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Abstract

This paper demonstrates that a misspecified model of information processing
interferes with long-run learning and allows inefficient choices to persist, despite
sufficient information for asymptotic learning. I consider an observational learn-
ing environment in which agents observe a private signal about an unknown state
and some agents observe the actions of their predecessors. Individuals face an
inferential challenge when extracting information from the actions of others, as
prior actions aggregate multiple sources of correlated information. A misspec-
ified model allows for the fact that an agent may not be able to distinguish
between new and redundant information, and may have an incorrect model of
how others process this information. When individuals significantly overestimate
the amount of new information, beliefs about the state become entrenched and
incorrect learning occurs with positive probability. When individuals sufficiently
overestimate the amount of redundant information, beliefs fail to converge and
learning is incomplete. Learning is complete when agents have an approximately
correct model of inference, establishing that the correctly specified model is ro-
bust to perturbation.
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1 Introduction

Observational learning plays an important role in the transmission of information,

opinions and behavior. People use bestseller lists to guide their purchases of books,

cars and computers. Co-workers’ decisions to join a retirement plan influence a person’s

decision to participate herself. Social learning also influences behavioral choices, such

as whether to smoke or exercise regularly, or ideological decisions, such as which side

of a moral or political issue to support. Given the gamut of situations influenced by

observational learning, it is important to understand how people learn from the actions

of their peers. This paper explores how a misspecified model of information processing

may interfere with asymptotic learning, and demonstrates that biased learning offers

an explanation for how inefficient choices can persist, incorrect beliefs can become

entrenched, or beliefs can fail to converge, despite sufficient evidence for complete

learning.

Individuals face an inferential challenge when extracting information from the ac-

tions of others. An action often aggregates multiple sources of correlated information.

Full rationality requires an agent to have a correct model of how others process this

information, in order to parse out the new information and discard redundant informa-

tion. This is a critical feature of standard observational learning models in the tradition

of Smith and Sorensen (2000). In these models, agents understand exactly how preced-

ing agents incorporate the action history into their decision-making rule, and are aware

of the precise informational content of each action. However, what happens if agents

are unsure about how to draw inference from the actions of their predecessors? What

if they believe the actions of previous agents are more informative than is actually the

case, or what if they attribute too many prior actions to redundant information and

are not sensitive enough to new information? Motivated by this possibility, I allow

agents to have a misspecified model of the information possessed by other agents. This

draws a distinction between the perceived and actual informational content of actions.

Consider an observational learning model where individuals have common-value

preferences that depend on an unknown state of the world. They act sequentially,

observing a private signal before choosing an action. A fraction p of individuals also

observe the actions of previous agents. These socially informed agents understand that

prior actions reveal information about private signals, but fail to accurately disentangle

this new information from the redundant information also contained in prior actions.

Formally, informed agents believe that any other individual is informed with probability
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p̂, where p̂ need not coincide with p. When p̂ < p, an informed decision maker attributes

too many actions to the private signals of uninformed individuals. This leads her to

overweigh information from the public history, and allows public beliefs about the state

to become entrenched, possibly unjustifiably so. On the other hand, when p̂ > p, an

informed decision maker underweights the new information contained in prior actions,

rendering beliefs more fragile to contrary information. Thus, the difference between p̂

and p determines the level of model misspecification.

To understand how model misspecification affects long-run learning requires careful

analysis of the rate of information accumulation, and how this rate depends on the way

informed agents interpret prior actions through their belief p̂. The main result of the

paper (Theorem 1) specifies thresholds p̂1 and p̂2, such that when p̂ < p̂1 both correct

and fully incorrect learning occur with positive probability, when p̂ > p̂2, beliefs about

the state perpetually fluctuate, rendering learning incomplete, while when p̂ ∈ (p̂1, p̂2),

correct learning occurs with probability one. The first two cases admit the possibility

of inefficient learning: with positive probability, informed agents choose the inefficient

action infinitely often, despite observing sufficient information to learn the correct

state. In the final case, informed agents will eventually choose the efficient action.

This case includes the correctly specified model (p̂ = p), as demonstrated by the fact

that p ∈ (p̂1, p̂2).

Fully incorrect learning or incomplete learning with oscillating beliefs are possible

for some values of p̂ 6= p because the public belief about the state is no longer a

martingale. This also complicates the analysis on a technical level, as it is no longer

possible to use the Martingale Convergence Theorem to establish belief convergence.

The Law of the Iterated Logarithm (LIL) and Law of Large Numbers (LLN) are jointly

used to establish belief convergence when p̂ < p̂2, and rule out belief convergence when

p̂ > p̂2. This approach is general enough that it can be utilized to examine other forms

of model misspecification. Thus, the paper develops new techniques to analyze learning

in models that are not fully Bayesian.

Model misspecification has important policy implications for interventions aimed

at counteracting inefficient social choices. In the presence of information processing

errors, the timing, frequency and strength of interventions – such as public information

campaigns – are an important determinate of long-run efficiency. Consider a parent

deciding whether there is a link between vaccines and autism. The parent observes

public signals from the government and other public health agencies, along with the
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vaccination decisions of peers. If all parents are rational, then a public health campaign

to inform parents that there is no link between vaccines and autism should eventually

overturn a herd on refusing vaccinations. However, if parents do not accurately disen-

tangle repeated information and attribute too many choices to new information, then

observing many other parents refusing to vaccinate their children will lead to strong

beliefs that this is the optimal choice, and make it less likely that the public health

campaign is effective.1 When this is the case, the best way to quash a herd in which

parents refuse vaccines is to release public information immediately and frequently.

This contrasts with the fully rational case, in which the timing of public information

release is irrelevant for long-run learning outcomes.

The sequential observational learning framework used in this paper was first mod-

eled in Banerjee (1992) and Bikhchandani, Hirshleifer, and Welch (1992) with a binary

signal space. They conclude that incorrect informational cascades arise with posi-

tive probability, but beliefs in these cascades are fragile and easily overturned by the

arrival of new information. Moscarini, Ottaviani, and Smith (1998) show that informa-

tional cascades are temporary when the state of the world changes frequently enough.

Smith and Sorensen (2000) allow for a general signal distribution and crazy types. An

unbounded signal space is sufficient to ensure complete learning, eliminating the possi-

bility of inefficient cascades. Acemoglu, Dahleh, Lobel, and Ozdaglar (2011) examines

social learning in a network - the correctly specified model in this paper (p̂ = p) is a

special case of their model.

Recent work examines the implications of information processing biases, particu-

larly correlation neglect and the failure to account for redundant information, in the

social learning framework. Eyster and Rabin (2010) study inferential naivety – play-

ers believe prior agents’ actions solely reflect their private information. This confounds

learning because the actions of initial agents receive disproportionate weight. Although

similar in nature to model misspecification, inferential naivety differs in generality and

interpretation. Inferential naivety considers the case in which every repeated action is

viewed as being independent with probability one, whereas with model misspecifica-

tion, informed agents recognize that actions contain some repeated information, but

misperceive the exact proportion. The analogue of inferential naivety in my environ-

ment corresponds to p̂ = 0 and p = 1.

Guarino and Jehiel (2013) apply the analogy based expectation equilibrium solu-

1This example abstracts from the payoff interdependencies of vaccines.

3



tion concept (Jehiel 2005) to a social learning setting. Agents know the aggregate

relationship between the state and distribution of actions, but do not understand the

relationship between private information and actions. Learning is complete in a con-

tinuous action model - although initial signals are overweighted, the excess weight on

a signal increases linearly with time, preventing initial signals from permanently dom-

inating subsequent new information. This contrasts with Eyster and Rabin (2010), in

which the excess weight on initial signals doubles each period, allowing a few early sig-

nals to dominate all future signals. Levy and Razin (2015) examine the implications of

correlation neglect in a network model of learning, and establish that beliefs converge

under mild conditions on the network structure. Demarzo, Vayanos, and Zwiebel (2003)

introduce the notion of persuasion bias in a model of opinion formation in networks.

Decision-makers embedded in a network graph treat correlated information from others

as being independent, leading to informational inefficiencies. Mueller-Frank and Neri

(2015) build on Eyster and Rabin (2010)’s concept of inferential naivety to study in-

formation aggregation in networks. They establish sufficient conditions on the learning

environment to achieve information aggregation in small networks, and show that in

any learning environment, information aggregation fails in large enough networks.

Model misspecification is also related to level-k and cognitive hierarchy models.2

In the model misspecification framework, uninformed types are level-1 thinkers who

follow their private signal while informed types are level-2 thinkers who believe other

agents are a mix of level-1 and level-2 thinkers. In a level-k model, informed agents

believe that all other agents are level-1 thinkers – this corresponds to p̂ = 0. Thus, in

both frameworks, level-2 agents misperceive the share of other agents who are level-2,

but this paper allows level-2 agents to place positive weight on other agents using a

level-2 decision rule.

This paper is also related to a broader literature on how information processing bi-

ases and model misspecification impact long-run learning. Epstein, Noor, and Sandroni

(2010) show that incorrect learning can arise in a single agent model when an agent

overweights signals, as is the case in this paper, but that complete learning obtains

when an agent underweights signals. In this model, agents who underweight informa-

tion may never learn the state. In earlier work by Eyster and Rabin (2005) on cursed

equilibrium, a cursed player does not understand the correlation between a player’s

type and her action choice, and therefore fails to realize a player’s action choice reveals

2Camerer, Ho, and Chong (2004); Costa-Gomes, Crawford, and Iriberri (2009).
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information about her type.3

The organization of this paper proceeds as follows. Section 2 sets up the model and

solves the individual decision-problem. Section 3 characterizes the asymptotic learning

dynamics of a misspecified model of inference, while Section 4 discusses the results and

concludes. All proofs are in the Appendix.

2 The Common Framework

2.1 The Model

The basic set-up of this model mirrors a standard sequential learning environment.

States, Actions and Payoffs. There are two payoff-relevant states of the world,

ω ∈ {L,H} with common prior belief P (ω = L) = 1/2. Nature selects one of these

states at the beginning of the game. A countably infinite set of agents T = {1, 2, ...}
act sequentially and attempt to match the realized state of the world by making a

single decision between two actions, at ∈ {`, h}, t ∈ T . They receive a payoff of 1

if their action matches the realized state, u(`, L) = u(h,H) = 1, and a payoff of 0

otherwise.

Private Beliefs. Before choosing an action, each agent privately observes a signal

that is independent and identically distributed, conditional on the state. Following

Smith and Sorensen (2000), I work directly with the private belief, st ∈ (0, 1), which is

an agent’s belief that ω = L, computed via Bayes’ rule after observing the private signal

but not the history. Conditional on the state, the private belief stochastic process 〈st〉
is i.i.d, with conditional c.d.f. F ω. Assume that no private signal perfectly reveals the

state, which implies that FL, FH are mutually absolutely continuous and have common

support, supp(F ). Let [b, b̄] ⊆ [0, 1] denote the convex hull of the support. Finally,

assume that some signals are informative. This rules out dFL/dFH = 1 almost surely,

and implies b < 1/2 < b̄. Beliefs are bounded if 0 < b < b̄ < 1, and are unbounded if

[b, b̄] = [0, 1].

Agent Types. There are two types of agents, θt ∈ {I, U}. With probability p ∈
(0, 1), an agent is a socially informed type I who observes the action choices of her

predecessors, ht = (a1, ..., at−1). She uses her private signal and this history to guide

3Other recent work includes Acemoglu, Chernozhukov, and Yildiz (2016); Gottlieb (2015); Rabin
and Schrag (1999); Schwartzstein (2014); Wilson (2014) and Esponda and Pouzo (2015). There is also
an older statistics literature, including Berk (1966) and DeGroot (1974).
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her action choice. With probability 1−p, an agent is a socially uninformed type U who

only observes her private signal. An alternative interpretation for this uninformed type

is a behavioral type who is not sophisticated enough to draw inference from the history.

This type’s decision is solely guided by the information contained in her private signal.

Beliefs About Types. Each informed individual believes that each other individual

is informed with probability p̂ ∈ [0, 1], where p̂ need not coincide with p. An informed

agent believes that other agents also hold the same beliefs about whether previous

agents are informed or uninformed. Incorrect beliefs about p persist because no agent

ever learns what the preceding agents actually observed or incorporated into their

decision-making processes.4

Timing. At time t, agent t observes type θt and a private signal st. If θt = I, the

agent also observes the public history ht. Then she chooses action at.

2.2 The Individual Decision-Problem

A decision rule specifies an action for each history and signal realization pair. I look for

an outcome that has the nature of a Bayesian equilibrium, in the sense that agents use

Bayes rule to formulate beliefs about the state of the world, given their (misspecified)

belief about the type distribution, and maximize payoffs with respect to these beliefs.

The decision rule of each type is common knowledge, as is the fact that all informed

agents compute the same probability of any history ht.

It is standard to express the public belief of informed agents as a likelihood ratio,

λt =
P (L|ht; p̂)
P (H|ht; p̂)

, (1)

which depends on the history and beliefs about the share of informed agents.5 An agent

who holds prior belief λ and receives signal s updates to the private posterior belief

q(λ, s) = λ×
(

s
1−s

)
. An uninformed agent has prior belief λ1 = 1 and an informed agent

has prior belief λt. Guided by posterior belief q, the agent maximizes her payoff by

choosing a = ` if q ≥ 1, and a = h otherwise. An agent’s decision can be represented

4Although it is admittedly restrictive to require that agents hold identical misperceptions about
others, and that this misperception takes the form of a point-mass belief about the distribution of
p, it is a good starting point to examine the possible implications of model misspecification. Bohren
(2012) also analyzes the model in which agents begin with a non-degenerate prior distribution over p,
and learn about p from the action history.

5I refer to λt as the public belief, even though it is not the belief of uninformed agents.
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as a cut-off rule, s∗(λ) = 1/(λ+1), such that the agent chooses action ` when s ≥ s∗(λ)

and chooses action h otherwise. An informed agent in period t uses cut-off s∗(λt), while

uninformed agents use cut-off s∗(1) = 1/2.

The cascade set for action a is the set of prior beliefs such that a is optimal for all

realizations of the private signal.

Definition 1 (Cascade Set). The cascade sets for actions h and ` are the sets of beliefs

J h = {λ|s < s∗(λ) ∀s ∈ supp(F )} and J ` = {λ|s ≥ s∗(λ) ∀s ∈ supp(F )}, respectively.

As usual, a cascade occurs when the prior belief outweighs the strongest private belief.

Lemma 1. When private beliefs are bounded, J h =
[
0, (1− b̄)/b̄

)
and J ` = [(1− b)/b,∞]

and when private beliefs are unbounded, J h = {0} and J ` = {∞}.

Let J = J ` ∪ J h. An uninformed agent is never in a cascade, since λ1 /∈ J . An

informed agent is in a cascade if λt ∈ J . This agent chooses the same action for all

s ∈ supp(F ) and her action reveals no private information.

When informed agents are in a cascade, information continues to accumulate from

the actions of uninformed agents, and the public belief leaves the cascade set with

positive probability. Therefore, the formation of a cascade does not necessarily imply

belief convergence. If a cascade does not form in finite time, the likelihood ratio may

still converge to a point in the cascade set. The following definition introduces the

notion of a limit cascade to encompass both of these ideas.

Definition 2 (Limit Cascade). Suppose there exists a real, nonnegative random vari-

able λ∞ such that λt → λ∞ almost surely. Then a limit cascade occurs if supp(λ∞) ⊂
J .

3 Learning Dynamics

3.1 Overview

This section proceeds as follows. After formally defining the stochastic process 〈λt〉
governing the evolution of the likelihood ratio, I characterize the set of stationary

points; these are candidate limit points for 〈λt〉. Next, I determine how the local

stability of these stationary points depends on p̂. This establishes the dynamics of the

likelihood ratio in the neighborhood of a stationary point. I then use the Law of the
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Iterated Logarithm (LIL) to show that the likelihood ratio converges to each locally

stable point with positive probability from any initial value, which establishes the global

stability of locally stable points. Finally, I rule out convergence to unstable stationary

points and non-stationary points. The section concludes with a full characterization

of the relationship between asymptotic learning outcomes and the degree of model

misspecification, as measured by p̂.

3.2 The Likelihood Ratio

Let ψ(a|ω, λ; p) denote the probability of action a, given likelihood ratio λ, state ω and

share of informed agents p. Then

ψ(h|ω, λ; p) = pF ω(1/(λ+ 1)) + (1− p)F ω(1/2) (2)

and

ψ(`|ω, λ; p) = 1− ψ(h|ω, λ; p). (3)

This probability is a weighted average of the probability that an uninformed type

chooses a when using cut-off rule s∗(1) = 1/2 and the probability that an informed

type chooses a using cut-off rule s∗(λ) = 1/(λ+ 1), given likelihood ratio λ.

The likelihood ratio is updated based on the perceived probability of action a,

ψ(a|ω, λ; p̂). If agents attribute a smaller share of actions to informed agents, p̂ < p,

then they place more weight on the action revealing private information and overesti-

mate the informativeness of prior actions. The opposite holds when agents attribute

too large a share to informed agents. Given a likelihood ratio λt and action at, the

likelihood ratio in the next period is λt+1 = φ(at, λt; p̂), where

φ(a, λ; p̂) = λ

(
ψ(a|L, λ; p̂)

ψ(a|H,λ; p̂)

)
. (4)

The joint stochastic process 〈at, λt〉∞t=1 is a discrete-time Markov process defined on

state space {`, h}×R+ with λ1 = 1. Given state {at, λt}, the process transitions to state

{at+1, φ(at, λt; p̂)} with probability ψ(at+1|ω, φ(at, λt; p̂); p). The stochastic properties

of this process determine long-run learning dynamics. The challenge in establishing

convergence results for 〈λt〉 stems from the dependence of ψ on the current value of

the likelihood ratio and the fact that 〈λt〉 is not a martingale in a misspecified model.
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3.3 Local Stability of Limit Outcomes

At a stationary point, the likelihood ratio remains constant for any action that occurs

with positive probability.

Definition 3 (Stationary). A point λ is stationary if either (i) ψ(a|ω, λ; p) = 0 or (ii)

φ(a, λ; p̂) = λ for a ∈ {`, h}.

The next Lemma characterizes the set of stationary points.

Lemma 2. The set of stationary points is {0,∞}.

A stationary point λ is locally stable if 〈λt〉 converges to λ with positive probability

when λ1 is in the neighborhood of λ.

Definition 4 (Local Stability). Let λ ∈ [0,∞) be a stationary point of 〈λt〉. Then

λ is locally stable if there exists an open ball N0 around 0 such that λ1 − λ ∈ N0 ⇒
P (λt → λ) > 0. A point λ = ∞ is locally stable if there exists an M such that

λ1 > M ⇒ P (λt →∞) > 0.

Local stability can be reframed in the context of the expected change in the log

likelihood ratio. Suppose ω = H. Given likelihood ratio λ, the probability of action a

is ψ(a|H, λ; p). Define

γ(p̂, λ) :=
∑

a∈{`,h}

ψ(a|H, λ; p) log

(
ψ(a|L, λ; p̂)

ψ(a|H, λ; p̂)

)
(5)

as the expected change in the log likelihood ratio. Then

Et[log λt+1] = log λt + γ(p̂, λt).

Therefore, the sign of γ(p̂, λt) determines whether Et[log λt+1] is greater or less than

log λt.

Lemma 3 establishes the relationship between the local stability of λ ∈ {0,∞} and

γ(p̂, λ). Intuitively, 0 is locally stable when the expected change in the log likelihood

ratio is negative at 0, and∞ is locally stable when the expected change in the likelihood

ratio is positive at ∞. Note γ(p̂, 0) and γ(p̂,∞) are straightforward to calculate from

the primitives of the model.

Lemma 3. Suppose ω = H. Given p̂ and γ(p̂, ·) defined in (5),
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1. If γ(p̂, 0) < 0, then 0 is locally stable, while if γ(p̂, 0) > 0, then 0 is not locally

stable.

2. If γ(p̂,∞) > 0, then ∞ is locally stable, while if γ(p̂,∞) < 0, then ∞ is not

locally stable.

3. If γ(p̂, λ) = 0 for λ ∈ {0,∞} and private beliefs are bounded, then λ is not locally

stable.6

The condition for the local stability of 0 follows directly from Corollary C.1 of Smith

and Sorensen (2000), which derives a criterion for the local stability of a nonlinear

stochastic difference equation with state-dependent transitions. The condition for the

local stability of ∞ follows from defining Markov process 〈xt〉 as xt = 1/λt and noting

that the analogue of (5), given x, is −γ(p̂, 1/x). Thus, 0 is a locally stable point of

〈xt〉 when −γ(p̂,∞) < 0. If 0 is a locally stable point of 〈xt〉, then∞ is a locally stable

point of 〈λt〉.
The conditions for when 0 and∞ are not locally stable follow from the Law of Large

Numbers (LLN), which is used to rule out convergence to the relevant stationary point.

Consider the case of bounded private beliefs and suppose the likelihood ratio is in the

h-cascade set. The probability of each action is constant, ψ(a|H, λ, p) = ψ(a|H, 0, p)
for all λ ∈ J h. If the cascade persists, then by the LLN, the share of each action almost

surely converges to its expected value, ψ(a|H, 0, p). Therefore, if the cascade persists,

the limit of log λt/t almost surely converges to a limit determined by the expected share

of each action, which is exactly γ(p̂, 0). If γ(p̂, 0) > 0, then when a cascade persists,

lim
t→∞

log λt/t = γ(p̂, 0) > 0.

But in order to remain inside the cascade set, it must be that

lim
t→∞

log λt/t < lim
t→∞

log
(
1− b

)
/bt = 0,

6 If private beliefs are unbounded and γ(p̂, λ) = 0 for λ ∈ {0,∞}, the stability of λ also depends
on γ(p̂, ·) in a neighborhood of λ (for bounded beliefs, γ(p̂, ·) is constant in a neighborhood of λ). If
γ(p̂, 0) = 0 and there exists an ε > 0 such that γ(p̂, λ) < 0 for λ ∈ (0, ε), then 0 is locally stable,
while if there exists an ε > 0 such that γ(p̂, λ) ≥ 0 for λ ∈ (0, ε), then 0 is not locally stable. The
condition for ∞ is analogous. These cases are non-generic, since Lemma 4 establishes that there is a
unique p̂ ∈ [0, 1] for which γ(p̂, 0) = 0 and a unique p̂ ∈ [0, 1] for which γ(p̂,∞) = 0. I do not consider
them, as they significantly complicate the analysis without adding much economic insight. Note that
it is straightforward to verify local stability of these cases for specific private belief distributions, and
given the local stability properties, all subsequent results carry through.
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a contradiction. Therefore, if γ(p̂, 0) > 0, then the likelihood ratio will almost surely

leave the cascade set.

Next I characterize how γ(·, λ) varies with p̂, which determines how the local sta-

bility of λ ∈ {0,∞} depends on p̂. Let

p̂1 :=

{p̂|γ(p̂,∞) = 0} if {p̂|γ(p̂,∞) = 0} 6= ∅

0 if {p̂|γ(p̂,∞) = 0} = ∅
(6)

be the set of beliefs p̂ such that γ(·,∞) is zero, and let

p̂2 := {p̂|γ(p̂, 0) = 0} (7)

be the set of beliefs p̂ such that γ(·, 0) is zero. Then (6) and (7) define the cut-offs

at which a stationary point switches from being locally stable to not stable and vice

versa.

Given λ ∈ {0,∞}, Lemma 4 uses the monotonicity of γ(·, λ) to establish that p̂1

and p̂2 are unique.7 Below the cutoff, λ is locally stable, and above the cutoff, λ is not

locally stable. When p̂ = p, the likelihood ratio is a martingale, so 0 is locally stable

and ∞ is not. This establishes that p̂1 < p and p̂2 > p. Although there is always a

belief p̂ such that 0 is not locally stable (i.e. p̂2 < 1), it is possible that there is no p̂

such that ∞ is locally stable (i.e. p̂1 = 0 can occur). This latter possibility depends

on the actual share of informed agents p and the informativeness of the actions of

uninformed agents.

Lemma 4. Suppose ω = H. There exist unique cutoffs p̂1 ∈ [0, p) and p̂2 ∈ (p, 1)

defined by (6) and (7).

1. If p̂1 > 0 and p̂ ∈ [0, p̂1), then the set of locally stable points is {0,∞}.

2. If p̂ ∈ (p̂1, p̂2), then 0 is the unique locally stable point.

3. If p̂ ∈ (p̂2, 1], then there are no locally stable points.

4. If p̂ = p̂1 and private beliefs are bounded, then 0 is the unique locally stable point,

while if p̂ = p̂2 and private beliefs are bounded, then there are no locally stable

points.

7With a slight abuse of notation, I also use p̂1 and p̂2 to denote the unique cut-offs.
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Figure 1. Model misspecification leads to local stability at the incorrect state or
instability at the correct state.

If p > p∗, then p̂1 > 0, and otherwise p̂1 = 0, where p∗ ∈ (0, 1) is defined by

p∗ := 1−
log
(

1−FL(1/2)
1−FH(1/2)

)
FH(1/2)

[
log
(
FH(1/2)
FL(1/2)

)
+ log

(
1−FL(1/2)
1−FH(1/2)

)] . (8)

Intuitively, if informed agents sufficiently overestimate the share of uninformed

agents, then both 0 and ∞ are locally stable, whereas if agents sufficiently underesti-

mate the share of uninformed agents, then no points are locally stable. If the belief

about the share of informed agents is close to correct, the unique locally stable point

is 0.

Beliefs p̂ influence the information that accumulates from each action, but not the

probability of each action. When λ is close to 0, state H is perceived as very likely.

If an informed agent chooses `, this is indicative of a strong signal in favor of state

L, whereas if an informed agent chooses h, this is indicative of a weak signal in favor

of state H. The informativeness of uninformed agents’ actions is independent of λt.

Fixing λ close to 0, as p̂ increases, the perceived informativeness of contrary ` actions
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increases and the perceived informativeness of supporting h actions decreases. The

likelihood ratio jumps further away from 0 when an ` action is observed, and moves

a relatively smaller distance towards 0 when an h action is observed. Eventually, p̂ is

high enough such that the likelihood ratio moves away from 0 in expectation and 0 is

not locally stable. Figure 1 plots γ(·, 0) and −γ(·,∞) for an unbounded private belief

distribution.

When p is low enough, then enough new information is generated by uninformed

agents such that even in the extreme case in which informed agents believe all other

agents are uninformed, and thus do not account for any repeated information, there

is still enough new information to prevent the likelihood ratio from converging to the

incorrect state. Mathematically, this is captured by the fact that when p < p∗, then

γ(·,∞) < 0 for all p̂ ∈ [0, 1], where p∗ is defined in (8) and depends on the relative

informativeness of ` and h actions from uninformed agents, 1−FL(1/2)
1−FH(1/2)

and 1−FL(1/2)
1−FH(1/2)

,

respectively.

3.4 Global Convergence to Limit Outcomes

The next Lemma establishes that, from any initial value λ0 ∈ (0, 1), the likelihood

ratio converges to each locally stable point with positive probability and almost surely

does not converge to non-stable stationary points or non-stationary points.

Lemma 5. For any initial value λ0 ∈ (0,∞), P (λt → λ) > 0 iff λ is a locally stable

point of 〈λt〉.

When agents have an inaccurate model of inference, p̂ 6= p, the likelihood ratio is

no longer a martingale and it is not possible to use standard martingale methods to

establish belief convergence. I use the LLN and the LIL to establish global convergence

to locally stable points.

Consider the case of bounded signals. The probability of each action is constant

when the likelihood ratio is in the cascade set. If a cascade persists, then by the LLN,

the share of each action almost surely converges to its expected value. Therefore, if the

cascade persists, the likelihood ratio almost surely converges to a limit determined by

the expected share of each action. When this limit lies inside the cascade set, then by

the LIL, there is a positive measure of sample paths that converge to this limit without

leaving the cascade. On this set of sample paths, the cascade does indeed persist. In

contrast, when this limit lies outside the cascade set, then the likelihood ratio almost
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surely leaves the cascade set. Precisely the same criterion on γ determines whether

the candidate limit lies inside the cascade set and whether a stationary point is locally

stable. Therefore, whenever a stationary point is locally stable, the likelihood ratio

converges to this point with positive probability, from any initial value.

The intuition is similar for the case of unbounded signals. I bound the likelihood

ratio with a stochastic process that has state-independent transitions near the stable

stationary point, and use the LIL to determine the limiting behavior of this second

process.

3.5 Long Run Learning

This section presents the main result of the paper: a characterization of the learn-

ing dynamics in a misspecified model of inference. Several possible long-run learning

outcomes may occur. Let incorrect learning denote the event where λt → ∞, correct

learning denote the event where λt → 0, and non-stationary incomplete learning de-

note the event where λt does not converge or diverge.8 Learning is complete if correct

learning occurs almost surely.

When agents attribute too few actions to informed agents, they overestimate the

informativeness of actions supporting the more likely state and underestimate the in-

formativeness of contrary actions, causing beliefs to quickly become entrenched. Both

correct and incorrect learning arise. When agents attribute approximately the correct

ratio of actions to informed agents, incorrect learning is no longer possible and learn-

ing is complete. Finally, when informed agents attribute too many actions to informed

agents, they underestimate the informativeness of actions supporting the more likely

state and overestimate the informativeness of contrary actions. Beliefs cannot con-

verge, leading to non-stationary incomplete learning and temporary cascades on both

actions. Theorem 1 formally characterizes the relationship between learning and model

misspecification, using the cut-offs p̂1 and p̂2 derived in Lemma 4.

Theorem 1. Suppose ω = H. Given cutoffs p̂1 ∈ [0, p) and p̂2 ∈ (p, 1) defined by (6)

and (7),

1. If p̂1 > 0 and p̂ ∈ [0, p̂1), then λt → λ∞ almost surely, where λ∞ is a random

variable with supp(λ∞) = {0,∞}.

8Stationary incomplete learning, or the event where λt → λ for some λ /∈ {0,∞}, is another type
of incomplete learning. This does not occur in the current model.

14



0 0.2 0.4 0.6 0.8 1
p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p̂

Bounded Private Beliefs
FH =(5s-2)(s+2)/(8s2), FL =5(s-2)/2s

p̂1
p̂2

0 0.2 0.4 0.6 0.8 1
p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p̂

Unbounded Private Beliefs
FH = 2s-s2, FL = s2

Complete
learning

p∗

Nonstationary
incomplete

learning

Correct and
incorrect
learning

p∗

Complete
learning

Nonstationary
incomplete

learning

Correct and
incorrect
learning

Figure 2. Long Run Learning Outcomes

2. If p̂ ∈ (p̂1, p̂2), then λt → 0 almost surely.

3. If p̂ ∈ (p̂2, 1], then λt almost surely does not converge or diverge and P (λt /∈
J i.o.) = 1.

4. If private beliefs are bounded and p̂ = p̂1, then λt → 0 almost surely, while if p̂ =

p̂2, then λt almost surely does not converge or diverge and P (λt /∈ J i.o.) = 1.9

Lemmas 4 and 5 established that when p̂ < p̂2, the likelihood ratio converges to a

locally stable point with positive probability and does not converge to a non-stationary

or non-locally stable point, and when p̂ > p̂2, the likelihood ratio does not converge to

any point. Lemma 4 also characterized the stable points when p̂ < p̂2. The final step to

establish Theorem 1 is to rule out incomplete learning when p̂ < p̂2. Consider the case

of bounded signals. When a cascade persists with positive probability, the probability

that the likelihood ratio returns to any value outside the cascade set is strictly less than

one. Therefore, a value outside the cascade set occurs infinitely often with probability

zero – eventually, a cascade forms and persists. When a cascade persists and the

likelihood ratio remains inside the cascade set, the LLN guarantees belief convergence.

9See Footnote 6 for a discussion of the case of unbounded private beliefs when p̂ ∈ {p̂1, p̂2}.
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Figure 2 illustrates the three asymptotic learning outcomes outlined in Theorem 1

for a bounded and an unbounded private belief distribution. When p̂ lies above the

blue line, non-stationary incomplete learning occurs almost surely, whereas when p̂ lies

below the black line, both incorrect and correct learning occur with positive probability.

When p̂ lies between the two lines, learning is complete. The 45-degree line along which

p̂ = p is contained in the complete learning region, illustrating the insight that correct

beliefs lead to complete learning. Figure 2 also illustrates p∗. For the bounded private

belief distribution, p∗ = 0.10; for any p > 0.10, there exists a belief p̂ > 0 such that

incorrect learning occurs with positive probability.

Action convergence obtains for informed agents, in that they eventually choose the

same action, if and only if the likelihood ratio converges or diverges. Action convergence

never obtains for uninformed agents, as their actions always depend on their private

information. Define a subsequence (atn) to represent the actions of informed agents,

where tn = inf{t > tn−1|θt = I} and t0 = 0. Then the following Corollary is an

immediate consequence of Theorem 1.

Corollary 1. Suppose ω = H. Given cutoffs p̂1 ∈ [0, p) and p̂2 ∈ (p, 1) defined by (6)

and (7),

1. If p̂1 > 0 and p̂ ∈ [0, p̂1), then atn → a∞ almost surely, where a∞ is a random

variable with supp(a∞) = {`, h}.

2. If p̂ ∈ (p̂1, p̂2), then atn → h almost surely.

3. If p̂ ∈ (p̂2, 1], then atn almost surely does not converge.

4. If private beliefs are bounded and p̂ = p̂1, then atn → h almost surely, while if

p̂ = p̂2, then atn almost surely does not converge.

The asymptotic properties of learning determine whether the action choices of informed

agents eventually converge to the optimal action. If complete learning obtains, then

learning will be efficient in that informed agents will almost surely choose the optimal

action all but finitely often. Otherwise, there is positive probability that learning will

be inefficient and informed agents will choose the suboptimal action infinitely often.

Theorem 1 and Corollary 1 are robust to the addition of other information sources,

such as an infinite stream of public signals or gurus (agents who know the state with

probability 1).
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4 Discussion

A misspecified model of information processing interferes with asymptotic learning.

This insight has important policy implications. Suppose that a social planner can

release additional public information. In a correctly specified model, this will affect

the speed of learning, but will not impact asymptotic learning. However, in the face of

model misspecification, the timing, frequency and strength of public information will

play a key role in determining whether asymptotic learning obtains. When p̂ < p̂1,

immediate release of public information prevents beliefs from becoming entrenched on

the incorrect state. A delayed public response requires stronger or more frequent public

signals to overturn an incorrect herd. Interventions are required on a short-term basis:

once a herd begins on the correct action, it is likely to persist on its own (although

another short-term intervention may be necessary in the future). When p̂ ≥ p̂2, the

important policy dimension is the frequency or strength of public information. As

herds become more fragile, more frequent or precise public information is required to

maintain a herd on the correct state. An intervention must be long-term; once an

intervention ceases, the herd will break.

Experimental evidence provides support for both the presence of uninformed agents

and a misspecified belief about their frequency. In a social learning experiment, Go-

eree, Palfrey, Rogers, and McKelvey (2007) find that new information continues to

accumulate in cascades. Some agents still follow their private signal, despite the fact

that all agents observe the history. In rational models, this off-the-equilibrium-path

action would be ignored. However, it seems plausible that subsequent agents recognize

these off-the-equilibrium-path actions reveal an agent’s private signal, even if they are

unsure of the exact prevalence of such actions. Kubler and Weizsacker (2004) also

find evidence consistent with a misspecified model of social learning. They conclude

that subjects do learn from their predecessors, but are uncertain about the share of

previous agents who also learned from their predecessors. Particularly, agents under-

estimate the share of previous agents who herded and overestimate the amount of new

information contained in previous actions. Ziegelmeyer, Bracht, Koessler, and Winter

(2010) examine the fragility of cascades in an experiment where an expert receives a

more precise signal than other participants. The unique Nash equilibrium is for the

expert to follow her signal, and observation of a contrary signal overturns a cascade.

However, experts rarely overturn a cascade when equilibrium prescribes that they do

so. As the length of the cascade increases, experts become even less likely to follow their
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signal: they break 65% of cascades when there are two identical actions, but only 15%

of cascades when there are five or more identical actions. Elicited beliefs evolve in a

manner similar to the belief process that would arise if all agents followed their signals,

and each action conveyed private information. In addition, off-the-equilibrium-path

play frequently occurs, and these non-equilibrium actions are informative.

Experimental evidence studying how people process correlated information also

supports this form of model misspecification. Enke and Zimmermann (2015) show

that subjects treat correlated information as independent when updating, and beliefs

are too sensitive to correlated information sources.

This model leaves open several interesting questions. Individuals may differ in

their depth of reasoning and their ability to combine different information sources

- introducing heterogeneity into how agents process information would capture this.

Allowing for partial observability of histories would also be a natural extension, while

introducing payoff interdependencies would make the model applicable to election and

financial market settings.

5 Appendix

Proof of Lemma 1. Suppose λ ≥ (1 − b)/b. The strongest signal an agent can

receive in favor of state H is b. This leads to posterior q(λ, b) = λb/(1 − b) ≥ 1 and

an informed agent finds it optimal to choose a = `. Therefore, for any signal s ≥ b,

an informed agent will choose action `. Similarly, if λ < (1 − b̄)/b̄, then an informed

agent will choose action h for any signal s ≤ b̄. �

Proof of Lemma 2. At a stationary point λ, φ(a, λ) = λ for all a such that

ψ(a|ω, λ; p) > 0. As p < 1 and uninformed agents are never in a cascade, ψ(a|ω, λ; p) >

0 for all a ∈ {`, h} and for all (ω, λ) ∈ {L,H} × [0,∞]. Also, these actions are infor-

mative,

ψ(a|L, λ; p̂)

ψ(a|H, λ; p̂)
6= 1.

for all a ∈ {`, h} and λ ∈ (0,∞). Therefore, {0,∞} are the only two values that satisfy

φ(a, λ) = λ for all a ∈ {`, h}. �

The proof of Lemma 3 makes use of Corollary C.1 from Smith and Sorensen (2000),
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which is reproduced below in the context of this paper.

Lemma 6 (Condition for Locally Stable Fixed Point). Given a finite set A, and

Borel measurable functions f : A × R+ → R+ and ρ : A × R+ → [0, 1] satisfying∑
a∈A ρ(a|x) = 1. Let x1 ∈ R. Then the process 〈xt〉∞t=0 where xt+1 = f(at, xt) with

probability ρ(at|xt) for at ∈ A is a Markov process. Let x̃ be a fixed point of x. Suppose

f(a, ·) is continuously differentiable and ρ(a|·) is continuous at x̃ for all a ∈ A. If∑
a∈A

ρ(a|x̃) log |fx(a, x̃)| < 0 (9)

then x̃ is locally stable.

Proof. See Corollary C.1 in Smith and Sorensen (2000). �

Proof of Lemma 3. Suppose ω = H. Let (Υ,F ,P) denote the underlying proba-

bility space for 〈at, λt〉 and define

g(a, λ) = log
ψ(a|L, λ; p̂)

ψ(a|H, λ; p̂)
. (10)

and ρ(a|λ) = ψ(a|H, λ; p). Using this notation, log λt+1 = log λt+g(at, λt), E[g(a, λ)] =

γ(p̂, λ) and γ(p̂, λ) = ρ(`|λ)g(`, λ) + ρ(h|λ)g(h, λ). The proof follows from Claims 1 -

3.

Claim 1. If γ(p̂, 0) < 0, then 0 is locally stable and if γ(p̂,∞) > 0, then ∞ is locally

stable.

Proof. Applying Lemma 6 to 〈λt〉, A = {`, h}, ρ(a|λ) = ψ(a|H,λ; p), f(a, λ) =

φ(a, λ; p̂) and

φλ(a, λ; p̂) =
ψ(a|L, λ; p̂)

ψ(a|H,λ; p̂)
+ λ

d

dλ

(
ψ(a|L, λ; p̂)

ψ(a|H, λ; p̂)

)
. (11)

Thus, at λ = 0, (9) is equal to γ(p̂, 0). This establishes that 0 is locally stable when

γ(p̂, 0) < 0.

Define Markov process 〈Λt〉 with transitions

Ψ(h|ω,Λ; p) = pF ω

(
Λ

1 + Λ

)
+ (1− p)F ω(1/2) (12)

Ψ(`|ω,Λ; p) = 1−Ψ(h|ω,Λ; p) (13)

Φ(a,Λ; p̂) = Λ

(
Ψ(a|H,Λ; p̂)

Ψ(a|L,Λ; p̂)

)
(14)
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Note Λt = 1/λt. The set of stationary points of 〈Λt〉 are {0,∞}. Define

Γ(p̂,Λ) :=
∑

a∈{`,h}

Ψ(a|H,Λ; p) log

(
Ψ(a|H,Λ; p̂)

Ψ(a|L,Λ; p̂)

)
. (15)

Analogous to the preceding paragraph, 0 is locally stable when Γ(p̂, 0) < 0. Note

Γ(p̂, 0) = −γ(p̂,∞) and Λ = 0 corresponds to λ =∞. Therefore ∞ is a locally stable

point of 〈λt〉 when γ(p̂,∞) > 0. �

Claim 2. If private beliefs are bounded and γ(p̂, 0) ≥ 0 (γ(p̂,∞) ≤ 0), then for any

λ0 ∈ (0,∞), P (λt → 0) = 0 (P (λt →∞) = 0). Thus, 0 (∞) is not locally stable.

Proof. Suppose private beliefs are bounded and γ(p̂, 0) ≥ 0. Let τ1 be the stopping

time corresponding to the period in which an h-cascade forms and never breaks,

τ1 = inf
{
t ≥ 1|λi ∈ J h ∀i ≥ t

}
,

and let E = {υ ∈ Υ|τ1(υ) <∞} be the event in which an h-cascade forms in finite time

and never breaks. If informed agents are in an h-cascade in period t, then g(at, λt) =

g(at, 0) and λt <
(
1− b

)
/b. Then on any sample path υ ∈ E,

log λt(υ) = log λτ1(υ) +
t−1∑

i=τ1(υ)

g(ai(υ), 0) < log
(
1− b

)
/b ∀t > τ1(υ). (16)

Suppose γ(p̂, 0) > 0. In order for (16) to hold for υ, it must be the case that

lim sup
t→∞

1

t− τ1(υ)

t−1∑
i=τ1(υ)

g(ai(υ), 0) ≤ 0. (17)

By the Strong Law of Large Numbers,

lim
t→∞

1

t

t∑
i=1

g(ai, 0) = γ(p̂, 0) > 0 a.s. (18)

Thus, (17) cannot hold for a set of sample paths that occur with positive probability

and it must be that P (E) = 0.

Suppose γ(p̂, 0) = 0. Then on set E, 〈λt〉 has the same limit properties as a zero
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mean random walk with increments g(at, 0). But

lim sup
t→∞

t∑
i=1

g(ai, 0) =∞ a.s. (19)

Thus, (16), cannot hold for a set of sample paths that occur with positive probability

and it must be that P (E) = 0.

Thus, if γ(p̂, 0) ≥ 0, P (E) = 0 and every h-cascade breaks with probability 1.

Therefore, P (λt → 0) = 0 from any λ0 ∈ (0,∞). The proof for ∞ is analogous. �

Claim 3. If private beliefs are unbounded and γ(p̂, 0) > 0 (γ(p̂,∞) < 0), then for any

λ0 ∈ (0,∞), P (λt → 0) = 0 (P (λt →∞) = 0). Thus, 0 (∞) is not locally stable.

Proof. Suppose γ(p̂, 0) > 0 and private beliefs are unbounded. Let τ1 be the stopping

time corresponding to the period in which the likelihood ratio is less than M for all

future periods,

τ1 = inf {t ≥ 1|λi < M ∀i ≥ t} ,

and let E = {υ ∈ Υ|τ1(υ) < ∞} be the event in which this stopping time is finite.

Then on any sample path υ ∈ E,

log λt(υ) = log λτ1(υ) +
t−1∑

i=τ1(υ)

g(ai(υ), λi(υ)) < M ∀t > τ1(υ). (20)

In order for (20) to hold, it must be the case that for υ ∈ E,

lim sup
t→∞

1

t− τ1(υ)

t−1∑
i=τ1(υ)

g(ai(υ), λi(υ)) ≤ 0. (21)

Next I construct a process on (Υ,F ,P) that converges to a positive limit almost

surely. Define an i.i.d. sequence of random variables (α1, α2, ...) with

αt =

` if (θt = U and st ≥ 1/2)

h if (θt = I) or (θt = U and st < 1/2).
(22)

Then α corresponds to the action that is chosen if λ = 0, with P (α) = ρ(α|0). Given
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γ(p̂, 0) > 0, by continuity of ψ, there exists an M > 0 such that

ρ(`|0)g(`, x) + ρ(h|0)g(h, y) > 0. (23)

for all x, y ∈ [0,M ]. Choose λ`, λh ∈ [0,M ] such that

λ` = arg min
λ∈[0,M ]

g(`, λ) (24)

and

λh = arg min
λ∈[0,M ]

g(h, λ). (25)

Note E[g(αi, λαi
)] = ρ(`|0)g(`, λ`) + ρ(h|0)g(h, λh) > 0, where the inequality follows

from λh, λ` ∈ [0,M ] and (23). By the Strong Law of Large Numbers, for any finite

j ≥ 1,

lim
t→∞

1

t− j

t∑
i=j

g(αi, λαi
) > 0 a.s. (26)

For λ ∈ [0,M ], g(h, λ) ≥ g(h, λh), g(`, λ) ≥ g(`, λ`) and g(`, λ) > g(h, λh), where

the first two inequalities follow from the definition of λh, λ`, and the third follows from

g(`, λ) > 1 and g(h, λh) < 1. Also, (at, αt) 6= (h, `) by definition. Therefore, if λt ≤M ,

then g(at, λt) ≥ g(αt, λαt). Therefore, for υ ∈ E,

t∑
i=τ1(υ)

g(ai(υ), λi(υ)) ≥
t∑

i=τ1(υ)

g(αi(υ), λαi(υ)) (27)

for all t > τ1(υ).

Combining (21) and (27), for υ ∈ E,

0 ≥ lim sup
t→∞

1

t− τ1(υ)

t−1∑
i=τ1(υ)

g(αi(υ), λαi(υ)). (28)

But given (26), inequality (28) is satisfied with probability 0. Therefore, P (E) = 0.

Therefore, almost surely the likelihood ratio exceeds M infinitely often and P (λt →
0) = 0 from any λ0 ∈ (0,∞). The proof for ∞ is analogous. �

Proof of Lemma 4. Suppose ω = H. The proof follows from Claims 4 - 7.

Claim 4. For a ∈ {`, h},
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1. If λ > 1, then d
dp̂

(
ψ(a|L,λ;p̂)
ψ(a|H,λ;p̂)

)
< 0.

2. If λ < 1, then d
dp̂

(
ψ(a|L,λ;p̂)
ψ(a|H,λ;p̂)

)
> 0.

3. If λ = 1, then d
dp̂

(
ψ(a|L,λ;p̂)
ψ(a|H,λ;p̂)

)
= 0.

Proof. Suppose a = h. Then

d

dp̂

(
ψ(h|L, λ; p̂)

ψ(h|H,λ; p̂)

)
=
FL(1/(λ+ 1))FH(1/2)− FL(1/2)FH(1/(λ+ 1))

[p̂FH(1/(λ+ 1)) + (1− p̂)FH(1/2)]2
(29)

Given FL/FH is strictly increasing on supp(F ) (Smith and Sorensen 2000, 2008), and

1/2 ∈ supp(F ), if λ > 1, then FL(1/(λ+1))
FH(1/(λ+1))

< FL(1/2)
FH(1/2)

, if λ < 1, then FL(1/(λ+1))
FH(1/(λ+1))

>
FL(1/2)
FH(1/2)

and if λ = 1, then the numerator is 0, which establishes Claim 4 for a = h.

The proof of a = ` is analogous. �

Claim 5. (Local Stability of 0) There exists a p̂2 ∈ (p, 1) such that 0 is locally stable

for p̂ ∈ [0, p̂2) and 0 is not locally stable for p̂ ∈ (p̂2, 1]. If private beliefs are bounded,

0 is not locally stable for p̂ = p̂2.

Proof. By Lemma 3, 0 is locally stable if γ(p̂, 0) < 0 and 0 is not locally stable if

γ(p̂, 0) > 0. If private beliefs are bounded, 0 is not locally stable if γ(p̂, 0) = 0. By (5),

γ(p̂, 0) =
∑

a∈{`,h}

ψ(a|H, 0; p) log

(
ψ(a|L, 0; p̂)

ψ(a|H, 0; p̂)

)

= (1− p)(1− FH(1/2)) log

(
1− FL(1/2)

1− FH(1/2)

)
+
(
p+ (1− p)FH(1/2)

)
log

(
p̂+ (1− p̂)FL(1/2)

p̂+ (1− p̂)FH(1/2)

)
(30)

Substituting p̂ = 1 into (30),

γ(1, 0) = (1− p)(1− FH(1/2)) log

(
1− FL(1/2)

1− FH(1/2)

)
> 0 (31)
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where 1−FL(1/2)
1−FH(1/2)

> 1 follows from FL(1/2) < FH(1/2). Substituting p̂ = p into (30),

γ(p, 0) =
∑

a∈{`,h}

ψ(a|H, 0; p) log

(
ψ(a|L, 0; p)

ψ(a|H, 0; p)

)
(32)

< log

 ∑
a∈{`,h}

ψ(a|H, 0; p)

(
ψ(a|L, 0; p)

ψ(a|H, 0; p)

)
= log

 ∑
a∈{`,h}

ψ(a|L, 0; p)

 = 0

where the second line follows from the weighted arithmetic mean-geometric mean in-

equality. Finally,

dγ(p̂, 0)

dp̂
=
(
p+ (1− p)FH(1/2)

)(ψ(h|H, 0; p̂)

ψ(h|L, 0; p̂)

)
d

dp̂

(
ψ(h|L, 0; p̂)

ψ(h|H, 0; p̂)

)
> 0 (33)

where the inequality follows from Claim 4.

Therefore, γ(p̂, 0) is increasing in p̂, γ(p, 0) < 0 and γ(1, 0) > 0. By continuity,

there exists a unique p̂2 ∈ (p, 1) such that γ(p̂2, 0) = 0. For p̂ < p̂2, γ(p̂, 0) < 0 and 0

is locally stable, while for p̂ > p̂2, γ(p̂, 0) > 0 and 0 is not locally stable. For p̂ = p̂2,

γ(p̂, 0) = 0; if private beliefs are bounded, 0 is not locally stable. �

Claim 6. (Local Stability of ∞)

1. If p > p∗, where p∗ is defined in (8), there exists a p̂1 ∈ (0, p) such that ∞ is

locally stable for p̂ ∈ [0, p̂1) and is not locally stable for p̂ ∈ (p̂1, 1]. If private

beliefs are bounded, ∞ is not locally stable for p̂ = p̂1.

2. If p < p∗, then ∞ is not locally stable for all p̂ ∈ [0, 1].

3. If p = p∗, then ∞ is not locally stable for all p̂ ∈ (0, 1], and if private beliefs are

bounded, ∞ is not locally stable for p̂ = 0.

Proof. Recall the Markov process 〈Λt〉 defined in (12)-(14), where Λt = 1/λt. At

Λt = 0,

Γ(p̂, 0) =
((
p+ (1− p)(1− FH(1/2)

))
log

(
p̂+ (1− p̂)(1− FH(1/2))

p̂+ (1− p̂)(1− FL(1/2))

)
+(1− p)FH(1/2) log

(
FH(1/2)

FL(1/2)

)
(34)
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where Γ is the stability criterion of 〈Λt〉 defined in (15). Substituting p̂ = 0 into (34),

Γ(0, 0) =
(
1− (1− p)FH(1/2)

)
log

(
1− FH(1/2)

1− FL(1/2)

)
+ (1− p)FH(1/2) log

(
FH(1/2)

FL(1/2)

)
(35)

which is less than 0 when

p > 1−
log
(

1−FL(1/2)
1−FH(1/2)

)
FH(1/2)

[
log
(
FH(1/2)
FL(1/2)

)
+ log

(
1−FL(1/2)
1−FH(1/2)

)] := p∗. (36)

Substituting p̂ = p into (34),

Γ(p, 0) =
∑

a∈{`,h}

Ψ(a|H, 0; p) log

(
Ψ(a|H, 0; p)

Ψ(a|L, 0; p)

)

= −
∑

a∈{`,h}

Ψ(a|H, 0; p) log

(
Ψ(a|L, 0; p)

Ψ(a|H, 0; p)

)

> − log

 ∑
a∈{`,h}

Ψ(a|H, 0; p)
Ψ(a|L, 0; p)

Ψ(a|H, 0; p)


= 0

where the third line follows from the weighted arithmetic mean-geometric mean in-

equality. Finally,

dΓ(p̂, 0)

dp̂
= Ψ(`|H, 0; p)

Ψ(`|L, 0; p̂)

Ψ(`|H, 0; p̂)

d

dp̂

(
Ψ(`|H, 0; p̂)

Ψ(`|L, 0; p̂)

)
> 0 (37)

where the inequality follows from Claim 4 and Ψ(a|ω, 0; p̂) = ψ(a|ω,∞; p̂).

Therefore, Γ(p̂, 0) is increasing in p̂ and Γ(p, 0) > 0.

Case 1. When p > p∗, Γ(0, 0) < 0. By continuity, when p > p∗, there exists a unique

p̂1 ∈ (0, p) such that Γ(p̂1, 0) = 0. For p̂ < p̂1, Γ(p̂, 0) < 0 and 0 is a locally stable

point of 〈Λt〉, while for p̂ > p̂1, Γ(p̂, 0) > 0 and 0 is not locally stable. For p̂ = p̂1,

Γ(p̂, 0) = 0; if private beliefs are bounded, 0 is not locally stable.

Case 2. When p < p∗, then Γ(p̂, 0) > 0 for all p̂ ∈ [0, 1] and 0 is not locally stable for any

p̂.

25



Case 3. When p = p∗, then Γ(0, 0) = 0 and p̂1 = 0. For p̂ > 0, Γ(p̂, 0) > 0 and 0 is not a

locally stable point of 〈Λt〉. For p̂ = 0, Γ(p̂, 0) = 0; if private beliefs are bounded,

0 is not locally stable.

For any p̂, if 0 is a locally stable point of 〈Λt〉, then ∞ is a locally stable point of

〈λt〉. �

Claim 7. p̂1 < p̂2.

Proof. This follows immediately from the fact that p̂1 < p and p̂2 > p. �

Proof of Lemma 5. Suppose ω = H. Let (Υ,F ,P) denote the underlying proba-

bility space for 〈at, λt〉 and define

g(a, λ) = log
ψ(a|L, λ; p̂)

ψ(a|H, λ; p̂)
. (38)

and ρ(a|λ) = ψ(a|H,λ; p). Using this notation, log λt+1 = log λt + g(at, λt) and

γ(p̂, λ) = ρ(`|λ)g(`, λ) + ρ(h|λ)g(h, λ).

Let (α1, α2, ...) be an i.i.d. sequence of random variables with

αt =

` if {θt = U and st ≥ 1/2}

h if {θt = I} or {θt = U and st < 1/2}.
(39)

Then αt corresponds to the action that is chosen if there is an h-cascade in period t

and P (α) = ρ(α|0). Note E[g(α, 0)] = γ(p̂, 0) and let σ2 := V ar(g(α, 0)). Define a

sequence of random variables (X1, X2, ...) where

Xt =
g(αt, 0)− γ(p̂, 0)

σ
. (40)

Then (X1, X2, ...) are i.i.d random variables with mean 0 and variance 1. By the Law

of the Iterated Logarithm (LIL) (Hartman and Wintner 1941),

lim sup
t→∞

∑t
i=1Xi√

2t log log t
= 1 a.s. (41)

Thus, for all ε > 0,
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P

[
1

t

t∑
i=1

g(αi, 0) ≥ γ(p̂, 0) + (1 + ε)βt i.o.

]
= 0 (42)

where

βt :=

√
2σ2 log log t

t
. (43)

The proof of Lemma 5 follows from Claims 8 - 10, which establish that if λ is a

locally stable point of 〈λt〉, then P (λt → λ) > 0 from any initial value λ1 ∈ (0,∞),

Claim 11, which rules out convergence to non-stationary points and Claims 2-3, which

establish when stationary points are not globally stable.

Claim 8. Let

E =

{
υ ∈ Υ

∣∣∣∣ 1

t

t∑
i=1

g(αi(υ), 0) < γ(p̂, 0) + (1 + ε)βt for all t ≥ 3, ε > 0

}
(44)

be the event that 1
t

∑t
i=1 g(αi, 0) never exceeds γ(p̂, 0)+(1+ε)βt for all t ≥ 3 and ε > 0.

Then there exists a δ > 0 such that P (E) ≥ δ.

Proof. Let St =
∑t

i=1 g(αi, 0). Fixing ε > 0, define the number of times that the Law

of the Iterated Logarithm bound is exceeded starting at time t,

Rt =
∞∑
i=t

I{Si > iγ(p̂, 0) + (1 + ε)iβi}

where I is the indicator function. From (42), P (R3 < ∞) = 1. Let τ be the stopping

time corresponding to the last time that St exceeds this boundary,

τ = inf{T ≥ 3 | St < tγ(p̂, 0) + (1 + ε)tβt for all t ≥ T}.

Then Rτ = 0 by definition and P (τ <∞) = 1 by (42). For any t <∞, the probability

of no crossings during i ∈ {3, ..., t} is strictly positive, P ((R3 − Rt) = 0) > 0. Thus,

for any υ with 3 < τ(υ) < ∞, there is a corresponding sample path υ′ such that

St(υ) = St(υ
′) for t ≥ τ and R3(υ

′) = 0. Therefore, P (R3 = 0) > 0 and there exists a

δ > 0 such that P (E) ≥ δ.

�

Claim 9. If private beliefs are bounded and λ ∈ {0,∞} is locally stable, then P (λt →
λ) > 0 from any initial value λ1 ∈ (0,∞).
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Proof. Suppose 0 is locally stable and private beliefs are bounded. Fix λ1 ∈ (0,∞)

and let η − 1 be the number of consecutive h actions required to start a cascade (η is

deterministic and finite).10 Let En be the event that an h-cascade begins in period η

and persists at least until period η + n,

En = {λt ∈ J h ∀t ∈ {η, ..., η + n}} (45)

where E0 = {λη ∈ J h} is the event that a cascade begins in period η and E∞ = {λt ∈
J h ∀t ≥ η} is the event that a cascade begins in period η and never breaks.

Suppose sample path υ ∈ E0. If υ ∈ En, the likelihood ratio is equal to

log λη+n(υ) = log λη(υ) +

η+n−1∑
i=η

g(αi(υ), 0). (46)

since αi coincides with ai in an h-cascade. Thus, a sufficient condition for υ ∈ En is

t−1∑
i=η

g(αi(υ), 0) < 0 ∀t ∈ {η + 1, ..., η + n}. (47)

From Claim 8, we know that

P

(
t−1∑
i=η

g(αi, 0) < (t− η)(γ(p̂, 0) + (1 + ε)βt−η) ∀t > η + 2, ε > 0

)
≥ δ (48)

where βt is defined in (43). Given 0 is locally stable, by Lemma 3, γ(p̂, 0) < 0. Given

βt → 0, γ(p̂, 0) + (1 + ε)βt is eventually negative for any ε > 0. Fix ε > 0 and let k+ 1

be the number of periods required for the LIL bound to be negative,

k + 1 = inf {t ≥ 3|γ(p̂, 0) + (1 + ε)βt < 0} (49)

(k is deterministic and finite). Then γ(p̂, 0) + (1 + ε)βt < 0 for all t ≥ k + 1.

Conditional on an h-cascade beginning in period η, the probability that the likeli-

10The likelihood ratio in period t is based on actions a1, ..., at−1. Thus, η− 1 consecutive h actions
will start a cascade in period η.
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hood ratio remains in the h-cascade set through period η + k is

P (Ek|E0) ≥ P

(
t−1∑
i=η

g(αi, 0) < 0 ∀t ∈ {η + 1, ..., η + k}

)
> ρ(h|0)k > 0 (50)

where the first inequality follows from (47) and the second inequality follows from the

probability of k consecutive h actions. The probability of the h-cascade never breaking

is

P (E∞|E0) ≥ P

(
t−1∑
i=η

g(αi, 0) < 0 ∀t > η

)

> P

(
t−1∑
i=η

g(αi, 0) < min{0, (t− η)(γ(p̂, 0) + (1− ε)βt−η)} ∀t > η

)
≥ δρ(h|0)k

where the second inequality follows from the LIL bound, which is less than 0 starting

in period η + k + 1, and the third inequality follows from Claim 8 and (50). Finally,

the probability an h-cascade forms in period η is bounded below by the probability of

η − 1 consecutive uninformed agents who all choose h,

P (E0) ≥ (1− p)η−1FH(1/2)η−1 > 0. (51)

Therefore, the probability that an h-cascade forms in period η and never breaks is

strictly positive since

P (E∞) > δ(1− p)η−1FH(1/2)η−1ρ(h|0)k > 0. (52)

As before, let random variable τ1 be the stopping time corresponding to the first

period in which an h-cascade forms and never breaks,

τ1 = inf
{
t ≥ 1|λi ∈ J h ∀i ≥ t

}
. (53)

Then the probability that an h-cascade forms in finite time and never breaks is strictly

positive since

P (τ1 <∞) > P (E∞) > 0. (54)
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For all υ such that τ1(υ) <∞,

log λt(υ) < log

(
1− b̄
b̄

)
+

t−1∑
i=τ1(υ)

g(αi(υ), 0). (55)

for all t > τ1(υ). Also,

lim
t→∞

t−1∑
i=τ1(υ)

g(αi(υ), 0) = −∞ a.s., (56)

where the convergence follows from E[g(αt, 0)] = γ(p̂, 0) < 0. Therefore, for almost all

sample paths υ such that τ1(υ) <∞,

lim
t→∞

log λt(υ) = −∞. (57)

Therefore, P (λt → 0) = P (τ1 <∞) > 0. The proof for ∞ is analogous. �

Claim 10. If private beliefs are unbounded and λ ∈ {0,∞} is locally stable, then

P (λt → λ) > 0 from any initial value λ1 ∈ (0,∞).

Proof. Suppose 0 is locally stable and private beliefs are unbounded. By Lemma 3,

γ(p̂, 0) = ρ(`|0)g(`, 0) + ρ(h|0)g(h, 0) < 0. First I construct a process on (Υ,F ,P) that

converges to a negative limit almost surely. By continuity of ψ, there exists an M > 0

such that

ρ(`|M)g(`, x) + ρ(h|M)g(h, y) < 0. (58)

for all x, y ∈ [0,M ]. Choose λ`, λh ∈ [0,M ] such that

λ` = arg max
λ∈[0,M ]

g(`, λ) (59)

and

λh = arg max
λ∈[0,M ]

g(h, λ). (60)

Define an i.i.d. sequence of random variables (ν1, ν2, ...) with

νt =

` if (θt = I and st ≥ s∗(M)) or (θt = U and st ≥ 1/2)

h if (θt = I and st < s∗(M)) or (θt = U and st < 1/2).
(61)
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Then ν corresponds to the action that is chosen if λ = M , with P (ν) = ρ(ν|M).

Note E[g(νi, λνi)] = ρ(`|M)g(`, λ`) + ρ(h|M)g(h, λh) < 0, where the inequality

follows from λh, λ` ∈ [0,M ] and (58). By the Strong Law of Large Numbers, for any

finite j ≥ 1,

lim
t→∞

1

t− j

t∑
i=j

g(νi, λνi) < 0 a.s. (62)

Therefore, using similar logic to Claim 9, for any finite j ≥ 1,

P

(
t−1∑
i=j

g(νi, λνi) < 0 ∀t > j

)
> 0. (63)

For λ ∈ [0,M ], g(h, λ) ≤ g(h, λh), g(`, λ) ≤ g(`, λ`) and g(h, λ) < g(`, λ`), where

the first two inequalities follow from the definition of λh, λ`, and the third follows from

g(`, λ`) > 1 and g(h, λ) < 1. Also, when λ ∈ [0,M ], (a, ν) 6= (`, h) by definition.

Therefore, if λt ≤M , then g(at, λt) ≤ g(νt, λνt).

Similar to Claim 9 with J h replaced by [0,M ], define η as the number of consecutive

h actions required for the likelihood ratio to fall below M and let

En = {λt ∈ [0,M ] ∀t ∈ {η, ..., η + n}}. (64)

Thus, if υ ∈ E0 and

t−1∑
i=η

g(νi(υ), λνi(υ)) < 0 ∀t ∈ {η + 1, ..., η + n}. (65)

then υ ∈ En. By (63), (65) holds on a set of sample paths with positive measure

for any n. This establishes that P (E∞|E0) > 0. Finally, as in Claim 9, P (E0) > 0.

Therefore, the probability that the likelihood ratio falls below M in period η and never

again exceeds M is strictly positive, P (E∞) > 0. By similar logic to Claim 9, on this

set of sample paths, λt → 0 almost surely. Therefore, P (λt → 0) > 0. The proof for

∞ is analogous.

�

Claim 11. If λ is not a stationary point of 〈λt〉, then P (λt → λ) = 0.

Proof. Theorem B.1 in Smith and Sorensen (2000) establishes that a martingale cannot

converge to a non-stationary point; the same result applies to the Markov process 〈λt〉.
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Therefore, if P (λt → λ) > 0, then λ ∈ {0,∞}. �

Proof of Theorem 1. Suppose ω = H. The proof follows from Claims 12 - 14.

Claim 12. If p > p∗ and p̂ < p̂1, then λt → λ∞ almost surely, where λ∞ is a random

variable with supp(λ∞) = {0,∞}.

Proof. Suppose p > p∗ and p̂ < p̂1. By Lemma 4, the set of locally stable points is

{0,∞} and by Lemma 5, P (λt → λ) > 0 iff λ ∈ {0,∞}. Thus, it is necessary to rule

out incomplete learning to show that there exists an λ∞ with supp(λ∞) = {0,∞} such

that λt → λ∞ almost surely.

Suppose private beliefs are bounded. Let τ3 = inf{t ≥ 1|λt ∈ J } be the stopping

time corresponding to the first time that the likelihood ratio enters the cascade set

and let τ4 = inf{t > τ3|λt /∈ J } be the stopping time corresponding to the first time

that the likelihood ratio leaves the cascade set. For any λ1, P (τ3 < ∞) = 1 and by

Lemma 5, P (τ4 < ∞) < 1 since the cascade persists with positive probability. The

same holds for subsequent cascades. Therefore, P (λt /∈ J i.o.) = 0 and the likelihood

ratio eventually remains in the cascade set almost surely. Lemma 5 established belief

convergence on any sample path that remains in the cascade set. Thus, there exists a

random variable λ∞ with supp(λ∞) = {0,∞} such that λt → λ∞ almost surely.

Suppose private beliefs are unbounded. Similar logic establishes that for any

(λ1, λ2) ⊂ (0,∞), P (λt ∈ (λ1, λ2) i.o.) = 0. Therefore, there exists a τ such that

P (λt ∈ [0, λ1] ∪ [λ2,∞] ∀t > τ) = 1. Choosing λ1 small enough and λ2 large enough

can be used to establish convergence. �

Claim 13. If p̂ ∈ (p̂1, p̂2), then λt → 0 almost surely.

Proof. Similar logic to Claim 12, substituting J h for J in the case of bounded private

beliefs and setting λ2 = ∞ in the case of unbounded private beliefs, establishes the

claim. �

Claim 14. If p̂ > p̂2, then λt almost surely does not converge or diverge.

Proof. When p̂ > p̂2, the likelihood ratio almost surely doesn’t converge to 0 or diverge

to∞. By Lemma 5, these are the only two candidate limit points. Therefore, learning

is incomplete.
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P (λt /∈ J i.o.) = 1 follows immediately from Claim 2 for bounded private beliefs,

which establishes when a cascade breaks with probability 1, and from Claim 14 for

unbounded private beliefs, which establishes that the likelihood ratio almost surely

does not enter the cascade set. When private beliefs are bounded, Claim 13 also holds

for p̂ = p̂1 and Claim 14 also holds for p̂ = p̂2. �
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