BFV and Poisson

Alberto Cattaneo

Institut für Mathematik, Universität Zürich

Based on joint work with G. Canepa, P. Mnëv, N. Reshetikhin, M. Schiavina,
Outline

1. Differential Graded Symplectic Manifolds
2. BFV
3. Relaxed BFnV Structures
4. Examples
A graded manifold is “like a manifold,” but we also allow odd local coordinates.

The odd coordinates anticommute among themselves and commute with the even coordinates.

We also assign a \(\mathbb{Z} \)-degree to coordinates (in physics ghost number). In this talk, I will assume

\[
\text{parity} = \mathbb{Z} \text{-degree modulo } 2
\]

If \(M \) is a graded manifold, then \(C^\infty(M) \) is a graded commutative algebra.

Example: \(M = T[1]N \), \(N \) an ordinary manifolds:

- Coordinates \(q^i \) on \(N \) degree 0; fiber coordinates \(v^i \) degree +1.
- \(C^\infty(M) = \Omega^\bullet(N) \).
Cohomological vector fields

- If M is a graded manifold, a differential on $\mathcal{C}^\infty(M)$ has been called by Jim a cohomological vector field (cvf).

 - Explanation:
 - Derivation on $\mathcal{C}^\infty(M) =$ vector field Q on M.
 - Differential $= \deg Q = 1$ and $[Q, Q] = 0$.

 The de Rham differential on N is a cvf on $\mathcal{C}^\infty(M)$: $Q = \sum_i v^i \frac{\partial}{\partial q^i}$

- Example: $M = g[1]$, g a Lie algebra:
 - All coordinates c_i have degree 1.
 - $\mathcal{C}^\infty(M) = \Lambda^\bullet g^*$.
 - The Chevalley–Eilenberg differential on g is a cvf:

 $$Q = \frac{1}{2} \sum_{ijk} f^{ij}_k c_i c_j \frac{\partial}{\partial c_k}$$

 with f^{ij}_k the structure constants. (In physics the BRST operator.)
A graded symplectic form ω of degree n is a closed, nondegenerate 2-form with internal degree equal to n.

Example: $M = T^*[1]N$, N an ordinary manifolds:
- Coordinates q^i on N degree 0; fiber coordinates p_i degree 1.
- $C^\infty(M) = \mathfrak{X}^*(N)$ (multivector fields).
- $\omega = \sum_i dp_i \, dq^i$ is a graded symplectic form of degree 1.
- The Schouten–Nijenhuis bracket on multivector fields is the associated Poisson bracket.

This may be generalized to $M = T^*[n]N$, N an ordinary manifolds:
- Coordinates q^i on N degree 0; fiber coordinates p_i degree n.
- $\omega = \sum_i dp_i \, dq^i$ is a graded symplectic form of degree n.
Differential graded symplectic structure

- A differential graded symplectic structure of degree n on a graded manifold M is a pair (ω, Q) where:
 - ω is a graded symplectic form of degree n, and
 - Q is a symplectic cvf, i.e.,

$$\text{deg } Q = 1, \quad [Q, Q] = 0, \quad \text{and } L_Q \omega = 0$$

- A stronger version is when Q is Hamiltonian, i.e., there is a function S (necessarily of degree $n + 1$) such that

$$\iota_Q \omega = dS \quad \text{and} \quad \{S, S\} = 0 \quad \text{(classical master equation)}$$

- As observed by Roytenberg, if $n \neq -1$, a symplectic cvf is always Hamiltonian (with a unique Hamiltonian function):

$$S = \frac{1}{n+1} \iota_E \iota_Q \omega$$

with E the “graded Euler vector field”: $E(f) = \text{deg } f f$.
Examples of differential graded symplectic structures

- **Example:** $M = T^*[1]N$, N an ordinary manifolds:
 - A function S of degree 2 on M is then the same as a bivector field π on N.
 - The master equation $\{S, S\} = 0$ translates to $[\pi, \pi] = 0$; i.e., π is a Poisson bivector field.
 - Q is then the Poisson–Lichnerowicz differential.

- **Example:** $M = g[1]$, g a Lie algebra:
 - A nondegenerate symmetric bilinear form on g can be viewed as a constant symplectic form of degree 2 on $g[1]$.
 - If Q corresponds to the Chevalley–Eilenberg differential, it is symplectic iff the pairing is invariant.
 - The corresponding Hamiltonian function turns out to be
 \[
 S = \frac{1}{6} \sum f^{ijk} c_i c_j c_k
 \]
 - with f^{ijk} the structure constants with one index raised by using the pairing.
BFnV structures

There are three important particular cases:

$n = -1$ This is the Batalin–Vilkovisky (BV) formalism used in QFT. The Hamiltonian function is required to exist as an extra assumption (I will not talk about it).

$n = 0$ This is the Batalin–Fradkin–Vilkovisky (BFV) formalism used to give a cohomological resolution of symplectic reduction (see next).

$n = 1$ If there are only coordinates of nonnegative degree, this is just the example of $M = T^*[1]N$ with a Poisson structure on N. More generally, it describes Poisson structures up to homotopy (i.e., the Poisson bracket is an L_∞-structure).

We may call the general case of degree n a BF$^{n+1}$V structure.

$\text{Poisson}_\infty = \text{BF}^2V$
Differential Graded Symplectic Manifolds

BFV

Relaxed BF/V Structures

Examples

Symplectic reduction in codimension one

- Let \((N, \omega_N)\) be a symplectic manifold, \(\phi\) a function and \(C := \phi^{-1}(0)\) a submanifold.
- The restriction of \(\omega_N\) to \(C\) is degenerate. Its kernel is generated by the Hamiltonian vector field \(X_\phi\) of \(\phi\):
 \[
 \iota_{X_\phi} \omega_N = d\phi \approx 0
 \]
- We define \(\underline{\mathcal{C}} = C / X_\phi\). Algebraically,
 \[
 C^\infty(\underline{\mathcal{C}}) = (C^\infty(N) / \langle \phi \rangle)^{X_\phi} = N(\langle \phi \rangle) / \langle \phi \rangle,
 \]
 with \(N(\langle \phi \rangle) = \{ f \in C^\infty(N) : \{ \phi, f \} = g\phi, \; g \in C^\infty(N) \}\).
- Define \(M = N \times T^*\mathbb{R}[1], \omega = \omega_N + dbdc, S = c\phi\) a dgs manifold of degree 0. Then
 \[
 Qb = \phi, \quad Qf = \{ \phi, f \} c, \quad Qc = 0.
 \]
 In particular, in degree 0 and \(-1:\)
 \[
 Q(f + gcb) = \{ \phi, f \} c - g\phi c, \quad Q(hb) = h\phi + \{ \phi, h \} cb.
 \]
 Hence \(H_Q^0(M) = C^\infty(\underline{\mathcal{C}})\).
Symplectic reduction of coisotropic submanifolds

- The previous slide may be generalized to the case when we have a set of r functions ϕ^i and a submanifold
 \[C := \{ x \in N : \phi^i(x) = 0, \ i = 1, \ldots, r \} \]

- Assume that C is coisotropic, i.e., $\{\phi^i, \phi^j\}|_C = 0 \ \forall i, j$.

- The kernel of the restriction of ω_N to C is generated by the Hamiltonian vector fields of the ϕ^is. We denote by \hat{C} the quotient of C by this kernel. (The reduced phase space.)

- The main result by BFV and Jim’s paper is that (under some conditions)
 \[C^\infty(\hat{C}) = H^0_Q(M) \]
 as Poisson algebras

with: $M = N \times T^*\mathbb{R}^r[1]$, $\omega = \omega_N + \sum_{i=1}^r db^i dc^i$,

\[S = \sum_{i=1}^r c^i \phi^i + \cdots \]

where the dots contain higher powers of the b^is and are obtained by cohomological perturbation theory.
Equivariant momentum map

A special case is when the ϕ^i's are the components of an equivariant momentum map $\phi: N \rightarrow g^*$. In this case we have

$$S = \sum_{i=1}^{r} c_i \phi^i + \frac{1}{2} \sum f_{ij}^k b^k c_i c_j$$

Q in this case is also called the BRS operator.
Relaxed structures

Suppose we have a graded manifold M with a cohomological vector field Q and a closed 2-form ω of degree n. We set

$$\tilde{\alpha} := \iota_Q \omega - dS$$

and

$$\tilde{\omega} := d\tilde{\alpha} = -L_Q \omega_P$$

It turns out that $\tilde{\omega}$ is a closed, Q-invariant 2-form ω of degree $n+1$.

We denote by M the quotient of M by the kernel of $\tilde{\omega}$ (assume it is smooth). We denote by ω its symplectic form of degree $n + 1$.

It turns out that Q is projectable to a cohomological vector field Q. So M becomes a dgs manifold of degree $n + 1$.
Field theory

- Suppose that M is a space of fields on some closed manifold Σ.
- Suppose we have a BF^{n-1}V structure on M with ω, Q, and S local.
- This allows us to write ω, Q, and S also on some compact Σ with boundary.
- If S contains derivatives of the fields, there will be boundary terms that spoil the structure.
- This relaxed structure will however induce a BFnV structure on the fields on $\partial \Sigma$ (the kernel of $\tilde{\omega}$ contains in particular fields in the bulk).
- Some related results can be obtained in the context of derived geometry (à la Pantev–Toën–Vaquié–Vezzosi) as shown by Safronov.
An application

- Suppose \((M, \omega, Q, S)\) is a BFV structure on a space of fields on \(\Sigma\), describing the reduced phase space of some field theory.

- Then on the space of fields \(M\) on \(\partial \Sigma\) we get a BF\(^2\)V structure, i.e., a Poisson structure (possibly up to homotopy).

- If \(\partial \Sigma = \emptyset\), one expects to quantize \(M\) to some graded vector space \(\mathcal{H}\) (and \(S\) to some coboundary operator on \(\mathcal{H}\)).

- If \(\partial \Sigma \neq \emptyset\), we expect \(\mathcal{H}\) to be a representation of a quantization of \(M\).

- For example, we may consider the deformation quantization of the Poisson structure described by \(M\).

- By Kontsevich, deformation quantization of a (f.d.) Poisson manifold \(P\) is always possible. It is related to a quasi-isomorphism between

 - multivector fields on \(P\) with Schouten–Nijenhuis bracket
 - multidifferential operators on \(P\) with Gerstenhaber bracket
Chern–Simons

- Let Σ be a 2-manifold and \mathfrak{g} a quadratic Lie algebra.
- Let N be the space of \mathfrak{g}-valued 1-forms A (connections) on Σ with the Atiyah–Bott symplectic structure $\omega = \frac{1}{2} \int_{\Sigma} \delta A \delta A$.
- We let C denote the space of flat connections. Then C turns out to be the quotient by gauge transformations.
- BFV: $M = N \times T^* \Omega^0(\Sigma, \mathfrak{g})[1]$ and
 \[S = \int_{\Sigma} (c, F_A) + \frac{1}{2} (b, [c, c]) \]
- On $\partial \Sigma$ we get $\omega = \int_{\partial \Sigma} \delta A \delta c$,
 \[S = \frac{1}{2} \int_{\partial \Sigma} c d_A c \]
- We can interpret this as an affine Poisson structure on $\Omega^1(\partial \Sigma, \mathfrak{g})$, which we may regard as the dual of the affine Lie algebra $\hat{\mathfrak{g}} = \Omega^0(\partial \Sigma, \mathfrak{g}) \oplus \mathbb{R}$.

This procedure may be applied to other field theories, assuming the reduction $\tilde{\omega} \to \omega$ is smooth.

4d gravity can be analyzed this way using Cartan’s coframe formalism.

The constraints yield a BFV structure on the fields on a 3-manifold Σ.

On the fields on $\partial \Sigma$ we get a Poisson structure. Its quantization is some sort of current algebra for 4d gravity.
Cartan’s coframes

- Let Σ be a 3-manifold and $V \to \Sigma$ a vector bundle isomorphic to $T\Sigma \oplus \mathbb{R}$. We fix a fiberwise Minkowski metric η.
- The first field (coframe) is an injective bundle map $e : T\Sigma \to V$. We assume that $e^*\eta$ is nondegenerate.
- The second field is a connection ϖ for the orthogonal bundle associated to (V, η).
- We work modulo the equivalence relation $\varpi \sim \varpi' \text{ if } \varpi - \varpi' = u \in \Omega^1(\Sigma, \Lambda^2 V) : e u = 0$.

The symplectic form is $\omega = \int_\Sigma e \delta e \delta \varpi$.

The constraints defining C are

\[e d \varpi e = 0 \quad e F_{\varpi} = 0 \]

One can show that C is coisotropic and that its reduction is the same as the reduced phase space of general relativity in its Einstein–Hilbert formulation.

The BFV action has nonlinear terms in the b variables (i.e., non BRS type).
The Poisson structure

- On $\partial \Sigma$ the fields include the restriction of e and the restriction of the ghost $\alpha \in \Omega^0(\partial \Sigma, \Lambda^2 V)[1]$.
- The presymplectic form is $\int_{\partial \Sigma} \frac{1}{2} e \delta e \delta \alpha + \cdots$.
- The action (before reduction) is $S = \int_{\partial \Sigma} \frac{1}{2} [\alpha, \alpha] e e + \cdots$.
- This part of the theory may be interpreted as a Poisson structure on the space of 0-forms on $\partial \Sigma$ taking values in the pure tensors $(E := ee)$ in $\Lambda^2 V$.
- Restricting to constant fields, we have $\{\text{pure tensors}\}$ as a Poisson submanifold of $\mathfrak{so}(3,1)^*$. It is actually determined by the vanishing of a certain quadratic Casimir.
- A representation of the quantization of this Poisson manifold is then a representation of $\mathfrak{so}(3,1) = \mathfrak{su}(2) \oplus \mathfrak{su}(2)$ where the two quadratic Casimirs are equal: integral spin representations.