October 26, 2015

Dear Governor Herbert, President Niederhauser, and Speaker Hughes,

There has been discussion over the last several years regarding the Utah Division of Water Resources’ proposed Lake Powell Pipeline (“LPP”) project and the subsequent repayment obligations of the taxpayers of Washington County. We have conducted an analysis of the indebtedness of the Washington County Water Conservancy District (“the District”) and the residents of Washington County by virtue of their participation in the LPP. Based on our analysis we have major concerns about the debt and increased water rates and/or increased impact fees that will be caused by this proposal.

The following pages summarize our findings, based on the LPP Preliminary Application Documents, the District’s audited financial statements, and other public documents made available by various agencies. Based on this initial analysis, we have major concerns about the likelihood that Utah taxpayers will be repaid by the District for the costs of the LPP.

The District intends to participate in the LPP, proposing to receive 94.5% of the water from the pipeline. This would amount to 69,000 acre-feet, according to the project’s 2011 Water Needs Assessment. We calculated different repayment scenarios based upon the 2012 Socioeconomics and Water Resource Economics Report’s low and high project cost projections of $1.4 billion and $1.8 billion, respectively, assuming an interest rate of four percent and a 50-year repayment period. These cost estimates are in 2012 dollars and this analysis did not account for inflation.

The District will have to repay between $61.8 and $131 million of LPP debt annually on top of its existing debt portfolio, depending on final LPP project costs. The District’s current
annual revenues are approximately $29 million and current annual expenses are approximately $20 million. The remaining $9 million in net revenues available to shoulder additional LPP debt is not sufficient to service the debt. This shortfall poses a major challenge for the District, its ratepayers and Utah taxpayers.

This LPP debt service is equivalent to $369–$781 every year for 50 years for every man, woman, and child currently living in Washington County. Unless the District increases water rates, impact fees, and/or other revenues, its existing and LPP debt will not be repaid at the end of the 50-year loan period. This outstanding debt assumes the District’s revenues increase at the same rate as the county’s population.

Assuming the $1.8 billion high-cost LPP alternative from the 2012 Socioeconomics and Water Resource Economics Report, the District could raise the needed funds by:

- raising impact fees 138 percent, to an average of $14,514 per connection; together with
- raising water rates by 678 percent; together with
- selling 1200 acres of land owned by the District; together with
- continuing to collect property taxes near the maximum levy rate allowed by state law.

Assuming the $1.4 billion low-cost LPP alternative from the 2012 Socioeconomics and Water Resource Economics Report, the District could raise the needed funds by:

- raising impact fees 123 percent, to an average of $13,630 per connection; together with
- raising water rates by 576 percent; together with
- selling 1200 acres of land owned by the District; together with
- continuing to collect property taxes near the maximum levy rate allowed by state law.

Of course, increasing water rates this much would significantly decrease Washington County residents’ demand for water—in our analysis, demand decreased so much that the LPP water would go unused—which the Division of Water Resources did not consider. Dozens of economic studies document the correlation between higher water prices and reduced water demand (citations available upon request). This fundamental principle of economics should be considered in forecasting future water demand in Washington County.

Currently, Washington County has some of the lowest water rates in the American West because the District collects property taxes on homes and businesses, which effectively lowers the price of water. Eliminating these property tax subsidies for water would lower the tax burden in the county while allowing the free-market forces of supply and demand to achieve more economically-rational water use. This is one of several water sources the Division of Water Resources has not considered in its most recent LPP proposal.
Other sources of future water which state water planners are not considering were revealed in the 2015 Legislative Audit of the Utah Division of Water Resources. The audit found that local water providers, including cities and towns, have the ability to expand their sources of water supply. The auditors noted that St. George City has the ability to expand its water supply without the assistance of the District through new well drilling and other water sources. The audit also showed the area’s water supply is actually growing as new residential development occurs, due to water formerly used by agricultural operations being transferred to municipal uses. As Washington County continues to grow, more and more of its irrigated farmland will be transformed into sites for homes and businesses, adding large amounts of water to the public supply.

The auditors also noted Washington County has some of the highest water conservation potential in the nation. The area's per-person water use is over twice the national average and their current conservation goal would still put their per-person water use above nearly every similar community in the West. If the area implemented a more aggressive water conservation program they could further extend their water supply. When these additional water sources are included in the water supply estimates for Southwestern Utah, the need for the LPP becomes questionable.

Additionally, according to the Utah Division of Water Resources, the District claims it has supplemental water infrastructure needs outside of the LPP that total an added $1.1 billion in new debt for facilities, including a Master Plan, the Warner Valley Reservoir, and water treatment upgrades. Our analysis does not include this additional debt, which will require even larger increases in water rates and/or impact fees than described above.

Furthermore, the projected cost alternatives are now four to seven years old and these costs are likely to have increased because of inflation. Increased costs due to construction delays are not uncommon with water projects of such large size and cost, which would require additional increases in water rates and/or impact fees. While impact fees might appear to fall only on newcomers, free market competition for housing development among surrounding counties means that the District’s impact fees will depress the value of Washington County land relative to its neighbors’ land and relative to its current value.

In the past, the Division of Water Resources has claimed they have devised a repayment scenario, coined “Pay-As-You-Go,” allowing the District to take portions of the water from the LPP and only pay the debt associated with this smaller portion. This scenario does not address the operation and maintenance costs, among other costs, which must be paid annually regardless of when the project’s water is used by the District. If “Pay-As-You-Go” involves no State subsidy (that is, if it entails “negative amortization”), we find it causes ballooning debt as a function of not paying down the loan, unless the District raises water rates and/or impact fees even more. If, on the other hand “Pay-As-You-Go” does involve a State subsidy, then it constitutes an almost 50-year interest-free loan, a gift by Utah taxpayers potentially totaling billions of dollars. Finally, if the Division of Water Resources contends that only a portion of the LPP water is needed over the next 20–40 years and the area has a variety of alternative water sources, we question why the project is being proposed now.
We conclude from our initial analysis that these debt obligations raise serious questions about the project the Division of Water Resources is proposing. The State should not facilitate Washington County’s acquisition of this debt without a careful and thoroughly detailed study of whether Washington County residents have the need for this water, the will to pay dramatically more in water rates and/or impact fees, and the financial capacity to repay this large debt owed to the taxpayers of Utah. Without this study and subsequent discussion, there is no assurance that Utah taxpayers will ever see their loan repaid. Indeed if repayment really was highly likely, the District by itself could have borrowed the money on the bond market from eager investors and started construction already, without any State financial involvement, as the District has done on many past occasions.

Thank you for the opportunity to participate in this discussion.

Sincerely,

Gail Blattenberger
Associate Professor
Emeritus
Department of Economics
University of Utah

Gabriel Lozada
Associate Professor
Department of Economics
University of Utah

Kenneth Jameson
Professor Emeritus
Department of Economics
University of Utah

Thomas Maloney
Professor and Chair
Department of Economics
University of Utah

Arthur Kaplan
Professor
Department of Economics
Utah State University

Lance Girton
Professor Emeritus
Department of Economics
University of Utah

Delworth Gardner
Professor Emeritus
Department of Economics
Brigham Young University

Paul Jakus
Professor
Department of Applied Economics
Utah State University

Korkut Erturk
Professor
Department of Economics
University of Utah

Gunseli Berik
Professor
Department of Economics
University of Utah

Rudiger Von Arnim
Assistant Professor
Department of Economics
University of Utah

Codrina Rada
Associate Professor
Department of Economics
University of Utah

Nilufer Cagatay
Professor
Department of Economics
University of Utah

Anne Yeagle
Assistant Professor, Lecturer
Department of Economics
University of Utah

Minqi Li
Associate Professor
Department of Economics
University of Utah
Haimanti Bhattacharya
Associate Professor
Department of Economics
University of Utah

David Kiefer
Professor
Department of Economics
University of Utah

Norm Waitzman
Professor
Department of Economics
University of Utah

Steven C. Bannister
Assistant Professor,
Lecturer
Department of Economics
University of Utah

Cihan Bilginsoy
Professor
Department of Economics
University of Utah

Eric Sjoberg
Assistant Professor
Department of Economics
University of Utah

Richard Fowles
Associate Professor
Department of Economics
University of Utah

Steven C. Bannister
Assistant Professor,
Lecturer
Department of Economics
University of Utah

Korkut Erturk
Professor
Department of Economics
University of Utah

Gunseli Berik
Professor
Department of Economics
University of Utah

Nilufer Cagatay
Professor
Department of Economics
University of Utah

Anne Yeagle
Assistant Professor,
Lecturer
Department of Economics
University of Utah

Minqi Li
Associate Professor
Department of Economics
University of Utah
Lake Powell Pipeline Economic Feasibility Analysis for Washington County, UT

October 2015
Lake Powell Pipeline Feasibility for Washington County Water District

The following summarizes concerns about the ability of the Washington County Water Conservancy District (WCWCD) to repay debt issued by the State of Utah for the WCWCD’s financial obligation for participating in the proposed Lake Powell Pipeline (LPP).

1. Washington County Water District’s Questionable Water Needs. Based on declining population growth, potential to convert additional agricultural water, potential water conservation savings, and previously unconsidered water sources, Washington County has ample water to serve future populations without participation in the Lake Powell Pipeline.

1a. Outdated Population Forecasts. The Governor’s Office of Planning and Budget (GOPB) 2012 Baseline Population Projections estimates Washington County will grow to 581,731 residents by the year 2060, 32.4 percent lower than population projections made by the GOPB in 2005. Since the District’s water needs projections rely on these population projections, the more updated data pushes the supposed need for the LPP back over 12 years. The labeled 2006 Population and 2012 Projection with No Conservation lines in Figure 2 on page 3 illustrates the difference between these two different population forecasts on water use.

1b. Potential Agricultural Water Transfers. In the most recent Kanab Creek/Virgin River Basin Plan by the Division of Water Resources (DWR) from 1993 (1993 KCVRBP) it was estimated the basin had 25,600 acres of irrigated cropland, diverting over 123,000 acre-feet of water (pg. 10–14), with 87,800 acre-feet of the agricultural diversions in the basin occurring in Washington County. Much of the water diverted for agriculture in Washington County uses inefficient conveyance systems and it is estimated “If the overall irrigation efficiency could be increased one percent, it would save 2,500 acre-feet of water in the basin.” (pg. 2–8 1993 KCVRBP).

As future development replaces former agricultural lands in the county, the new development creates a surplus of water formerly used to irrigate crops. Table ES-11 in the 2011 DWRe Water Needs Assessment claims that Washington County can only expect to convert 10,080 acre-feet of agricultural water for M&I needs. However Table 10-6 of the 1993 KCVRBP implies, using linear interpolation, that there will be a reduction of 27,100 acre-feet of irrigated cropland water diversions from 2011 to 2040. According to the 2012 USDA Census of Agriculture, Washington County had 14,781 acres of irrigated lands in 2012, a reduction of over 10,000 acres since 1993.

The 2015 Legislative Audit of the Division of Water Resources found that “the state engineer typically approves the conversion of 100 percent of agricultural water to municipal use” and thus Washington County can expect much more than 10,000 acre-feet of water to be available from agricultural conversions.

2 Utah State Water Plan, Kanab Creek/Virgin River Basin, Utah Division of Water Resources, August 1993.
1.c Potential Water Conservation Savings. According to the 2011 DWRe Water Needs Assessment, WCWCD uses 295 gallons per capita per day ("GPCD"; p. ES-7) and had 13 percent water conservation savings from 2000–2009 (p. ES-10). If WCWCD encouraged residents to get closer to neighboring cities or the state conservation goal of 220 GPCD, the district could extend its water supply even further into the future.

Figure 1: Per Person Water Use, Gallons per Day

Since WCWCD’s per person water use is nearly twice the national average, it is clear there is great potential for additional water conservation efforts.

The recent legislative audit noted:

"The Southern Nevada Water Authority, which serves the Las Vegas region, has a goal to reduce water use to 199 by 2035. In contrast, the communities in Southwestern Utah, which have a climate similar to that of Southern Nevada, have a goal to reduce water use to 292 GPCD by the year 2060."

Figure 2: Population projections from the Governor’s Office of Planning & Budget demonstrate reduced water demand for Washington County. The recent Legislative Audit of water needs projections questioned the conservation efforts of Utah and criticized the DWRe for not including local sources of water available outside of WCWCD supplies in planning documents. The dotted red line shows water demand if per capita water use was reduced each year after 2025 by 1 percent of the 2025 level.

1d. Previously Unconsidered Water Sources. According to a May 2015 bond rating update for WCWCD from Fitch Ratings:

“The district has ample water supply, is expanding its water reserves through a groundwater recharge program, enjoys surplus system capacity, operates predominantly new infrastructure, and faces no known regulatory issues.”

The District noted it operates a groundwater recharge program that currently provides 100,000 acre-feet of water and will provide access to up to 300,000 af in the future.6 This amount of water more than twice the District’s supply, yet is not accounted for in the LPP planning documents.

The 2015 Legislative Audit of the state sponsor of the Lake Powell Pipeline, the Utah Division of Water Resources, showed that water planners are ignoring the fact that local water providers have the ability to expand their own sources of water supply. The auditors noted St. George has the ability to expand its water supply without the assistance of WCWCD through new well drilling and other sources.7 These future water sources were also not included in the LPP planning documents.

2. Estimate of Existing Revenues vs. Debt Service for WCWCD.

One important question is whether or not local taxpayers can support Washington County’s repayment obligation for the LPP as is required by Utah Law. The Lake Powell Pipeline (LPP) Development Act (Utah Code 73-28-402) mandates the entire project cost be repaid to the State of Utah with interest.

Repayment of the LPP construction costs requires the District’s total revenues to cover their existing operation and maintenance costs, preexisting debt obligations, debt from LPP construction, and the operation and maintenance costs associated with the LPP.

A review of the WCWCD’s revenue streams is warranted, based on the 2013 Audited Financial Statement Prepared for WCWCD, the “2013 WCWCDAFS”.

2a. Current Revenues

Operating Revenues. WCWCD received $7,013,377 in water sales revenue, $926,134 in power sales revenues and $1,379,171 in Water Development and Connection Fees (page 22 of the 2013 WCWCDAFS). These last two categories are represented as “Power Sales & Surcharges” in the above pie chart.

Property Tax Revenues. In 2013 WCWCD collected $9,938,660 from property taxes (see the source in the next paragraph). Its levy rate was 0.000970544 times the taxable value of the county (p. 19 of the 2013 WCWCDAFS).

Impact Fee Revenues. WCWCD collected $5,919,316 in impact fees for new development in 2013 (page 19 of the 2013 WCWCDAFS):

*"Washington County Water Conservancy District Financial Statement With Other Government Reports For the year ending June 30, 2013."
Revenues from Sale of WCWCD’s Surplus Real Property. According to page 7 of the 2013 WCWCDAFS, the District has between 1000–1200 acres in real property that can be sold at market value for additional funds. The District claims this property is valued between $50,000–$125,000 per acre. For this analysis it was assumed the District would sell 1200 acres at the highest market value to help pay for the LPP, giving the district a one-time revenue source of $150,000,000.

The District owns real property which is shown on the books at cost. Approximately 1000 - 1200 acres may eventually be declared surplus property and sold at market value. The current fair market value for this property is $50,000 to $125,000 per acre. It is anticipated that the value will continue to increase over time. These values are not reflected in the statement of net position.

2b. Existing Debt Service by WCWCD (not including LPP). The WCWCD has $7,026,322 in annual debt service for previous obligations for FYE 2013, not including debt from the Lake Powell Pipeline, as shown on the 2014 row of the District’s debt service schedule (p. 39 of the 2013 WCWCDAFS). This non-LPP debt service increases annually through 2037 before being extinguished in 2050, totaling $94.3 million. The District’s debt schedule is included below.

WCWCD existing debt schedule, not including LPP debt.
2c. Existing Operation and Maintenance Expenses. In addition to its debt obligations, WCWCD has operating and maintenance expenses, totaling $13,231,636 according to the 2013 WCWCDAFS. These expenses are assumed to grow proportionally to the number of new households in the county, shown in the attached spreadsheet’s Column J. Operating and maintenance costs have been included as part of LPP participation in Column L. Our estimates of WCWCD Total Expenses are shown in Column N.

3. Estimate of Additional Debt Service from the Lake Powell Pipeline on WCWCD

3a. 50-Year Repayment Obligation for Lake Powell Pipeline by Washington County Taxpayers. The following is the calculation of total annual debt service the WCWCD would incur to participate in the LPP. The WCWCD has announced they intend to receive 94.5 percent of the project water, meaning they will be required to repay 94.5 percent of the roughly $1.4–$1.8 billion cost. The WCWCD can therefore expect to repay $1.33 billion – $1.75 billion in capital costs to repay.

Assuming a 50-year repayment period, the annual debt service varies with the interest rate as follows:

<table>
<thead>
<tr>
<th>Repayment Cost</th>
<th>Interest Rate</th>
<th>0.03</th>
<th>0.04</th>
<th>0.05</th>
<th>0.07</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1.33 Billion</td>
<td>$51,631,330</td>
<td>$61,840,170</td>
<td>$72,758,808</td>
<td>$96,260,153</td>
<td></td>
</tr>
<tr>
<td>$1.75 Billion</td>
<td>$101,799,606</td>
<td>$130,945,384</td>
<td>$166,211,969</td>
<td>$258,354,138</td>
<td></td>
</tr>
</tbody>
</table>

In other words, the repayment obligation from the LPP will add between $51.6 and $258 million in additional annual debt burden onto WCWCD’s existing debt service, depending on final project cost and interest rate. A reasonable assumption for a 50-year interest rate is 4 percent, meaning an additional $61.8–131 million in new annual debt payments due to the LPP, shown in the attached spreadsheet’s Column K.

3b. LPP Power Generation Revenues and Operation and Maintenance Costs. The different cost estimates put forward in the 2012 Lake Powell Pipeline Modified Draft Study Report 10 are due to different levels of pump-storage power generation capacities presented in the planning documents. The $1.8 billion cost estimate generates more power sales revenues than the $1.4 billion project cost projection, but also requires much more operation and maintenance costs. The expected revenues and expenses can be seen here:

<table>
<thead>
<tr>
<th>Construction Cost</th>
<th>2026 Power Sales Revenue</th>
<th>2026 Operation and Maintenance Expenses</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1.4 Billion</td>
<td>$9,947,747</td>
<td>$23,493,231</td>
</tr>
<tr>
<td>$1.8 Billion</td>
<td>$72,005,740</td>
<td>$62,867,794</td>
</tr>
</tbody>
</table>

9 The First and Second Scenarios in the spreadsheet represent the low and high cost estimates of the LPP project assumed in our analysis. Existing revenues and expenses of the District were assumed to stay the same in both scenarios (Columns B-F). Differences in the two project cost scenarios resulted in changes to the debt associated with the project (Columns G-P) and the repayment options (Columns Q-V).

10 Note: Columns K and L differ between the two project cost scenarios.

11 69,000 af / 73,000 af, Page ES-5, 2011 LPP Water Needs Assessment. (For the CICWCD see “Iron County pulls out of Lake Powell pipeline project,” Salt Lake Tribune, March 22, 2012.)

12 Lake Powell Pipeline Modified Draft Study Report 10, Socioeconomic and Water Resource Economics, February 2012
Based on the expected growth of existing revenue streams due to population increase in the county, WCWCD’s revenues can be projected over the next 50 years, as shown in Column H. The deficit schedule for the repayment period can be seen in Columns O and P. These columns show that the District’s revenues fall significantly short of the District’s expenses for every year of the 50-year repayment schedule (except for any initial payment-free years). Unless the District has an increase in revenues, WCWCD’s cumulative debt would grow to between $5.84–6.76 billion (cell P73) by the end of the project repayment period. Clearly, participation by the WCWCD in the LPP will require significant increases in impact fees and/or water rates.

4. Water Rate and Impact Fee Increases Required to Repay Debt

The fundamental question is whether the WCWCD can make these debt payments via an increase in revenue13, and if so how they will raise this revenue.

Increasing Property Taxes. According to Utah law, water conservancy districts in the Lower Colorado River Basin may not tax higher than 0.001 per dollar of taxable value of taxable property in the district.14 WCWCD currently collects property taxes at the rate of 0.00097. However, even if WCWCD increased their levy to the maximum collection rate, this only increases revenues $301,642 and revenues would still fall short of their expenses by tens of millions of dollars each year, accumulating to a deficit of billions dollars at the end of the 50-year repayment period. Therefore increasing water rates and/or impact fees must also be implemented by WCWCD.

Increasing Water Rates. Columns Q and R examine whether increasing water rates alone, without any impact fee increases, could repay Washington County Water District’s total future debt. Although one might think the WCWCD could simply increase water rates to raise revenues, raising water rates will result in a decrease in total water demand. Because the debt is relatively large, in order for water sales to cover the debt obligations of the project, water sales revenues would need to increase by 320–358 percent, depending upon the total cost of the LPP (spreadsheet cell B10). This would still require the WCWCD to shoulder significant deficits over time, but would result in a balance of essentially zero in 2063 (Columns Q and R; cell R73).

Due to the fact that the price elasticity of demand for water is estimated to be -0.5, repayment through water sales alone would require rate increases of 1665–1995 percent (cell B12). This enormous increase in water rates would lead Washington County water users to need less water in 2060 than they used in 2010 (cells O12 and AA12 of the “Water Demand” worksheet), meaning that there would be no need for the water supplied by the LPP. In other words, if the LPP is financed only by increasing water rates, water would become so expensive that future water demand would drop below the current water demand of WCWCD,15 even if one ignores other water sources identified above.

Increases in water rates may slow the rate of population growth in Washington County, which would make the LPP both harder to pay back and less necessary. To avoid this and maintain the desirability of homes and building lots in Washington County in the face of increases in water rates, the price of that real estate would have to fall. The lower property values would decrease the

13 In the low-cost scenario, we assumed repayments start immediately, which keeps costs as low as possible. In the high-cost scenario, we assumed repayments begin after a delay of 10 years, which is more realistic and raises costs.
15 This is because cell B11 is larger than cell B8 in both scenarios.
property taxes collected by the District, forcing water rates to go up more than anticipated and forcing real estate values to go down more than anticipated.

Increasing Impact Fees. Columns S and T examine whether increasing impact fees alone, without any additional revenue increases, could repay Washington County Water District’s total future debt. Impact fees are the fees new development pays to hook up to the water system, and there has been some discussion about making debt payments through an increase in impact fees. Currently WCWCD has an average impact fee of $6,102\(^{16}\) and if the District chose to repay debt just using impact fees, revenues from impact fees would need to increase by 247–276 percent (cell B15), requiring an average impact fee of between $21,158–$22,927 (cell B17).

The large impact fees required in Washington County would be among the highest in the nation,\(^{17}\) likely deterring new growth in the county or significantly lowering property values (or both). Both effects would add even more problems for WCWCD’s repayment obligations: the first would lower the amount of impact fees collected, and the second would lower property values and lower the total property taxes collected by the district. Our analysis did not compensate for these factors.

Combination of Increased Water Rates and Impact Fees. The significant debt to participate in the LPP will require WCWCD to raise revenues by tens of millions of dollars every year. The District’s only real flexibility in raising revenues for its debt payments comes from deciding the proportion of increased revenues, which will come from increased water rates versus from increased impact fees.

Participating in the $1.4 billion low-cost alternative of the Lake Powell Pipeline from 2012 Socioeconomics and Water Resource Economics Report could require the WCWCD to raise its revenues by:

- raising impact fees 123 percent (spreadsheet cell B21), to an average of $13,630 per connection (spreadsheet cell B22); together with
- raising water rates by 576 percent (spreadsheet cell B20); together with
- selling 1200 acres of land owned by the District; and with
- continuing to collect property taxes near the maximum levy rate allowed by state law.

Participating in the $1.8 billion high-cost alternative of the Lake Powell Pipeline from 2012 Socioeconomics and Water Resource Economics Report could require the WCWCD to raise its revenues by:

- raising impact fees 138 percent (cell B21), to an average of $14,514 per connection (cell B22); together with
- raising water rates by 678 percent (cell B20); together with
- selling 1200 acres of land owned by the District; and with
- continuing to collect property taxes near the maximum levy rate allowed by state law.

In addition, the 576–678 percent increase in water rates means that Washington County water users would demand more than their current water demand\(^{18}\) but only 84–90 percent of their current water supply in 2060 (worksheet “Water Demand” cells U11 and AG11), so there would be no need for LPP water.

\(^{16}\) 2013 WCWCD Audited Financial Statement

\(^{18}\) This is because cell B19 is smaller than cell B8 in both scenarios.
Debt Repaid with Impact Fees and Water Rates

Figure 4: The WCWCD would be required to increase revenues substantially to cover annual LPP debt payments. Since WCWCD cannot raise taxes further, this increase in revenues would have to come from water rates and/or impact fees.

The right side of this graphic shows the increases required by WCWCD if they chose to only increase revenues from one source to repay the debt (cells B12 & B17). The left side of this graphic shows the increases required if WCWCD shifted the increases proportionally on the revenue sources (cells B20 & B22). The upper and lower parts of the graphic show the water price increases and impact fee increases required respectively.
Figure 5. Since WCWCD’s property tax collections are already near their maximum authorized levy amount, the future growth in property tax revenues will come from population growth (column B). Yet even with this increase in revenues the District must increase water rates and impact fees considerably to repay the annual debt from the Lake Powell Pipeline.

Figure 6. A). 2012 water demand projection for Washington County, which does not include the effect increased water rates would have on reducing water use. This projection assumes no additional water conservation after 2025, keeping water use at 241 GPCD until 2060. This is also the projection if the LPP is only paid for with impact fees.

B). Under the $1.4 billion LPP cost projection, WCWCD’s water demand would decrease by 62% due to increased water rates to repay LPP debt (cell J21). This calculation assumes half the LPP debt would be paid through increased water rates and the other half through increased impact fees.

C). Under the $1.8 billion LPP cost projection, WCWCD’s water demand would decrease by 64% due to increased water rates to repay LPP debt (cell J21). This calculation assumes half the LPP debt would be paid through increased water rates and the other half through increased impact fees.
5. Washington County Water District does not have a current repayment plan.

The most recent repayment plan for the LPP project was in the Regional Water Capital Facilities Plan and Impact Fee Analysis from 2006. The 2006 CFP has many problems as it relies on data that is nearly a decade old, including growth projections made before the 2008 economic downturn. The 2006 CFP completely relied on impact fees for repayment of the project, increasing the fees by 5 percent per year to increase revenues. This impact fee increase is not sufficient to repay the WCWCD debt, as shown in Section 4 above.

The plan also relied on an outdated cost estimate for the LPP project of $562 million. Newer documentation shows the project will cost between $1.4 billion and $1.8 billion.

Despite these many problems, the WCWCD continues to rely on this plan to set their impact fee schedule. Due to the decrease in expected new growth in the area and the higher LPP construction costs, the fund is far behind where it should be to repay the project. The 2006 CFP projected the Impact Fee Fund balance to be $113,770,522 but in reality the 2013 WCWCD AF showed the district had only $44,839,323, 61 percent lower than planned in the 2006 CFP.

6. ‘Pay-As-You-Go’ Repayment Concept Creates Large Subsidy Funded by State Taxpayers

In public discussions related to the repayment problems of the proposed Lake Powell Pipeline, water officials from the Division of Water Resources and the WCWCD coined a repayment concept called “Pay-As-You-Go.” In a 2008 correspondence between WCWCD and the Division of Water Resources, the District’s General Manager outlined this pay-as-you-go concept, asking for confirmation from the Division about the proposal. The concept would allow the WCWCD to defer paying for the entire project by instead buying smaller portions of the Lake Powell Pipeline’s water, which they refer to as “blocks.” According to these officials, the District would only pay the costs and interest associated with one small block of water at a time. This would leave the rest of the unused water and its costs to collect interest without any repayment for decades. This letter from WCWCD’s general manager explicitly stated that he believed,

“No interest would be charged until such time as the actual contract to take the water occurs.”

This was echoed and confirmed in correspondence from the Division of Water Resources. The letters stated that WCWCD would not be required to pay interest on the entire project and would only have to pay interest on small blocks of the project which could be purchased at any point during the first 50 years after the project’s completion. This would defer paying interest on the entire project, leaving the State of Utah holding billions of dollars of debt for an indeterminate amount of time.

20 August 14, 2008 Letter from the General Manager of WCWCD to the Director of the Division of Water Resources.
21 October 14, 2008 Letter from the Director of the Division of Water Resources to the General Manager of WCWCD.
Yet according to the LPP Development Act,

“The board [of Water Resources] shall establish and charge a reasonable interest rate for the unpaid balance of reimbursable preconstruction and construction costs.”22

We interpret this to mean that if “Pay-As-You-Go” is allowed—and we do not know whether it is allowed under the LPP Development Act—then any due-but-unpaid interest must be added to the principal owed by WCWCD, so that the due-but-unpaid interest must be paid back later with interest (a process called “negative amortization”). Our spreadsheet is constructed using this assumption. By making the District’s repayment schedule to the State uncertain and conditional on how the District’s wishes to take water during the next few decades, this “negative amortization” interpretation of “Pay-As-You-Go” increases the uncertainty of the State’s financial condition during those decades, to the detriment of the State and, potentially, to the detriment of the State’s bond rating.

In addition, if the District discovered the LPP water was not needed after all, as seems likely, the District might never buy LPP water, leaving the State to pay all the costs of the project. In the free market, a lender would not loan money without a documented income stream, and that would be a prudent policy for the State of Utah to follow when it lends.

The alternative to the “negative amortization” interpretation of “Pay-As-You-Go” is to forgive the interest for the Lake Powell Pipeline. This scenario would be much worse for the State and its bond rating since it would constitute an interest-free loan of billions of dollars for several decades from Utah taxpayers to the District. Such a lending scenario is completely alien to free-market lenders (except in bankruptcy proceedings, when attempting to recover funds that in hindsight were imprudently lent). The only grounds upon which interest forgiveness could be justified would be as a permanent subsidy from the State to the District, which would certainly violate the intent of the LPP Development Act. Accordingly, the “permanent interest forgiveness” interpretation of “Pay-As-You-Go” is irrelevant to LPP financing.

7. Consideration of the Public Bond Market

The USA has a deep and sophisticated municipal bond market whose participants are, for the most part, better equipped than anyone else to decide whether repayment plans for a public project are sound. The best solution would be for the WCWCD to go to those markets, instead of to the State of Utah, for LPP financing. If the markets decide the WCWCD’s LPP financing scheme is sound, the markets will happily supply the needed funds. Otherwise, the market will have judged the WCWCD’s LPP financing scheme unsound, and that judgment should stand.

22 Utah Code, Section 73-28-403.
Appendices
Appendix A

Washington County, UT Population Projections

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2005 Estimate</td>
<td>48,978</td>
<td>91,090</td>
<td>168,078</td>
<td>279,864</td>
<td>415,510</td>
<td>559,670</td>
<td>709,674</td>
<td>860,378</td>
</tr>
<tr>
<td>2012 Estimate</td>
<td>48,978</td>
<td>91,090</td>
<td>138,748</td>
<td>196,762</td>
<td>280,558</td>
<td>371,743</td>
<td>472,567</td>
<td>581,731</td>
</tr>
<tr>
<td># Households (est. 2012)</td>
<td>15,481</td>
<td>30,191</td>
<td>46,545</td>
<td>70,919</td>
<td>112,378</td>
<td>151,647</td>
<td>192,884</td>
<td>237,065</td>
</tr>
</tbody>
</table>

To solve for geometric growth rates: \(x_{2060} = x_{2010} \times \exp(r \times (2060-2010)) \) and solve for \(r \).

But that is for continuous compounding. For annual compounding:

\[x_{2060} = x_{2010} \times (1+r)^{2060-2010} \]

and solve for \(r \).

\[\Rightarrow \exp[\ln(x_{2060}/x_{2010})/(2060-2010)] - 1 = r. \]

Also, for annual compounding, \(x_{t+1} - x_t = x_0 \times (1+r)^t \) implies that

\[x_{(t+1)} - x_t = x_0 \times (1+r)^t \times r = x_t \times r. \]

Source: GOPB 2012 Population Projections
Appendix B
Present Value Calculations

Data from the Draft Socioeconomics and Water Resource Economics Study Report

<table>
<thead>
<tr>
<th>Benefits</th>
<th>PV, 2010 $</th>
<th>Annual, 2026</th>
<th>PV, 2015 $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power-Inline</td>
<td>$51,165,000</td>
<td>$2,587,006</td>
<td>from equation 5</td>
</tr>
<tr>
<td>Power-Pump Stations</td>
<td>$127,167,000</td>
<td>$7,307,731</td>
<td>from equation 5</td>
</tr>
</tbody>
</table>

Costs

Capital Construction	$2,124,378,000	$1,448,491,839	from equation 6
Operation, Maintenance & Replacement	$5,999,001	$415,901,000	from equation 5
Power Pump Stations	$702,533,000	$40,113,291	from equation 5
Foregone Power	$58,401,000	$3,345,003	from equation 5

Page 5-4, Table 5-2, No Pump Storage

<table>
<thead>
<tr>
<th>Benefits</th>
<th>PV, 2010 $</th>
<th>Annual, 2026</th>
<th>PV, 2015 $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power-Inline</td>
<td>$89,951,000</td>
<td>$2,909,678</td>
<td>from equation 5</td>
</tr>
<tr>
<td>Power-Pump Stations</td>
<td>$197,255,000</td>
<td>$8,251,011</td>
<td>from equation 5</td>
</tr>
</tbody>
</table>

Costs

Capital Construction	$1,273,345,000	$4,093,167,477	from equation 6
Operation, Maintenance & Replacement	$39,153,000	$1,152,908	from equation 5
Power Opers.	$435,694,000	$18,223,458	from equation 5
Foregone Power	$88,845,000	$3,716,228	from equation 5

Page 5-5, Table 5-3, Pump Storage Configuration

<table>
<thead>
<tr>
<th>Benefits</th>
<th>PV, 2010 $</th>
<th>Annual, 2026</th>
<th>PV, 2015 $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power-Inline</td>
<td>$89,951,000</td>
<td>$2,909,678</td>
<td>from equation 5</td>
</tr>
<tr>
<td>Power-Pump Stations</td>
<td>$197,255,000</td>
<td>$8,251,011</td>
<td>from equation 5</td>
</tr>
</tbody>
</table>

Costs

Capital Construction	$1,273,345,000	$4,093,167,477	from equation 6
Operation, Maintenance & Replacement	$39,153,000	$1,152,908	from equation 5
Power Opers.	$435,694,000	$18,223,458	from equation 5
Foregone Power	$88,845,000	$3,716,228	from equation 5

Page 5-6, Table 5-4, Pump Storage Configuration

<table>
<thead>
<tr>
<th>Benefits</th>
<th>PV, 2010 $</th>
<th>Annual, 2026</th>
<th>PV, 2015 $</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power-Inline</td>
<td>$89,951,000</td>
<td>$2,909,678</td>
<td>from equation 5</td>
</tr>
<tr>
<td>Power-Pump Stations</td>
<td>$197,255,000</td>
<td>$8,251,011</td>
<td>from equation 5</td>
</tr>
</tbody>
</table>

Costs

Capital Construction	$1,273,345,000	$4,093,167,477	from equation 6
Operation, Maintenance & Replacement	$39,153,000	$1,152,908	from equation 5
Power Opers.	$435,694,000	$18,223,458	from equation 5
Foregone Power	$88,845,000	$3,716,228	from equation 5

For Washington County's share of these, see tab "Revenues and Expenses"
Appendix C

WCWCD Revenues & Expenses

WCWCD Revenue Stream

<table>
<thead>
<tr>
<th>Source: 2013 WCWCD Audited Financial Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Property Tax</td>
</tr>
<tr>
<td>Impact Fees</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Total Service Area Property Valuation

<table>
<thead>
<tr>
<th>2013 Property Tax Collection Rate</th>
<th>$10,240,302,002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Legal Property Tax Rate</td>
<td>0.000970544</td>
</tr>
</tbody>
</table>

Additional Revenue if use Max. Rate

| 2013 Property Tax Collection Rate | $301,642.00 |

Cost per ERU

| 2013 Total | $6,102 |

Total New 2013 ERU’s

| 2013 Total | 970 |

Water Availability Surcharge

| Fee/ERU | $1.75 |
| Total | $1,248,977 |

Total ERU’s

| 2013 Total | 713,701 |

2013 ERU Growth

| 2013 Total | 0.001359199 |

Operating Revenues

- **Power sale revenue**
 - $926,134
- **Water sales revenue**
 - $7,013,377
- **Water Development and Connection Fees**
 - $1,379,171
- **Total Operating Revenues**
 - $13,319,682

Real Property Acres

<table>
<thead>
<tr>
<th>1000 Annual</th>
<th>1200 Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Value</td>
<td>$50,000,000</td>
</tr>
<tr>
<td>High Value</td>
<td>$125,000,000</td>
</tr>
<tr>
<td>Average</td>
<td>$87,500,000</td>
</tr>
</tbody>
</table>

According to page 7 of the 2013 WCWCDAFS the District has between 1000-1200 acres in real property that can be sold at market value for additional funds. The District claims this property is valued between $50,000-$125,000 per acre.

LPP Capital Costs

<table>
<thead>
<tr>
<th>Source: Facts: Lake Powell Pipeline Project - WCWCD (2012)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KWCD</td>
</tr>
<tr>
<td>WCWCD</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Baseline NED Assumptions

<table>
<thead>
<tr>
<th>FERC High Cost Estimate for WCWCD</th>
<th>$1,328,461,944</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Pump Storage Social Time Preference)</td>
<td>$1,750,908,555</td>
</tr>
</tbody>
</table>

Source: 2012 Draft Study Report 10: Socioeconomics and Water Resource Economics - Page 5-3

LPP Operation and Power Costs

Note: Since WCWCD is responsible for 94.5% (NS) of capital costs, it was assumed they would be responsible for 94.5% of O&M&R costs.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FERC Low Cost Estimate for WCWCD (Baseline NED Assumptions)</td>
</tr>
<tr>
<td>FERC High Cost Estimate for WCWCD (Pump Storage Social Time Preference)</td>
</tr>
</tbody>
</table>

LPP Annual Power Revenues

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FERC Low Cost Estimate for WCWCD (Baseline NED Assumptions)</td>
</tr>
<tr>
<td>FERC High Cost Estimate for WCWCD (Pump Storage Social Time Preference)</td>
</tr>
</tbody>
</table>

Total Expenses

| 2013 Total | $20,257,958 |

Note: The Water Availability Surcharge is charged to all water bills as a monthly fee.
Appendix D

Repayment Obligation Scenarios

Scenario 1 - $1.4B Cost Option

<table>
<thead>
<tr>
<th>Year</th>
<th>Property Taxes</th>
<th>Water sale revenue</th>
<th>Power sale revenue net of Surcharge</th>
<th>Impact Fees</th>
<th>Real Estate sale revenue</th>
<th>LPP</th>
<th>Annual Debt Service</th>
<th>Existing Debt</th>
<th>Existing O&M</th>
<th>Annual O&M</th>
<th>Annual LPP Debt Service</th>
<th>Total O&M Costs</th>
<th>Total Annual Debt Service</th>
<th>Net Annual Surplus/Deficit</th>
<th>Cumulative Surplus (Deficit)</th>
<th>Reimbursement Option 1: Annual Surcharge (Deficit) w/ Increased Water Rate</th>
<th>Reimbursement Option 2: Annual Surcharge (Deficit) w/ Increased Impact Fees</th>
<th>Reimbursement Option 3: Cumulative Surplus (Deficit) w/ Split Between Impact Fees and Water Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td></td>
</tr>
<tr>
<td>2021</td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td></td>
</tr>
<tr>
<td>2023</td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td></td>
</tr>
</tbody>
</table>

Notes

- The factor by which water prices need to increase to eliminate the debt by 2026.
- The factor by which water prices would need to increase to eliminate the debt by 2026.

Key Calculations

- Water prices need to increase by a factor of 5.09324 if the price rises by a factor > this, Q_{2060} under new water rates is needed to eliminate the debt by 2062.

Assumptions

- Given unchanged water prices:
 - Scenario B: Analyze for which Scenario you want to assume unchanged water prices.
 - Enter A or B (capitalized) for which Scenario you want to analyze.

Data

- Costs:
 - Annual LPP Debt
 - Annual O&M
 - Annual Impact Fees
 - Cumulative Impact Fees
 - Surplus (Deficit)
 - Cumulative Surplus (Deficit)
 - Reimbursement Option 1: Annual Surcharge (Deficit) w/ Increased Water Rate
 - Reimbursement Option 2: Annual Surcharge (Deficit) w/ Increased Impact Fees
 - Reimbursement Option 3: Cumulative Surplus (Deficit) w/ Split Between Impact Fees and Water Rates
Scenario 2 - $1.8B Cost Option

Table: Scenario 2 Cost Option Details

<table>
<thead>
<tr>
<th>Year</th>
<th>Property Taxes</th>
<th>Water sale revenue and Surcharges</th>
<th>Power rate revenue and Surcharges</th>
<th>Impact Fees</th>
<th>Real Estate</th>
<th>LFP Power rate revenue</th>
<th>TOTAL Revenue</th>
<th>Annual Debt Service on Existing O&M Costs</th>
<th>Existing O&M Costs</th>
<th>Annual LFP Debt Service</th>
<th>Total Annual Debt Service</th>
<th>Net Annual Surplus (Deficit) w/ Increased Water Rate service revenue</th>
<th>Cumulative Surplus (Deficit) w/ Increased Water Rate service revenue</th>
<th>Repayment Option 1: Annual Surplus (Deficit) w/ Increased Water Rate service revenue</th>
<th>Repayment Option 2: Cumulative Surplus (Deficit) w/ Increased Water Rate service revenue</th>
<th>Repayment Option 3: Cumulative Surplus (Deficit) w/ Increased Impact Fees and Water Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Impact Fees: Calculated as a percentage of water sales revenue.
- Real Estate: Calculated based on a fixed percentage of property taxes.
- LFP Power rate revenue: Calculated to support the debt service obligations.
- Net Annual Surplus (Deficit): Reflects the financial surplus or deficit after accounting for all operational expenses.
- Cumulative Surplus (Deficit): Accruals over the years.
- Repayment Options:
 1. Annual Surplus (Deficit) w/ Increased Water Rate service revenue.
 2. Cumulative Surplus (Deficit) w/ Increased Impact Fees and Water Rates.
 3. Cumulative Surplus (Deficit) w/ Increased Impact Fees and Water Rates.

**Calculations:*

- **Loan Amount after Initial Years of Negative Amortization:**
 - Assumption: Loan at $2,591,772,381

Repayment Option:
- **Repayment Option 1:**
 - Annual Surplus (Deficit) w/ Increased Water Rate service revenue

Cumulative Surplus (Deficit):
- **Cumulative Surplus (Deficit) w/ Increased Impact Fees and Water Rates**

Factors:
- **$1.8B Cost Option:**
 - Initial investment
 - Impact Fees
 - Real Estate
 - LFP Power rate revenue

Assumptions:
- **1.03309:**
 - Growth rate
- **50-Year:**
 - Household Growth Rate
- **Power sale revenue:**
 - Estimate $1,328,461,944
- **2064:**
 - Factor by which water sale revenue needs to increase to eliminate the debt by 2062
- **2063:**
 - Factor by which water sale revenue needs to increase to eliminate the debt by 2062
- **2069:**
 - Factor by which water sale revenue needs to increase to eliminate the debt by 2062 minus one

Tables:
- **Water sale revenue:**
 - Scenario 2 - $1.8B Cost Option
- **Impact Fees:**
 - Scenario 2 - $1.8B Cost Option
- **Real Estate:**
 - Scenario 2 - $1.8B Cost Option
- **Annual Debt Service:**
 - Scenario 2 - $1.8B Cost Option
- **Net Annual Surplus:**
 - Scenario 2 - $1.8B Cost Option
- **Cumulative Surplus:**
 - Scenario 2 - $1.8B Cost Option
- **Repayment Options:**
 - Scenario 2 - $1.8B Cost Option

Additional Notes:
- **Scenario 2 Details:**
 - Water sale revenue
 - Power rate revenue
 - Impact Fees
 - Real Estate

Financial Metrics:
- **Loan Amount:**
 - After initial years of negative amortization
- **Repayment Plan:**
 - Annual Surplus w/ Increased Water Rate service revenue

Future Considerations:
- **Future growth:**
 - Adjustments based on regional growth patterns
- **Impact Fees Adjustments:**
 - Future projections for impact fees

Risk Considerations:
- **Market Fluctuations:**
 - Effects on water sale revenue
- **Regulatory Changes:**
 - Impact on real estate values

Conclusion:
- **Financial Viability:**
 - Analysis of repayment options and impact fees
- **Operational Feasibility:**
 - Strategic planning for operational efficiency

References:
- **Scenario 2 Data Source:**
 - Comprehensive report on $1.8B Cost Option
- **Assumptions Basis:**
 - Historical data and industry standards

Final Remarks:
- **Impact of Government Policies:**
 - Influence on water rate adjustments
- **Environmental Impact:**
 - Consideration of environmental sustainability
Appendix E

WCWCD Water Demand with LPP Debt

<table>
<thead>
<tr>
<th>Year</th>
<th>Current Supply</th>
<th>Supply with LPP (GFCO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>82,010</td>
<td>82,010</td>
</tr>
<tr>
<td>2010</td>
<td>82,010</td>
<td>82,010</td>
</tr>
<tr>
<td>2020</td>
<td>130,840</td>
<td>151,010</td>
</tr>
<tr>
<td>2030</td>
<td>130,840</td>
<td>151,010</td>
</tr>
<tr>
<td>2040</td>
<td>130,840</td>
<td>199,840</td>
</tr>
<tr>
<td>2050</td>
<td>130,840</td>
<td>199,840</td>
</tr>
<tr>
<td>2060</td>
<td>130,840</td>
<td>199,840</td>
</tr>
</tbody>
</table>

Red = some water from LPP is actually used (total demand > 130,840 acre-feet)
Blue = no water from LPP is actually used because water’s so expensive that > 130,840 acre-feet are not demanded

Appendix F

WCWCD Debt Repayment: Water Rates vs. Impact Fees

<table>
<thead>
<tr>
<th>Water Revenues</th>
<th>Impact Fee Revenues</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.20085321</td>
</tr>
<tr>
<td>1</td>
<td>3.46738434</td>
</tr>
</tbody>
</table>

2.26 If Water Revenues rise by a factor > this, Q_2060 < Q_2010.
Appendix G
Repayment Scenario Supporting Formulas

by Gabriel A. Lozada, 9/28/15

1. Paths of Demand, Price, and Revenue when Elasticity is $-1/2$

Suppose the demand for water is given by

$$Q_t = \alpha \beta^t P_t^{-1/2}$$ \hspace{1cm} (1)

where Q is quantity demanded, P is price, β is one plus the projected population growth rate, and t denotes the date. Assume price is constant:

$$P_t \equiv P$$ \hspace{1cm} for all t.

Then

$$Q_t = \alpha \beta^t P^{-1/2}$$
$$Q_0 = \alpha P^{-1/2}$$ \hspace{1cm} so

$$Q_t = Q_0 \beta^t$$ \hspace{1cm} (which grows at rate β) and

total revenue $Q_t P_t = Q_0 \beta^t P = Q_0 P \beta_t$ \hspace{1cm} (which grows at rate β).

Now suppose there is a new situation, denoted by $\hat{\cdot}$, and suppose we have discovered that the needed total revenue in the new situation is γ times the total revenue of the old situation:

$$\hat{Q}_t \hat{P}_t = \gamma \cdot Q_t P_t$$ \hspace{1cm} (2)

Suppose as before that

$$\hat{P}_t \equiv \hat{P}$$ \hspace{1cm} for all t. \hspace{1cm} and

$$\hat{Q}_t = \alpha \beta^t \hat{P}^{-1/2}.$$ \hspace{1cm} (3)

Then as before, both \hat{Q}_t and $\hat{Q}_t \hat{P}_t$ grow at rate β, and also $\hat{Q}_t = \hat{Q}_0 \beta^t$.

From (2),

$$\hat{Q}_t \hat{P}_t = \gamma Q_t P_t$$
$$\hat{Q}_0 \beta^t \cdot \hat{P} = \gamma Q_0 \beta^t \cdot P$$
$$\hat{Q}_0 \cdot \hat{P} = \gamma Q_0 \cdot P$$
$$\alpha \hat{P}^{-1/2} \cdot \hat{P} = \gamma \alpha P^{-1/2} \cdot P$$
$$\hat{P}^{1/2} = \gamma P^{1/2}$$

$$\hat{P} = \gamma^2 P.$$ \hspace{1cm} (3)
Using (3), \(\hat{Q}_t = \frac{Q_0 \beta^t}{(1 + \theta) \beta^t} = \alpha \gamma^2 P^{-1/2} \beta^t = \gamma^{-1} \alpha P^{-1/2} \beta^t = \gamma^{-1} Q_t \), so

\[
\hat{Q}_t = \frac{Q_t}{\gamma}. \tag{4}
\]

Note that in the spreadsheet (worksheets “First Scenario” and “Second Scenario”), \(\hat{Q}_t P_t = \frac{Q_t P_t}{\gamma} = \frac{(1 + B1\theta) Q_t P_t}{\gamma} \), so the value of \(\gamma \) in (2) is \(1 + B1\theta \) in the spreadsheet; this is B11 and B19.

The answer to the question “when is \(\hat{Q}_{2060} < Q_{2010} \) ?” is, using (4), when

\[
\frac{Q_{2060}}{\gamma} < Q_{2010} \quad Q_{2010} \beta^{2060-2010} / \gamma < Q_{2010} \beta^{50} < \gamma.
\]

This underlies B8.

2. Deriving Cost and Benefit Flows from their Present Values given in pages 5-3 to 5-6 of the Draft Socioeconomics and Water Resource Economics Study Report

This section derives relationships used in the spreadsheet tab “DSWRESR,” whose name is the first letters of the “Study Report” named in the title of this section.

The Study Report describes the flows of costs and benefits from 2020 to 2060 (see for example Table 2-1 on page 2-2) in terms of the present value (in 2010) of those flows. Here we derive the implied magnitude of such a flow in our assumed initial year of operation, 2026.

Let the Study Report’s “escalation rate” (the rate of real cost or benefit increases per year) be \(\epsilon \). The Study Report provides the value of \(\epsilon \) but it provides no further information about how the Study Report authors assumed costs and benefits changed over time. In the absence of this information, the best we can do is to assume that their sequence of costs (or benefits)

\[\left\{ c_{2020}, c_{2021}, c_{2022}, \ldots, c_{2060} \right\}\]

is equal to

\[\left\{ c_{2020}, (1+\epsilon)c_{2020}, (1+\epsilon)^2 c_{2020}, \ldots, (1+\epsilon)^{40} c_{2020} \right\} .\]

Let the Study Report’s discount rate be \(r \) and let the present value in 2020 of this sequence be denoted by \(PV_{2020} \). Then

\[
PV_{2020} = \sum_{t=0}^{40} \frac{(1 + \epsilon)^t c_{2020}}{(1 + r)^t} = \frac{1 - \left(\frac{1+\epsilon}{1+r} \right)^{41}}{1 - \left(\frac{1+\epsilon}{1+r} \right)} c_{2020} ,
\]
\[c_{2020} = \frac{1 - (\frac{1+\epsilon}{1+r})^{41}}{1 - (\frac{1+\epsilon}{1+r})^{41}} PV_{2020}, \text{ and} \]
\[c_{2026} = (1 + \epsilon)^6 c_{2020} = (1 + \epsilon)^6 \frac{1 - (\frac{1+\epsilon}{1+r})^{41}}{1 - (\frac{1+\epsilon}{1+r})^{41}} PV_{2020}. \]

Since \(PV_{2010} = PV_{2020}/(1+r)^{10} \) because the only thing which happens to these flow costs between 2010 and 2020 is discounting, we have
\[c_{2026} = (1 + \epsilon)^6 (1 + r)^{10} \frac{1 - (\frac{1+\epsilon}{1+r})^{41}}{1 - (\frac{1+\epsilon}{1+r})^{41}} PV_{2010}. \] (5)

If we are correct in assuming that the Study Report authors used \(c_t = (1 + \epsilon)^t c_{2020} \) then (5) would give the same answer for \(c_{2020} \) regardless of the values of \(\epsilon \) and \(r \). However, the values which (5) gives for \(c_{2020} \) for the two “no pump storage” cases, Tables 5-1 and 5-2 (spreadsheet columns C and J, rows 12–19), slightly differ; so do the values which (5) gives for \(c_{2020} \) for the two “pump storage” cases, Tables 5-3 and 5-4 (spreadsheet columns C and J, rows 29–37). Therefore, the Study Report authors must not have used \(c_t = (1 + \epsilon)^t c_{2020} \), but something slightly different. There is no way to know what that was (for example, the text “2024” does not appear in the report), so in column N, averages of the \(c_{2020} \) values derived from (5) for the two “no pump storage” cases given in the Study Report were calculated, and this average was used for the “no pump storage” \(c_{2020} \) in the rest of the spreadsheet. Similarly, in column N, averages of the \(c_{2020} \) values derived from (5) for the two “pump storage” cases given in the Study Report were calculated, and that average was used for the “pump storage” \(c_{2020} \) in the rest of the spreadsheet.

For construction costs the situation is the same except that the years of construction in the Study Report were 2016 to 2019. So
\[PV_{2016} = \sum_{t=0}^{3} \frac{(1 + \epsilon)^t c_{2016}}{(1 + r)^t} = \frac{1 - (\frac{1+\epsilon}{1+r})^{4}}{1 - (\frac{1+\epsilon}{1+r})^{4}} c_{2016}, \]
\[c_{2016} = \frac{1 - (\frac{1+\epsilon}{1+r})^{4}}{1 - (\frac{1+\epsilon}{1+r})^{4}} PV_{2016}, \text{ and} \]
\[c_{2015} = c_{2016}/(1 + \epsilon). \]

Let the present value for our spreadsheet, in which construction starts in 2015, be denoted by \(PV'_{2015} \), and let our discount rate be \(r' \). The Study Report gives
We have

\[PV'_{2015} = \sum_{t=0}^{3} \frac{(1 + \epsilon)^t c_{2015}}{(1 + r')^t} = \frac{1 - \left(\frac{1+\epsilon}{1+r'}\right)^4}{1 - \left(\frac{1+\epsilon}{1+r'}\right)} c_{2015} \]

\[= \frac{1 - \left(\frac{1+\epsilon}{1+r'}\right)^4}{1 - \left(\frac{1+\epsilon}{1+r'}\right)} 1 + \epsilon \]

\[= \frac{1 - \left(\frac{1+\epsilon}{1+r'}\right)^4}{1 - \left(\frac{1+\epsilon}{1+r'}\right)} 1 - \left(\frac{1+\epsilon}{1+r'}\right)^4 PV_{2016} \]

\[= \frac{1 - \left(\frac{1+\epsilon}{1+r'}\right)^4}{1 - \left(\frac{1+\epsilon}{1+r'}\right)} 1 + \epsilon - \left(\frac{1+\epsilon}{1+r'}\right)^4 (1 + r)^6 PV_{2010}. \quad (6) \]

As before, if we are correct in assuming that the Study Report authors used \(c_t = (1+\epsilon)^{t-2016} c_{2016} \) then (6) would give the same answer for \(c_{2016} \) and \(PV'_{2015} \) regardless of the values of \(\epsilon \) and \(r \). However, the values which (6) gives for \(PV'_{2015} \) for the two “no pump storage” cases, Tables 5-1 and 5-2 (spreadsheet columns D and K, row 16) differ by about one-half of one percent; so do the values which (6) gives for \(PV'_{2015} \) for the two “pump storage” cases, Tables 5-3 and 5-4 (spreadsheet columns D and K, row 33). Therefore, the Study Report authors must not have used \(c_t = (1+\epsilon)^{t-2016} c_{2016} \), but something very slightly different. There is no way to know what that was (for example, the text “2017” does not appear in the report), so in column O, averages of the \(PV'_{2015} \) values derived from (6) for the two “no pump storage” cases given in the Study Report were calculated, and this average was used for the “no pump storage” \(PV'_{2015} \) in the rest of the spreadsheet. Similarly, in column O, averages of the \(PV'_{2015} \) values derived from (6) for the two “pump storage” cases given in the Study Report were calculated, and that average was used for the “pump storage” \(PV'_{2015} \) in the rest of the spreadsheet.
Appendix H
Survey of Water Price Elasticity Publications, Gail Blattenberger, PhD

Elasticity Measurements West/US Studies
Elasticity Measurements Foreign Studies

Study 1: AlQunaibet & Johnston
Study 2: Hanke & deMare
Study 3: Hansen
Study 4: Hoglund
Study 5: Katzman
Elasticity Measurements Utah Studies

Elasticity

Study

1 CH2M Hill
2 CH2M Hill
3 CUWCD Pricing Policy Study
4 Gardiner & Schick
5 Hansen & Narayanan
6 Hughes & Gross
Elasticity Measurements Utah Studies

1 CH2M-Hill
2 CH2M-Hill
3 CUWCD Pricing Policy Study
4 Gardiner & Schick
5 Hansen & Narayanan
6 Hughes & Gross
Elasticity Measurements East/US Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Carver & Boland</td>
</tr>
<tr>
<td>2</td>
<td>Cavanagh, Haneman & Stavins</td>
</tr>
<tr>
<td>3</td>
<td>Chicoine & Ramurthy</td>
</tr>
<tr>
<td>4</td>
<td>Clarke</td>
</tr>
<tr>
<td>5</td>
<td>Cochrane & Cotton</td>
</tr>
<tr>
<td>6</td>
<td>Danielson</td>
</tr>
<tr>
<td>7</td>
<td>Danielson</td>
</tr>
<tr>
<td>8</td>
<td>Deller, Chicoine, & Ramamurthy</td>
</tr>
<tr>
<td>9</td>
<td>Foster & Beattie</td>
</tr>
<tr>
<td>10</td>
<td>Fort</td>
</tr>
<tr>
<td>11</td>
<td>Gibbs</td>
</tr>
<tr>
<td>12</td>
<td>Gottlieb</td>
</tr>
<tr>
<td>13</td>
<td>Gottlieb</td>
</tr>
<tr>
<td>14</td>
<td>Grima</td>
</tr>
<tr>
<td>15</td>
<td>Hogarty & Mackay</td>
</tr>
<tr>
<td>16</td>
<td>Hogarty & Mackay</td>
</tr>
<tr>
<td>17</td>
<td>Howe & Lineweaver</td>
</tr>
<tr>
<td>18</td>
<td>Martin & Wilder</td>
</tr>
<tr>
<td>19</td>
<td>Martin & Wilder</td>
</tr>
<tr>
<td>20</td>
<td>Nieswiadomy & Cobb</td>
</tr>
<tr>
<td>21</td>
<td>Nieswiadomy & Cobb</td>
</tr>
<tr>
<td>22</td>
<td>Schafer & David</td>
</tr>
<tr>
<td>23</td>
<td>Schneider & Whittach</td>
</tr>
<tr>
<td>24</td>
<td>Stevens, Miller, Willis</td>
</tr>
<tr>
<td>25</td>
<td>Stevens, Miller, Willis</td>
</tr>
<tr>
<td>26</td>
<td>Stevens, Miller, Willis</td>
</tr>
<tr>
<td>27</td>
<td>Turnovsky</td>
</tr>
<tr>
<td>28</td>
<td>Turnovsky</td>
</tr>
<tr>
<td>29</td>
<td>Williams</td>
</tr>
<tr>
<td>30</td>
<td>Williams</td>
</tr>
<tr>
<td>31</td>
<td>Williams</td>
</tr>
<tr>
<td>32</td>
<td>Williams & Suh</td>
</tr>
<tr>
<td>33</td>
<td>Wong</td>
</tr>
<tr>
<td>34</td>
<td>Wong</td>
</tr>
<tr>
<td>35</td>
<td>Wong</td>
</tr>
<tr>
<td>36</td>
<td>Wong</td>
</tr>
<tr>
<td>37</td>
<td>Wong</td>
</tr>
<tr>
<td>38</td>
<td>Wong</td>
</tr>
</tbody>
</table>
Elasticity Measurements Individual Customer Studies

Elasticity

Study

1 Agathe & Billings
2 Agathe & Billings
3 Agathe & Billings
4 Agathe & Billings
5 Cavanagh, Haneman & Slavins
6 Chicoine & Ramurthy
7 CUWCD Pricing Policy Study
8 Danielson
9 Danielson
10 DeFerr, Chicoine, & Ramamurthy
11 Gibbs
12 Hanke & deMare
13 Hewitt & Hanemann
14 Hogarty & Mackay
15 Hogarty & Mackay
16 Howe & Lineweaver
17 Howe & Lineweaver
18 Howe
19 Jones & Morris
20 Katzman
21 Lyman
22 Lyman
23 Martin & Wilder
24 Martin & Wilder
25 Monour
26 Morgan
27 Nieswiadomy & Molina
28 Nieswiadomy & Molina
29 Pint
30 Pint
31 Remwick & Archibald
32 Remwick & Archibald
33 Remwick & Archibald
34 Remwick & Archibald
Elasticity Measurements Aggregate Customer Studies

Elasticity

Study

1 AlQunaibet & Johnston
2 Agathe Billings Dobra Rafiee
3 Berry & Bonen
4 Billings & Agathe
5 Billings
6 Billings & Day
7 Carver & Boland
8 Casuto & Ryan
9 CH2MHiH
10 CH2MHiH
11 Clarke
12 Cochrane & Cotton
13 Conley
14 Foster & Beattie
15 Fount
16 Gardiner & Schick
17 Gerston
18 Gottlieb
19 Gottlieb
20 Griffin & Chang
21 Grima
22 Hansen
23 Hansen & Narayanan
24 Hoglund
25 Hughes & Gross
26 Morgan & Smolen
27 Nieswiadomy
28 Nieswiadomy & Cobb
29 Nieswiadomy & Cobb
30 Schafer & David
31 Schneider & Whittach
32 Stevens, Miller, Willis
33 Stevens, Miller, Willis
34 Stevens, Miller, Willis
35 Timmins
36 Turnovsky
37 Turnovsky
38 Weber
39 Williams
40 Williams
41 Williams
42 Williams
43 Williams & Suh
44 Wong
45 Wong
46 Wong
47 Wong
48 Wong
49 Wong
50 Young
51 Young
Elasticity Measurements Studies with Large Price Changes

1 Agathe & Billings
2 Agathe & Billings
3 Agathe & Billings
4 Agathe & Billings
5 Agathe Billings Dobra Raffiee
6 Billings & Agathe
7 Billings & Day
8 Casuto & Ryan
9 Cavanagh, Haneman & Stavins
10 Nieswiadomy & Molina
11 Nieswiadomy & Molina
12 Pint
13 Pint
14 Renwick & Archibald
15 Renwick & Archibald
16 Renwick & Archibald
17 Renwick & Archibald
18 Timmins
19 Weber

Elasticity

Study

ω

15
Sources

Agathe, Donald, Bruce Billings John Dobra and Kambiz Raffiee “A Simultaneous Equations Demand Model for Block Rates” Water Resources Research January 1986

Agathe, Donald and Billings Bruce 1987 Equity, “Price Elasticity and Household Income under Increasing Block Rates for Water” American Journal 0f Economics and Sociology 46 July

Al-Quinaibet, Muhammad H. and Richard Johnston “Municipal Water Demand in Kuwait: Methodological Issues and Empirical Results” Water Resources Research 21(4) 1985

Bachelor, R.A. “Household technology and domestic demand for water” Land Economics 51(3)

Bear West Consulting Team, March 1999, Salt Lake City Watershed Management Plan

Berry D.W. and G.W Bonnem “Predicting the municipal demand for water” Water Resources Res., 10 1974

Billings, Bruce and Agathe, Donald “Price Elasticities for Water: A case of Increasing Block Rates” Land Economics Feb 1980

Billings, Bruce and Agathe, Donald “Price Elasticities for Water: A case of Increasing Block Rates: Reply” Land Economics May 1981

Billings, R.B. “Specification of bolck rate price variables in demand Models Land Economics 58(3)

Characklin, Gregory W. and Ronald C. Griffin, and Philip B. Bedient “Improving the Ability of a water Market to Efficiently Manage Drought” Water Resources Research March 1999.

CH2M Hill April 1991, Water Price Elasticity Study State of Utah Division of Water Resources

Clarke R.M. Asce “Cost and pricing relationships in water supply” Journal of Environmental Engineering 102(EE2) 1976 363-383

Cochrane, R. and Cotton A.W. “Municipal Water demand Study, Oklahoma City and Tulsa” Water Resources Res. 21 1985

Conley, B.C “Price elasticity of the demand for water in Southern California Annals of Regional Science 1(1) 1967

CUPCA Water Management Improvement Studies Water Pricing Policy Study Executive Summary October 1965 Resource Management International Inc

Eckhoff, Watson and Preator Engineering, August 1993, Water Supply and Demand Projection Study, Salt Lake Department of Public Utilities

Eckhoff, Watson and Preator Engineering, April 1999, Salt Lake City Water Conservation Update Plan
Foster, Henry and Beattie, Bruce “Urban Residential Demand for Water in the United States” Land Economics, February 1980

Foster, Henry and Beattie, Bruce “Urban Residential Demand for Water in the United States: Reply” Land Economics, February 1981

Gardner, B. Delworth and Sheth H. Schick 1964 “Factors Affecting Consumption of Urban Household Water Consumption in Northern Utah” Agricultural Experiment Station Bulletin 444, Utah State University

Griffin, R.C. and C. Chang “Pretest Analysis of Water Demand in Thirty Communities” Water Resources Res.26 1990

Griffin, Adrian, William E. Martin, and James C. Wade “Urban Residential Demand for Water in the United States: Comment” Land Economics May 1981

Griffin, Adrian and William E. Martin “Price Elasticities for Water: A Case of Increasing Block Rates: Comment” Land Economics May 1981

Grima, Angelo P. Residential Water Demand Alternative Choices for management University of Toronto Press 1972

Gysi M. and D. P. Loomis “Some long run effects of water pricing policies” Water Resources Research 1971

Hanke, S. H. “Demand for Water under dynamic Conditions”, Water Resources Research, 6(5) 1253-1261, 1970

Hanke, S.H. and Davis “Demand management through responsive pricing” Water Resources Research 1973 9(4)
Hanke, Steve and Lennart de Mare “Residential Water demand: a pooled Time Series Cross Section Study of Malmo Sweden, Water Resources Bulletin 18

Hansen, Roger, Herbert H. Fullerton, and Trevor C. Hughes Municipal Water Use” June 1979 *Utah Science*

Hasson, David CH2MHill “Selecting a Conservation Rate Structure “Selecting A conservation Rate Structure” manuscript

Headley, J.C. “The relation of family income and use of water for residential and commercial purposes in the San-Francisco Oakland metropolitan area *Land Economics* 39(4) 1963

Hoggarty, Thomas, and Robert J. Mackay “The Impact of Large Temporary Rate Changes on Residential Water Use” *Water Resources Research* 11(6) 791-794 1975

Hughes, Trevor C. and Gross, Robert, Domestic Water Demand In Utah, Utah Water Research Laboratory, Water Resources Planning Series UWRL/P-79/04, Mat 1979

Katzman, M.J. “Income and price elasticities of the demand for water in developing countries” Water Resources Bulletin 13(1) 1977

Lyman, R.A. “Peak and off-peak residential water demand” Water Resources Res 28(9) 1992 2159-2167

Martin, William E. Helen Ingram, Nancy Laney and Adrian Griffin. Saving Water in a Desert City Resources for the Future 1984.

Nieswiadomy, Michael and David Molina, “Comparing Residential Water Demand Estimates under Decreasing and Increasing Block Rates” Land Economics, August 1989

Pint, Ellen M. “Household Responses to increased water rates during the California drought” Land Economics, May 1999

Renwick, Mary E. and Sandra Archibald “Demand side management policies for residential water use: who bears the conservation burden” Land Economics, August 1998

Renshaw, Edward F. “Conserving water through Pricing”, AWWA Journal, January 1982

Turnovsky, S.J. “The demand for water: some empirical evidence on consumers response to a commodity uncertain in supply” Water Resources Research 1969 5(2)

Weber Jack A “Forecasting Demand and Measuring Price Elasticity” May 1989 Journal AWWA

Williams, M. and B. Suh “The demand for urban water by customer class” Applied Economics 1986

R.A. Young “Price elasticity of demand for municipal water: A case Study of Tucson” Water Resources Bulletin 9,1068-1072 1973