Physics 157 Midterm 1 Review Package - **Questions**

UBC Engineering Undergraduate Society

Attempt questions to the best of your ability. Problems are ranked in difficulty as (*) for easy, (**) for medium, and (***) for difficult. Difficulty is subjective, so do not be discouraged if you are stuck on a (*) problem.

Solutions will be posted at: https://ubcengineers.ca/tutoring/

If you believe that there is an error in these solutions, or have any questions, comments, or suggestions regarding EUS Tutoring sessions, please e-mail us at: tutoring@ubcengineers.ca. If you are interested in helping with EUS tutoring sessions in the future or other academic events run by the EUS, please e-mail vpacademic@ubcengineers.ca.

Want a warm up? These are the easier problems

1, 2, 3, 4

Short on study time? These cover most of the material

6, 9, 11, 12

Want a challenge? These are some tougher questions

13, 14

Some of the problems in this package were not created by the EUS. Those problems originated from one of the following sources:

- Exercises for the Feynman Lectures on Physics / Matthew Sands, Richard Feynman, Robert Leighton.

All solutions prepared by the EUS.

EUS Health and Wellness Study Tips

- **Stay Healthy**—Your body needs fuel to get through all of your hard work! You should eat a variety of food and get all of your food groups in. If you feel overwhelmed, reach out to a tutor and they can direct you to some resources that may be able to help.

- **Take Breaks**—Your brain and eyes needs a chance to rest: take a fifteen minute study break every hour or so. Staring at the same physics problem until your eyes go numb won’t help you understand the material.

- **Sleep**—We’ve all been told we need 8 hours of sleep a night, university shouldn’t change this. Get to know how much sleep you need and set up a regular sleep schedule.

Good Luck!
1. A cylindrical aluminum rod, with an initial length of 0.8000 m and a radius of 1000.0 µm, is clamped in place at one end and then stretched by a machine pulling parallel to its length at its other end. Assume that the rod’s mass density does not change and that its radius decreases uniformly along the length of the rod. Find the magnitude of the force required to decrease the radius to 999.9 µm. The Young’s modulus for aluminum is $Y_{Al} = 70$ GPa.

2. Due to a temperature rise of $32^\circ C$, a bar with a crack at its centre buckles upward. If the fixed distance L_0 is 3.77 m and the coefficient of linear expansion of the bar is $25 \cdot 10^{-6}/^\circ C$, find the rise x of the centre.

3. The temperature of a Pyrex disk is changed from $10.0^\circ C$ to $60.0^\circ C$. Its initial radius is 8.00 cm, and its initial thickness is 0.50 cm. Young’s Modulus of pyrex is 67 GPa, and the linear thermal expansion coefficient of Pyrex is $3.2 \cdot 10^{-6}/^\circ C$.

 (a) What is the change in volume of the disk?

 (b) If the disk is constrained rigidly across its faces before it is heated, what will be the stress in the disk after it is heated?

4. On a hot day, a cold beverage can is placed on an insulating surface and covered with a wet towel, such that there is no heat exchange between the surface and the bottom of the can. Assume that the only energy exchanges taking place are evaporation and radiation through the top and side surfaces. The towel and beverage have temperature $T = 15^\circ C$, the environment has temperature $T_{env} = 32^\circ C$, and the towel/beverage package is a cylinder with radius $r = 2.2$ cm and height $h = 10$ cm. Approximate the emissivity as $\epsilon = 1$, and neglect other energy changes. At what rate $\Delta m/\Delta t$ is the container losing water mass? The latent heat of vaporization of water is $L = 2260$ J/g.

5. Two 50 g ice cubes are dropped into 200 g of water in a thermally insulated container. The water is initially at $25^\circ C$, and the ice comes directly from a freezer at $-15^\circ C$.

 (a) What is the final temperature of the mixture at thermal equilibrium?

 (b) What is the final temperature if only one ice cube is used?
The latent heat of fusion of water is \(L_w = 336 \text{ J/g} \). The specific heat capacity of water is \(c_w = 4186 \text{ J/kg}^\circ\text{C} \). The specific heat capacity of ice is \(c_i = 2030 \text{ J/kg}^\circ\text{C} \).

6. An insect is caught at the midpoint of a spider-web thread. The thread breaks under a stress of \(8.2 \cdot 10^8 \text{ N/m}^2 \), and a strain of 2.00. Initially, it was horizontal and had a length of 2.00 cm and a cross-sectional area of \(8.00 \cdot 10^{-12} \text{ m}^2 \). Assume that as the thread is stretched, its volume remains constant, and its cross-sectional area decreases uniformly along the thread. If the weight of the insect puts the thread on the verge of breaking, what is the insect’s mass?

7. Shown below is a 300 kg cylinder that is horizontal. Three steel wires support the cylinder from a ceiling. Wires 1 and 3 are attached at the ends of the cylinder, and wire 2 is attached at the centre. Initially, (before the cylinder was put in place) wires 1 and 3 were 2.00 m long and wire 2 was 6 mm longer than that. Now, (with the cylinder in place) all three wires have been stretched to a cross-sectional area of \(2.00 \cdot 10^{-6} \text{ m}^2 \). Young’s Modulus for steel is \(Y = 200 \cdot 10^9 \text{ N/m}^2 \). What is the tension in,

(a) wire 1?
(b) wire 2?

8. A 20.0 g copper ring at 0.0\(^\circ\text{C}\) has an inner diameter of \(D = 2.54000 \text{ cm} \). An aluminum sphere at 100.0\(^\circ\text{C}\) has a diameter of \(d = 2.54508 \text{ cm} \). The sphere is put on top of the ring, and the two are allowed to come to thermal equilibrium, with no heat lost to the surroundings. The sphere just passes through the ring at the equilibrium temperature. What is the mass of the sphere?

The coefficient of volume expansion of aluminum is \(\beta_{\text{Al}} = 7.2 \cdot 10^{-5}/\text{°C} \), and the coefficient of volume expansion of copper is \(\beta_{\text{Cu}} = 5.1 \cdot 10^{-5}/\text{°C} \). The specific heat capacity of aluminum is \(c_{\text{Al}} = 910 \text{ J/kg}^\circ\text{C} \), and the specific heat capacity of copper is \(c_{\text{Cu}} = 390 \text{ J/kg}^\circ\text{C} \).
9. Two rods are perfectly constrained between rigid constraints, as shown. Initially, at $15^\circ C$, they have no stress in them. Rod A has a cross sectional area of 40 cm^2, and rod B has a cross sectional area of 50 cm^2. Rod A is 30 cm long, and rod B is 20 cm long. Rod A has Young’s modulus of 10^{10} Pa, and rod B has Young’s modulus of $2 \cdot 10^9 \text{ Pa}$. Rod A has thermal expansion coefficient of $2.4 \cdot 10^{-5}/^\circ C$, and rod B has thermal expansion coefficient of $5.7 \cdot 10^{-6}/^\circ C$. If the temperature of both is raised to $40^\circ C$,

(a) What will be the stress in rod A?
(b) What will be the stress in rod B?
(c) What will be the length of rod A?
(d) What will be the length of rod B?

10. The figure shows the cross section of a wall made of three layers. The layer thicknesses are L_1, $L_2 = 0.700L_1$, and $L_3 = 0.350L_1$. The thermal conductivities are k_1, $k_2 = 0.900k_1$, and $k_3 = 0.800k_1$. The temperatures at the left and right sides of the wall are $T_H = 30.0^\circ C$ and $T_C = -15.0^\circ C$. Thermal conduction is steady.

(a) What are the temperatures at each interface? (where two layers meet)
(b) If k_2 were, instead, equal to $1.1k_1$, would the rate at which energy is conducted through the wall be greater than, less than, or the same as previously?
(c) Using the k values from part (b), what would be the values of the temperatures at the two interfaces?
(d) Using the k values from part (a), if the thermal conductivity of layer 1 is $k_1 = 50 \text{ W/m} \cdot \text{K}$, and the thickness of layer 1 is $L_1 = 60 \text{ cm}$, what are the R values of each of the walls?
In the extrusion of cold chocolate from a tube, work is done on the chocolate through the tube. The work per unit mass of extruded chocolate is equal to

\[\frac{1}{r} \frac{d}{dh} \left(\frac{r^2}{2} \right) \]

where \(r \) is the density of the chocolate.

The layer thicknesses are

\[L_1, L_2, L_3 \]

The layer conductivities are

\[k_1, k_2, k_3 \]

The temperatures at the left and right sides of the wall are

\[T_{L1}, T_{L2}, T_{L3}, T_{R1}, T_{R2}, T_{R3} \]

The temperatures at the top and the sides; thus for a slab of ice 5.0 cm thick has formed on a shallow pond, and a steady state has been reached, with the air above the ice at 4.0°C.

If the total depth of the pond at 4.0°C. If the total depth of the pond is 1.50 mm, how thick is the ice?

Assume that the thermal conductivities of ice and water are 0.92 g/cm°C and its density to be 0.92 g/cm³. Calculate the rate at which energy is conducted through the wall. Assume that a penguin is a circular cylinder with a top surface area of 0.34 m² and height 10 cm. Approximate the emissivity as 0.800. The known temperatures are 15.0°C, respectively. Thermal radiation loss?

Let \(T \) be the temperature of 100°C. Water has density 1.1 g/cm³, and right sides of the wall are 10°C. Calculate the rate at which energy moves from the skillet to the drop, how long will the drop last?

(a) At what temperature does the drop from the metal (by air and water vapor that separate the drop from the metal (by Leidenfrost effect). The longer life?

In the extrusion of cold chocolate from a tube, work is done on the chocolate through the tube. The work per unit mass of extruded chocolate is equal to

\[\frac{1}{r} \frac{d}{dh} \left(\frac{r^2}{2} \right) \]

where \(r \) is the density of the chocolate.

The layer thicknesses are

\[L_1, L_2, L_3 \]

The layer conductivities are

\[k_1, k_2, k_3 \]

The temperatures at the left and right sides of the wall are

\[T_{L1}, T_{L2}, T_{L3}, T_{R1}, T_{R2}, T_{R3} \]

The temperatures at the top and the sides; thus for a slab of ice 5.0 cm thick has formed on a shallow pond, and a steady state has been reached, with the air above the ice at 4.0°C. If the total depth of the pond is 1.50 mm, how thick is the ice?

Assume that the thermal conductivities of ice and water are 0.92 g/cm°C and its density to be 0.92 g/cm³. Calculate the rate at which energy is conducted through the wall. Assume that a penguin is a circular cylinder with a top surface area of 0.34 m² and height 10 cm. Approximate the emissivity as 0.800. The known temperatures are 15.0°C, respectively. Thermal radiation loss?

Let \(T \) be the temperature of 100°C. Water has density 1.1 g/cm³, and right sides of the wall are 10°C. Calculate the rate at which energy moves from the skillet to the drop, how long will the drop last?

(a) At what temperature does the drop from the metal (by air and water vapor that separate the drop from the metal (by Leidenfrost effect). The longer life?
Useful Constants and Conversion Ratios:

- R = Ideal Gas constant = 8.31451 J/molK,
- 1 atm = 1.013 × 10^5 Pa,
- 1 atm · litre = 101.3 J
- σ = Stefan-Boltzmann constant = 5.6704 × 10^-8 W/m^2K^4,
- γair = 1.4,
- C_{V_{air}} = 20.8 J/molK
- ρ_{water} = Density of water = 1 gram/cm^3 = 1000 kg/m^3

Mechanics:

- Linear Motion: \(x = x_0 + \frac{1}{2} (v_0 + v) t \), \(x = x_0 + v_0 t + \frac{1}{2} a t^2 \), \(v = v_0 + at \), \(v^2 = v_0^2 + 2a(x - x_0) \)
- Circular Motion: \(a_c = \frac{v^2}{r} \)
- Forces: \(F = ma = \frac{d}{dt} p \)
- Friction: \(|F| = \mu |N| \)
- Spring: \(F = -kx \)
- Damping: \(F = -bv \)
- Buoyant \(|F| = pVg \)
- Work: \(W = \int F \cdot dr = F \cdot \Delta r \)
- Thermal Conductivity: \(K = \frac{\Delta Q}{\Delta L} = kA \frac{\Delta T}{\Delta x} \)
- Black Body Radiation: \(P = \varepsilon A(T^4 - T_s^4), \quad \lambda_{max}T = 2.8977685 \times 10^{-3} m \cdot K \)
- Solar Irradiation: \(P = (1 - \alpha) S_c r^2 \pi \)
- Internal Energy: \(U = nC_V T \)
- First Law of Thermodynamics: \(dQ = dU + dW \) For an ideal gas, \(dW = PdV \)
- Work for an isothermal process \(W = nRT \ln (V_f/V_i) \)
- Work for an adiabatic expansion \(PV^{\gamma - 1} = C \)
 - where \(C \) is a constant and \(\gamma = C_p/C_V \)
 - Work for adiabatic process: \(W = \int_{v_1}^{v_2} PdV = C \int_{v_1}^{v_2} \frac{dV}{V^{\gamma}} = \frac{C}{1 - \gamma} (V_2^{1-\gamma} - V_1^{1-\gamma}) \)
- Heat Transfer: \(Q = mc \Delta T, \quad Q = mL, \quad C_p = C_V + R, \quad C_V = \frac{f}{2} R \), where \(f = \) degrees of freedom.
 - \(f = 3 \) for monatomic and \(f = 5 \) for diatomic.
- \(dS = \frac{dQ}{T} \)
- \(e = W/Q_H, \quad \text{COP}_{\text{Cooling}} = \frac{|Q_C|}{|W|}, \quad \text{COP}_{\text{Heating}} = \frac{|Q_H|}{|W|}, \quad e_{\text{Carnot}} = 1 - \frac{T_C}{T_H} \)

Integrals:

- \(\int x^n dx = \frac{x^{n+1}}{n + 1} + C, \quad n \neq 1 \)
- \(\int x^{-1} dx = \ln x + C \)

Trigonometry:

- \(\sin \theta_1 + \sin \theta_2 = 2 \cos \left(\frac{\theta_1 - \theta_2}{2} \right) \sin \left(\frac{\theta_1 + \theta_2}{2} \right) \)

Area and Volume:

- Surface Area of a sphere: \(A = 4\pi r^2 \).
- Lateral surface area of a cylinder: \(A = 2\pi rl \).
- Area of a circle: \(A = \pi r^2 \).
- Volume of a cylinder: \(V = lr^2 \).
- Volume of a sphere: \(V = \frac{4}{3}\pi r^3 \).

Oscillations:

- \(\omega = 2\pi f, \quad T = \frac{1}{f}, \quad x = A \cos(\omega t + \phi), \quad \omega^2 = \frac{k}{m} \)
- Damped Oscillations: \(x = A_0 e^{-\frac{\omega}{2m}} \cos(\omega t + \phi) \), where \(\omega = \sqrt{\frac{\omega_0^2 - \left(\frac{b}{2m} \right)^2}{\Delta E}} \)
- Energy for damped \(E = E_0 e^{-\frac{t}{\Delta t}} \)