TRANSITIONING FROM ACTIVE TO PASSIVE REMEDIATION
BY REFINING THE CONCEPTUAL SITE MODEL USING EXISTING DATA
SURF Case Study #0014

This case study examines how existing data were applied to transition a comingled petroleum site from active to passive remediation, resulting in significant improvements to sustainability indicators.

BACKGROUND

- Petroleum hydrocarbon impacts historically treated with on-site and off-site oxygen injection (O2) and dual-phase extraction systems.
- Initial sustainability evaluation in 2016 revealed that dual-phase extraction accounted for 97% of greenhouse gas emissions and water and energy use at the site.
- O2 system operated effectively but had a limited radius of influence and continued effectiveness relied on contaminant mass transport through treatment areas.

ASSESSMENT OF EXISTING DATA

- After in-person meetings and discussions, the regulatory agency approved a temporary dual-phase extraction system shutdown. When contaminant concentrations continued to decrease, the agency approved permanent shutdown.
- Contaminant trends at wells outside of the O2 system radius of influence indicated natural attenuation was occurring, though at slower rates. Because of potential site redevelopment, soil vapor was assessed; results indicated that residual impacts do not pose near- or long-term risk.
- Historical groundwater and lithologic data were used to evaluate contaminant mass transport at transects across the plume over time. Results indicated the remaining mass is stored in fine-grained lithology with low rates of transport. These data justified shutdown of O2 systems that relied on mass transport through treatment areas.
- Evaluations of plume stability and the groundwater monitoring well network indicated that reductions in the network (40%) and sampling frequency (annual) are sufficient for future plume monitoring.
• The SiteWise™ assessment tool was used to quantify sustainability indicators for each phase of the transition from active to passive remediation.

• Remediation system shutdowns and a reduced groundwater monitoring well network improved sustainability parameter footprints by three to four orders of magnitude.
SUSTAINABLE REMEDIATION TRIPLE BOTTOM LINE

ENVIRONMENT
- Over 99% reduction in each of the following: greenhouse gas emissions, air emissions, energy use, and water consumption
- Optimization achieved with minimal new data collection

SOCIAL
- Over 97% reduction in work injury risks because of fewer site visits
- Off-site system shutdown addresses noise complaints from adjacent residences

ECONOMIC
- Operations and regulatory cost savings
- Reduced disruptions to off-site business by removing off-site systems and reducing wells and monitoring frequency

Case Study Contacts

Kyle Waldron, PMP
Environmental Remediation Administrator
Marathon Petroleum Company
Auburn, Washington
(253) 896-8731
kawaldron@marathonpetroleum.com
www.marathonpetroleum.com

Scott Stromberg, PG
Senior Project Geologist
Orion Environmental Inc.
Berkeley, California
(562) 988-2755
sstromberg@orionenv.com
www.orionenv.com

This case study is the topic of a SURF webinar.

To access the webinar, click [here](#).