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Abstract 

Background: The subpopulation of reef manta ray (Mobula alfredi) of the Chagos 

Archipelago; British Indian Ocean Territory (BIOT) inhabit a marine environment which is 

almost completely devoid of anthropocentric stressors. As such, they offer the opportunity to 

study the natural processes which influence habitat use so to establish a natural baseline to 

inform conservation planning for the species. However, to date, they are one of the most 

understudied of the known subpopulations in the world. Here, photo-ID sighting records, 

satellite tag data, remote sensing and various modelling techniques are integrated to describe 

the current understanding of the subpopulation and to explore the influences of foraging and 

the utilisation of aggregation hotspots. Additionally, an assessment of the effectiveness of the 

BIOT marine protected area (MPA) is initiated.  

Results: Photo-ID surveys (2006-2018) recorded 123 sightings of M.alfredi (female = 65, 

male=58) predominantly engaged in feeding at 17 locations across four atolls where some 

degree of demographic segregation was evident. In 2016, SPOT5 tags deployed to five 

M.alfredi tracked the individuals for 10-35 days (mean = 23 days). All tagged manta rays 

remained close to atolls aggregating predominantly at Egmont Atoll (hotspot). All remained 

within the boundary of the MPA where they travelled between 9.6-576 km (mean = 183.9). 

One manta ray travelled 548 km in 29 days. State-space modelling indicated the manta rays 

were predominantly engaged in foraging behaviour (ARS). Boosted regression trees identified 

a shallow mixed layer depth, depth and high sea surface temperature (SST) and low current 

speeds and high SST as important drivers of ARS and hotspot utilisation respectively. A specific 

chlorophyll-a niche (0.08-0.1 mg/m3) also appears to be important in both models. Diving 

behaviour ascertained from tag data showed a reverse diel vertical migration pattern, 

however, manta rays were also recorded at depths of up to 400m during the day. 

Conclusion: The summation of the current understanding of M.alfredi of BIOT given here 

provides an essential baseline for future research into the subpopulation. The initial 

assessment of the effectiveness of the protection offered by the BIOT MPA can help to inform 

management planning of other MPAs in the Indian Ocean.  

Keywords: Photo-identification, Satellite telemetry, Habitat use, Marine protected area, Site 

fidelity, State-space analysis, Boosted regression trees.  
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1. Introduction  

The reef manta ray (Mobula alfredi) is one of the world’s largest planktivorous elasmobranch 

of the family Mobulidae [1]. The species have conservative life-history strategies which are 

characterised by slow growth, late maturation [2] and low fecundity [3,4]. The population is 

widely distributed in highly fragmented subpopulations [5,6] which appear to rely on atoll 

ecosystems [7] throughout the tropical and sub-tropical waters of the Indo-West Pacific 

Oceans [5,6]. As a large-bodied planktivore, dense aggregations of prey that provide a high 

energy intake are essential to offset the energetic cost of feeding [8]. As the waters they 

inhabit are largely oligotrophic, the species display a distinct movement ecology which 

reflects resource and habitat requirements [9]. For example, satellite tagging, acoustic 

telemetry analysis and photographic identification studies have shown the species exhibit 

exceptional site fidelity [10–13]. Home range size varies extensively between 

subpopulations, but each appears to concentrate the majority of their activities at specific 

locations [14,15] with individuals observed making migrations of up to 500 km between 

sites [16,17]. As their aggregation behaviour is predictable, the species are particularly 

vulnerable to exploitation [18,19].  

Fisheries are one of the greatest anthropogenic threats to mobulids [20], particularly in the 

Indian Ocean, where some bordering countries have large targeted fisheries [21]. These 

fisheries have little effective regulation or enforcement and have been described as the most 

exploited yet poorly managed in the world [22,23], an issue which is exacerbated by an 

increase in unregulated small-scale fisheries [24]. Commonly exploited for their gill rakers; 

pre-branchial appendages which are cartilaginous sieve-like structures used to filter 

zooplankton from the ocean [25,26], M.alfredi have been subject to catastrophic declines 

[18]. They are now listed as vulnerable to extinction on the IUCN Red List of Threatened 

Species [27], in Appendix II of the Convention of the International Trade in Endangered 

Species (CITES) [2] and on Appendix I and II of the Convention on the Conservation of 

Migratory Species of Wild Animals (CMS) [28]. 

As well as target and bycatch fisheries, habitat degradation and extreme touristic pressure 

threaten the survivorship of M.alfredi [29–32]. The use of marine protected areas (MPA) as 

a conservation measure has proliferated in recent years [2,12,33]; however, the 

effectiveness of this conservation strategy is controversial [34–36]. Concern is expressed 
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over the limited size of many MPAs which can leave a substantial protection shortfall for 

highly mobile species [16,19,34–36]. Various management schemes that permit different 

activities of varying intensities within an MPA are also a concern [19,32]. The decision to 

prohibit certain activities is often to remediate visible adverse impacts on M.alfredi [37] for 

example, in the Maldives, increased disturbance by tourist led to the establishment of 

Hanifaru Bay MPA [32]. However, the apparent absence of causal evidence of anthropogenic 

impacts upon a species or an ecosystem is not reliable evidence of no effect [38]. 

Furthermore, many studies that examine the effect of anthropogenic impacts on M.alfredi 

focus on subpopulations that have been subjected to anthropogenic stressors for decades 

[11,32,36,39]. An essential missing component in such studies is a baseline that describes 

how the species functions in an undisturbed environment.   

The Chagos Archipelago; British Indian Ocean Territory (BIOT), situated in the central Indian 

Ocean, has been virtually uninhabited for over 50 years [22]. Due to the lack of human 

influence, such as coastal development and anthropogenic pollution, the region is considered 

pristine [40]. It also has enhanced fish abundance, and there is evidence of more natural 

behaviours by some species [22]. For example, the moray eel (Gymnothorax pictus) feed 

during the day in BIOT and even venture onto dry land to capture their prey which is a natural 

dynamic which only occurs in the absence of human activities [41].  

Although uninhabited, both in-shore and pelagic fisheries have impacted BIOT including a 90% 

decline in reef sharks between 1975 and 2006 [22], and approximately up to 300 tonnes of 

both tuna and reef fish were caught in the region annually until 2010 [22]. In 2010, owing to 

the regions unique and pristine marine environment a no-take MPA was established 

encompassing the regions entire exclusive economic zone (EEZ) (640,000km2) except for a 

3nm exclusion around the boundary of Diego Garcia atoll [22] making it one of the largest 

MPAs in the world. The archipelago is host to a subpopulation of M.alfredi which offer the 

opportunity to study the species in a near-natural environment in the absence of 

anthropogenic influence where the association between environmental variables, 

distribution and behaviour can be developed to assist in establishing a near-natural baseline 

for the species. With a multitude of threats including widespread target and bycatch fisheries 

in the Indian Ocean [2,33], BIOT’s vast no-take MPA may provide essential refuge for the 

regions M.alfedi subpopulation. Consequently, due to the remoteness of the location, its lack 



4 
 

of inhabitation and strict protection, the subpopulation is largely undocumented, as is the 

regions physical oceanographic environment [42]. 

This study aims to describe the current understanding of the M.afredi population of BIOT and 

elucidate how they utilise their environment. Through the integration of satellite tagging 

data, remote sensing and various modelling techniques, the relationship between 

environmental influences and foraging and aggregation behaviour is explored. Furthermore, 

an assessment of the effectiveness of the region MPA is initiated so to begin to build a 

framework for future conservation management plans.    

2. Method  

2.1. Location  

The Chagos Archipelago British Indian Ocean Territory (BIOT) is made up of a group of atolls 

and low lying islands located at the southernmost end of the Lakshadweep–Maldives–Chagos 

ridge, 500km south of the Maldives [22] (Fig. 1).  

2.2. Photo Identification  

A database of sighting of individually identified M.alfredi in BIOT was created and has been 

maintained by the Manta Trust [44] since 2006. Contributions to the database include a total 

of 18 surveys conducted at 15 locations across four atolls between February 2006 and May 

2018. Survey months vary each year, but all occur between January and September with the 

majority in February and May. All surveys were undertaken by trained staff members or 

volunteers from the Manta Trust while freediving from a dedicated research vessel and last 

on average 180 minutes. Other sightings that have been incorporated into the database 

include those from other research vessels operating in the region and a small number from 

private craft. These sightings occurred since 2011 and only during March and May. Sightings 

are only incorporated into the database if the data collected by the observer meets the Manta 

Trust protocol whereby a sighting is defined as a confirmed photo-ID of an individual M. 

alfredi on a given day at a defined location. Identification is confirmed via underwater 

photography of an individual’s ventral side markings as well as sex and size; size is a proxy of 

maturity status [45] (age class). Where possible, the behavioural activity of each individual is 

also recorded. Behavioural activity is broken down into four major groups: (1) feeding, (2) 
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cleaning, (3) cruising, and (4) courtship [46]. During an encounter, an individual may 

undertake several different activities. In these situations, the activity which dominated the 

encounter is recorded as the primary behaviour.  

 

Figure 1 - Chagos archipelago British Indian Ocean Territory (BIOT) with tagging activity, photo identification 

(photo-ID) survey and temperature and depth profile locations. Inset: Indian Ocean with the BIOT marine 

protected area (MPA).  

2.3. Satellite Tagging 

Tagging activities were carried out at Egmont Atoll (Fig. 1) during the Chagos Pelagic 

Expedition on 17th January 2015 while freediving from a Fast Rescue Craft (FRC) deployed 

from the Pacific Marlin (BPV). Five smart position or temperature transmitting (SPOT5) tags, 

each tethered to a titanium anchor with a small diameter cable, were deployed on the right 

dorsal musculature using a modified Hawaiian hand sling while swimming behind the manta 

ray. Two of the manta rays were re-sighted within 15-30 minutes, having resumed their 

foraging activity and appearing unaffected by the tags.  

The tags transmit near real-time position data via Argos satellite when the manta ray is at the 

surface. Tags also recorded the ambient temperature every ten seconds in 12 predefined 
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temperature bins (<5.9°C, 6-17.9°C in 3°C intervals, 18-29.9°C in 2°C intervals and >30°C). 

Time-at-temperature (TAT) histograms are then built over four time periods which represent 

dawn (03:00-09:00 h), day (09:00-15:00 h), dusk (15:00-21:00 h) and night (21:00-03:00 h) 

whereby the percentage of time spent within each temperature bin during each time period 

is recorded. The TAT data is limited to measurements recorded preceding a satellite 

transmission, thus large gaps in the data can occur [47]. 

The raw Argos data was filtered to remove transmissions received from tags which had 

detached from the manta ray. The time at which tags detached was determined via 

assessment of TAT data and the change in temporal consistency and quality of the 

transmission to Argos [48] (Appendix A). The remaining data were then filtered to include 

only the manta rays tag identification number, date, time, location and Argos location quality 

class (LC).  

2.4. Time-at-temperature (TAT) analysis  

To infer depth from the time-at-temperature (TAT) data recorded by the tags, vertical 

temperature and depth profiles were constructed from data obtained at two locations (Fig. 

1). The first location (Egmont Atoll) was sampled in 2015 using an ISW Microstructure Sensing 

System (MSS) equipped with a temperature sensor with a cast depth of 300m. However, the 

temperature at the maximum depth did not match the minimum temperature observed in 

the TAT records. Therefore, the second location (Sandes), which was sampled using a compact 

multi-parameter conductivity, temperature, depth (CTD) system with a cast depth of 400m in 

2016 was incorporated into the analysis. Both the 2015 and 2016 vertical temperature and 

depth profiles were first plotted in MATLAB (Appendix B(i), Fig. B1) to assess their similarity. 

Although temperatures were different in the surface layers, the profiles converged in deeper 

waters, and at 300 m the difference in the 2015 and 2016 profiles is <0.5°C (Fig. B1). The 

convergence occurs because deeper water is more stable, thus less susceptible to 

temperature fluctuations [49]. Therefore, to estimate the dive depth up to 300 m based on 

the temperature recorded by the tags in 2015, the Sandes (2015) profile is used as it is 

spatially and temporally consistent with the tagging data. For depths >300 m, depth from 

temperature is estimated from the Egmont Atoll (2016) profile which is spatially consistent 

with the tagging data and converges with the 2015 profile below this depth. All available TAT 

data was then incorporated into the MATLAB plots to ascertain the approximate depth 
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occupied by the manta (Fig. B1). After establishing the depth range of each temperature bin, 

the data was then plotted in R using the ggplot2 R package [50]. To elucidate the diel 

difference in vertical movement, only periods which were all daylight (09.00-15.00, day) or all 

darkness (21.00-15.00, night) are considered here. Dawn and dusk categories are not 

considered as the time range does not accurately represent these time periods; both include 

hours of daylight and night as well as sunrise and sunset.  

2.5. Bayesian joint estimation state-space model (hSSM) 

The hierarchical version of the Bayesian state‐space model of the first‐difference correlated 

random walk with switching, also known as a joint estimation state-space model (hSSM) [51] 

was fitted to the SPOT5 tag data. The model accounts for location errors in Argos derived 

position estimates [52], regularises position estimates and estimates the manta ray’s 

behavioural states [51–53]. The model jointly estimates behavioural state across all animals 

which compensates for the limited number of Argos position estimates for several of the 

manta rays [54]. The hSSM model was fitted in R 3.5.2 using code adapted from Jonsen et al.  

[55], which is accomplished using the bsam R package [56]. The model is further described 

with the accompanying R script in Appendix C and Appendix E(iii), respectively. Briefly, the 

code implements the model using Markov Chains Monte Carlo (MCMC) via JAGS software 

[57,58]. To best match the mean temporal resolution of the Argos position estimates, the 

model was fitted with a 12-hour time step to ensure there was at least one observation per 

timestep. The model assumes that the manta rays travel in a straight line between locations, 

and the MCMC describe the evolution of the animal's behaviour which is estimated from 

changes in speed and direction [53]. Two different behavioural states: transiting and area-

restricted search (ARS) are defined [53]. Faster more direct movements characterise a 

transiting state while during ARS, movements are slower with frequent changes in direction 

[53]. Behavioural state is reported as a discrete parameter; however, the MCMC samples 

provide means of these variables, which are continuous from 1 to 2 [59]. These means assist 

in identifying behaviour switches whereby those closer to 1 represent transiting and closer to 

2 indicate ARS [53]. Rather than applying a single cut off point of 1.5, the current study applies 

a more conservative approach of <1.25 and >1.75 indicating transiting and ARS respectively. 

The approach has been adopted in various studies including of leatherback turtles 

(Dermochelys coriacea) [53], sei whales (Balaenoptera borealis) [60] and killer whales (Orcinus 
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orca) [59]. Values between these thresholds are regarded as undetermined due to insufficient 

evidence to distinguish between behaviours [53]. 

Two MCMC chains of 40,000 samples were run with the first 10,000 from each chain discarded 

as burn-in then retaining every 30th sample of the remaining 30,000 resulting in a total of 1000 

iterations. Model convergence was assessed by visual assessment of diagnostic plots to 

ensure posterior samples were stationary, MCMC chains were well mixed [55], in-chain 

autocorrelation was satisfactory and the Gelman-Rubin-Brooks potential scale reduction 

factor (𝑟̂) for all parameters were <1.1 [54,55,61] (Appendix C(ii), Fig. C2).  

2.6. Track analysis  

The great circle distance was calculated between hSSM position estimates using the 

geosphere R package [62] to obtain daily and total distance of horizontal swim tracks. The 

method shares the assumption of the hSSM that the manta rays travel in a straight line 

(Euclidean distance), thus resulting in the minimum possible distance travelled between 

points [62]. Swim speed between these points was then calculated using the dplyr R package 

[63]. Track analysis R scripts can be found in Appendix E(iv). The hSSM position estimates and 

tracks of the individual manta rays were then projected in ArcGIS 10.6. 

2.7. Hotspot analysis   

To identify areas which are predominantly utilised (hotspots), two methods were applied. The 

first was Kernel density estimation (KDE) which identifies key regions of occupancy using the 

Kernel Density function of spatial analysis tools in ArcGIS. Secondly, the variation in the 

intensity at which space is utilised was assessed via Kernel utilization distribution (KUD) 

modelling [64] using the kernelUD() function of the adehabitatHR R package [65] (Appendix 

E(ii)). The model describes the animal’s use of space using a bivariate probability density 

function (the UD) which correspond to the probability density for recapture according to 

coordinates [66]. A suitable bandwidth (smoothing parameter) was determined manually 

[67], and 0.2 was selected as the most appropriate for identifying areas of intensive use. The 

resulting model is then passed to the getverticeshr() function of the adehabitatHR R package 

[65]. The function estimates home range size within a specified threshold (e.g. 95%) by 

dividing the region into a grid then calculating the probability by volume associated with each 

grid cell [68] to produce probability contours. As the technique cumulates KDE from highest 
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to lowest density areas, lower probability contours (e.g. 10%) represent areas of the highest 

observed densities [69]. Therefore, the 10% KUD was used to define the hotspot.  

2.8. Environmental influences: Boosted regression trees 

Boosted regression trees (BRT) were used to investigate the relationship between (1) hotspot 

utilisation, (2) behaviour states (transiting and ARS) and environmental variables.  As different 

environmental variables have been shown to influences ARS and transiting behavioural 

states, each were modelled separately [70]. In the current study, there was an insufficient 

number of transiting states for analysis; therefore, only ARS was considered.   

For the hotspot utilisation model (hereafter the hotspot model), the response variable is all 

hMMS position estimates observed inside (present) or outside (absent) the hotspot area 

identified by 10% KUD (Fig. 4).   

To elucidate the relationship between environmental variables and ARS behaviour, a binomial 

response variable of ARS (1) and non-ARS (0) was established. For ARS, all the hSSM ARS 

position estimates which occurred throughout BIOT were used (Fig. 4). For non-ARS, 171 (1:1) 

pseudo-absences [71] were generated in ArcGIS. Selecting pseudo-absences from areas of 

unsuitable habitat may overinflate model performance results [72] therefore, a buffer zone 

of the maximum daily distance travelled by a manta ray during ARS (23km) was applied to 

each hSSM ARS position estimate in ArcGIS. The buffer zone represents areas the manta rays 

could have occupied but did not at the time of observation. Pseudo-absences that were 

temporally paired with the presence points were then randomly generated  [71] within these 

buffer zones. 

The chosen explanatory variables have previously been suggested to influence the foraging 

and movement ecology of planktivorous marine megafauna as they affect the spatial and 

temporal distribution of their prey. For both models, a total of nine variables were initially 

included: chlorophyll-a concentration (CHL-A) [73], sea surface temperature (SST) [13,36], sea 

level anomalies (SLA) [74], distance from Cayula-Cornillon fronts (FRONT) [75], mixed layer 

depth (MLD) [76], ocean current speed (C-SPD) and direction (C-DIR) [77] and bathymetric 

variables – depth (DEPTH) and seabed slope (SLOPE) [78]. All data were extracted in ArcGIS 

using data sources and tools depicted in Table 1. Both CHL-A and SST had a substantial 

number of pixels with missing data due to cloud cover. Missing data were filled using Marine 
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Geospatial Ecology Tools (MGET) package [79] to a maximum fill region of 30 pixels using 

the Del2a method [80,81]. The tool calls MATLAB 2007b via Python from within ArcGIS, 

which interpolates missing data using Laplacian interpolation [82], which reduced the 

amount of missing data by 10%. 

The MLD was identified using the Hybrid Coordinate Ocean Model (HYCOM). The model 

incorporates three mixing models as described by Chassignet et al. [83] to diagnose mixed 

layer thickness using the method described by Kara et al. [84]. Briefly, using SST and sea 

surface salinity, a defined temperature jump is converted to an equivalent density jump using 

the equation of state [83,84]. During seasons when surface heating is strong and in equatorial 

regions, a criterion of 0.2°C is applied [84,85]. The base of the MLD is identified at the depth 

where density differs from layer one density by 0.2°C [83,84,86]. Moving down from layer 

one, the first model layer where the density exceeds layer one density by more than 0.2°C is 

identified [83,84]. Given the central depth and density of this layer along with the central 

depth and density of the layer above, linear interpolation is then used to estimate the 

thickness of the mixed layer [83,84]. 

For FRONT, thermal fronts were detected in Group for High-Resolution Sea Surface 

Temperature (GHRSST) Level 4, 8-day SST images hosted by NASA’s Physical Oceanography 

Distributed Active Archive Center [87] using Cayula and Cornillon (1992) single image edge 

detection (SIED) algorithm with a minimum frontal edge detection threshold of 0.45°C (SST) 

via MGET [79]. The resulting raster images were incorporated into ArcGIS where they were 

converted to polyline and distance from the nearest fronts was calculated using the Near 

Analysis Tool. 
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Table 1 - Environmental data used for BRT models with a description of the variables, their source and processing 

technique.  

Variable abbreviation 
and name 

Unit 
Spatial/ 
Temporal 
Resolution 

Description  Source 

            

DEPTH Depth 
(Bathymetry) 

m 30 arc-
second 

GEBCO_2014 Grid bathymetry data  GEBCO via BODC 
[89] 

SLOPE Seabed slope  ° 30 arc-
second 

Derived from GEBCO_2014 Grid using 
Surface Tools in ArcGIS 10.6 

N/A 

      

CHL-A Chlorophyll-a 
concentration  

mg/m³ 4 x 4 km  
/ 8-day 

Level 3 composites NASA MODIS Aqua 
[90] 

SST Sea surface 
temperature  

°C 4 x 4 km  
/ 8-day 

Level 3 composites NASA MODIS Aqua 
[90] 

SLA SLA m 0.25° x 0.25° 
/ Daily 

Sea surface height anomaly relative to the 
multi-year mean sea surface height. 

DUACS 2014 
delayed time, 
AVISO hosted by 
CMEMS [91] - 
Accessed using 
MGET [92] 

FRONT Distance from 
Cayula-
Cornillon 
fronts  

m 4 x 4 km 
/ 8-day 

Binary response rasters layers showing 
GHRSST L4 product as time series of SST 
images with the Cayula and Cornillon SIED 
algorithm applied to identify fronts 
(0.45°C threshold). Distance from 
calculated using Near Analysis Tools in 
ArcGIS 10.6.  

GHRSST hosted by 
PO.DAAC [93] - 
Accessed using 
MGET [92] 

C-DIR Ocean surface 
current 
direction 

Cardinal 
directions 

0.33° x 0.33° 
/ 5-day 

Surface current data averaged over the 
top 30m of the ocean calculated via 
diagnostic model using satellite-derived 
sea surface height, wind, and 
temperature and quasi-linear and steady 
flow momentum equations [94].  

OSCAR hosted by 
PO.DAAC [95]  - 
Accessed using 
MGET [92] 

C-SPD Ocean surface 
current speed 

m/s 0.33° x 0.33° 
/ 5-day 

See above (C-DIR) OSCAR [95] - 
Accessed using 
MGET [92] 

MLD Mixed layer 
depth  

m 8.9 x 8.9 km 
/Daily 

Mixed layer thickness defined as the 
depth at which the temperature change 
from the surface temperature is 0.2°C 
[84,85]. Derived from a 3D ocean 
environment model established using 
Navy Coupled Ocean Data Assimilation 
(NCODA) which assimilates vast amounts 
of in situ and ex-situ data to accurately 
nowcast and forecast oceanographic 
conditions [96].  

HYCOM [97] 
GLBa0.08 - 
Accessed using 
MGET [92] 

  
 

 



12 
 

All BRT models were fitted using the gbm.fit() function of the dismo R package [98]. During 

preliminary analysis, suitable tree complexity (TC) and learning rates (LR) were determined 

by fitting models with progressively increasing TC (2, 3, 4 and 5) and decreasing LR (0.01, 0.005 

and 0.001) [99,100] (Table D1 and D3). Ten-fold cross-validation (CV) was applied to identify 

the optimal number of trees [101]. These processes are further described in Appendix D.  

Two measures of BRT model performance are common: 1) area under the receiver operating 

characteristic curve (AUC) test statistic [100,102] (hereafter the AUC method), and 2) 

proportion (%) of total deviance explained by the fitted model (D2) [99,103] (hereafter the D2 

method). The AUC method provides a threshold-independent metric which reflects the 

model's ability to accurately classify observations [104]. Two mean AUC values are given for 

each model, one for its performance classifying the primary sample (training AUC, TAUC) and 

another for the hold-out sample (cross-validation AUC, CVAUC) [102,105]. The AUC 

classification ranges from 0-1 whereby: <=0.5 (fail), 0.6–0.7 (poor), 0.7–0.8 (acceptable), 0.8–

0.9 (good), >0.9 (excellent) [106]. The difference between the TAUC and the CVAUC (ΔAUC) 

indicates the level of overfitting of the primary sample [102]. Therefore, better model 

performance is categorised by higher AUC values for both TAUC and CVAUC but a lower ΔAUC 

[102]. The D2 corresponds to the percentage of deviance for the null model explained by the 

fitted model [103], which can be calculated using the following form [99]: 

𝐷2 =
(𝑁𝑢𝑙𝑙 𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒 − 𝐶𝑉 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒)

𝑁𝑢𝑙𝑙 𝑑𝑒𝑣𝑖𝑎𝑛𝑐𝑒
 

For the current study, the AUC method is the primary measure of performance, and the D2 

method is used as a secondary measure to distinguish between models with the same AUC 

values.  

Following preliminary analysis, the hotspot model was fitted with a TC of 2, and an LR of 0.005 

and the ARS model was fitted with a TC of 5 and an LR of 0.001 (Table D1 and D3). Both models 

had a bag fraction of 0.5. To ensure model performance was not being hindered by non-

informative predictor variables, the gbm.simplify() function of the dismo R package [98] was 

applied to these models [101]. The function tests the effect of the elimination of predictor 

variables, excluding up to a specified maximum [101]. Here, the maximum was set to seven, 

which is the most allowed when the model contains nine predictor variables. 
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The results of the models reflect the relative influence of predictor variables, which is 

measured by averaging the number of times a variable is chosen for splitting and the squared 

improvement resulting from these splits [101]. The result is then scaled to 100 across all the 

variables [101]. The predictor variables with the highest numbers indicate a stronger 

influence on the response variable [101]. 

Partial dependency plots were generated using the gbm.plot() function. The plot represents 

the effect of the explanatory variable after accounting for the mean effects of all other 

explanatory variables [107]. The source code for the function was adapted to display rugs as 

percentiles for presence and absence separately. The BRT also models interactions during the 

course of building the model [101]. Important interactions were ascertained via the 

gbm.interactions() function which performs predictions on a linear scale for a grid of paired 

variable with all other variables held to their respective mean [101]. The nature and 

magnitude of these interactions [101] were visualised using gbm.perspec() which requires the 

dismo [98] and gbm [108] R packages. A marginal effect of zero indicates that no interactions 

were fitted [101]. Appendix D provides a detailed description of all methods used to fit and 

asses the BRT models and accompanying R scripts are in Appendix E(vi). 

3. Results  

3.1. Photo Identification  

Overall, there were 129 sightings of 108 (female = 55, male = 47, unknown = 6) individually 

identified M.alfredi. The six sightings where sex was not recorded have been excluded from 

the results. As size class and behaviour can change between sightings, the remaining 123 

observations are described.  A total of 65 female and 58 male M. alfredi were recorded, of 

which there was a higher proportion of adult males (42, 72%), than adult females (12, 18%) 

(Fig.2 and Table 2).  

The highest numbers of M. alfredi were sighted at Egmont Atoll where there were more 

females (52) which were predominantly juvenile (42, 81%) than males (42) of which the 

majority were adult (33, 79%) (Fig. 2 and Table 2). At both Diego Garcia and Peros Banhos 

Atoll, more males have been sighted than females, and all females were adults while there 

was an even number of subadult and adult males. At Salomon Atoll, more females (11) than 
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males (8) have been recorded, and all but one female were juvenile while the males were 

almost evenly split among size classes.  

 

Figure 2 - Total number of male and female M.alfredi recorded at each of the four atolls surveyed between 2006-

2018 divided into size categories from which the manta rays life stage can be inferred. Size categories range 

from 1-4 for females and 1-3 for males (Table 2). 

Table 2 - Size class of manta rays with the corresponding disc width (cm) and life stage.  

Size class   Disc width (cm) Female life stage Male life stage 

1 
 

˂ 210 Juvenile Juvenile 

2 
 

210 - 270 Juvenile Juvenile / Subadult 

3 
 

271- 320 Juvenile Adult 

4 
 

˃ 320 Adult N/A 

 

The behaviour of M. alfredi of both sexes was most frequently recorded as feeding (females 

= 60, males = 52) (Fig. 3). Cleaning behaviour was observed for a single juvenile M. alfredi 

which was sighted at Peros Banhos Atoll. The remainder of the individuals were cruising when 

sighted (female = 5, male = 5). None were observed while engaged in courtship behaviour.  
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Figure 3 – Total number of male and female M.alfredi recorded at each of the four atolls surveyed between 

2006-2018 divided into the three behavioural categories observed. The fourth category of ‘courtship’ has not 

been observed.  

Eighteen of the 108 M.alfredi (female = 8, male = 10) were sighted more than once. All but 

one of the females were juvenile while six of the males were adults, and four were subadults. 

All re-sightings occurred at the same atoll as the initial sighting. Almost all re-sightings 

occurred in the same year on consecutive days at the same location or locations <2 km apart. 

Three M.alfredi were re-sighted in different years; one juvenile male, first documented in 

2013 was observed at the same location five years later and one male and one female, both 

adults, were sighted in 2015 and 2018 at Egmont Atoll at locations approximately 5 km apart.  

3.2. Satellite Tags 

Satellite tags were deployed on five M.alfredi in January 2015 (Table 3). Tracking duration 

ranged from 10-35 days (mean 23.2 ± 10.28 days). A total of 199 Argos position estimates 

were received overall, with a mean of 39.8 ± 17.48 transmissions (range 30-71) for all five M. 

alfredi.  The daily mean number of Argos position estimates was 3.31 ± 1.79 (range 1-7).  
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Table 3 - Satellite tracking details of M.alfredi tagged in BIOT with deployment information: tag number, date of 

deployment and location coordinates. Argos position estimate data: tracking duration, number of days the tags 

transmitted, mean number of position estimates per day with ± SD and range in brackets. State-space model 

(hSSM) position estimate data: total track distance estimated via measurement of direct transit between points 

and mean travelling speed with ± SD and range in brackets calculated from the distance travelled between points 

at 12hrly timesteps.     

 

3.3. Bayesian joint estimation state-space model (hSSM) 

The hSSM estimated a total of 221 positions, ARS was identified at 89% of these locations (Fig. 

4) occurring at three atolls (Egmont, Saloman and Diego Garcia). Of the five manta rays, three 

remained at Egmont Atoll throughout the tracking duration (manta tag ID 144472 = 10 days, 

144474 = 32 days and 144475 = 18 days). The other two manta rays travelled to other atolls 

to forage with manta 144473 visiting all three atolls over the course of 34 days with an 

estimated total travel distance 576.1km. 

Manta 

Tag ID

Deployment 

date
Location 

Track 

duration 

(days)

Transmitting 

days 

Mean number of  

postions per day

Total track 

distance (km)
Mean speed (m/s)

144472 17-Jan-15 6°37'40.8"S 71°20'42.0"E 10 7 4.71 ± 1.49 (3-7) 9.57 0.015 ± 0.012 (0.003-0.04)

144473 17-Jan-15 6°37'40.8"S 71°20'42.0"E 35 11 2.72 ± 1.79 (1-6) 576.09 0.177 ± 0.222 (0.003-0.931)

144474 17-Jan-15 6°37'40.8"S 71°20'42.0"E 32 19 3.73 ± 1.82 (1-7) 112.05 0.052 ± 0.054 (0.006-0.221)

144475 17-Jan-15 6°37'40.8"S 71°20'42.0"E 21 11 3.01 ± 1.55 (1-6) 47.58 0.028 ± 0.029 (0.006-0.164)

144476 17-Jan-15 6°37'40.8"S 71°20'42.0"E 18 12 2.66 ± 1.72 (1-6) 174.49 0.115 ± 0.164 (0.005-0.492)

hMMS position estimateArgos position estimates Deployment
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Figure 4 - Position and behavioural state estimates of hSSM. Inset: The hotspot identified at Egmont Atoll from 

the 10 % KUD, which indicates intensive use by all five manta rays.  

All position estimates occurred within the boundary of the regions marine protected area 

(MPA) in waters with a maximum depth of 1836 m (Fig. 5). The position estimate which 

occurred closest to MPA limits was located at Salomon Atoll which was 254.5 km inside the 

MPA boundary.  
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Figure 5 - Position estimates of hSSM for all five manta rays at BIOT shown with bathymetry and the BIOT MPA. 

All position estimates occurred within the MPA boundary in waters with a maximum depth of 1836m.  

3.4. Track  

The overall mean distance travelled by the manta rays was 183.9 ± 228.1 km (range 9.57-

576.1 km) (Fig. 6 and Table 3). Manta 144473 travelled the furthest and visited three atolls in 

during 29 of the 34 days the tag was retained covering a straight line distance of 546 km.  

Mean distance travelled between successive hMMS position estimates (12-hourly time-steps) 

was 4.98 ± 7.36 km with a maximum distance of 40.28 km travelled by manta 144473 during 

a transiting behavioural state. The mean speed between hMMS position estimates was 0.12 

± 0.17 m/s (range 0.003 – 0.93 m/s). The mean speeds were significantly lower during ARS 

(0.059 ± 0.105 m/s) compare to transiting speeds (0.48 ± 0.144; Mann-Whitney U = 1263, 

p<0.001).  
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Figure 6 - Horizontal swim tracks of all five manta rays showing the minimum possible distance travelled 

between points. Inset: close-up of tracks at Egmont Atoll only.  

Manta 144473 departed from Egmont Atoll on 23rd January, which coincided with a 

substantial drop in current speed at the location (Fig. 7). Manta 144476 also migrated away 

from the location four days later following a similar track to Diego Garcia atoll (Fig. 6). Both 

manta rays moved to waters with higher current speeds.  
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Figure 7 – Current speed changes recorded for all position estimates within the identified hotspot (red line) from 

17/01/2015-29/01/2015. Dates displayed on the x-axis show when the manta rays left the hotspot (144473 = 

23/01/2015, 144476 = 27/01/2015). The green and black lines show current speed changes recorded for manta 

144473 and 144476 position estimates respectively after departure from the hotspot.  

3.5. Hotspot  

The Kernel density estimate (KDE) indicates the area most intensively utilised by the tagged 

M. alfredi was around Egmont Atoll (Fig. 8). Although relatively lower, the KDE also identifies 

that Salomon and Diego Garcia Atoll have elevated densities compared to the rest of the 

region. The Kernel utilisation distribution (KUD) shows that the home range (75% and 95% 

KUD) of the five manta rays combined encompasses all three of these atolls with a ‘hotspot’ 

identified by the 10% KUD at Egmont Atoll. Overall, 59% of hSSM position estimates occurred 

within this hotspot. All manta rays utilised this area, and mantas 144472,  144474 and 144475 

were only observed within the hotspot for their entire track duration of 10, 32 and 21 days 

respectively. 
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Figure 8 - Kernel density estimate (KDE) and Kernel utilisation distribution (KUD) showing areas of intensive use 

and probability density for recapture, respectively. The KDE values are the density of manta rays per km2. The 

highest density area corresponds to the 10% KUD, which was used to define the ‘hotspot’.   

3.6. Time-at-temperature (TAT) 

Available time-at-temperature (TAT) data ranged from 43–90 % of tracking days for individual 

manta rays (mean = 71%) with a total of 177 TAT records over 77 days for all manta rays 

combined. 

The vertical temperature and depth profiles obtained via MMS and CTD in 2015 and 2016 

respectively used to estimate the depths of the TAT data (Fig. B1) indicate the manta rays 

occupied depths from the sea surface down to 400 m. Predominantly shallow waters (4-33 

m) were occupied during the day (09.00-15.00) (Fig. 9). At night (21.00-03.00), the highest 

mean percentage of time was also spent within the 4-33 m depth range. However, diel 

differences are apparent with a higher mean percentage of time spent at depths >79 m at 

night compared to during the day. The deepest depths recorded (>179 m) were visited during 

both daily light and dark with the mean percentage of time of 0.11% and 0.68% respectively. 
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Depths of up to 400 m were reached during both time periods although for the lowest mean 

percentage of time for day (0.01%) and night (0.08%).   

 

Figure 9 - Overall mean percentage of time spent at depths during the day (grey) and night (black) (± SE) inferred 

from the SPOT5 TAT recordings and the CDT/MMS temperature and depth profiles (Appendix B(i)).  

The vertical movements of individual M. alfredi (Fig. 10) were varied. For example, the mean 

percentage of time manta 144472 occupied depths <49 m was similar during the day and 

night (approximately 95%). The deepest depth inferred for this manta ray from the tag 

temperature was c.a. 98 m which was reached only at night and only for a mean of 0.4% of 

the time. In contrast, manta 144473 spent a mean percentage of c.a. 46% of the night time at 

depth >49 m with 2.8% of the mean percentage of time spent between 179-283m. Manta 

14473 spent a similar mean percentage of time in depths <78 m during the day and night but 

a greater amount of time was spent below this depth at night. Manta 144475 rarely occupied 

depths below 33 m during the day with a mean of >97% spent between 4-33 m. At night, the 

manta ray’s tag recorded depths of up to potentially 400 m. Manta 144476 was also recorded 
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at this depth and was the only manta observed to visit this depth both during the day and at 

night with a mean percentage of time of 0.06% and 0.37% respectively. 

 

Figure 10 - Mean percentage of time individual manta rays spent at depths during the day (grey) and night (black) 

(± SE) inferred from the SPOT5 TAT recordings and the CDT/MMS temperature and depth profiles (Appendix B).  

A comparison of the daily total percentage of time each manta ray spent at depths is 

considered using only days where both day and night data was available (Appendix B(ii), Fig. 

B2-B6). For each manta ray, the number of days varied with a total of 26 days for all manta 

rays combined. Fifteen of these days indicate the occupation of deeper waters for higher 

percentage of time at night than during the day. The opposite diel pattern was observed for 

four of the five manta rays over a combined total of eleven days (Fig. B2-B6). An example of 

three of these days is displayed in Figure 11, which shows the manta rays spent a substantially 
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higher percentage of time in surface waters at night. Most notable is manta 144473 (Fig. 11, 

left plot) where 100% of the night was spent between 4-33 m while deeper depths were 

occupied during the day.  

 

Figure 11 - Example of the total percentage on time spent at depths during the day (grey bars) and night (black 

bars) using manta 144476 (left and middle plots) and 144473 (right plot).  

3.7. Environmental influences: Boosted regression trees 

For the hotspot model, the gbm.simplify() output indicated that there was one non-

informative predictor variable (slope, SLOPE) (Fig. D2). The exclusion of SLOPE substantially 

improved model performance thus the final hotspot model included eight predictor variables: 

1) chlorophyll-a (CHL-A), 2) sea surface temperature (SST), 3) sea level anomalies (SLA), 4) 

distance to front (FRONT), 5) mixed layer depth (MLD), 6) current speed (C-SPD), 7) current 

direction (C-DIR), 8) depth (DEPTH). Model performance evaluation suggested the final 

model had outstanding predictive performance on for both the training (TAUC = 1) and cross-

validated data (CVAUC = 0.999) without overfitting (ΔAUC = 0.001) (Table 4). The estimated 

percentage of deviance for the null model explained by the fitted model (D2) suggests that 

93% of the deviance is explained.   
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Table 4 - Performance of the final hotspot model fitted with eight predictor variables with the tree complexity 

(TC) and learning rate (LR) and the optimal number of trees (NT) and performance results: mean training AUC 

(TAUC), cross-validated AUC (CVAUC) and their difference (ΔAUC). The total deviance explained (D2) corresponds 

to the percentage of deviance for the null model explained by the fitted model. The mean deviance for the null 

model is 1.283. 

 

The relative influence of the predictor variables (Fig. 12 and D3) indicate that current speed 

(C-SPD) at the hotspot location has the greatest influence (40.7%). The variable showed a 

positive effect at a low C-SPD (0.01-0.11 m/s) (Fig. 12 a) with approximately 75% of presence 

points occurring where C-SPD was within this range. The influence of sea surface temperature 

(SST) (16.2%), depth (15.2%) and current direction (14.8%) was substantially lower with their 

combined percentage contribution being similar to C-SPD alone (Fig. 12 a-d). All presence data 

occurred at SST between approximately 28.8 and 30.1°C (Fig. 12 b) while manta rays that 

were absent from the hotspot were observed in SST as low as 27.2°C. Approximately 40% of 

presence points occurred at depths <30m (Fig. 12 c). The partial dependency plots for C-DIR 

(Fig. 12 d) do not display percentile rugs; however, the plot indicates that a current direction 

of N, NNE and WSW influence the presence of M. alfredi at the hotspot. Analysis of the raw 

data shows that 69% of observations within the hotspot occurred when the C-DIR was in one 

of these directions. Chlorophyll a (CHL-A), distance to front (FRONT), mixed layer depth (MLD) 

and sea level anomalies (SLA) had relatively low influence of 5.5%, 4.3%, 2.9% and 0.4% 

respectively. For CHL-A, concentrations between 0.08 and 0.11 mg/m3 appear to have a 

positive influence with all position estimates occurring within the hotspot when CHL-A values 

were within this range (Fig. 12 e). The results for FRONT and MLD are ambiguous due to 

uneven clustering of both presence and absence data (Fig. 12 f-g) however, the plot suggests 

that being further from a  FRONT and a shallower MLD (<30m) influence presence of manta 

rays at the hotspot. For MLD, 82% of points occurred at the hotspot when MLD <30m. For 

SLA, up to 0.23m appears to have a marginal positive influence while above this value has a 

relatively high negative influence.    

TC LR NT TAUC CVAUC ΔAUC D 2

2 0.005 3550 1 0.999 0.001 0.095 (0.03) 0.93

CV residule 

deviance (SE)
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a) b) 

c) d) 

e) f) 

g) h) 
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Figure 12 - Partial dependency plots of the eight predictor variables included in the final hotspot model; a) 

current speed (C-SPD), b) sea surface temperature (SST), c) depth (DEPTH), d) current direction (C-DIR), e) 

chlorophyll-a (CHL-A), f) distance to front (FRONT), g) mixed layer depth (MLD), h) sea level anomalies (SLA). The 

broken green line shows smoothed partial dependency. Rugs display the distribution of data in percentiles for 

presence (top, blue) and absence (bottom, red).  

The most important interactions identified were distance to front and SST, depth and SST (Fig. 

13), and current direction and distance to front, as the latter contains a categorical variable, 

the interaction cannot be plotted. The 3D plot displays a piecewise-constant approximation 

of the joint partial dependence of their effect [101]. Each split in the model is represented by 

rectangular regions that divide the predictor variable [107]. A marginal effect of zero indicates 

that no interactions were fitted [101]. 

For distance to front and SST (Fig. 13 a), the greatest interaction effect occurs between 29-

30°C at all distances with a lesser interaction between 27-29°C at distances over 50,000 m. 

For depth and SST (Fig. 13 b), the highest interaction occurred between 29-30°C at depths of 

<500 m and no interaction was fitted between these variables when depth was >500 m and 

SST was <29°C. 

 

 

Figure 13 - Interaction plots for two of the most important interactions identified for the final hotspot model; a) 

distance to front (FRONT) and sea surface temperature (SST), b) depth (DEPTH) and SST.  

For the ARS model, the gbm.simplify() output indicated there were two non-informative 

predictor variables (SLA and C-SPD) (Fig. D5). However, the exclusion of SLA and C-SPD did not 

markedly alter model performance, therefore, following the concepts of parsimony [109], the 

a) b) 
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final ARS model was fitted with seven predictor variables: 1) CHL-A, 2) SST, 3) SLA 4), FRONT, 

5) MLD, 6) C-DIR, 7) DEP. Model performance evaluation suggested the final model had 

outstanding predictive performance for both the training (TAUC = 0.999) and cross-validated 

data (CVAUC = 0.972) with minimal evidence of overfitting (ΔAUC = 0.027). The estimated D2 

suggests that 63% of the deviance is explained.  

Table 5 - Performance of the final ARS model fitted with seven predictor variables with the tree complexity (TC) 

and learning rate (LR) and the optimal number of trees (NT) and performance results: mean training AUC (TAUC), 

cross-validated AUC (CVAUC) and their difference (ΔAUC). The total deviance explained (D2) corresponds to the 

percentage of deviance for the null model explained by the fitted model. The mean deviance for the ARS null 

model is 1.386. 

 

Results of the final ARS model suggest that ARS behaviour may be predominantly influenced 

by three of the seven predictor variables which all had similar scores: MLD (26.5%), DEPTH 

(25.3%) and SST (20.4%) (Fig. 14 and D6). The MLD partial dependency plot (Fig. 14 a) suggests 

that ARS behaviour is more likely to occur when the MLD is shallower (<15m). For non-ARS 

points, 78% occurred where the MLD was >15m compared to 54% at ARS position estimates. 

The partial dependency plots also indicate that ARS occurs at shallower depths (Fig. 14 b) with 

38% of ARS points at <30m compared to just 12% of non-ARS. At depths >100m 76% of non-

ARS occurred compared to just 33% of ARS. Sea surface temperature ranged from 27.16-

30.6°C and appeared to have the greatest influence on ARS at just under 30°C (Fig. 14 c).  

Although both ARS and non-ARS occupied a similar mean temperature of 29.4±0.4°C (range 

28.2-30.1°C) and 29.5±0.51°C (range 28-30.7°C) respectively, 71% of ARS positions were 

found at temperatures >29.6°C compared to 27% of non-ARS.  Slope (9.2%), C-DIR (8.8%), 

FRONT (5.1%), and CHL-A (4.8%) (Fig. 14 d-g) had relatively lower influence than the top three 

predictor variables. Both ARS and non-ARS occurred around relatively gentle slopes (<5°) 

however, Figure 14 d shows that a slope >9° has a positive influence on ARS whereby 14% of 

ARS occurred compared to 6% of non-ARS. ARS is suggested to be positively influenced by C-

DIR of N and WNW direction (Fig. 14 e) with 48% of ARS occurring in these directions 

compared to 26% of non-ARS. A C-DIR of NNW and W is indicated to have a negative influence; 

TC LR NT TAUC CVAUC ΔAUC D
2

5 0.001 8000 0.999 0.972 0.027 0.447 (0.08) 0.68

CV residule 

deviance (SE)
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the raw data shows that 30% of non-ARS occurred in these directions compared to zero ARS 

points. Distance to front (Fig. 14 f) appears to have little influence with the partial dependency 

showing a fitted function around zero. For CHL-A (Fig. 14 g), all ARS are in concentrations <0.2 

mg/m3 with 84% occurring between 0.08-0.1 mg/m3 compared with only 34% of non-ARS. For 

non-ARS, 45% occurred at concentrations >0.1 mg/m3 with 11% between 0.2-0.31 mg/m3. 

 

 

 

 

a) b) 

c) d) 

e) f) 
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Figure 14 - Partial dependency plots of the seven predictor variables included in the final ARS model; a) mixed 

layer depth (MLD), b) depth (DEPTH), c) sea surface temperature (SST), d) slope (SLOPE), e) current direction (C-

DIR), f) distance to front (FRONT), g) chlorophyll-a (CHL-A). The broken green line shows the smoothed partial 

dependency. Rugs display the distribution of data in percentiles for presence (top, blue) and absence (bottom, 

red).  

The most important interactions identified for the ARS model were depth and SST (Fig. 15) 

and current direction and SST. The interactions of depth as SST was highest at SST between 

29.5-30°C and depths <500m.  

 

 

Figure 15 - Interaction plots for sea surface temperature (SST) and depth (DEPTH), which was one of the most 

important interactions identified for the final ARS model. 

 

 

 

g) 
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4. Discussion  

4.1. Current understanding of the Chagos BIOT Mobula afredi subpopulation 

There were 123 observations of 108 photographically identified Mobula alfredi around the 

Chagos Archipelago; British Indian Ocean Territory (BIOT). The majority were juvenile, which 

is similar to other studies in Indonesia [110] and the Maldives [111]. Eighteen of the manta 

rays have been sighted more than once of which three were documented in different years. 

All re-sightings occurred at the same atoll either in the same location or locations <5km apart 

indicating some degree of site fidelity for these individuals. The small number of re-sightings 

may be a product of the infrequency and short duration of surveys due to the logistics of 

conducting fieldwork in such a remote location.  

The tagged manta rays appeared to demonstrate varying degrees of site fidelity. Three 

remained at Egmont Atoll throughout the tracking period while two were observed to make 

a relatively long migration away to Diego Garcia Atoll (>130 km). High site fidelity is a regularly 

reported characteristic of M.alfredi which has been observed via passive acoustic [15] and 

satellite telemetry at Lady Elliot Island (LEI) on the Great Barrier Reef [112] and in 

observational studies in the Maldives [111] and Hawaii [12]. Although an overall trend, other 

observational studies have noted that while some individuals displayed high site fidelity 

others frequently interchange between locations [45,110]. Differences in site residency can 

be associated with demographic segregation as significant associations between habitat use, 

and the age and sex of the manta rays have been observed [110]. Adult M.alfredi have also 

been observed to frequently embarked on long migrations while juveniles displayed greater 

site residency times [45]. Here, one tagged manta ray (144473) visited three atolls, starting 

and ending at Egmont Atoll. The round trip took 29 days and covered a straight-line distance 

of 546 km. Similar to one satellite-tagged adult female M.alfredi off LEI that travelled 2441 

km in 118 days [112], the distance travelled by manta 144473 appears to be one of longest 

reported distances travelled in such a short space of time. Due to restraints in the field, the 

demographics of the tagged manta rays were not recorded here; thus, whether migration 

occurred due to differences in sex or age class of the manta rays cannot be postulated. 

However, photo-ID surveys observed more females, than males, which were predominantly 

juvenile and adult respectively at Egmont Atoll, while at Diego Garcia Atoll more males 

(subadult and adult) than females (one adult) have been sighted. Potentially this indicates 
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that juveniles remain at Egmont Atoll and that Diego Garcia Atoll is less frequently utilised by 

female and juvenile manta rays. For various ray species, greater residency times of juveniles 

have been suggested to be a predator avoidance strategy [45,113,114]. Alternatively, due to 

the smaller body size, it may not be energetically efficient for juvenile manta rays to make 

long migrations [45,115] or they may simply lack foraging experience [45]. 

Foraging (area-restricted search, ARS) was the predominant behaviour identified by the 

Bayesian joint estimation state-space model (89% of position estimates). Foraging was also 

the predominant estimated behaviour in a study which conducted similar analysis of satellite 

tag data from M.alfredi in the Red Sea [11]. Satellite tags can only transmit when they are dry 

for a sufficient period; therefore, they are required to be above the surface of the water. 

There are several feeding strategies and behaviours where breaching of the surface occurs, 

including surface feeding as well as direct breaching, which has been shown to be significantly 

more likely during feeding [111]. It is then plausible that manta rays are more likely to be 

located while feeding than at any other time hence the high percentage of ARS position 

estimates. The ARS behaviour was concentrated around three atolls: Egmont, Diego Garcia 

and Salomon Atoll, which is consistent with photo-ID survey observations at these locations 

where feeding was consistently recorded as the primary behaviour.  

Kernel utilisation estimates identified Egmont Atoll as a hotspot for M.alfredi. As a species 

that are reliant on zooplankton, utilisation of the area is likely to be associated with feeding 

opportunities [6]. Hydrodynamics, controlled largely by bathymetric complexity [116], play a 

key role in the accumulation of zooplankton in coral reef ecosystems [117]. These systems 

encompass a multitude of hydrodynamically connected sub-systems, including the reef, 

lagoons and the ocean [116]. The spatial and temporal dynamics of these sub-systems can 

influence the abundance of zooplankton [116,117]. For example, coral reefs act as a barrier 

to ocean currents which diverge around the reef creating a pocket of relatively motionless 

water immediately upstream, which can trap nutrients and plankton [117]. Acceleration of 

the diverging currents induces longshore currents parallel to the reef sides where abrupt 

changes in bathymetric features can induce flow separation, which result in the formation of 

plankton-rich eddies. [117]. Eddies on the lee of the reef can create a zone of reduced flushing 

which retains zooplankton, for example, that may have emerged at night, a phenomenon 

noted in a study of zooplankton community structure on the Great Barrier Reef [117]. 
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Plankton can also be advected up the reef slope when tidal currents become entrapped by 

bathymetric features [117]. Boosted regression trees (BRT) modelling indicated current speed 

was the most influential variable for hotspot utilisation. There was a strong positive influence 

at low current speeds plausibly because the manta rays were taking advantage of zooplankton 

accumulation induced by bathymetric features [117]. Moreover, in areas where the current 

speeds are higher, bottom and vertical shear is increased, which can disperse zooplankton 

[118]. Such dynamics have been observed in marine coastal systems where the accumulation 

of zooplankton was characterised by low current velocities and a Richardson number >0.25, 

indicating a stable water column [119]. Increased wind speeds, which can be concomitant 

with ocean surface currents, have also been linked to reduced M.alfredi presence and 

foraging behaviour [73]. Conversely, the departure of the two M.alfredi from Egmont Atoll 

appears to correspond to a substantial decrease in current speed. Lower current speeds 

reduce zooplankton transport and dispersal [118] thus potentially the dense aggregations 

which are necessary for energetically efficient foraging may have become depleted, which 

might have led to the migration of the manta rays. However, the spatial and temporal 

resolution of the current speed and other environmental data hinders the identification of 

any fine-scale changes that may also have coincided with the migration.  

Sea surface temperature (SST) was one of the most influential variables for both the hotspot 

utilisation and ARS behaviour models. The full range of SST was 27.2-30.6°C, and both models 

indicate a positive influence at a higher temperature niche; 28.8-30.1°C and 28.2-30.1°C for 

the hotspot and ARS model, respectively. A similar association between foraging and 

temperature was found to occur for satellite-tracked giant manta rays (Mobula birostris) in 

the southern Gulf of Mexico where SST ranged from 25.5-30°C and >80% of foraging position 

estimates occurred in temperatures between 27-30.0°C [36]. A warmer temperature niche 

was also apparent at M.alfredi aggregation sites Komodo Marine Park, Indonesia where the 

SST ranged from 24–29°C and the species predominantly visited (91%) during periods it was 

26 to 28°C [13]. These results are in contrast to an observational study at LEI, which showed 

that sightings of foraging M.alfredi occurred between 21–23°C with a decrease in numbers at 

higher temperatures [73]. Recently presented acoustic tagging data in the region concurs, 

whereby hourly visitation patterns of M.alfredi consistently increased with decreasing 

temperatures [15]. These different thermal niches likely reflect oceanographic processes that 
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are enhancing local zooplankton production, which may be species or regionally-specific 

[120,121]. For example, upwelling of cool nutrient-rich water can enhance phytoplankton 

growth [122,123] and subsequent production of cool water zooplankton species [120,121]. In 

the LEI studies, each concluded that cooler SST and higher chl-a indicated that such upwelling 

might be increasing zooplankton biomass in the region [15,73,75]. These conclusions are 

supported by modelling of zooplankton dynamics and local environmental variables in the 

area, which found significantly higher biomass at lower SST, which coincided with M.alfredi 

feeding events [8]. Sufficient upwelling conditions to support enhanced primary production 

at LEI are also evident from other oceanographic data collected in the region [124]. Very little 

is known about the local oceanographic processes at BIOT; however, if upwelling intensity is 

variable, other factors such as temperature can become more influential [120]. 

For both phytoplankton and zooplankton, increased temperature enhances metabolic rate 

[125], thus accelerates physiological processes [126]. In temperature-controlled experiments, 

phytoplankton biomass was observed to decline by as much as 50% with a 2°C increase [126], 

and reduced phytoplankton size and changes in community composition were also evident 

[126]. These results were suggested to be consistent with increased zooplankton grazing 

outpacing phytoplankton production at higher temperatures [126,127] as heterotrophic 

processes are more sensitive to temperature increases [128]. In situ sampling of 

phytoplankton and zooplankton has also revealed a similar phenomenon whereby 

zooplankton biomass increased, but phytoplankton biomass remained steady likely due to 

accelerated zooplankton grazing rate [123]. Under these conditions, chl-a concentrations, 

both satellite-derived and sampled in situ can remain low and lack any clear association with 

zooplankton production [123]. Here, chl-a was only minimally influential in both models 

which appear to identify that there may be specific chl-a niche associated with feeding 

behaviour. Potentially, this reflects the level to which phytoplankton is reduced by grazing 

where zooplankton biomass becomes sufficient for manta rays to feed. This is in contrast to 

an upwelling region where a direct linear relationship can be observed for chl-a and the 

presence and feeding behaviour of M.alfredi [73].  

The elevated SST, relatively slow current speeds and chl-a at the position estimates are not 

consistent with upwelling conditions [129]. However, due to the coarse resolution of the data 

considered here, upwelling in the region cannot be precluded. Potentially, it could be 
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intermittent providing ideal conditions for maximising zooplankton populations [129] as 

intense periods of upwelling can disperse zooplankton; thus, peak densities could occur when 

upwelling is reduced [123]. Alternatively, the location of the biological response to upwelling 

may have shifted due to advection [123]. Currents interacting with abruptly changing 

bathymetry could then be acting to aggregate zooplankton at in areas around Egmont Atoll 

[130]. The positive influence of several different current directions in the hotspot model may 

reflect such interaction with bathymetric features [129]. The model also indicated that there 

were important interactions between shallow bathymetry (depth) and SST, which could be 

working to concentrate and increase the production of zooplankton [117,127]. Similarly, 

various current directions had a positive influence in the ARS model, and there were 

important interactions between depth and SST. These similarities likely occurred because the 

majority of ARS position estimates occurred around atolls which may have similar bathymetric 

features to Egmont Atoll.   

Overall, manta rays tended to remain in the upper epipelagic layer (<49 m) during both the 

day and the night but a greater mean percentage of time was spent at depths below 49 m at 

night. In a study conducted in the Red Sea, fine-scale dive profiles (depth recorded every 10-

15 seconds) displayed a similar reverse diel vertical migration pattern [10]. Similar nocturnal 

habits have also been inferred from acoustic tagging data and observational studies where 

manta rays left the shallow study areas at night presumably to forage in deeper waters 

[13,15,73]. As there have been no direct observations of M.alfredi foraging at great depths 

[76], interpretation of dive data in this, as in studies of other mobulid species, is related mainly 

to known associations such as their reliance on zooplankton [76]. A prevalent theory is that 

the behaviour is in response to the diel vertical migration of zooplankton, whereby manta 

rays dive to depths to intercept their prey as they emerge at night [10,13,131]. The theory is 

supported by stable isotope (SI) analysis whereby a large proportion of manta ray’s diet has 

been found to be made up of species which matched the SI of demersal zooplankton [131]. 

In the Red Sea, the rate of ascent and descent during dives were observed to be faster and 

slower, respectively, and it was suggested that this might be evidence of glide diving [10]. It 

has been proposed that glide diving is an energetically efficient strategy used by planktivores 

to locate prey that has an inconsistent spatial and temporal distribution [132]. Conversely, 

the theory that manta rays exploit prey in deep waters at night is contested by evidence that 
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dive profiles did not seem to indicate any period of levelling out behaviour which was 

presumed would occur when the manta ray had successfully located food so would remain at 

a specific depth for an extended period [10]. Contrastingly, in the present study, there were 

several records where the manta rays remained in a deep, narrow depth range for the entire 

six-hour recording period, which may be evidence of successful foraging activities. Although 

the overall pattern appeared to indicate a reverse diel vertical migration, diel vertical 

migration occurred on 36% of the days where both day and night data was available. Manta 

rays may remain at depths during the day when utilising cleaning stations [10] at which they 

have been shown to spend as much as five hours [133]. However, this is unlikely to be the 

case at depths below 40m, which is the maximum depth of occurrence for cleaner fish in BIOT 

[134].  

Manta rays were also recorded moving through almost the full range of depths during the day 

and night without spending a notably higher percentage of time within a specific depth range. 

The time-at-temperature (TAT) histograms of the current study are constructed by recording 

the percentage of time within a six-hour period that a manta spent within a temperature 

(depth) range. Hence, it is not possible to determine in what order the depth ranges were 

occupied for example, whether the manta ray remained at a certain depth for several hours 

or spent short periods at the depth but on multiple occasions during the six hours. However, 

possibly manta rays could be feeding continuously while travelling from the surface to depths. 

One of many feeding strategies employed by the species [6,111] is cyclone feeding, which is 

categorised by decent from the surface in a circular motion [6] which works to concentrate 

zooplankton [111]. Potentially use of this technique could lead to the histograms being 

distributed throughout the entire depth of the water column. However, observations of this 

feeding strategy suggest the cyclones only last for a limited amount of time (<30 minutes) 

[111], therefore, it appears unlikely that this would explain vertical movement patterns 

observed in the current study.  

Changes in the diving behaviour of M.birostris have been found to be associated with 

variations in the mixed layer depth (MLD) [76]. Zooplankton often aggregate at the base of 

the MLD; the upper limit of the thermocline [135,136] and data recorded by tags attached to 

M.birostris indicated they spent up to 22% of their time at the base of the MLD during the day 

and 21% of their time during the night [76]. As TAT histograms in the current study are not 
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accompanied by position estimates, associations between diving behaviour and MLD cannot 

be inferred; however, MLD was the most significant variable in the ARS model. The results 

indicated that ARS was most likely to occur where the MLD was shallower (<15m). As well as 

aggregating at the thermocline, zooplankton biomass has been found to be highest in the 

MLD [135,136] becoming more concentrated as MLD decreases [137] thus, plausibly foraging 

within a shallow MLD is energetically efficient. A shallower MLD may also improve the 

likelihood of satellite transmission as the manta ray will be foraging more closely to the 

surface thus are more likely to expose the tag to the air.  

To continue to develop the current understanding of the BIOT M. afredi subpopulation so to 

construct a natural baseline for the species, future research would benefit from the use of 

satellite and acoustic telemetry to further elucidate the subpopulations movements and 

identify other key habitats [114]. The subpopulations reproductive success and overall fitness 

should also be assessed by demographically defining habitat use, which will help identify 

essential requirements for the species. Modelling methods, such as ecological niche factor 

analysis, could then be applied to identify areas throughout the species range that might be 

essential to survivorship.  

4.2. Effectiveness of the Chagos BIOT MPA 

Quantifying the impact of fisheries on M.alfredi subpopulations in the Indian Ocean is 

challenging. On a local scale, many target fisheries are largely unregulated [21]. Outside of 

the countries exclusive economic zones (EEZs) fisheries regulations are managed by the 

regional fisheries management organization (RFMO); the Indian Ocean Tuna Commission 

(IOTC) [22], which encompasses BIOT within their remit [22,23]. Although fisheries statistics 

are collected by the IOTC, calculating accurate catch values is hindered by systemic 

underreporting and inconsistent reporting methods [24]. For example, a general heading of  

‘Mobulidae’ [138] is often used. In 2018, available IOTC records indicated a total of 4,018 

metric tons of Mobula spp. were caught [138]. However, a review of publicly available data 

including scientific reports from sampling programmes and peer-reviewed literature, 

estimates the true catch rate to be substantially greater with an annual catch (2014-2016) of 

around 10,500 metric tons of mantas and devil rays [139]. Mobulid ray protection such as a 

retention ban and mandatory release requirement have been repeatedly proposed and 

rejected under the IOTC [140]. As Mobulid ray catch rate continues to increase in the Indian 
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Ocean [23], protection for M.alfredi is essential. Although MPAs exist in the Indian Ocean 

[16,19], as a pelagic species shown to make long migrations, the limited size of these areas 

does not effectivity protect subpopulations from anthropogenic pressures [16,19]. For 

example, there are several manta ray sanctuaries in Indonesia which range from 200-11,655 

km2 [16]. The waters which divide these sanctuaries are heavily fished with many fisheries 

which directly target manta rays [16]. Photo-ID surveys provided evidence that M. alfredi 

regularly migrates between these sanctuaries, making them vulnerable to target and bycatch 

fisheries as well as boat strikes [16]. Due to its extensive size, the BIOT no-take MPA has been 

recognised as an essential conservation strategy which may be spatially sufficient to protect 

such a highly mobile species [23]. In the current study, spatially sufficient protection is evident 

as all of the tagged individuals remained within the boundary of the MPA throughout the 

study period. As a species capable of making long migrations, it is theoretically possible that 

the BIOT M.alfredi subpopulation has some degree of connectivity with other subpopulations, 

for example, in the Seychelles. If so, they are potentially migrating through regions where 

they are vulnerable to fisheries [16]. However, the evidence presented here indicates that the 

tagged manta rays home range is centred around the atolls and it has been suggested that 

where an M.alfredi subpopulation has sufficient resources to sustain it, migration away from 

the region is unlikely [12]. Furthermore, to date, no clear evidence of connectivity between 

the highly fragmented M.alfredi subpopulations has been presented [6,9,12,141]. Further 

evidence gleaned from long-term research via active and passive tracking is required to 

investigate M.alfredi use of the BIOT MPA more thoroughly. Genetic analysis of this and other 

populations is also essential so to ascertain whether connectivity between neighbouring 

populations exists [9,12]. As well as identifying whether manta rays are migrating, genetic 

analysis may also be used to assess the population's genetic diversity [142]. Genetic diversity 

is associated with a species ability to adapt to environmental changes whereby a loss of 

diversity with increased levels of inbreeding can hinder survivorship through the 

accumulation of genetic mutations [142]. 

The BIOT MPA also provides M.alfredi with protection from some of the other most 

prominent threats which have been highlighted as a significant concern for M. alfredi 

subpopulations [9,16,143]. These threats include disturbance from unregulated tourism 

which has been shown to drive M. alfredi away from productive feeding areas [32,33] 
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potentially reducing the fitness and survivorship of the population [19,32]. Concomitant to 

touristic pressure is habitat degradation and an increased vulnerability to boat strikes and 

propeller injuries [9,16,143] which are much less likely to occur within the BIOT MPA. 

Although further research is required to determine whether the M.alfredi move outside of 

the MPA boundary, current evidence suggests the region's subpopulation do not thus may be 

the most highly protected in the world. This protection status is essential for this species as 

almost all the worlds subpopulations face future hardship induced by anthropogenic stressors 

and climate change [19] which will further decrease the already diminished population. Using 

the present study as a baseline, future research should continue to assess the effectiveness 

of the protection offered by the BIOT MPA, which can help to inform management planning 

of other MPAs in the Indian Ocean. For example, if the BIOT MPA is spatially sufficient, the 

expansion of other existing MPAs which only encompass limited areas within a 

subpopulation’s home range should be considered so to reduce the impact of anthropogenic 

stressors (Stevens and Froman, 2018). 

5. Conclusion  

The present study utilised all of the currently available data to provide a summation of the 

current understanding of the BIOT M.alfredi subpopulation. To date, only 123 M.alfredi have 

been individually identified via photo-ID surveys, but the data provides evidence of 

productive feeding locations at three atolls: Egmont, Diego Garcia and Salomon Atoll. There 

may be some degree of demographic segregation of these habitats and the substantially 

higher number of sightings at Egmont Atoll indicates it is an aggregation hotspot. Analysis of 

tag data supports these observations whereby most position estimates occurred at this 

location although some individuals made relatively long migrations away from the area. Low 

current speeds potentially influenced by abrupt changes in bathymetric features and high SST 

around Egmont Atoll are plausibly increasing zooplankton biomass which supports M.alfredi 

aggregations. When foraging, MLD is also important as zooplankton can become more 

concentrated as it narrows. Generally, dive behaviour was consistent with reverse diel vertical 

migration, although this was not persistent and varied between individuals. The tagged manta 

rays did not appear to leave the BIOT MPA during this study, indicating that the MPA is 

providing spatially sufficient protection for this subpopulation. In a region where mobulids 

are under increasing threat from fisheries [20], an MPA which encompasses the entire range 
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of an M.alfredi subpopulation is essential for the protection of the whole population of the 

species. With aggregation hotspots and important environmental influences identified, the 

present study provides an essential baseline for future research into the BIOT M.alfredi 

subpopulation. The baseline can now be developed and may assist in identifying crucial 

habitats throughout the species range that might be essential for M. alfredi survivorship.  
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Appendices  

Appendix A – Argos satellite data processing  

(i) Location quality class 

Argos position estimates are calculated by measuring the Doppler Effect on transmission 

frequency from a transmitter [1]. The estimated accuracy of a position is classed based on 

location process (e.g. number of transmissions received during a satellite pass), and estimated 

errors established by a positioning algorithm (least squares analysis or Kalman filtering). Each 

location point is then assigned one of seven location quality classes (LCs) [2]. Higher quality 

locations that are derived from four or more transmissions fall into the top four LCs (Argos 

classes 0-3) and are accompanied by an estimated radius of error [2] which is the radius of 

the ellipse estimated to contain the true location [1].  Commonly, low-quality LCs  (Argos 

classes A,  B and Z) for which estimated radius of error could not be established dominate 

animal tracking data [3].  Rather than discard potentially highly erroneous location estimates 

Argos derived location errors may be corrected by fitting a  state-space model (SSM) to the 

transmission data [4]. Moreover, an SSM can be used regularise Argos position estimates (see 

Appendix C(i)) that are generally temporally irregular [4] which is a particular problem in the 

case of a pelagic species [5] such as the manta ray. 

(ii) Removal of data received from a detached tag  

Before Argos data can be utilised, the point of tag detachment needs to be established. Tag 

detachment can be determined through the assessment of the following three factors:  

(1) The temporal consistency of transmissions to Argos.  

The satellite tags can only transmit via Argos when the tag is dry [1] therefore, tags deployed 

on a pelagic species such as M.alfredi will only transmit when the animal surfaces [1,6]. While 

attached, daily transmissions will vary in their temporal distribution [6]. After detachment, 

they are more likely to occur in the first few hours after midnight [6]. Table A1 shows an 

example of the point of detachment (red box) of the tag deployed on manta 144475 

ascertained from reduced temporal variability in the daily transmission after this point.  

 



58 
 

(2) The quality of transmissions  

Argos position estimates are assigned one of seven location quality classes (LCs) (Appendix 

A(i)). When a tag is floating on the surface, the LCs are generally of consistently higher quality 

[6] as >4 transmissions are likely to be achieved [1]. After the red box in Table A1, LC is of 

consistently higher quality indicating the detachment of the tag deployed on manta 144475.  

Table A1 - Argos position estimates for a manta 144475. The red box indicates the last transmission before the 

tag detached. Above the red box, position estimates are temporally variable, and the location quality class (LC) 

is generally low (LC = A,  B or Z). Below the red box, the daily transmissions are received in the first few hours 

after midnight and are of a consistently higher LC (LC = 0-3).  

 

(3) The range of time-at-temperature (TAT) bins recorded by the tag  

The satellite tags were programmed to record the ambient temperature. Recordings result in 

a time-at-temperature (TAT) histogram which averages the temperature measurements at 

six-hourly intervals into 12 predefined temperature ranges (bins) and gives the percentage of 

time within that six hours that the manta spent within each bin. When a tag is attached, there 

DeployID Date LC Latitude Longitude

144475 25/01/2015 20:00 B -6.675 71.391

144475 25/01/2015 21:39 B -6.676 71.39

144475 26/01/2015 13:39 B -6.675 71.391

144475 26/01/2015 16:19 B -6.676 71.391

144475 26/01/2015 17:51 B -6.678 71.394

144475 26/01/2015 19:52 A -6.673 71.399

144475 30/01/2015 13:46 B -7.286 72.245

144475 06/02/2015 11:33 1 -6.674 71.391

144475 06/02/2015 12:55 A -6.642 71.387

144475 06/02/2015 13:18 B -6.641 71.396

144475 07/02/2015 00:03 2 -6.561 71.35

144475 07/02/2015 00:17 3 -6.575 71.24

144475 07/02/2015 01:39 2 -6.567 71.237

144475 08/02/2015 00:06 2 -6.408 71.098

144475 08/02/2015 01:13 2 -6.544 71.047

144475 09/02/2015 00:02 1 -6.591 70.824

144475 09/02/2015 00:45 2 -6.59 70.918

144475 10/02/2015 00:28 1 -6.576 70.999

144475 10/02/2015 02:01 2 -6.579 71.034

144475 11/02/2015 00:02 3 -6.664 71.473

144475 11/02/2015 01:17 2 -6.487 71.191

144475 11/02/2015 01:28 2 -6.483 71.186
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will be 100% spread over a range of bins [6]. When the tag begins to report its time as 100% 

in a single bin or split between the same two bins for multiple consecutive histogram entries, 

particularly the warmest bin, the tag has detached and is drifting on the surface [6] (Table A2, 

red box).  

Table A2 - Time-at-temperature (TAT) histogram data recorded at six-hourly intervals and displayed as the 

proportion (%) of time the manta (manta 144475) spent within each predefined temperature range (bin). The 

red box indicates the last recording prior to the detachment of the tag. Subsequent histogram entries are only 

recorded in one or two of the warmest bins for multiple consecutive entries.   

 

 

 

 

 

 

 

 

 

Tag ID Date

Bin1 Bin2 Bin3 Bin4 Bin5 Bin6 Bin7 Bin8 Bin9 Bin10 Bin11 Bin12

144475 03/02/2015 21:00 0 0 0 0 0 0 2.8 22.6 44.2 16.3 14.2 0

144475 04/02/2015 03:00 0 0 0 3.3 6.1 3.1 5.8 24.7 23.1 20 13.9 0

144475 04/02/2015 09:00 0 0 0 0.2 1.5 1.7 3.1 10.2 19 37.3 27 0

144475 04/02/2015 21:00 0 0 0 0 0 0 1.5 2 19 44.5 32.9 0

144475 05/02/2015 09:00 0 0 0 0 0 0 2.8 6.1 10 18.1 63.1 0

144475 05/02/2015 15:00 0 0 0 0 0 0 1.6 9 8.8 28.6 52 0

144475 05/02/2015 21:00 0 0 0 0 0 0 0 7.7 2.6 4.4 85.2 0

144475 06/02/2015 03:00 0 0 0 0 0 0 5.7 44.6 31.1 12.2 6.3 0

144475 06/02/2015 09:00 0 0 0 0 0 2.3 2.6 13.6 1.9 2.3 77.3 0

144475 06/02/2015 15:00 0 0 0 0 0 0 0 0 0 0 100 0

144475 06/02/2015 21:00 0 0 0 0 0 0 0 0 0 0 100 0

144475 07/02/2015 09:00 0 0 0 0 0 0 0 0 0 0 59.4 40.6

144475 07/02/2015 21:00 0 0 0 0 0 0 0 0 0 0 100 0

144475 08/02/2015 03:00 0 0 0 0 0 0 0 0 0 0 86.7 13.3

144475 08/02/2015 09:00 0 0 0 0 0 0 0 0 0 0 75 25

144475 08/02/2015 15:00 0 0 0 0 0 0 0 0 0 0 100 0

144475 08/02/2015 21:00 0 0 0 0 0 0 0 0 0 0 100 0

144475 09/02/2015 09:00 0 0 0 0 0 0 0 0 0 0 100 0

144475 10/02/2015 03:00 0 0 0 0 0 0 0 0 0 0 100 0

144475 10/02/2015 09:00 0 0 0 0 0 0 0 0 0 0 100 0

Predefined Temperture Bins/Percentage of Time 
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Appendix B - Time at temperature (TAT) 

(i) Method for establishing depth  

To establish depth from temperature range, vertical temperature profiles along with the 

mean percentage of time the manta rays spent within each temperature bin were plotted in 

MATLAB using the code provided in Appendix B(ii). The resulting plot (Fig. B1) shows that 

temperature profiles converge at depths, and there is <0.5°C difference at 300m. The range 

of each temperature bin (displayed as the width of the red bars) was used to infer the 

approximate depth range, which is indicated by the vertical profiles. The Sandes (2015) profile 

was used for depths up to 300m, and the Egmont (2016) profile was used for depths >300m.  

 

Figure B1 - Vertical temperature and depth profiles constructed from data obtained at two locations (Fig. 1). 

ISW Microstructure Sensing System (MSS) equipped with a temperature sensor cast to 300m (black line) and 

compact multi-parameter conductivity, temperature, depth (CTD) system with a cast to 400m (blue line) in 2015 

and 2016 respectively. Red bars indicate the overall percentage of time manta rays occupied each temperature 

bin whereby the width indicates the temperature range of the bin. Inset: lowest temperature bin is displayed 

from 200-400m showing a small percentage of time was spent in the 9-12°C bin.   
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(ii) Daily total TAT data for manta rays  

Time-at-temperature (TAT) data is only transmitted if measurements recorded precede a 

satellite transmission, thus large gaps in the data can occur if the manta ray does not surface 

regularly [7].  

When considering the daily total percentage of time manta rays spent at depths where both 

day and night data is available (n=30), all manta rays were observed to occupy deeper water 

during the day for a combined total of eleven days (37%). Manta 144472 followed this diel 

pattern for three out of five days (Fig. B2). For two of these days (21/01/2015 and 

22/01/2015) 100% of the night was spent at depths <33 m. During the day on 24/01/2015 this 

manta ray remained between 34-49 m and only occupied <33 m during the night.  The 

remaining two days (19/01/2015 and 20/01/2015) are more typical of a reverse diel vertical 

migration pattern.       

  

Figure B2 – Total percentage of time spent at depths for the five days where both day and night were recoded 

for manta 144472. Three days (21/01/2015, 22/01/2015 and 24/01/2015) show the manta ray predominantly 

occupied shallower water at night and deeper waters during the day.  
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For manta 144473 (Fig. B3), diel vertical migration is apparent most notably on 18/02/2015 

where 100% of the night was spent in shallow water (<33 m) and depths of up to 178m are 

occupied during the day. On the 25/01/2015 the manta occupied shallower water (<33m) for 

a higher percentage of the night than during the day and on 19/02/2015 the manta remained 

between 59-78m for 100% of the day. On 20/02/2015 reverse diel vertical migration is 

evident.   

 

Figure B3 – Total percentage of time spent at depths for the four days where both day and night were recoded 

for manta 144473. Two days (25/01/2015 and 18/02/2015) show the manta ray predominantly occupied 

shallower water (<33m) at night and deeper waters during the day. On the 19/02/2015 the manta ray spent 12 

hours continuously at depths between 59-98 m with the longest period of any of the manta rays to remain in 

deep waters during the day.  

Manta 144474 had the highest number of days where both day and night data were retrieved 

(Fig. B4). A total of three days (28/01/2015, 02/02/2015 and 03/02/2015) provide evidence 

of diel vertical movement and a fourth (26/01/2015) indicates that the deepest depths 

occupied occurred during the day. The remaining seven days follow a reverse diel vertical 

migration pattern.  
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Figure B4 – Total percentage of time spent at depths for the 11 days where both day and night were recoded 

for manta 144474. Three days (28/01/2015, 02/02/2015 and 03/02/2015) show the manta ray predominantly 

occupied shallower water at night and deeper waters during the day. On the 26/01/2015 the manta ray spent 

an almost even amount of time at depths <49 m and >49 m however, the deepest depths recorded were during 

the day.  

For manta 144475 there were only two days where both day and night data were available. 

Both days follow a reverse diel vertical migration pattern where 100% of the day was spent 

in shallow waters (<33m) and deeper waters were only occupied at night.  
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Figure B5 – Total percentage of time spent at depths recorded for the two days where both day and night were 

recoded for manta 144475. Both days are consistent with a reversed diel vertical migration pattern.  

For manta 144476, there were four days when data for both day and night was received (Fig. 

B6). Of these days two (30/01/2015 and 01/02/2015) show evidence of diel vertical migration. 

On the 30/01/2015 the manta ray spent considerably more time in deeper waters (>48m) 

than on any other day. On the remaining two days reverse diel vertical migration is apparent.   
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Figure B6 – Total percentage of time spent at depths for the four days where both day and night were recoded 

for manta 144476. Two days (30/01/2015 and 01/02/2015) show the manta ray predominantly occupied 

shallower water (<33m) at night and deeper waters during the day. On the 30/01/2015 the manta ray spent an 

considerably more time in deeper waters that on any other day.   
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Appendix C - Bayesian joint estimation state-space model (hSSM)  

(i) Modelling method 

A state-space switching model (SSSM) incorporates a process model which models the 

movement process to predict unobserved locations and an observation model which relates 

the predicted locations to the observed data [8]. The model used in the current study is a 

process model which indexes movement parameters by behavioural mode [5] known as a 

Bayesian state‐space model of the first‐difference correlated random walk with switching 

(DCRWS) [4] which assumes a correlated random walk on the difference in successive 

locations e.g. changes in their direction and speed [8]. Two states are derived from the 

difference: transiting which is characterised by faster more direct movements and area-

restricted search (ARS) which is assumed when movements are slower with frequent change 

in direction [8]. Behavioural state at time 𝑡 is denoted 𝑏𝑡  where 𝑏 = 1 is a transiting state and 

𝑏 = 2 is ARS [8]. The states are defined via mean turn angle θ𝑏𝑡 and movement persistence 

𝛾𝑏𝑡 (the autocorrelation in both direction and speed [5]). Jonsen et al. (2007) depict the model 

using the following form: 

𝑑𝑡 ~ 𝑁2 (𝛾𝑏𝑡 𝑻(θ𝑏𝑡)𝑑𝑡−1,𝚺), 

where 𝑑𝑡 is the difference between locations 𝑥𝑡 and 𝑥𝑡−1. 𝑥𝑡 and 𝑥𝑡−1 are the true 

unobserved locations of the animal at times 𝑡 and 𝑡 − 1 (𝑥𝑡  is a coordinate vector thus  𝑑𝑡 is 

also a vector [4]) and 𝑑𝑡−1 is the difference between locations 𝑥𝑡−1 and 𝑥𝑡−2. Describing  θ𝑏𝑡 

is a transition matrix, 𝑻: 

𝑻(θ) =  (
cos θ𝑏𝑡 −𝑠𝑖𝑛 θ𝑏𝑡

sin θ𝑏𝑡 cos θ𝑏𝑡
) 

The randomness in the manta ray’s behaviour is represented by 𝑁2  which is modelled by  a 

bivariate Gaussian distribution with mean zero [9] and covariance matrix 𝚺: 

𝚺 =  (
σ𝑙𝑜𝑛

2 ρσ𝑙𝑜𝑛σ𝑙𝑎𝑡

ρσ𝑙𝑜𝑛σ𝑙𝑎𝑡 σ𝑙𝑎𝑡
2 ) 

 

where  σ𝑙𝑜𝑛
2  and σ𝑙𝑎𝑡

2  is the process variance in longitude and latitude, respectively and ρ is 

the correlation coefficient [4].  
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The process described uses random sampling so the outcome can be strongly influenced by 

the starting point [10]. To reduce this influence, a ‘burn in’ phase is imposed which discards a 

specified number of samples from the start of the chain.  

Two Markov Chain Monte Carlo (MCMC) describe the evolution of the manta rays behaviour 

through time with the possibility of two states at time 𝑡 which are denoted foraging (F𝑡) or 

not-foraging (NF𝑡) [11]. The probability of switching states from F at time 𝑡  to NF at time 𝑡 

+ 1 specifies the Markov chain which is presented as a transition matrix [11]: 

𝐏 = (
Pr(F𝑡+1| F𝑡) Pr(NF𝑡+1| F𝑡)

Pr(F𝑡+1| 𝑁𝐹𝑡) Pr(NF𝑡+1| NF𝑡)
) 

The probable state of the manta ray at any time (Pr (F𝑡) or Pr (F𝑡)) is donated 𝑆𝑡 which is 

updated through time by 𝑆𝑡+1 =  𝑆𝑡 . 𝐏 [11].  

Behavioural state (𝑏𝑡) is a discrete parameter however, the MCMC samples provide means of 

these variables which are continuous from 1 to 2 [5]. These means can be used to identify 

behaviour switches whereby those closer to 1 represent transiting while those closer to 2 

indicate ARS [8].  

To regularise Argos position estimates and account for location quality classes (LCs) (see 

Appendix A(i)), errors are directly incorporated as a t-distributed variable to the model [4,12]:  

𝒚𝑡 =  𝐗𝑡 + 𝑡(0, 𝛕𝑞, 𝒗𝑞 ) 

where 𝛕𝑞 are the scale parameters of longitude and latitude for the LC (𝑞), and 𝒗𝑞 are the 

associated degrees of freedom [12].  

The longitude and latitude components of the estimation error allows the best estimate for 

each of the observed locations 𝑦𝑡,𝑖. For simplification, the assumption is made that the manta 

rays travel in a straight line between 𝑥𝑡−1 and 𝑥𝑡  [4]: 

𝑦𝑡,𝑖 = (1 − 𝑗𝑖)𝐗𝑡−1 +  𝑗𝑖𝐗𝑡 +  𝛆𝑡 

where 𝑖 is an index for locations (Argos position estimates) between time 𝑡 and 𝑡 + 1 and 𝑗𝑖 

is the proportion of the regular time interval between 𝑥𝑡−1 and 𝑥𝑡 at which the 𝑖th 

observation is made (0 <  𝑗𝑖 < 1) and 𝛆𝑡 is the estimation error [4]. 𝑗𝑖 is calculated from the 
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time of day recorded with Argos position estimates. Where no observation exists, 𝑖 = 1 and 𝑗𝑖 

= 0.5. 

It is unlikely that the DCRWS will be able to categorise behaviour effectively for all the manta 

rays individually due to the limited number of Argos position estimates for several of the 

animals [9]. The problem is addressed here by estimating behavioural state jointly [12] across 

all the manta rays in the hierarchical version of DCRWS (hDCRWS) [12] referred to as a 

Bayesian joint estimation state-space model (hSSM) [12]. 

As a Bayesian approach, prior probabilities for all unknown parameters are incorporated into 

analysis [11]. Prior probabilities weight the likelihood values to obtain posterior probabilities 

(predictions of ARS and transiting behaviour) [13]. In the absence of prior information, a 

uniform prior is used; thus, all possible values are equally as likely [13]. 

(ii)  hSSM model diagnostics  

There is no set criterion for hSSM model diagnostics [8, 10, 12] however, certain aspects of 

the model should be checked to ensure the standard of the model is satisfactory [11]. These 

aspects include model convergence, which is assessed by the mixing of the two MCMC chains, 

posterior sample stationarity, in-chain autocorrelation and Gelman-Rubin-Brooks potential 

scale reduction factor (𝑟̂) [9, 11]. The 𝑟̂ estimates the factor by which the scale of the posterior 

distribution may be reduced if simulations were increased which declines to 1 as they reach 

infinity [15]. Values closer to 1 are consistent with convergence with 𝑟̂ <1.1 being the 

acceptable rule of thumb [10]. All of these parameters can be plotted using the diag_ssm() 

function of the bsam R package [16] so to be visually assessed.  

The results for model diagnostics indicate how the model can be improved. For example, if 

mixing or 𝑟̂ are not satisfactory, the number of iterations should be increased to give the 

MCMC chains time to converge [9]. Where autocorrelation is an issue, the gap between the 

samples to retain (thinning factor) should be increased [12]. Further to these diagnostics, the 

model output should also be checked to ensure it is plausible as satisfactory diagnostic results 

do not guarantee a suitable model [9]. For example, all behavioural state estimates may be 

of an ARS state, in this case, the result may have been biased by the initial sample of the 

random sampling and an increase in burn-in should be applied [9]. 
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For the current study suitable parameter setting were established by first constructing a 

model with a low number of samples, a short burn-in phase and low thinning factor. 

Improvement was then achieved varying these parameters to balance diagnostic results with 

the model output.  

Figure C1 gives an example of four plots produced by the diag_ssm() function for the 

movement persistence (𝛾1) parameter that show a poor (left plots) and satisfactory (right 

plots) diagnostic result. The poor diagnostic results were obtained from one of the rejected 

models during preliminary analysis. For this model two MCMC chains of 16,000 samples were 

run with the first 2000 from each chain discarded as burn-in then retaining every 10th sample 

of the remaining 14,000 resulting in a total of 1400 iterations. The satisfactory model is the 

one used for analysis for the current study which consisted of two MCMC chains of 40,000 

samples with the first 10,000 from each chain discarded as burn-in then retaining every 30th 

sample of the remaining 30,000 resulting in a total of 1000 iterations. 

The two MCMC chains are shown as red and blue in the trace plots (Fig. C1). In the satisfactory 

model, colours are well mixed while the poor model shows almost no mixing of MCMC chains. 

Stationary is displayed when the two chains cluster around the same mean [9] shown as the 

sold blue and red lines running through the trace plots. The satisfactory plot shows these lines 

remain at similar values throughout the 1000 iterations. The density plot also shows the two 

MCMC chains which should be unimodal [9] indicating convergence, which is not apparent in 

the poor model. Autocorrelation, shown by the autocorrelation factor (ACF) plots is 

acceptable for both models however, it is reduced in the final model. The 𝑟̂ (G-R-B shrink 

factor) are above the acceptable level of 1.1 [10] in the poor model and substantially reduced 

in the model which was chosen for analysis.  
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Figure C1 - Example of poor hSSM model diagnostics (left plots) where MCMC chains are not well mixed (trace 

plot), the density plot is bimodal and the Gelman-Rubin-Brooks potential scale reduction factor (𝑟̂) (G-R-B shrink 

factor plot) is >1.1. On the right is the model chosen for analysis where MCMC chain mixing (trace plot) is 

satisfactory, the density plots are close to unimodal and 𝑟̂ <1.1 (G-R-B shrink factor plot). Autocorrelation (ACF 

plots) for both models is acceptable but show improvement in the chosen model (right plot).   
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Appendix D - Boosted Regression Tree Modelling  

(i) Model building and assessment   

Boosted regression trees (BRT) use a model averaging (ensemble) method that allows for both 

explanation and prediction [17]. The technique fits many models which are combined for 

prediction using two algorithms: regression trees models and boosting, which builds and 

combines the models [17]. The regression tree is constructed from predictor variables which 

are passed from root node to leaves based on a series of binary splits [18]. Splits occur based 

on the homogeneity of the predictor variables relationship to the response variable [19]. 

Multiple possible splits will be tested by the algorithm and partitioning will occur when the 

greatest improvement of homogeneity is found [19]. 

The BRT modelling technique can accommodate both numerical and categorical predictors 

[17]. It is also able to accommodate missing values [15, 18] via the construction of surrogates  

[16, 19]. Briefly, where a value for a variable is not available (NA), an alternative variable with 

a similar splitting property is used [21]. The alternative is selected by first applying the initial 

split using only the observations where the value of that predictor is not missing (primary 

split) [18]. Once the split that provides the greatest improvement is found, a potential list of 

surrogates and split points are developed [18]. The predictor and split point that best mimics 

the primary split becomes the surrogate [18]. A predicators ability to mimic another is 

categorised based on correlations, whereby a higher correlation reduces the loss of 

information due to the missing value [18]. 

Another advantage of BRT is its ability to fit complex, non-linear relationships and model 

interactions between response variables [17]. When building the model, interactions can be 

controlled for using the tree complexity (TC) (number of nodes in a tree) parameter where 

the value provided specifies the number of interactions, for example, TC = 2 fits a model with 

up to two-way interactions [17]. Another controlled parameter is learning rate (LR) which 

regulates the contribution of each tree to the growing model [17] whereby the lower the LR, 

the higher the number of trees fitted but the lower the individual influence on their overall 

result [22]. While these controls can enhance predictive performance [23], it is noted that 

BRT is prone to overfitting [22]. As a general rule of thumb, an increase in TC should be 
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accompanied by a decrease in LR, but variations should be tested to find the optimal setting 

for the data [17,24]. 

The next parameter to be set is bag fraction, which controls stochasticity by randomly 

selecting (without replacement) a specified subset of the data at each iteration [17]. The 

optimal number of trees (NT) is also important, but this can be determined by the model itself 

[17] using k-fold cross-validation (CV) [17]. The technique works by using part of the available 

data to fit the model and a different part to test it [18]. The current study applied ten-fold CV, 

whereby the data is divided into ten subsets, nine which are used to build and one which is 

used to test the model [17]. During the building of the model, the ten-fold CV processes is 

tightly interlinked with the bag fraction thus may best be explained with the following 

example which is based on the hypothetical dataset which contains 1000 observations of 

presence (n = 500) and absence (n=500).  

To start, the ten-fold CV first splits the data into ten subsets [17], each containing 100 

observations. Ten unique combinations of nine subsets (900 observations) are then used to 

construct ten BRT models with a selected number of trees (i.e. 50) [17]. With a bag fraction 

of 0.5, the first tree for each of the models will be built using 450 randomly selected 

observations (50% of the data) [17]. Predictions are then made on all 900 observations using 

this tree. The following tree is then built to minimise the residuals (450 randomly selected 

residuals) of this tree and added to the model [17]. The next tree is then fitted to 450 residuals 

that are selected at random from the two trees, and the process is continually repeated. Once 

a model of 50 trees has been constructed the performance of each of the ten models is tested 

on their ability to predict their respective 10th (hold-out) subset of data (100 observations) 

[15, 16]. Average residual deviance and standard error are recorded [17]. The number of trees 

is then increased, and the process is repeated [17]. Predictive performance is measured after 

ten steps and compares the last five iterations with the five previous to those [17]. A reduction 

in average residual deviance indicates model improvement [15, 16] and when deviance begins 

to increase the optimal number of trees has been passed [17]. 

As described in the main text, preliminary analysis to find the suitable TC and LR included 

fitting models with progressive TC (2,3,4 and 5) and decreased LR (0.05, 0.01 and 0.005) [18, 

20] (Table D1 and Table D3). The performance of each model was then assessed using 1) the 

area under the receiver operating characteristic curve (AUC) [25], and 2) proportion (%) of 
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total deviance explained by the model (D2) [22]. During the current study it was found that 

generally, models that perform better based on the AUC values will also have a higher D2 

however, during a pilot study there were some exceptions thus these methods were used in 

combination specifically to deal with occasions where two models had the same AUC values. 

Table D1 - Performance of the hotspot models with progressively increased tree complexity (TC) and reduced 

learning rate (LR). The optimal number of tress (NT) is ascertained automatically by the gbm.fit() function. The 

mean training AUC (TAUC) values indicate how well the model fit the training data and the mean cross-validated 

AUC (CVAUC) shows how well that model was able to classify the data in the hold-out sample during the ten-

fold cross-validation procedure. The difference between these values (ΔAUC) is a measure of overfitting whereby 

a greater difference indicates the model is overfitting the training data. The highest performing model is the one 

shown in bold, which has the lowest ΔAUC. The cross-validated proportion of the total deviance explained (D2) 

corresponds to the percentage of deviance for the null model explained by the fitted model. The mean deviance 

for the null model is 1.283.  

 

The results of the preliminary analysis for the hotspot model are shown in Table D1 with the 

best performing model in bold. The results of this model (Fig. D1) reflect the relative 

TC LR NT TAUC CVAUC ΔAUC D 2

2 0.01 1200 1 0.987 0.013 0.243 (0.048) 0.81

2 0.005 3250 1 0.998 0.002 0.174 (0.058) 0.86

2 0.001 12850 1 0.997 0.003 0.175 (0.042) 0.86

2 0.0001 54580 1 0.995 0.005 0.27 (0.038) 0.79

3 0.01 900 1 0.992 0.008 0.225 (0.078) 0.82

3 0.005 1550 1 0.996 0.004 0.242 (0.067) 0.81

3 0.001 8050 1 0.996 0.004 0.206 (0.067) 0.84

3 0.0001 47700 1 0.994 0.006 0.242 (0.039) 0.81

4 0.01 800 1 0.997 0.003 0.232 (0.056) 0.82

4 0.005 1550 1 0.992 0.008 0.265 (0.061) 0.79

4 0.001 7250 1 0.995 0.005 0.217 (0.049) 0.83

4 0.0001 45750 1 0.993 0.007 0.249 (0.029) 0.81

5 0.01 600 1 0.997 0.003 0.204 (0.053) 0.84

5 0.005 1350 1 0.996 0.004 0.22 (0.062) 0.83

5 0.001 6350 1 0.996 0.004 0.238 (0.071) 0.81

5 0.0001 44450 1 0.996 0.004 0.264 (0.04) 0.79

CV residule 

deviance (SE)
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importance of predictor variables which is scaled to 100 across all the variables [17]. The 

predictor variables with the highest numbers indicate a higher influence on the response 

variable [17]. 

 

Figure D1 - Results of the hotspot model highlighted in bold in Table A** showing the percentage contribution 

of each of the nine predictor variables: sea surface temperature (SST), current speed (C-SPD), depth (DEPTH), 

current direction (C-DIR), distance to front (FRONT), chlorophyll-a (CHL-A), mixed layer depth (MLD), sea level 

anomalies (SLA) and seabed slope (SLOPE) 

These results suggest that sea bed slope (SLOPE) and sea level anomalies (SLA) have the 

lowest influence in the model thus may be considered non-informative predictors [17]. Non-

informative predictors have the potential to hinder model performance by increasing 

variance [17]. The dismo R package includes the function gbm.simplify(), which tests the 

effect of the elimination of predictor variables, excluding up to a specified maximum [17]. The 

function starts with the least important predictor, re-fitting the model using the ten-fold CV 

procedure using the mean CV error to evaluate the effect on predictive performance [17]. The 

function output provides a list of the least informative predictor variables in ascending order 

along with a plot which indicates how many of these variables should be removed [17]. For 

the hotspot model the list was presented in the following order: 
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# sample of gbm.simplify() output for the hotspot model 

 

    1-SLOPE 

    2-SLA 

    3-MLD 

    4-CHL.A 

    5-FRONT 

    6-DEPTH 

    7-C_DIR 

 

The plot generated by the function indicates that one predictor variable should be dropped 

(red dotted vertical line) (Fig. D2) 

 

Figure D2- Output of the gbm.simplify() for the hotspot model showing the change in the predictive deviance 

when up to seven explanatory variables are removed. The vertical red dotted line indicates the optimal number 

of variables to remove.  
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A new BRT model was then constructed whereby the output list and the number of predictors 

to exclude are provided to the response variable argument of the gbm.step script (shown in 

Appendix E(vi)) 

The results of the final hotspot model are shown in Figure D3. Note that the contribution of 

the predicator variables has changed from the initial model (Fig. D1). The model performance 

results from the new hotspot model indicate substantial improvement in both AUC values 

and D2 from the initial model (Table D2) which indicates that SLOPE was hindering model 

performance by increasing variance [17]. 

Table D2 - Performance results of the final hotspot model (Fig. D3) indicating that the removal of a non-

informative predictor variable has substantially improved values of AUC and D2. 

 

 

TC LR NT TAUC CVAUC ΔAUC D 2

2 0.0050 3550 1 0.999 0.001 0.095 (0.03) 0.93

CV residule 

deviance (SE)
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Figure D3 - Results of the final hotspot model showing the percentage contribution of each of the eight predictor 

variables that were retained after the model was simplified using the gbm.simplify() function: current speed (C-

SPD), sea surface temperature (SST), depth (DEPTH), current direction (C-DIR), chlorophyll-a (CHL-A),  distance 

to front (FRONT), mixed layer depth (MLD) and sea level anomalies (SLA). 

The results of this preliminary analysis for the ARS model are shown in Table D3 with the 

highest performing model highlighted in bold. The contribution of each of the variables from 

this model are displayed in Figure D4. 
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Table D3 - Performance of the ARS models with progressively increased tree complexity (TC) and reduced 

learning rate (LR). The optimal number of trees (NT) is ascertained automatically by the gbm.fit function. The 

mean training AUC (TAUC) values indicate how well the model fit the training data and the mean cross-validated 

AUC (CVAUC) shows how well that model was able to classify the data in the hold-out sample during the k-fold 

cross-validation procedure. The difference between these values (ΔAUC) is a measure of overfitting whereby a 

greater difference indicates the model is overfitting the training data. The highest performing model is the one 

with the shown in bold, which has the lowest ΔAUC. The cross-validated proportion of the total deviance 

explained (D2) corresponds to the percentage of deviance for the null model explained by the fitted model. The 

mean deviance for the null model is 1.386.  

 

 

TC LR NT TAUC CVAUC ΔAUC D 2

2 0.01 1500 0.999 0.972 0.027 0.441 (0.042) 0.68

2 0.005 2900 0.998 0.967 0.031 0.464 (0.06) 0.67

2 0.001 12700 0.998 0.970 0.028 0.449 (0.049) 0.68

2 0.0001 49600 0.986 0.960 0.026 0.528 (0.052) 0.62

3 0.01 1100 0.999 0.972 0.027 0.428 (0.05) 0.69

3 0.005 2250 0.999 0.967 0.032 0.455 (0.08) 0.67

3 0.001 10000 0.999 0.969 0.030 0.454 (0.06) 0.67

3 0.0001 44350 0.991 0.960 0.031 0.518 (0.06) 0.63

4 0.01 850 0.999 0.967 0.032 0.47 (0.062) 0.66

4 0.005 1850 0.999 0.971 0.028 0.448 (0.064) 0.68

4 0.001 9000 0.999 0.970 0.029 0.436 (0.051) 0.69

4 0.0001 38300 0.993 0.961 0.032 0.533 (0.044) 0.62

5 0.01 800 0.999 0.971 0.028 0.449 (0.063) 0.68

5 0.005 1450 0.999 0.966 0.033 0.469 (0.036) 0.66

5 0.001 7050 0.999 0.976 0.023 0.456 (0.04) 0.67

5 0.0001 43000 0.996 0.972 0.024 0.488 (0.037) 0.65

CV residule 

deviance (SE)
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Figure D4 - Results of the ARS model highlighted in bold in Table D3, showing the percentage contribution of 

each of the nine predictor variables: mixed layer depth (MLD), depth (DEPTH), surface temperature (SST), seabed 

slope (SLOPE), sea current direction (C-DIR), chlorophyll-a (CHL-A), distance to front (FRONT), current speed (C-

SPD) and sea level anomalies (SLA). 

The gbm.simplify() function was applied to tests the effect of the elimination of up to seven 

predictor variables from the ARS model (R output below). 

# sample of gbm.simplify() output for the hotspot model 

 

1-SLA 

2-C_SPD 

3-CHL.A 

4-FRONT 

5-C_DIR 

6-SLOPE 

7-MLD 

 

SLA 
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The plot generated by the function indicates that two predictor variables should be excluded 

(red dotted vertical line) (Fig. D5). 

 

Figure D5 - Output of the gbm.simplify() for the ARS model showing the change in the predictive deviance when 

up to seven explanatory variables are removed. The vertical red dotted line indicates the optimal number of 

variables to remove.  

A new ARS model was then constructed with the exclusion of the SLA and current speed (C-

SPD), which did not substantially alter the performance of the model (Table D3 and Table D4). 

Therefore, the simpler model was retained; thus, the final ARS model included seven 

predictor variables. 

Table D4 - Performance results of the ARS model with seven predictor variables showing there was little change 

in model performance compared to the model with nine predictor variables (Table D3).  

 

TC LR NT TAUC CVAUC ΔAUC D
2

5 0.001 8000 0.999 0.972 0.027 0.447 (0.08) 0.68

CV residule 

deviance (SE)
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The results of the final ARS model are shown in Figure D6. Note that the relative contribution 

of the predictor variables has not changed considerably from the initial model (Fig. D4) 

although the order of variables has altered.  

Figure D6 - Results of the final ARS model showing the percentage contribution of each of the seven predictor 

variables that were retained after the model was simplified using the gbm.simplify() function: mixed layer depth 

(MLD), depth (DEPTH), surface temperature (SST), seabed slope (SLOPE), sea current direction (C-DIR), 

chlorophyll-a (CHL-A) and distance to front (FRONT). 

The BRT also reports the marginal effect of each of the predictor variables as 2D partial 

dependency plots (Fig. 12 and Fig. 14) [17]. The x-axis of the plot is the predictor variable, and 

the y-axis is the fitted function (an estimate of log-odds) [18]. The plot represents the effect 

of the explanatory variable after accounting for the mean effects of all other explanatory 

variables [18]. The effect can be positive or negative, with zero being no effect [17]. The rugs 

show the distribution of the presence and absence data in percentiles. 

The interactions modelled by BRT can also be visualised by forming predictions on a linear 

scale for a grid of paired variable with all other variables held to their respective mean [17]. 
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The resulting 3D plot (Fig. 13 and Fig. 14) displays a piecewise-constant approximation of the 

joint partial dependence of their effect [17]. Each split in the model is represented by 

rectangular regions that divide the predictor variable [18]. A marginal effect of zero indicates 

that no interactions were fitted [17]. The gbm.interactions() function creates a data frame 

which includes the most important interactions between variables. These interactions were 

plotted for the current study (Fig. 13 and Fig. 14) with the exception of interactions that 

included current direction (C-DIR) as a categorical variable cannot be visualised in this format.  
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Appendix E – R scripts and MATLAB code 

(i) MATLAB code: Time-at-temperature (TAT) and vertical profiles  

% set divisions of the bars based on temperature bins  

% recorded by tags  

 

midbin = [9 12  15  18  20  22  24  26  28  30 31] 

 

% set the mean percentage of time spent in each bin  

 

percent = [0.033522727  0.319318182 0.965340909 1.300568182 3.836363636 

9.113068182 11.96704545 22.87954545 49.29545455 0.293181818 0] 

  

%change bar width (load midbin and percent first  

 

y = zeros(length(midbin),1); 

dx = diff([midbin 1.8]); % width of bar 

  

p = figure, hold on 

for ii=1:length(midbin) 

    rectangle('position',[midbin(ii) y(ii) dx(ii) percent(ii)]) 

end 

  

hold on  

  

%plotting both line and bar  

yyaxis left 

b = bar(midbin,percent); %bar plot  

yyaxis right 

p = plot(CTD6.T,CTD6.depth); %add CTD data to plot 

set(gca, 'YDir','reverse') 

xlim([8 30]) 

 

hold on 

 

yyaxis right  

plot(MSS.TEMP,MSS.PRESS,'.-k') %add MMS data to plot 

 

%label axis  

 

yyaxis left 

ylabel('Percent of time in bin') 

  

yyaxis right 

ylabel('Depth (m)') 

  

xlabel('Temperature (°C)') 

  

 

%axis labels for big plot 

 

set(gca,'XLim',[9 31],'XTick',[9 11 13 15 17 19 21 23 25 27 29 30.5]) 

xticklabels({'9','11','13','15','17','19','21','23','25','27','29','>30'}) 

  

% get tick marks on top of the bars  

set(gca,'Layer','top') 

  

set(gca,'XLim',[9 31],'XTick',[9:2:31] 
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%axis labels for inset only 

 

set(gca,'XLim',[9 31],'XTick',[9 10 11 12 13 14 15 17 19 21 23 25 27 29 

30.5]) 

xticklabels({'9','10','11','12','13','14','15','17','19','21','23','25','27

','29','>30'}) 

 

% edit plot aesthetics using the graphical user interface  

 

(ii) Plotting Time-at-temperature (TAT) results in R 

 
# covert time at temperature data into a stacked dataset  
 
data<-read.csv("Compiled Temp Histos with date and time.csv",header=T,sep=",") 
 
dat2a <- data.frame(data[1:4], stack(data[5:ncol(data)])) 
 
write.table(dat2a,file="tempstackwithDATEANDTIMEBIN_2.csv",sep=",",row.names=F,col
.names=T) 
 
 
# load data  
 
dat<-read.csv("tempstackwithDATEANDTIMEBIN_2.csv",header=T,sep=",") 
 
# raw data reports percentage of time spent within each bin 
 
# all daytime percentages were converted to a negative in Excel to make plotting  
# easier 
 
# the following script converts these bins to depth ranges calculates the mean  
# and standard deviation of the mean (SE) 
 
library(Rmisc)   # for calculating SE 
 
All <- summarySE(dat, measurevar="percent", groupvars=c("bin","day")) 
 
# change the temperature (depth) bin to a factor rather than numeric  
 
All2 <- All 
All2$bin <- factor(All2$bin) 
 
# plot overall percentage of time in each bin (all mantas combined) 
 
library(ggplot2) #for plotting  
 
n<-ggplot(All2, aes(x=bin, y=percent, fill=day)) +  
   geom_bar(stat="identity") + 
   geom_errorbar(aes(ymin=percent-se, ymax=percent+se),width=.2, colour="azure4")  
   + scale_fill_manual("legend", values = c("Day" = "grey", "Night" = "black"))+  
   theme_bw() + scale_x_discrete(name="Depth (m)",   
   breaks=c(2,3,4,5,6,7,8,9,10,11,12), labels=c(">400","284-400", "179-283","124- 
   178","99-123", "79-98","59-78","48-49", "34-47","4-33","0-3"))+ 
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   theme(axis.text.y = element_text(size = 20))  
 
n + scale_y_continuous(name="Percentage of time",breaks=c(-60,-45,-30,-15,- 
    5,0,5,15,30,45,60),labels=c("60","45","30","15","5","0","5","15","30","45",  
    "60"), limits = c(-70, 70)) + theme(legend.position='none') +theme(axis.text.x   
    = element_text(size = 20)) +theme(axis.text.y = element_text(size = 20)) + 
    coord_flip() + theme(axis.title.y = element_text(size = 16)) +  
    theme(axis.title.x = element_text(size = 20)) + theme(panel.grid =    
    element_line("white")) +theme(axis.title.y = element_text(size = 20)) 
 
 
 
# calculate SE including tags separately  
 
tag <- summarySE(dat, measurevar="percent", groupvars=c("bin","day", "tag")) 
 
# change bin to factor rather than numeric 
tag2 <- tag 
tag2$bin <- factor(tag2$bin) 
 
n<-ggplot(tag2, aes(x=bin, y=percent, fill=day)) +  
   geom_bar(stat="identity") + geom_errorbar(aes(ymin=percent-se,ymax=percent+se), 
   width=.2, colour="azure4") + scale_fill_manual("legend", values = c("Day" =  
   "grey", "Night" = "black"))+ theme_bw() + scale_x_discrete(name="Depth (m)",  
   breaks=c(2,3,4,5,6,7,8,9,10,11,12),labels=c(">400","284-400", "179-283","124- 
   178","99-123", "79-98","59-78","48-49", "34-47","4-33","0-3"))+    
   theme(axis.text.y = element_text(size = 16))  
 
n + scale_y_continuous(name="Percentage of time",breaks=c(-60,-45,-30,-15, 
    -5,0,5,15,30,45,60), labels=c("60","45","30","15","5","0","5","15","30","45",  
    "60"), limits = c(-70, 70)) + theme(legend.position='none') +theme(axis.text.x   
    = element_text(size = 16)) +theme(axis.text.y = element_text(size = 16)) + 
    coord_flip() + theme(axis.title.y = element_text(size = 16)) +  
    theme(axis.title.x = element_text(size = 16)) + theme(panel.grid =   
    element_line("white")) 
 
n + facet_wrap( ~ tag) +coord_flip()+theme(panel.grid = element_line("white")) +  
    theme(strip.text.x = element_text(size = 16))+ theme(panel.spacing = unit(0.5,  
    "lines")) + theme(axis.text.x = element_text(size = 12)) +  
    theme(legend.position='none')+ scale_y_continuous(name="Percentage of time",  
    limits = c(-100, 100), labels=c("100","50","0","50","100")) 
 

 

(iii) Bayesian joint estimation state-space model (hSSM) in R 

# Joint estimation state-space model (hSSM) 
 
library(bsam) 
library(rjags) 
library(chron) 
 
argos = read.csv("ArgosData.csv") 
 
# change data to correct format (required to run model) 
 
argos$date = as.POSIXct(as.character(argos$date), "%Y-%m-%d %H:%M:%S", tz="GMT") 
 
# the following is the final model but >30 were constructed to establish  
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# satisfactory diagnostics. span = smoothing. The package help files recommended 
# 0.2 for small data sets  
 
hSSM.Final<-fit_ssm(argos, model="hDCRWS", tstep=0.5, adapt=10000, samples=30000, 
thin=30, span = 0.4) 
 
# map the data in the R plot  
 
map_ssm(hSSM.Final) 
 
# run diagnostics  
 
diag_ssm(hSSM.Final) 
 
# plot as 1-D time-series individual mantas estimated locations and behavioural 
states (posterior means). 
 
plot_fit(hSSM.Final) 
 
# create a summary of the data 
 
result.hs <- get_summary(hSSM.Final) 
 
# write the data to a .csv file  
 
write.table(speed, file="hSSM.Final.csv",sep=",",row.names=F,col.names=T) 
 

 

(iv) Track distance and travel speed in R 

 
# calculate distance between successive longitude/latitude points 
 
data<-read.csv("MantasforDistance.csv",header=T,sep=",") 
 
 
library(geosphere)  
 
# split records into sections by manta tag ID so that each manta track starts at 0 
 
myList <- setNames(split(data[,c(3,4)], seq_len(nrow(data))), data$ID) 
 
# get the distance between points (default in metres) 
 
distMat <- outer(myList, myList, Vectorize(distVincentyEllipsoid)) 
 
# write to csv  
 
write.table(distMat,file="distance.csv",sep=",",row.names=F,col.names=T) 
 
# calculate speed between successive points grouped by manta ID to ensure  
# tracks of individual mantas are calculated  
 
# the following script requires that the .csv has a ‘time’ column which is 
# the time elapsed between observations. This was added in Excel before running  
# the script 
 
# the tidyverse R package which will automatically access all the packages  
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# required for the subsequent script e.g. dplyr R package 
 
library(tidyverse) 
 
# create function to calculate the Euclidean distance (straight line) between  
# points  
 
euclidean_speed <- function(lat2, lat1, long2, long1, time2, time1) { 
  latdiff <- lat2 - lat1 
  longdiff <- long2 - long1 
  distance <- sqrt(latdiff^2 + longdiff^2) 
  timediff <- time2 - time1 
  return(distance / timediff) 
} 
 
# apply to data sorting by ID and calling the dplyr::lag() function  
 
speed<-data %>%  
  group_by(ID) %>% 
  arrange(ID, time) %>%  
  mutate(speed = euclidean_speed(lat, lag(lat), long, lag(long), time, lag(time))) 
 
# write to a new csv file.  
 
write.table(speed, file="distance.csv",sep=",",row.names=F,col.names=T) 
 

 

(v) Kernel utilisation distribution (KUD) in R 

 
# Kernel utilisation distribution calculation and write to shapefile 
 
# calculate KUD  
 
library(sp) 
library(adehabitatHR) 
 
hotspot<-read.csv("Hotspotdata.csv") 
 
# first make a spatial points data frame which binds the longitude and latitude 
# columns   
 
mantas<-SpatialPoints(cbind(hotspot$lon,hotspot$lat)) 
 
# calculate the kernel density utilization (KUD) using the kernelUD function.  
 
kud <- kernelUD(manta, h=0.2) # KUD (h=smoothing factor) 
 
#convert into vector object, use 95,70 etc. for quartic kernel 
 
homerange95 <- getverticeshr(kud, percent=95) 
homerange75 <- getverticeshr(kud, percent=75)  
homerange50 <- getverticeshr(kud, percent=50) 
homerange10 <- getverticeshr(kud, percent=10) 
 
# plot the data in R to check – if the plots are not satisfactory the smoothing 
# factor may not be high/low enough which should be adjusted with the   
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# h=smoothing factor argument (above) 
 
plot(homerange95,col="#FF6A6A55",add=T) 
plot(homerange75,col="#FF6A6A50",add=T) 
plot(homerange50,col="#EE636350",add=T) 
plot(homerange10,col="#8B3A3A50",add=T) 
 
# project in the correct coordinates system  
 
WGScoor<-  homerange95 
proj4string(WGScoor)<- CRS("+proj=longlat +datum=WGS84") 
 
# write to shapefile that can be projected in ArcGIS 
 
raster::shapefile(WGScoor, "homerange95.shp") 
 
WGScoor<-  homerange75 
proj4string(WGScoor)<- CRS("+proj=longlat +datum=WGS84") 
raster::shapefile(WGScoor, "homerange75.shp") 
 
WGScoor<-  homerange50 
proj4string(WGScoor)<- CRS("+proj=longlat +datum=WGS84") 
raster::shapefile(WGScoor, "homerange50.shp") 
 
WGScoor<-  homerange10 
proj4string(WGScoor)<- CRS("+proj=longlat +datum=WGS84") 
raster::shapefile(WGScoor, "homerange10.shp") 
 
 

 

(vi) Boosted regression trees (BRT) in R 

# R script for boosted regression trees (BRT) 
 
# R packages required for model building and plotting  
 
library(dismo)  
library(gbm) 
 
# build initial hotspot BRT models for preliminary analysis to determine tree 
complexity (TC) and learning rate (LR)  
 
# the following script was repeated 16 times for all combinations of TC and LR 
 
obs.data.hotspot<-read.csv("myhotspotdata.csv") 
 
hotspot_TC_LR0.01<-gbm.step(data=obs.data.hotspot, gbm.x=22:30, gbm.y=20, 
                             family="bernoulli", tree.complexity = 2,  
                             learning.rate = 0.01, bag.fraction = 0.5,  
       max.trees = 100000) 
 
# chosen models based on AUC and D2 
 
hotspot_TC2_LR0.05<-gbm.step(data=obs.data.hotspot, gbm.x=22:30, gbm.y=20, 
                             family="bernoulli", tree.complexity = 2,  
                             learning.rate = 0.005, bag.fraction = 0.5,  
       max.trees = 100000) 
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# now to test model simplification  
 
# testing all combinations of drops up to a maximum of 7 variables  
 
hotspot_TC2_LR0.05_SIMP<-gbm.simplify(hotspot_TC2_LR0.05, n.drops = 7)  
 
summary(hotspot_TC2_LR0.05_SIMP) 
 
# summary and resulting plot indicates that one predictor variable should be 
dropped 
 
# construct model again with the prediction list passed to the response argument 
and the number 1  
# to drop the least informative variable  
 
hotspot_TC2_LR0.05_SIMP_drop1<-gbm.step(obs.data.hotspot,   
            gbm.x=hotspot_TC2_LR0.05_SIMP$pred.list[[1]],  
                               gbm.y=20, tree.complexity = 2,  
         learning.rate = 0.005, max.trees = 100000) 
 
# get the results of the model   
 
summary(hotspot_TC2_LR0.05_SIMP_drop1) # variable contributions scaled to 100 
 
# plot partial dependency plots  
 
gbm.plot(hotspot_TC2_LR0.05_SIMP_drop1, variable.no=1, smooth=TRUE, 
         common.scale=TRUE, write.title=FALSE, y.label="Fitted function",    
  x.label=expression(paste("Sea surface temperature (°C)")), 
         show.contrib=FALSE, plot.layout=c(1, 1),cex.lab=1.5, cex.axis=1.5, 
         lty = 1, lwd = 2) 
 
# edit plot via source code 
 
trace(gbm.plot, edit = T) # calls editable source code  
 
# sections of source code edited 
# set to display rugs in quartiles: probs = seq(0, 1, 0.25) 
# move rugs: side =, colour rugs: col =  
# Line thickness: lwd =  
 
# set the absence rugs by defining only to use rows where Hotspot == 0 
# set placement of rugs to the bottom of the plot with red tick marks  
 
       } 
       if (rug & is.vector(data[, gbm.call$gbm.x[variable.no]])) { 
          rug(quantile(data[gbm.call$dataframe$Hotspot ==  
          0, gbm.call$gbm.x[variable.no]], prob = seq(0, 1, 0.01), na.rm = TRUE,   
          type = 7), side = 1, col = 2, lwd = 2) 
 
 
# set the presence rugs by defining only to use rows where Hotspot == 1 
# set placement of rugs to the bottom of the plot with blue tick marks  
 
      } 
      if (rug & is.vector(data[, gbm.call$gbm.x[variable.no]])) { 
          rug(quantile(data[gbm.call$dataframe$Hotspot ==  
          1, gbm.call$gbm.x[variable.no]], prob = seq(0, 1, 0.01), na.rm = TRUE,  
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          type = 7), side = 3, col = 4, lwd = 2) 
      } 
  
 
# find predictor variable interactions fitted within the model  
 
find.int<-gbm.interactions(hotspot_TC2_LR0.05_SIMP_drop1) 
 
find.int$interaction  # gives a matrix of interactions  
 
find.int$rank.list    # ranks important interactions between predictor variables  
 
# get a 3D plot of interactions  
# the numbers specified indicate the number of the variable assigned in the rank 
list  
# these numbers do not reflect rank they just ID the variable for plotting  
# example using SST and depth  
 
gbm.perspec(hotspot_TC2_LR0.05_SIMP_drop1, 2, 1, pred.means = NULL, x.label =  
           "Depth (m)", x.range = NULL, y.label = " Sea surface temperature (°C)",    
           z.label = " Marginal effect”, y.range = NULL, z.range = NULL,  
           leg.coords = NULL, ticktype = "detailed", theta = 40, phi = 40,  
           smooth = "none", mask = FALSE, perspective = TRUE,  
           col=rgb(0,100,0,50,maxColorValue=255), cex.lab=1.5, cex.axis=1.5) 
 
# build initial ARS BRT models for preliminary analysis to determine tree 
complexity (TC) and learning rate (LR)  
 
# the following script was repeated 16 times for all combinations of TC and LR 
 
obs.data.ars<-read.csv("myARSdata.csv") 
 
ARS_TC2_LR0.01<-gbm.step(data=obs.data.ars, gbm.x=21:29, gbm.y=20, 
                         family="bernoulli", tree.complexity = 2,  
                         learning.rate = 0.01, bag.fraction = 0.5,  
   max.trees = 1000000) 
 
# chosen models based on AUC and D2 
 
ARS_TC5_LR0.001<-gbm.step(data=obs.data.ars, gbm.x=21:29, gbm.y=20, 
                          family="bernoulli", tree.complexity = 5,  
                          learning.rate = 0.001, bag.fraction = 0.5,  
    max.trees = 1000000) 
 
 
#now to test model simplification  
 
# testing all combinations of drops up to a maximum of 7 variables  
 
ARS_TC5_LR0.001_SIMP<-gbm.simplify(ARS_TC5_LR0.001, n.drops = 7) 
 
summary(ARS_TC5_LR0.001_SIMP) 
 
# summary and resulting plot indicates that two predictor variable should be 
dropped 
 
# construct model again with the prediction list passed to the response argument 
and the number 2  
# to drop the two least informative variables 
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ARS_TC5_LR0.001_SIMP_drop2<-gbm.step(data=obs.data.ars,  
                            gbm.x=ARS_TC5_LR0.001_SIMP$pred.list[[2]], gbm.y=20, 
                            family="bernoulli", tree.complexity = 5,  
                            learning.rate = 0.001, bag.fraction = 0.5,  
      max.trees = 1000000) 
 
# get the results of the model   
 
summary(ARS_TC5_LR0.001_SIMP_drop2) # variable contributions scaled to 100 
 
# plot partial dependency plots  
 
gbm.plot(ARS_TC5_LR0.001_SIMP_drop2, variable.no=1, smooth=TRUE, 
         common.scale=TRUE, write.title=FALSE, y.label="Fitted function",  
         x.label=expression(paste("Sea surface temperature (°C)")),  
         show.contrib=FALSE, plot.layout=c(1, 1), cex.lab=1.5, cex.axis=1.5) 
 
# edit plot via source code 
 
trace(gbm.plot, edit = T) # calls editable source code  
 
# sections of source code edited 
# set to display rugs in quartiles: probs = seq(0, 1, 0.25) 
# move rugs: side =, colour rugs: col =  
# Line thickness: lwd =  
 
# set the absence rugs by defining only to use rows where Overall == 0 
# set placement of rugs to the bottom of the plot with red tick marks  
 
       } 
       if (rug & is.vector(data[, gbm.call$gbm.x[variable.no]])) { 
          rug(quantile(data[gbm.call$dataframe$Overall ==  
          0, gbm.call$gbm.x[variable.no]], prob = seq(0, 1, 0.01), na.rm = TRUE,   
          type = 7), side = 1, col = 2, lwd = 2) 
 
 
# set the presence rugs by defining only to use rows where Overall == 1 
# set placement of rugs to the bottom of the plot with blue tick marks  
 
      } 
      if (rug & is.vector(data[, gbm.call$gbm.x[variable.no]])) { 
          rug(quantile(data[gbm.call$dataframe$Overall ==  
          1, gbm.call$gbm.x[variable.no]], prob = seq(0, 1, 0.01), na.rm = TRUE,  
          type = 7), side = 3, col = 4, lwd = 2) 
      } 
 
# find predictor variable interactions fitted within the model  
 
find.int<-gbm.interactions(ARS_TC5_LR0.001_SIMP_drop2) 
 
find.int$interaction  # gives a matrix of interactions  
 
find.int$rank.list    # ranks important interactions between predictor variables  
 
# get a 3D plot of interactions  
# the numbers specified indicate the number of the variable assigned in the rank 
list  
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# these numbers do not reflect rank they just ID the variable for plotting  
# example using SST and depth where the depth has been restricted as interaction 
is most substantial  
# at shallower depths  
 
gbm.perspec(ARS_TC5_LR0.001_SIMP_drop2, 1, 5,y.range=c(-1000, 0.99),  
            z.label = "Marginal effct")  
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Appendix F – Marine Biodiversity Records: Author Guidelines [26] 

Preparing your manuscript 

This section provides general style and formatting information only. Formatting 

guidelines for specific article types can be found below. 

• Marine Record 

• Research 

• Review 

General formatting guidelines 

•  Preparing main manuscript text 

•  Preparing illustrations and figures 

•  Preparing tables 

•  Preparing additional files 

Preparing main manuscript text 
 
Back to top 

Quick points: 

• Use double line spacing 

• Include line and page numbering 

• Use SI units: Please ensure that all special characters used are embedded in 

the text, otherwise they will be lost during conversion to PDF 

• Do not use page breaks in your manuscript 

File formats 

The following word processor file formats are acceptable for the main manuscript 

document: 

• Microsoft word (DOC, DOCX) 

• Rich text format (RTF) 

• TeX/LaTeX (use BioMed Central's TeX template) 

Please note: editable files are required for processing in production. If your 

manuscript contains any non-editable files (such as PDFs) you will be required to re-

submit an editable file when you submit your revised manuscript, or after editorial 

acceptance in case no revision is necessary. 

Additional information for TeX/LaTeX users 

https://mbr.biomedcentral.com/submission-guidelines/preparing-your-manuscript/marine-record
https://mbr.biomedcentral.com/submission-guidelines/preparing-your-manuscript/research
https://mbr.biomedcentral.com/submission-guidelines/preparing-your-manuscript/review
https://mbr.biomedcentral.com/submission-guidelines/preparing-your-manuscript#preparing+main+manuscript+text
https://mbr.biomedcentral.com/submission-guidelines/preparing-your-manuscript#preparing+figures
https://mbr.biomedcentral.com/submission-guidelines/preparing-your-manuscript#preparing+tables
https://mbr.biomedcentral.com/submission-guidelines/preparing-your-manuscript#preparing+additional+files
https://mbr.biomedcentral.com/submission-guidelines/preparing-your-manuscript#main-content
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Please use BioMed Central's TeX template and BibTeX stylefile if you use TeX format. 

Submit your references using either a bib or bbl file. When submitting TeX 

submissions, please submit both your TeX file and your bib/bbl file as manuscript 

files. Please also convert your TeX file into a PDF (please do not use a DIV file) and 

submit this PDF as a supplementary file with the name 'Reference PDF'. This PDF will 

be used by our production team as a reference point to check the layout of the 

article as the author intended.  

The Editorial Manager system checks for any errors in the Tex files. If an error is 

present then the system PDF will display LaTex code and highlight and explain the 

error in a section beginning with an exclamation mark (!). 

All relevant editable source files must be uploaded during the submission process. 

Failing to submit these source files will cause unnecessary delays in the production 

process. 

Research [26] 

Criteria 

Research articles should report on original primary research, but may report on 

systematic reviews of published research provided they adhere to the appropriate 

reporting guidelines which are detailed in our editorial policies. Please note that non-

commissioned pooled analyses of selected published research will not be considered. 

Preparing your manuscript 

The information below details the section headings that you should include in your 

manuscript and what information should be within each section. 

Please note that your manuscript must include a 'Declarations' section including all 

of the subheadings (please see below for more information).  

Title page 

The title page should: 

• present a title that includes, if appropriate, the study design 

• list the full names and institutional addresses for all authors 

o if a collaboration group should be listed as an author, please list the 

Group name as an author. If you would like the names of the individual 

members of the Group to be searchable through their individual 

PubMed records, please include this information in the 

“Acknowledgements” section in accordance with the instructions below 

http://www.biomedcentral.com/about/editorialpolicies
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• indicate the corresponding author 

Abstract 

The Abstract should not exceed 350 words. Please minimize the use of abbreviations 

and do not cite references in the abstract. The abstract must include the following 

separate sections: 

• Background: the context and purpose of the study 

• Results: the main findings 

• Conclusions: a brief summary and potential implications 

 

Keywords 

Three to ten keywords representing the main content of the article. 

Background 

The Background section should explain the background to the study, its aims, a 

summary of the existing literature and why this study was necessary. 

Results 

This should include the findings of the study including, if appropriate, results of 

statistical analysis which must be included either in the text or as tables and figures. 

Discussion 

For research articles this section should discuss the implications of the findings in 

context of existing research and highlight limitations of the study. For study 

protocols and methodology manuscripts this section should include a discussion of 

any practical or operational issues involved in performing the study and any issues 

not covered in other sections. 

Conclusions 

This should state clearly the main conclusions and provide an explanation of the 

importance and relevance of the study to the field. 

Methods  

The methods section should include: 

• the aim, design and setting of the study 

• the characteristics of participants or description of materials 
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• a clear description of all processes, interventions and comparisons. Generic 

names should generally be used. When proprietary brands are used in 

research, include the brand names in parentheses 

• the type of statistical analysis used, including a power calculation if 

appropriate 

 

List of abbreviations 

If abbreviations are used in the text they should be defined in the text at first use, 

and a list of abbreviations can be provided. 

Declarations 

All manuscripts must contain the following sections under the heading 'Declarations': 

• Ethics approval and consent to participate 

• Consent for publication 

• Availability of data and material 

• Competing interests 

• Funding 

• Authors' contributions 

• Acknowledgements 

• Authors' information (optional) 

Please see below for details on the information to be included in these sections. 

If any of the sections are not relevant to your manuscript, please include the heading 

and write 'Not applicable' for that section.  

Ethics approval and consent to participate 

Manuscripts reporting studies involving human participants, human data or human 

tissue must: 

• include a statement on ethics approval and consent (even where the need for 

approval was waived) 

• include the name of the ethics committee that approved the study and the 

committee’s reference number if appropriate 

Studies involving animals must include a statement on ethics approval. 

See our editorial policies for more information. 

http://www.biomedcentral.com/submissions/editorial-policies#ethics+and+consent
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If your manuscript does not report on or involve the use of any animal or human 

data or tissue, please state “Not applicable” in this section. 

Consent for publication 

If your manuscript contains any individual person’s data in any form (including any 

individual details, images or videos), consent for publication must be obtained from 

that person, or in the case of children, their parent or legal guardian. All 

presentations of case reports must have consent for publication. 

You can use your institutional consent form or our consent form if you prefer. You 

should not send the form to us on submission, but we may request to see a copy at 

any stage (including after publication). 

See our editorial policies for more information on consent for publication. 

If your manuscript does not contain data from any individual person, please state 

“Not applicable” in this section. 

Availability of data and materials 

All manuscripts must include an ‘Availability of data and materials’ statement. Data 

availability statements should include information on where data supporting the 

results reported in the article can be found including, where applicable, hyperlinks to 

publicly archived datasets analysed or generated during the study. By data we mean 

the minimal dataset that would be necessary to interpret, replicate and build upon 

the findings reported in the article. We recognise it is not always possible to share 

research data publicly, for instance when individual privacy could be compromised, 

and in such instances data availability should still be stated in the manuscript along 

with any conditions for access. 

Data availability statements can take one of the following forms (or a combination of 

more than one if required for multiple datasets): 

• The datasets generated and/or analysed during the current study are available 

in the [NAME] repository, [PERSISTENT WEB LINK TO DATASETS] 

• The datasets used and/or analysed during the current study are available from 

the corresponding author on reasonable request. 

• All data generated or analysed during this study are included in this published 

article [and its supplementary information files]. 

• The datasets generated and/or analysed during the current study are not 

publicly available due [REASON WHY DATA ARE NOT PUBLIC] but are 

available from the corresponding author on reasonable request. 

https://resource-cms.springernature.com/springer-cms/rest/v1/content/6633976/data/v2
http://www.biomedcentral.com/submissions/editorial-policies#consent+for+publication
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• Data sharing is not applicable to this article as no datasets were generated or 

analysed during the current study. 

• The data that support the findings of this study are available from [third party 

name] but restrictions apply to the availability of these data, which were used 

under license for the current study, and so are not publicly available. Data are 

however available from the authors upon reasonable request and with 

permission of [third party name]. 

• Not applicable. If your manuscript does not contain any data, please state 'Not 

applicable' in this section. 

More examples of template data availability statements, which include examples of 

openly available and restricted access datasets, are available here. 

BioMed Central also requires that authors cite any publicly available data on which 

the conclusions of the paper rely in the manuscript. Data citations should include a 

persistent identifier (such as a DOI) and should ideally be included in the reference 

list. Citations of datasets, when they appear in the reference list, should include the 

minimum information recommended by DataCite and follow journal style. Dataset 

identifiers including DOIs should be expressed as full URLs. For example: 

 

Hao Z, AghaKouchak A, Nakhjiri N, Farahmand A. Global integrated drought 

monitoring and prediction system (GIDMaPS) data sets. figshare. 

2014. http://dx.doi.org/10.6084/m9.figshare.853801 

With the corresponding text in the Availability of data and materials statement: 

The datasets generated during and/or analysed during the current study are 

available in the [NAME] repository, [PERSISTENT WEB LINK TO DATASETS].[Reference 

number]  

Competing interests 

All financial and non-financial competing interests must be declared in this section. 

See our editorial policies for a full explanation of competing interests. If you are 

unsure whether you or any of your co-authors have a competing interest please 

contact the editorial office. 

Please use the authors initials to refer to each authors' competing interests in this 

section. 

http://www.springernature.com/gp/group/data-policy/data-availability-statements
https://figshare.com/collections/Global_Integrated_Drought_Monitoring_and_Prediction_System_GIDMaPS_Data_Sets/853801
http://www.biomedcentral.com/submissions/editorial-policies#competing+interests
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If you do not have any competing interests, please state "The authors declare that 

they have no competing interests" in this section. 

Funding 

All sources of funding for the research reported should be declared. The role of the 

funding body in the design of the study and collection, analysis, and interpretation of 

data and in writing the manuscript should be declared. 

Authors' contributions 

The individual contributions of authors to the manuscript should be specified in this 

section. Guidance and criteria for authorship can be found in our editorial policies. 

Please use initials to refer to each author's contribution in this section, for example: 

"FC analyzed and interpreted the patient data regarding the hematological disease 

and the transplant. RH performed the histological examination of the kidney, and 

was a major contributor in writing the manuscript. All authors read and approved the 

final manuscript." 
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Please acknowledge anyone who contributed towards the article who does not meet 

the criteria for authorship including anyone who provided professional writing 

services or materials. 

Authors should obtain permission to acknowledge from all those mentioned in the 

Acknowledgements section. 

See our editorial policies for a full explanation of acknowledgements and authorship 

criteria. 

If you do not have anyone to acknowledge, please write "Not applicable" in this 

section. 

Group authorship (for manuscripts involving a collaboration group): if you would like 

the names of the individual members of a collaboration Group to be searchable 

through their individual PubMed records, please ensure that the title of the 

collaboration Group is included on the title page and in the submission system and 

also include collaborating author names as the last paragraph of the 

“Acknowledgements” section. Please add authors in the format First Name, Middle 

initial(s) (optional), Last Name. You can add institution or country information for 

each author if you wish, but this should be consistent across all authors. 

http://www.biomedcentral.com/submissions/editorial-policies#authorship
http://www.biomedcentral.com/submissions/editorial-policies#authorship
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Please note that individual names may not be present in the PubMed record at the 

time a published article is initially included in PubMed as it takes PubMed additional 

time to code this information. 

Authors' information 

This section is optional. 

You may choose to use this section to include any relevant information about the 

author(s) that may aid the reader's interpretation of the article, and understand the 

standpoint of the author(s). This may include details about the authors' qualifications, 

current positions they hold at institutions or societies, or any other relevant 

background information. Please refer to authors using their initials. Note this section 

should not be used to describe any competing interests. 

 
Endnotes 

Endnotes or Footnotes should be designated within the text using a superscript 

lowercase letter.  These should be captured in the Footnotes, alternatively, all notes 

(along with their corresponding letter) should be included in an Endnotes section, 

please format this section in a paragraph rather than a list. 

References 

Examples of the Vancouver reference style are shown below. 

See our editorial policies for author guidance on good citation practice 

Web links and URLs: All web links and URLs, including links to the authors' own 

websites, should be given a reference number and included in the reference list 

rather than within the text of the manuscript. They should be provided in full, 

including both the title of the site and the URL, as well as the date the site was 

accessed, in the following format: The Mouse Tumor Biology 

Database. http://tumor.informatics.jax.org/mtbwi/index.do. Accessed 20 May 2013. If 

an author or group of authors can clearly be associated with a web link, such as for 

weblogs, then they should be included in the reference. 

Example reference style: 

Article within a journal 

Smith JJ. The world of science. Am J Sci. 1999;36:234-5. 

https://www.biomedcentral.com/getpublished/editorial-policies#citations
http://tumor.informatics.jax.org/mtbwi/index.do
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Article within a journal (no page numbers) 

Rohrmann S, Overvad K, Bueno-de-Mesquita HB, Jakobsen MU, Egeberg R, 

Tjønneland A, et al. Meat consumption and mortality - results from the European 

Prospective Investigation into Cancer and Nutrition. BMC Medicine. 2013;11:63. 

Article within a journal by DOI 

Slifka MK, Whitton JL. Clinical implications of dysregulated cytokine production. Dig J 

Mol Med. 2000; doi:10.1007/s801090000086. 

Article within a journal supplement 

Frumin AM, Nussbaum J, Esposito M. Functional asplenia: demonstration of splenic 

activity by bone marrow scan. Blood 1979;59 Suppl 1:26-32. 

Book chapter, or an article within a book 

Wyllie AH, Kerr JFR, Currie AR. Cell death: the significance of apoptosis. In: Bourne 

GH, Danielli JF, Jeon KW, editors. International review of cytology. London: Academic; 

1980. p. 251-306. 

OnlineFirst chapter in a series (without a volume designation but with a DOI) 

Saito Y, Hyuga H. Rate equation approaches to amplification of enantiomeric excess 

and chiral symmetry breaking. Top Curr Chem. 2007. doi:10.1007/128_2006_108. 

Complete book, authored 

Blenkinsopp A, Paxton P. Symptoms in the pharmacy: a guide to the management of 

common illness. 3rd ed. Oxford: Blackwell Science; 1998. 

Online document 

Doe J. Title of subordinate document. In: The dictionary of substances and their 

effects. Royal Society of Chemistry. 1999. http://www.rsc.org/dose/title of 

subordinate document. Accessed 15 Jan 1999. 

Online database 
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Healthwise Knowledgebase. US Pharmacopeia, Rockville. 1998. 

http://www.healthwise.org. Accessed 21 Sept 1998. 

Supplementary material/private homepage 

Doe J. Title of supplementary material. 2000. http://www.privatehomepage.com. 

Accessed 22 Feb 2000. 

University site 

Doe, J: Title of preprint. http://www.uni-heidelberg.de/mydata.html (1999). Accessed 

25 Dec 1999. 

FTP site 

Doe, J: Trivial HTTP, RFC2169. ftp://ftp.isi.edu/in-notes/rfc2169.txt (1999). Accessed 

12 Nov 1999. 

Organization site 

ISSN International Centre: The ISSN register. http://www.issn.org (2006). Accessed 20 

Feb 2007. 

Dataset with persistent identifier 

Zheng L-Y, Guo X-S, He B, Sun L-J, Peng Y, Dong S-S, et al. Genome data from sweet 

and grain sorghum (Sorghum bicolor). GigaScience Database. 

2011. http://dx.doi.org/10.5524/100012. 

Preparing figures 
 

Back to top 

When preparing figures, please follow the formatting instructions below. 

• Figures should be numbered in the order they are first mentioned in the text, 

and uploaded in this order. Multi-panel figures (those with parts a, b, c, d etc.) 

should be submitted as a single composite file that contains all parts of the 

figure. 

• Figures should be uploaded in the correct orientation. 

• Figure titles (max 15 words) and legends (max 300 words) should be provided 

in the main manuscript, not in the graphic file. 

http://dx.doi.org/10.5524/100012
https://mbr.biomedcentral.com/submission-guidelines/preparing-your-manuscript#main-content
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• Figure keys should be incorporated into the graphic, not into the legend of 

the figure. 

• Each figure should be closely cropped to minimize the amount of white space 

surrounding the illustration. Cropping figures improves accuracy when placing 

the figure in combination with other elements when the accepted manuscript 

is prepared for publication on our site. For more information on individual 

figure file formats, see our detailed instructions. 

• Individual figure files should not exceed 10 MB. If a suitable format is chosen, 

this file size is adequate for extremely high quality figures. 

• Please note that it is the responsibility of the author(s) to obtain 

permission from the copyright holder to reproduce figures (or tables) 

that have previously been published elsewhere. In order for all figures to 

be open access, authors must have permission from the rights holder if they 

wish to include images that have been published elsewhere in non open 

access journals. Permission should be indicated in the figure legend, and the 

original source included in the reference list. 

Figure file types 

We accept the following file formats for figures: 

• EPS (suitable for diagrams and/or images) 

• PDF (suitable for diagrams and/or images) 

• Microsoft Word (suitable for diagrams and/or images, figures must be a single 

page) 

• PowerPoint (suitable for diagrams and/or images, figures must be a single 

page) 

• TIFF (suitable for images) 

• JPEG (suitable for photographic images, less suitable for graphical images) 

• PNG (suitable for images) 

• BMP (suitable for images) 

• CDX (ChemDraw - suitable for molecular structures) 

For information and suggestions of suitable file formats for specific figure types, 

please see our author academy. 

Figure size and resolution 

Figures are resized during publication of the final full text and PDF versions to 

conform to the BioMed Central standard dimensions, which are detailed below. 

Figures on the web: 

• width of 600 pixels (standard), 1200 pixels (high resolution). 

https://www.biomedcentral.com/getpublished/writing-resources/data-presentation
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Figures in the final PDF version: 

• width of 85 mm for half page width figure 

• width of 170 mm for full page width figure 

• maximum height of 225 mm for figure and legend 

• image resolution of approximately 300 dpi (dots per inch) at the final size 

Figures should be designed such that all information, including text, is legible at 

these dimensions. All lines should be wider than 0.25 pt when constrained to 

standard figure widths. All fonts must be embedded. 

Figure file compression 

  

• Vector figures should if possible be submitted as PDF files, which are usually 

more compact than EPS files. 

• TIFF files should be saved with LZW compression, which is lossless (decreases 

file size without decreasing quality) in order to minimize upload time. 

• JPEG files should be saved at maximum quality. 

• Conversion of images between file types (especially lossy formats such as 

JPEG) should be kept to a minimum to avoid degradation of quality. 

If you have any questions or are experiencing a problem with figures, please contact 

the customer service team at info@biomedcentral.com. 

Preparing tables 
Back to top 

When preparing tables, please follow the formatting instructions below. 

• Tables should be numbered and cited in the text in sequence using Arabic 

numerals (i.e. Table 1, Table 2 etc.). 

• Tables less than one A4 or Letter page in length can be placed in the 

appropriate location within the manuscript. 

• Tables larger than one A4 or Letter page in length can be placed at the end of 

the document text file. Please cite and indicate where the table should appear 

at the relevant location in the text file so that the table can be added in the 

correct place during production. 

• Larger datasets, or tables too wide for A4 or Letter landscape page can be 

uploaded as additional files. Please see [below] for more information. 

• Tabular data provided as additional files can be uploaded as an Excel 

spreadsheet (.xls ) or comma separated values (.csv). Please use the standard 

file extensions. 

mailto:info@biomedcentral.com
https://mbr.biomedcentral.com/submission-guidelines/preparing-your-manuscript#main-content
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• Table titles (max 15 words) should be included above the table, and legends 

(max 300 words) should be included underneath the table. 

• Tables should not be embedded as figures or spreadsheet files, but should be 

formatted using ‘Table object’ function in your word processing program. 

• Color and shading may not be used. Parts of the table can be highlighted 

using superscript, numbering, lettering, symbols or bold text, the meaning of 

which should be explained in a table legend. 

• Commas should not be used to indicate numerical values. 

If you have any questions or are experiencing a problem with tables, please contact 

the customer service team at info@biomedcentral.com. 

Preparing additional files 
 

Back to top 

As the length and quantity of data is not restricted for many article types, authors 

can provide datasets, tables, movies, or other information as additional files. 

All Additional files will be published along with the accepted article. Do not include 

files such as patient consent forms, certificates of language editing, or revised 

versions of the main manuscript document with tracked changes. Such files, if 

requested, should be sent by email to the journal’s editorial email address, quoting 

the manuscript reference number. Please do not send completed patient consent 

forms unless requested. 

Results that would otherwise be indicated as "data not shown" should be included as 

additional files. Since many web links and URLs rapidly become broken, BioMed 

Central requires that supporting data are included as additional files, or deposited in 

a recognized repository. Please do not link to data on a personal/departmental 

website. Do not include any individual participant details. The maximum file size for 

additional files is 20 MB each, and files will be virus-scanned on submission. Each 

additional file should be cited in sequence within the main body of text. 

If additional material is provided, please list the following information in a separate 

section of the manuscript text: 

• File name (e.g. Additional file 1) 

• File format including the correct file extension for example .pdf, .xls, .txt, .pptx 

(including name and a URL of an appropriate viewer if format is unusual) 

• Title of data 

• Description of data 

mailto:info@biomedcentral.com
https://mbr.biomedcentral.com/submission-guidelines/preparing-your-manuscript#main-content
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Additional files should be named "Additional file 1" and so on and should be 

referenced explicitly by file name within the body of the article, e.g. 'An additional 

movie file shows this in more detail [see Additional file 1]'. 

For further guidance on how to use Additional files or recommendations on how to 

present particular types of data or information, please see How to use additional 

files. 
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