, Georgetown University Medical Center and MedStar National Rehabilitation Hospital
Thank you!

Funding sources:
• R01 HD105735
• R21 HD095273
• KL2 TR001432 (GHUCCTS)
• TL1 TR001431 (GHUCCTS) to Katie O’Connell
• Georgetown University Medical Center (Dean’s Toulmin Pilot Award)
• Music for the Mind Young Investigator Award
• R01 DC016902 to Elissa Newport and William Davis Gaillard
• Center for Brain Plasticity and Recovery
 (Georgetown University and MedStar National Rehabilitation Hospital)

Our research participants and their families
We’re recruiting!
If you know a person with RH stroke who is looking for a research study, please have them reach out to us!

as2266@georgetown.edu

Anna Greenwald, Center for Brain Plasticity and Recovery, Georgetown University Medical Center and MedStar National Rehabilitation Hospital