

GEOTHERMAL 101

Geothermal heat is generated by the radioactive decay of elements in the upper crust (83%), as well as primordial heat from the formation of the planet (17%). Temperature increases with depth.

Reservoir Type		
1	Convective Hydrothermal Resources	
2	Vapor Dominated	
3	Hot-water Dominated	
4	Other Hydrothermal Resources	
5	Sedimentary Basin	
6	Geopressured	
7	Radiogenic	
8	Hot Rock Resources	
9	Solidified (Hot Dry Rock)	
10	Part/Still Molten (Magma)	

There are various typ	pes of geotherma	al resources.	Canada ha	s potential
for all geothermal re	source types with	n uses from	low to high 1	emperatures.

Reservoir Temperature	Reservoir Fiuld	Common Use	Technology Commonly Chosen
High Temperature	Fluid and/or Steam	Power Generation	Flash Steam
>170°		Direct Use	Combined (flash and binary) Cycle
			Direct Fluid Use
			Heat Exchangers
			Heat Pumps
Intermediate Temperature	Fluid	Power Generation	Binary Cycle
110-170°C		Direct Use	Direct Fluid Use
			Heat Exchangers
			Heat Pumps
Intermediate Temperature	Fluid	Direct Use	Direct Fluid Use
70-110°C			Heat Exchangers
			Heat Pumps
Low Temperature	Fluid	Direct Use	Direct Fluid Use
30-70°C			Heat Exchangers
			Heat Pumps

Map of geothermal potential in Canada based on end use. Grasby et al. 2011

Heated Pressurized

vapour

Heat

High pressure

liquid

Source

Expander

Thermal energy is extracted from the fluid to produce power through a binary Organic Rankine Cycle (ORC) system to create clean electricity. After the ORC, the still hot fluid goes through a heat exchanger to extract heat for district and/or industrial heating. Once all the energy is extracted, the fluid is reinjected into the Earth to be reheated and used again on multidecadal or longer timeframe.

An example of a **Conventional Geothermal** well pair generating power and thermal energy. Wells are typically drilled to depths greater than 1 km. They generate large thermal outputs even at lower temperatures with high fluid volumes. These geothermal systems are sustainable over decades with good management.

Electrical

Energy

Low pressur

vapour

Coolin

Low pressure

liquid

Water

Canada's geothermal potential exists in sedimentary basins, volcanic systems and other hot dry rocks. Sedimentary basins can provide heat for direct use and electricity via Organic Rankine Cycle (ORC) generators. The volcanic and igneous systems of Western Canada offer the potential for high efficiency power generation through flash and dry steam generators. With advancing technology, Canada's geothermal energy potential will continue to grow.

Geotherr			ermal En
	<u>.</u>	Ø,	0
Lov fe	west land use ootprint per MW of all renewable energy.	Baseload (24/7 – 365) capabilities and available on demand (dispatchable) and lasts more than 40 years.	Most prevalen baseload renewable resource (hea & electricity) i many jurisdictions and excellen Environmenta Societal, Governance (ESG) values.

Horizontal loop Where space allows, the sealed piping loop is buried in trenches from 3 to 6 feet deep.	Vertical I Where space is I the sealed piping inserted in borel 150 to 400 ft. d
Well water loop	Pond loo

Energy - the Solution.

Most effective renewable for Green House (heat Gas (GHG) itv) in eductions & lowest environment footprint of all renewables

Dual commodify value (heat & electricity) plus 'add-ons" such mineral extraction and CO₂ sequestration

In areas with existing hydrocarboi industry, aeotherma utilizes oil and gas assets, expertise and data

Net power capacity of a geothermal well vs. the temperature of pumped or self flowing wells. Canada's geothermal power potential for sedimentary basins is outlined in green, and the potential for volcanic / igneous systems is outlined in orange.

Geoexchange® systems use heat pumps to recover and store heat from various sources, in the ground. Heat pumps extract atmospheric heat during summer months, storing it for extraction during the winter. Heat exchange systems can also use groundwater or surface water as the thermal storage mechanism or even the heat transfer mechanism.

Enhanced (Engineered and/or Advanced) Geothermal Systems

(EGS) are man-made geothermal reservoirs created by injecting fluid from surface to increase permeability in existing hot rocks. These emerging technologies would allow for geothermal power to be generated anywhere with hot rocks. including the Canadian Shield, as shown on the map.

