Obstructions to factorizations of differential operators on the algebra of densities on the line

Ekaterina Shemyakova
(a Happy Birthday talk to Murray Gerstenhaber & Jim Stasheff
UPenn)

Joint work with Th. Voronov
Factorization of differential operators in classical situation in 1D case

\(\partial^2 = \partial \circ \partial = \left(\partial + \frac{1}{x + c} \right) \circ \left(\partial - \frac{1}{x + c} \right) \)
Factorization of differential operators in classical situation in 1D case

\[\partial^2 = \partial \circ \partial = \left(\partial + \frac{1}{x + c} \right) \circ \left(\partial - \frac{1}{x + c} \right) \]

Frobenius Theorem

For \(L = a_n \partial^n + a_{n-1} \partial^{n-1} + \cdots + a_1 \partial + a_0 \) factorizations into first-order factors \(\iff \) maximal flags in \(\ker L \).

(Dimension of the manifold of flags is \(\frac{n(n-1)}{2} \).)
Factorization of differential operators in classical situation in 1D case

\[\partial^2 = \partial \circ \partial = \left(\partial + \frac{1}{x + c} \right) \circ \left(\partial - \frac{1}{x + c} \right) \]

Frobenius Theorem

For \(L = a_n \partial^n + a_{n-1} \partial^{n-1} + \cdots + a_1 \partial + a_0 \) factorizations into first-order factors \iff\ maximal flags in \(\ker L \).

(Dimension of the manifold of flags is \(\frac{n(n-1)}{2} \).)

\[\{x\} \subseteq \{x, 1\} = \ker L \iff L = \left(\partial + \frac{1}{x} \right) \circ \left(\partial - \frac{1}{x} \right) \]

which can be computed as \(L = L_2 \circ L_1 \), where \(L_1 = x \circ \partial \circ (x)^{-1} \) and then \(\varphi_2 = L_1(1) = -1/x \), and \(L_2 = \varphi_2 \circ \partial \circ \varphi_2^{-1} \).
Factorization of differential operators in classical situation in nD case

Already in 2D the situation is different, as there is

E. Landau example

For $P = \partial_x + x\partial_y$, $Q = \partial_x + 1$, $R = \partial_x^2 + x\partial_x\partial_y + \partial_x + (2 + x)\partial_y$ (irreducible in any reasonable extension) we have $QQP = RQ$. So different number of irreducible factors.
Factorization of differential operators in classical situation in nD case

Already in 2D the situation is different, as there is E. Landau example

For \(P = \partial_x + x\partial_y, \ Q = \partial_x + 1, \)
\(R = \partial_x^2 + x\partial_x\partial_y + \partial_x + (2 + x)\partial_y \) (irreducible in any reasonable extension) we have \(QQP = RQ. \) So different number of irreducible factors.

In general, in the multidimensional case there is no general theory but only some results for some particular situations are available.
Factorization of differential operators in classical situation in nD case

Already in 2D the situation is different, as there is

E. Landau example

For $P = \partial_x + x \partial_y$, $Q = \partial_x + 1$, $R = \partial_x^2 + x \partial_x \partial_y + \partial_x + (2 + x) \partial_y$ (irreducible in any reasonable extension) we have $QQP = RQ$. So different number of irreducible factors.

In general, in the multidimensional case there is no general theory but only some results for some particular situations are available.

✓ ...
✓ For geometrical objects: Li, ES, Th. V, 2017, Analogue of Frobenius theorem for non-degenerate operators for the super 1|1 case.
Densities

A density of weight \(\lambda \in \mathbb{R} \) (on a manifold with local coordinates \(x^a \)) is

\[
\rho = \rho(x) |dx|^{\lambda}
\]

where \(dx \) is the coordinate volume element.
Densities

A density of weight $\lambda \in \mathbb{R}$ (on a manifold with local coordinates x^a) is

$$\rho = \rho(x)|dx|^\lambda$$

where dx is the coordinate volume element. $\mathcal{F}_\lambda(M)$ denotes the space of densities of weight λ on M.
Densities

A density of weight $\lambda \in \mathbb{R}$ (on a manifold with local coordinates x^a) is

$$\rho = \rho(x)|dx|^\lambda$$

where dx is the coordinate volume element. $\mathcal{F}_\lambda(M)$ denotes the space of densities of weight λ on M.

Example

The Sturm–Liouville operator is

$$L = |dx|^2(\partial^2 + u(x)) : \mathcal{F}_{-1/2} \rightarrow \mathcal{F}_{3/2}$$
Densities

A density of weight $\lambda \in \mathbb{R}$ (on a manifold with local coordinates x^a) is

$$\rho = \rho(x)|dx|^\lambda$$

where dx is the coordinate volume element. $\mathcal{F}_\lambda(M)$ denotes the space of densities of weight λ on M.

Example

The Sturm–Liouville operator is

$$L = |dx|^2 \left(\partial^2 + u(x) \right) : \mathcal{F}_{-1/2} \rightarrow \mathcal{F}_{3/2}$$

There is non-degenerate pairing between \mathcal{F}_λ and $\mathcal{F}_{1-\lambda}$ and

$$\langle \psi, \varphi \rangle = \int_M \psi(x) \varphi(x)|dx|$$
The algebra of densities $\mathcal{D}(M)$ was discovered in 2004 by Khudaverdian and Th. Voronov.
The algebra of densities $\mathfrak{F}(M)$ was discovered in 2004 by Khudaveridian and Th. Voronov as the “correct” framework for the BV Δ-operator.
The algebra of densities $\mathfrak{F}(M)$ was discovered in 2004 by Khudaverdian and Th. Voronov as the “correct” framework for the BV Δ-operator (before ... functions and semidensities and works of Schwarz and Khudaverdian).

(Solves problem of finding operator generating given brackets. Hörmander’s subprincipal symbol is involved as a kind of connection.)
The algebra of densities $\mathcal{S}(M)$ was discovered in 2004 by Khudaveridian and Th. Voronov as the “correct” framework for the BV Δ-operator (before ... functions and semidensities and works of Schwarz and Khudaverdian).
(Solves problem of finding operator generating given brackets. Hörmander’s subprincipal symbol is involved as a kind of connection.)

The viewpoint in this work: the algebra of densities is a useful tool when work on problems for differential operators acting on densities.
Algebra of densities

Duval, Ovsienko + a series of works by different authors considered spaces of differential operators of order two,

\[D^2_\lambda : \mathcal{F}_\lambda \rightarrow \mathcal{F}_\lambda \]

as modules over \(\text{Vect}(\mathcal{M}) \).
Algebra of densities

Duval, Ovsienko + a series of works by different authors considered spaces of differential operators of order two,

\[\mathcal{D}_\lambda^2 : \mathcal{F}_\lambda \rightarrow \mathcal{F}_\lambda \]

as modules over \(\text{Vect}(M) \). For non-singular \(\lambda \neq 0, 1/2, 1 \), all the modules are isomorphic.
Algebra of densities

Duval, Ovsienko + a series of works by different authors considered spaces of differential operators of order two,

\[\mathcal{D}^2_\lambda : \mathfrak{F}_\lambda \to \mathfrak{F}_\lambda \]

as modules over \(\text{Vect}(M) \). For non-singular \(\lambda \neq 0, 1/2, 1 \), all the modules are isomorphic.

Theorem

\[L^2 = a_{2}^{ij} \partial_i \partial_j + a_{1}^{i} \partial_i + a_{0}. \] Equivariant \(L^2_{\lambda \mu} : \mathcal{D}^2_{\mu} \to \mathcal{D}^2_{\lambda} : \)

\[\tilde{a}_{2}^{ij} = a_{2}^{ij}, \]

\[\tilde{a}_{1}^{i} = \frac{2 \lambda + 1}{2 \mu + 1} a_{1}^{i} + 2 \frac{\mu - \lambda}{2 \mu + 1} \partial_i a_{2}^{ij}, \]

\[\tilde{a}_{0} = \frac{\lambda(\lambda + 1)}{\mu(\mu + 1)} a_{0} + \frac{\lambda(\mu - \lambda)}{(2 \mu + 1)(\mu + 1)} \left(\partial_i a_{1}^{i} - \partial_i \partial_j a_{2}^{ij} \right). \]
Algebra of densities

So, we get an “Ovsienko-Duval” family of operators of a special form. Algebra of densities has exactly such. And those that correspond to “Duval-Ovsienko" are self-adjoint in the algebra of densities!
So, we get an “Ovsienko-Duval” family of operators of a special form. Algebra of densities has exactly such. And those that correspond to “Duval-Ovsienko" are self-adjoint in the algebra of densities!

Algebra of densities $\mathcal{F}(M) = \oplus \mathcal{F}_\lambda(M)$ – finite formal sums.
Algebra of densities

So, we get an “Ovsienko-Duval” family of operators of a special form. Algebra of densities has exactly such. And those that correspond to “Duval-Ovsienko" are self-adjoint in the algebra of densities!

Algebra of densities $\mathcal{F}(M) = \bigoplus \lambda \mathcal{F}_\lambda(M)$ – finite formal sums. Scalar product is made up from the non-degenerate pairings.
So, we get an “Ovsienko-Duval” family of operators of a special form. Algebra of densities has exactly such. And those that correspond to “Duval-Ovsienko" are self-adjoint in the algebra of densities!

Algebra of densities $\mathcal{F}(M) = \bigoplus_{\lambda} \mathcal{F}_\lambda(M)$ – finite formal sums. Scalar product is made up from the non-degenerate pairings.

$t = |dx| \to$ extended \hat{M} and $\frac{\partial}{\partial x^i}$ and $\frac{\partial}{\partial t}$ ($\Rightarrow \hat{w} = t \frac{\partial}{\partial t}$)
So, we get an “Ovsienko-Duval” family of operators of a special form. Algebra of densities has exactly such. And those that correspond to “Duval-Ovsienko" are self-adjoint in the algebra of densities!

Algebra of densities $\mathcal{F}(M) = \bigoplus_{\lambda} \mathcal{F}_\lambda(M)$ — finite formal sums. Scalar product is made up from the non-degenerate pairings.

$t = |dx| \to$ extended \hat{M} and $\frac{\partial}{\partial x^i}$ and $\frac{\partial}{\partial t}$ ($\Rightarrow \hat{w} = t \frac{\partial}{\partial t}$)

Now $\mathcal{F}(M) \leftrightarrow$ functions $\psi(x^i, t)$ (pseudopolynomials in t).
Algebra of densities

So, we get an “Ovsienko-Duval” family of operators of a special form. Algebra of densities has exactly such. And those that correspond to “Duval-Ovsienko” are self-adjoint in the algebra of densities!

Algebra of densities $\mathfrak{F}(M) = \bigoplus \mathfrak{F}_\lambda(M)$ – finite formal sums. Scalar product is made up from the non-degenerate pairings.

$t = |dx| \to$ extended \hat{M} and $\frac{\partial}{\partial x^i}$ and $\frac{\partial}{\partial t}$ ($\Rightarrow \hat{w} = t \frac{\partial}{\partial t}$)

Now $\mathfrak{F}(M) \leftrightarrow$ functions $\psi(x^i, t)$ (pseudopolynomials in t).

Now differential operators on \mathfrak{F} restricted onto \mathfrak{F}_λ are of the needed type.
Factorization of operators on $\mathcal{F}(\mathbb{R})$

\[
L = t^2 \left(\partial^2 + (p_1 \hat{w} + p_0) \partial + q_2 \hat{w}^2 + q_1 \hat{w} + q_0 \right)
= t \left(\partial - \alpha_1 \hat{w} - \alpha_0 \right) \cdot t \left(\partial - \beta_1 \hat{w} - \beta_0 \right)
= t^2 \left(\partial - \alpha_1 (\hat{w} + 1) - \alpha_0 \right) \cdot \left(\partial - \beta_1 \hat{w} - \beta_0 \right)
\]
Factorization of operators on $\mathcal{F}(\mathbb{R})$

\[L = t^2 \left(\partial^2 + (p_1 \hat{w} + p_0) \partial + q_2 \hat{w}^2 + q_1 \hat{w} + q_0 \right) \]
\[= t \left(\partial - \alpha_1 \hat{w} - \alpha_0 \right) \cdot t \left(\partial - \beta_1 \hat{w} - \beta_0 \right) \]
\[= t^2 \left(\partial - \alpha_1 (\hat{w} + 1) - \alpha_0 \right) \cdot \left(\partial - \beta_1 \hat{w} - \beta_0 \right) \]

or in the condensed notation:

\[L = t^2 \left(\partial^2 + \hat{p} \partial + \hat{q} \right) = t^2 \left(\partial - \hat{\alpha} \right) \cdot \left(\partial - \hat{\beta} \right) \]

So we have $\hat{\alpha} = -\hat{p} - \hat{\beta}$ and familiar Riccati equation for $\hat{\beta}$:

\[-\hat{\beta}' = \hat{\beta}^2 + \hat{p} \hat{\beta} + \hat{q} \]

In the classical case, we make the substitution $\hat{\beta} = \partial (\ln \varphi)$, which transforms the Riccati into

\[\varphi'' + \hat{p} \varphi' + \hat{q} \varphi = 0 \]
Factorization of operators on $\mathcal{F}(\mathbb{R})$

So operator is factorizable IF(!) there is a solution φ to $\varphi'' + \hat{p}\varphi' + \hat{q}\varphi = 0$ such that $\hat{\beta}$ computed as $\hat{\beta} = \partial (\ln \varphi)$ will be linear in \hat{w}.

Example of an operator that is not factorizable

$L = t^2 \cdot (\partial^2 - \hat{w}^2 - \hat{w}) \neq t^2 \cdot (\partial - \alpha_1 (\hat{w} + 1) - \alpha_0) \cdot (\partial - \beta_1 \hat{w} - \beta_0)$
So operator is factorizable if there is a solution φ to $\varphi'' + \hat{p}\varphi' + \hat{q}\varphi = 0$ such that $\hat{\beta}$ computed as $\hat{\beta} = \partial (\ln \varphi)$ will be linear in $\hat{\omega}$.

Example of an operator that is not factorizable

\[L = t^2 \cdot (\partial^2 - \hat{\omega}^2 - \hat{\omega}) \neq t^2 \cdot (\partial - \alpha_1 (\hat{\omega} + 1) - \alpha_0) \cdot (\partial - \beta_1 \hat{\omega} - \beta_0) \]
Generalized Sturm-Liouville operator

The generalized Sturm–Liouville operator,

\[L = t^2 \left(\partial^2 + \gamma(2\hat{w} + 1)\partial + \theta\hat{w}(\hat{w} + 1) + \gamma'\hat{w} \right) \] \hspace{1cm} (1)

parametrized by functions \(\gamma \) and \(\theta \). When specialized on \(\hat{F}_{-1/2} \), it becomes the classical Sturm-Liouville operator \(t^2 (\partial^2 + u) \) with potential

\[u = -\frac{1}{2} \left(\gamma' + \frac{\theta}{2} \right). \]
The necessary and sufficient condition for the generalized Sturm-Liouville operator \(L \) to be factorizable is that \(\psi = (\gamma^2 - \theta)^{-1/4} \) satisfies the classical Sturm-Liouville equation

\[
(\partial^2 + u)\psi = 0.
\]
Generalized Sturm-Liouville operator

Theorem

Density $\psi = (\gamma^2 - \theta)^{-1/4} |dx|^{-1/2}$ is a (density) invariant (under a change of coordinates) of the generalized Sturm-Liouville operator.
Generalized Sturm-Liouville operator

Theorem

Density \(\psi = (\gamma^2 - \theta)^{-1/4} |dx|^{-1/2} \) is a (density) invariant (under a change of coordinates) of the generalized Sturm-Liouville operator.

By the properties of the classical Sturm–Liouville operator, the condition that it is a solution does not depend on a choice of coordinate. This establishes the invariance of the factorization criterion.
Theorem

An incomplete factorization

\[L = t^2 \left((\partial - \hat{\alpha})(\partial - \hat{\beta}) + f \right), \]

where \(f = f(x) \) does not contain \(\hat{\psi} \), of the generalized Sturm–Liouville operator \(L \) is always possible and it is unique. It is given by the formulas

\[b_0 = \partial \ln \psi, \]
\[b_1 = -\gamma \pm \frac{1}{\psi^2}, \]
\[f = \frac{1}{\psi} (\partial^2 + u) \psi. \]

Here \(\psi \) is as above.
Happy birthday Murray and Jim!!!