
Statistics Cheat Sheet

Ch 1: Overview & Descriptive Stats
Populations, Samples and Processes
Population: well-defined collection of objects
Sample: a subset of the population
Descriptive Stats: summarize & describe features of data
Inferential Stats: generalizing from sample to population
Probability: bridge btwn descriptive & inferential techniques.
In probability, properties of the population are assumed known &
questions regarding a sample taken from the population are posed
and answered.
Discrete and Continuous Variables: A numerical variable is
discrete if its set of possible values is at most countable.
A numerical value is continuous if its set of possible values is
an uncountable set.
Probability: pop → sample
Stats: sample → pop

Measures of Location
For observations x1, x2, · · · , xn
Sample Mean x̄ =

∑n
1=1 xi
n

Sample Median x̃ = (n+1
2

)nth observation

Trimmed Mean btwn x̃ and x̄, compute by removing
smallest and largest observations

Measures of Variability
Range =lgst-smllst observation

Sample Variance, σ2 =
∑

(xi−x̄))2

n−1
= Sxx

n−1

Sxx =
∑
x2
i −

(
∑
xi)

2

n

Sample Standard Deviation, σ =
√
σ2

Box Plots

Order the n observations from small to large. Separate the
smallest half from the largest (If n is odd then x̃ is in both
halves). The lower fourth is the median of the smallest half
(upper fourth..largest..). A measure of the spread that is
resistant to outliers is the fourth spread fs given by fs =
upper fourth- lower fourth. Box from lower to upper fourth
with line at median. Whiskers from smallest to largest xi.

Ch 2: Probability
Sample Space and Events
Experiment activity with uncertain outcome
Sample Space(S) the set of all possible outcomes
Event any collection of outcomes in S

Axioms, Interpretations and Properties of
Probability
Given an experiment and a sample space S, the objective
probability is to assign to each event A a number P (A), called
the probability of event A, which will give a precise measure of
the chance that A will occur. Behaves very much like norm.

Axioms & Properties of Probability:

1. ∀A ∈ S, 0 ≤ P (A) ≤ 1

2. P (S) = 1

3. If A1, A2, . . . is an infinite collection of disjoint events,
P (A1 ∪ A2 ∪ · · · ) =

∑∞
i=1 P (Ai)

4. P (∅) = 0

5. ∀A,P (A) + P (A′) = 1 from which P (A) = 1− P (A′)

6. For any two events A,B ∈ S,
P (A ∪ B) = P (A) + P (B)− P (A ∩ B)

7. For any three events
A,B,C ∈ S, P (A ∪ B ∪ C) = P (A) + P (B) + P (C)−
P (A ∩ B)− P (A ∩ C)− P (B ∩ C) + P (A ∩ B ∩ C)

Equally Likely Outcomes : P (A) =
N(A)
N

Counting Techniques
Product Rule for Ordered k-Tuples: If the first element can
be selected in n1 ways, the second in n2 ways and so on, then
there are n1n2 · · ·nk possible k-tuples.
Permutations: An ordered subset. The number of
permutations of size k that can be formed from a set of n
elements is Pk,n

Pk,n = (n)(n− 1) · · · (n− k + 1) = n!
(n−k)!

Combinations: An unordered subset.(n
k

)
=

Pk,n
k!

= n!
k!(n−k)!

Conditional Probability
P (A|B) is the conditional probability of A given that the event
B has occurred. B is the conditioning event.

P (A|B) =
P (A ∩ B)

P (B)

Multiplication Rule: P (A ∩B) = P (A|B) · P (B)

Baye’s Theorem

Let A1, A2, . . . , Ak be disjoint and exhaustive events (that
partition the sample space). Then for any other event B
P (B) = P (B|A1)P (A1) + · · ·+ P (B|Ak)P (Ak)

=
∑k
i=1 P (B|Ai)P (Ai)

Independence
Two events A and B are independent if P (A|B) = P (A) and
are dependent otherwise.
A and B are independent iff P (A ∩B) = P (A) · P (B) and this
can be generalized to the case of n mutually independent
events.

Random Variables
Random Variable: any function X : Ω→ R
Prob Dist.: describes how the probability of Ω is

distributed along the range of X
Discrete rv: rv whose domain is at most countable
Continuous rv: rv whose domain is uncountable

and where ∀c ∈ R, P (X = c) = 0
Bernoulli rv: discrete rv whose range is {0, 1}
The probability distribution of X says how the total probability
of 1 is distributed among the various possible X values.

1. Distributions
Discrete RVs
Probabilities assigned to various outcomes in S in turn
determine probabilities associated with the values of any
particular rv X.

Probability Mass Fxn/Probability Distribution,(pmf):

p(x) = P (X = x) = P (∀w ∈ W : X(w) = x)

Gives the probability of observing w ∈ W : X(w) = x
The conditions p(x) ≥ 0 and

∑
all possible x p(x) = 1 are

required for any pmf.
parameter: Suppose p(x) depends on a quantity that can be
assigned any one of a number of possible values, with each
different value determining a different probability distribution.
Such a quantity is called a parameter of distribution. The
collection of all probability distributions for different values of
the parameter is called a family of probability distributions.

Cumulative Distribution Function

(To compute the probability that the observed value of X will
be at most some given x)
Cumulative Distribution Function(cdf): F (x) of a discrete

rv variable X with pmf p(x) is defined for every number x by

F (x) = P (X ≤ x) =
∑
y:y≤x

p(y)

For any number x, F (x) is the probability that the observed
value of X will be at most x.
For discrete rv, the graph of F (x) will be a step function- jump
at every possible value of X and flat btwn possible values.
For any two number a and b with a ≤ b:
P (a ≤ X ≤ b) = F (b)− F (a−)
P (a < X ≤ b) = F (b)− F (a)
P (a ≤ X ≤ a) = F (a)− F (a−) = p(a)
P (a < X < b) = F (b−)− F (a)
(where a− is the largest possible X value strictly less than a)
Taking a = b yields P (X = a) = F (a)− F (a− 1) as desired.
Expected value or Mean Value

E(X) = µX =
∑
x∈D

x · p(x)

Describes where the probability distribution is centered and is
just a weighted average of the possible values of X given their
distribution. However, the sample average of a sequence of X
values may not settle down to some finite number (harmonic
series) but will tend to grow without bound. Then the
distribution is said to have a heavy tail. Can make if difficult
to make inferences about µ.
The Expected Value of a Function: Sometimes interest will
focus on the expected value of some function h(x) rather than
on just E(x).
If the RV X has a set of possible values D and pmf p(x), then
the expected value of any function h(x), denoted by E[h(X)]
or µh(X) is computed by

E[h(X)] =
∑
D

h(x) · p(x)



Properties of Expected Value:

E(aX + b) = a · E(X) + b

Variance of X: Let X have pmf p(x) and expected value µ.
Then the V (X) or σ2

X is

V (X) =
∑
D

(x− µ)2 · p(x) = E[(X − µ)2]

The standard deviation (SD) of X is σ =
√
σ

Alternatively,

V (X) = σ2 =
[∑
D

x2 · p(x)
]
− µ2 = E(X2)− [E(X)]2

Properties of Variance

1. V (aX + b) = a2 · σ2

2. In particular, σaX = |a| · σx
3. σX+b = σX

Continuous RVs
Probabilities assigned to various outcomes in S in turn
determine probabilities associated with the values of any
particular rv X. Recall: an rv X is continuous if its set of
possible values is uncountable and if P (X = c) = 0 ∀c.//

Probability Density Fxn/Probability Distribution,(pdf):
∀a, b ∈ R, a ≤ b

P (∀w ∈ W : a ≤ X(w) ≤ b) =

∫ b

a
f(x)dx

Gives the probability that X takes values between a and b.
The conditions f(x) ≥ 0 and

∫∞
−∞ f(x) = 1 are required for

any pdf.

Cumulative Distribution Function(cdf):

F (x) = P (X ≤ x) =

∫ x

−∞
f(y)dy

For any number x, F (x) is the probability that the observed
value of X will be at most x.
By the continuity arguments for continuous RVs we have that

P (a ≤ X ≤ b) = P (a < X ≤ b) = P (a < X < b)

Other probabilities can be computed from the cdf F (x):

P (X > a) = 1− F (a)

P (a ≤ X ≤ b) = F (b)− F (a)

Furthermore, if X is a cont rv with pdf f(x) and cdf F (x),
then at every x at which F ′(x) exists, F ′(x) = f(x).
Median(µ̃): is the 50th percentile st F (µ̃) = .5. That is half the
area under the density curve. For a symmetric curve, this is
the point of symmetry.

Expected/Mean Value(µ or E(X)): of cont rv with pdf f(x)

µ = E(X) =

∫ ∞
−∞

x · f(x)dx

If X is a cont rv with pdf f(x) and h(X) is any function of X
then

E[h(X)] = µ =

∫ ∞
−∞

h(x) · f(x)dx

Variance: of a cont rv X with pdf f(x) and mean value µ is

σ2
x = V (X) =

∫ ∞
−∞

(x− µ)2 · f(x)dx = E[(X − µ)2]

Alternatively,
V (X) = E(X2)− [E(X)]2

Discrete Distributions

The Binomial Probability Distribution

1) The experiment consists of n trials where n is fixed
2) Each trial can result in either success (S) or failure (F)
3) The trials are independent
4) The probability of success P (S) is constant for all trials
Note that in general if the sampling is without replacement,
the experiment will not yield independent trials. However, if
the sample size (number of trials) n is at most 5% of the
population, then the experiment can be analyzed as though it
were exactly a binomial experiment.
Binomial rv X: = no of S’s among the n trials
pmf of a Binomial RV:,

b(x;n, p) =
(n
x

)
pxqn−x : x = 0, 1, 2, . . .

cdf for Binomal RV: Values in Tble A.1

B(x;n, p) = P (X ≤ x) =

x∑
y=0

b(y;n, p)

Mean & Variance of X If X ∼ Bin(n, p) then

E(X) = np V (X) = npq

Negative Binomial Distribution

1) The experiment consists of independent trials
2) Each trial can result in either Success(S) or Failure(F)
3) The probability of success is constant from trial to trial
4) The experiment continues until a total of r successes have
been observed, where r is a specified integer.
RV Y: = the no of trials before the rth success.
Negative Binomial rv: X = Y − r the number of failures that
precede the rth success. In contrast to the binomial rv, the
number of successes is fixed while the number of trials is
random.
pmf of the negative binomial rv : with parameters r =
number of S’s and p = P (S) is

nb(x; r, p) =
(x+ r − 1

r − 1

)
pr(1− p)x x = 0, 1, 2, . . .

Mean & Variance of negative binomial rv X: with pmf
nb(x; r, p)

E(X) =
r(1− p)

p
V (X) =

r(1− p)
p2

Geometric Distribution

RV X: = the no of trials before the 1st success.
pmf of the geometric rv :

p(x) = qx−1p

E(X) =
∑

xqx−1p = 1/p

The Poisson Probability Distribution

Useful for modeling rare events
1) independent: no of events in an interval is independent of
no of events in another interval
2) Rare: no 2 events at once
3) Constant Rate: average events/unit time is constant (µ > 0)
RV X= no of occurrence in unit time interval
Possion distribution/ Poisson pmf: of a random variable X
with parameter µ > 0 where

p(x;µ) =
e−µ · µx

x!
x = 0, 1, 2, . . .

Binomial Approximation: Suppose that in the binomial pmf
b(x;n, p), we let n→∞ and p→ 0 in such a way that np
approaches a value µ > 0. Then b(x;n, p)→ p(x;µ).
That is to say that in any binomial experiment in which n(the
number of trials) is large and p(the probability of success) is
small, then b(x;n, p) ≈ p(x;µ), where µ = np.
Mean and Variance of X: If X has probability distribution
with parameter µ, then E(X) = V (X) = µ

Continuous Distributions

The Normal Distribution, X ∼ N(µ, σ2)

PDF: with parameters µ and σ where −∞ < µ <∞ and 0 < σ

f(x;µ, σ) =
1

√
2πσ

e−(x−µ)2/(2σ2) −∞ < x <∞

We can then easily show that E(X) = µ and V (X) = σ2.

Standard Normal Distribution: The specific case where
µ = 0 and σ = 1. Then

pdf : φ(z) =
1
√

2π
e−z

2/2 cdf : Φ(z) =

∫ z

−∞
φ(u)du

Standardization: Suppose that X ∼ N(µ, σ2). Then

Z = (X − µ)/σ

transforms X into standard units. Indeed Z ∼ N(0, 1).

P (a ≤ X ≤ b) = P

( a − µ
σ

≤ Z ≤
b − µ

σ

)
= Φ

( b − µ
σ

)
− Φ

( a − µ
σ

)

Independence: If X ∼ N(µx, σ2
x), Y ∼ N(µy , σ2

y) and X and

Y are independent, then X ± Y ∼ N(µx ± µy , σ2
x + σ2

y)

NOTE: By symmetry of the standard normal distribution, it
follows that Φ(−z) = 1− Φ(z) ∀z ∈ R



Normal Approx to Binomial Dist: Let X ∼ Bin(n, p). As
long as a binomial histogram is not too skewed, Binomial
probabilities can be well approximated by normal curve areas.

P (X ≤ x) = B(x;n, p) ≈ Φ

(
x+ 0.5− np√
np(1− p)

)
As a rule, the approx is adequate provided that both np ≥ 10
and n(1− p) ≥ 10.

The Exponential Distribution, X ∼ Exp(λ)

Model for lifetime of firms/products/humans
Exponential Distribution: A cont rv X has exp distribution
if its pdf is given by

f(x;λ) = λe−λx, x ≥ 0 λ > 0

F (x, λ)= P (X ≤ x) = 1− eλx x ≥ 0
E(X)= 1/λ
V (X)= 1/λ2

Memoryless Prop: P (X > a+ x|X > a) = P (X > x)
for x ∈ D, a > 0

Note: If Y is an rv distributed as a Poisson p(y;λ), then the
time between consecutive Poisson events is distributed as an
exponential rv with parameter λ

Joint Probability Dist
Joint Range: Let X : S → D1 and Y : S → D2 be 2 rvs with a
common sample space. We define the joint range of the vector
(X,Y ) of the form

D = D1 × D2 = {(x, y) : x ∈ D1, y ∈ D2}

Random Vector: A 2-D random vector(X,Y ) is a function from
S → R2. It is defined ∀ω ∈ S such that

(X,Y )(ω) = (X(ω), Y (ω)) = (x, y) ∈ D

Joint Probability Mass Fxn: For two discrete rv’s X and Y .
The joint pmf of (X,Y ) is defined ∀(x, y) ∈ D

p(xi, yj) = P (X = xi, Y = yj)

It must be that p(x, y) ≥ 0 and
∑
i

∑
j p(xi, yj) = 1.

Marginal Prob Mass Fxn: of X and of Y , denoted pX(x) and
pY (y) respectively,

pX(x) =
∑

y:p(x,y)>0

p(x, y) ∀x ∈ D1

Joint Probability Density Fxn: For two continuous rv’s X
and Y . The joint pdf of (X,Y ) is defined ∀A ⊆ R2

P ((X,Y ) ∈ A) =

∫∫
A
f(x, y)dxdy

It must be that f(x, y) ≥ 0 and
∫∞
−∞

∫∞
−∞ f(x, y)dxdy = 1.

Note also that this integration is commutative.
Marginal Prob Density Fxn: of X and of Y , denoted fX(x)
and fY (y) respectively,

fX(x) =

∫ ∞
−∞

f(x, y)dy ∀x ∈ D1

Note that if f(x, y) is the joint density of the random vector
(X,Y ) and A ∈ R2 is of the form A = [a, b]× [c, d] we have that

P ((X,Y ) ∈ A) =

∫ d

c

∫ b

a
f(x, y)dxdy =

∫ b

a

∫ d

c
f(x, y)dxdy

Independence: Two rvs are independent if

P (X = x, Y = y) = P (X = x)P (Y = y) f(x, y) = fX(x)fY (y)

Conditional Distribution(discrete): For two discrete rv’s
X and Y with joint pmf p(xi, yj) and marginal X pmf pX(x),
then for any realized value x in the range of X, the conditional
mass function of Y , given that X = x is

pY |X(y|x) =
p(xi, yj)

pX(x)

Conditional Distribution(cont): For two continuous rv’s X
and Y with joint pdf f(x, y) and marginal X pdf fX(x), then
for any realized value x in the range of X, the conditional
density function of Y , given that X = x is

fY |X(y|x) =
f(x, y)

fX(x)

Expected Values, Covariance & Correlation
Expected value: The expected value of a function h(X,Y ) of
two jointly distributed random variables is

E(g(X,Y )) =
∑
x∈D1

∑
y∈D2

g(x, y)p(x, y)

and can be generalized to the continuous case with
integrations.//
Covariance: Measures the strength of the relation btwn 2
RVs, however very

Cov(X,Y ) = E[(X−E(X))(Y −E(Y ))] = E(XY )−E(X)E(Y )

Shortcut Formula:

Cov(X,Y ) = E(XY )− µxµy
The defect of the covariance however is that its value depends
critically on the units of measurement.
Correlation: Cov after standardization. Helps interpret Cov.

ρ = ρX,Y = Corr(X,Y ) =
Cov(X,Y )√
V (X)V (Y )

=
Cov(X,Y )

SD(X)SD(Y )

Has the property that Corr(aX + b, cY + d) = Corr(X,Y )
and that for any rvs X, Y −1 ≤ ρ ≤ 1.
Note also that ρ is independent of units, the larger |ρ| the
stronger the linear association, considered strong linear
relationship if |ρ| ≥ 0.8.
Caution though: if X and Y are independent then ρ = 0 but
ρ = 0 does not imply that X,Y are independent.
Also that ρ = 1 or −1 iff Y = aX + b for some a, b with a 6= 0.
Statistic: Any quantity whose value can be calculated with
sample data. Prior to obtaining data, there is uncertainty as
to what value of any particular statistic will result. Therefore,
a statistic is a random variable and will be denoted by an
uppercase letter; a lowercase letter is used to represent the
calculated or observed value of the statistic.
Sampling Distribution: probability distribution of a statistic,
it describes how the statis- tic varies in value across all
samples that might be selected

Stats & Their Distributions

Fxns of Observed Sample Observ

Obs Sample Mean x̄ = 1
n

∑
xi

Obs Sample Var s2 = 1
n−1

∑
(xi − x̄)2

Obs Sample Max x(n) = max(xi)

A statistic is a random variable and the most common are
listed above.

Simple Random Samples: The random variables X1, . . . , Xn
are said to form a simple random sample of size n if each Xi is
an independent random variable, every Xi has the same
probability distribution.

Sampling Distribs: Every statistic has a probability
distribution (a pmt or pdf) which we call its sampling
distribution. To determine its distrib can be hard but we use
simulations and the CLT to do so.

Simulation Experiments: we must specify the statistic of
interest, the population distribution, the sample size(n) and
the number of samples (k). Use a computer to simulate each
different simple random sample, construct a histogram which
will give approx sampling distribution of the statistic.

The Dist % Sample Mean

Prop: Let X1, . . . , Xn be a simple random sample from a
distribution with mean µ and variance σ2. Then
E(X̄) = µX̄ = µ and V (X̄) = σ2

X̄
= σ2/n. Also if

Sn = X1 + . . .+Xn then E(Sn) = nµ and V (Sn) = nσ2.

Prop: Let X1, . . . , Xn be a simple random sample from a
normal distribution with mean µ and variance σ2. Then for
any n, X̄ is normal distributed with mean µ and variance
σ2/n. Also Sn is normal distributed with mean nµ and
variance nσ2.

Prop: Let X1, . . . , Xn be a simple random sample from
Bernoulli(p), then Sn ∼ Binomial(n,p).

Distribution of The Sample Mean X̄

Let X1, . . . , Xn be a simple random sample from a distribution
with mean µ and variance σ2. Then E(X̄) = µX̄ = µ and
V (X̄) = σ2

X̄
= σ2/n

The standard deviation σX̄ = σ/
√
n is often called the

standard error of the mean.
For a NORMAL random sample with the same mean and std
as above, then for any n, X̄ is normally distributed with the
same mean and std.
Central Limit Theorem: Let X1, . . . , Xn be a simple random
sample from a distribution with mean µ and variance σ2.
Then if n is sufficiently large, X̄ has approximately a normal
dis with mean µ and variance σ2/n. Also Sn is normal
distributed with mean nµ and variance nσ2. No matter which
population we sample from, the probability histogram of the
sample mean follow closely a normal curve when n is
sufficiently large. Rule of thumb: if n ≥ 30 CLT can be used.
It follows from CLT that is X ∼ Bin(n, p) and n is large, then
n can be distributed by a N(np, npq).



Dist of a Linear Combination

Linear Comb: Let X1, . . . , Xn be a collxn of n random
variables and let a1 . . . an be n numerical constants. Then the
random variable Y = a1X1 + . . . anXn is a linear comb of the
X′is.

1. Regardless of whether the X′is are independent or not

E(Y ) = a1E(X1) + . . .+ anE(Xn) = a1µ1 + . . .+ anµn

2. If X1, . . . , Xn are independent

V (Y ) = V (a1X1 + . . . anXn) + a2
1σ

2
1 + . . .

3. For any X1, . . . , Xn,

V (Y ) =
∑
i=1

∑
j=1

aiajCov(Xi, Xj)

4. If X1, . . . , Xn are independent, normally distributed
rvs, then any linear combination of the rvs also has a
normal distribution- as does their difference.

E(X1 −X2) = E(X1)− E(X2),∀X,Y while
V (X1 −X2) = V (X1) + V (X2) if X1, X2 independent,

2. Estimators
Parameter of Interest (θ) true yet unknown pop parameter

Point Estimate: (θ̂) Our guess for θ based on sample data

Point Estimator: (θ̂) statistic selected to get a sensible pt est

A sensible way to quantity the idea of θ̂ being close to θ is to
consider the least squared error (θ̂ − θ)2. A good measure of
the accuracy is the expected or mean square error MSE =
E[(θ̂ − θ)2]. It is often not possible to find the estimator with
the smallest MSE so we often restrict our attention to
unbiased estimators and find the best estimator of this group.
Unbiased: Pt Est θ̂ if E(θ̂) = θ for all θ.

Then θ̂ has a prob distribution that is always ”centered” at
the true θ value.
When choosing estimators, select the unbiased and the one
that has the minimum variance.

Estimators

-When X ∼ Bin(n, p), the sample proportion p̂ = X/n is an
unbiased est of p.
- Let X1, . . . , Xn be a SRS from a distribution with mean µ

and variance σ2.Then σ̂2 = S2 =
∑

(Xi−X̄)2

n−1
is unbiased for

σ2.
-Let X1, . . . , Xn be a SRS from a distribution with mean µ,
then X̄ is MVUE for µ.
Standard Error: of an estimator is its standard deviation

σθ̂ −
√
V (θ̂)

Estimated Standard Error: If the standard error itself
involves unknown parameters whose values can be estimated,
substitution of these estimates into σθ̂ yields σ̂θ̂ = sθ̂.

Method of Moments

Let X1, . . . , Xn be a SRS from a pdf f(x). For k = 1, 2, . . . the
kth population moment, or kth moment of the distribution
f(x), is E(Xk). The kth sample moment is (1/n)

∑n
i=1 X

k
i .

Let X1, . . . , Xn be a SRS from a distribution with pdf
f(x; θ1 . . . θm) where θi’s are unknown. Then the moment

estimators θ̂i’s are obtained from the first m sample moments
to the corresponding first m population moments and solving
for the θi’s.

Maximum Likelihood Estimator

Works best when the sample size is large!
Let X1, . . . , Xn have joint pmf or pdf

f(x1, . . . , xn; θ1 . . . θm)

where the θi’s have unknown values.
When x1, . . . , xn are observed sample values, the above is
considered a fxn of the θi’s and is called the likelihood
function.
The maximum likelihood estimates (mles) θ̂i’s are those θi’s
that maximize the likelihood function such that

f(x1, . . . , xn; θ̂1 . . . ˆθm) ≥ f(x1, . . . , xn; θ1 . . . θm) ∀θ1 . . . θm

When X1, . . . , Xn substituted in, the maximum likelihood
estimators result.

3. Confidence Intervals
Tests in a single sample

When measuring n random variables Yi ∼ i.i.d.

Hypotheses about the population mean E[Yi]
Z-test (when n > 40 or if normality with known variances
could be assumed)

Z =
X̄ − µ
σ/
√
n

CI for Normal Population: A 100(1− α)% CI for the mean µ
of a population when σ is known is(

x̄− zα/2 ·
σ
√
n
, x̄+ zα/2 ·

σ
√
n

)
T -test (normality must be assured; for large n this is the
same as the z-test). When X̄ is the sample mean of a SRS of
size n from a Normal(µ, σ2) population then the RV

T =
X̄ − µ
S/
√
n

has a probability distribution-t with n-1 degrees of freedom.
Note: the density of tν is symmetric around 0. tν is more
spread out than a normal, indeed the few dof the more spread.
When dof is large (< 40), the t and normal curve are close. In
addition we have that

P (
∣∣ X̄ − µ
S/
√
n

∣∣ ≤ tα/2,n−1) = 1− α

As a result, the (1− α)100% CI for the population mean µ
under the normal model is

X̄ ± tα/2,n−1
S
√
n

Note that here we make the assumption that the observations
are realizations of a SRS from a Normal distribution with
unknown mean and variance.// Large Sample Test for the
population proportion (proportions are just means; only valid
for np0 ≥ 10 and n(1− p0) ≥ 10. The (1− α) confidence
interval for a population mean µ is

X̄ ± zα/2
S
√
n

For a population proportion

p̂± zα/2
√
p̂(1− p̂)/n p̂ = X̄

Hypotheses about the population variance V [Xi]
The (1− α)100% CI for the variance σ2 of a normal
population has a lower limit:

(n− 1)s2/χ2
α/2,n−1

and Upper limit:

(n− 1)s2/χ2
1−α/2,n−1

A confidence interval for σ has lower and upper limits that are
the square roots of the corresponding limits in the interval for
σ2. An upper or a lower confidence bound results from
replacing α/2 with α in the corresponding limit of the CI.

When measuring two variables for each unit
(Xi, Yi) ∼ i.i.d.

Paired t-test about the difference of population means:

Test about parameters β1 and β0

Tests in two non-paired, independent samples

4. Hypothesis Testing

In it hard to example the evidence of such a strong count as a
lucky draw. The p-value or observed significance level
determines whether or not a hypothesis will be rejected- the
smaller it is, the stronger evidence against he null hypothesis.
The plausibility of statistical models determined by the null
hypothesis is based on the sample data and their distributions.
The idea is that the null is not rejected unless it is testified
implausible overwhelmingly by data.

Possible Errors: Type I: reject the null hypothesis when it is
true; Type II: fail to reject the null even though it is false.



Power Function
For a given test with critical or rejection region {x : T (x) ≥ c},
the power function is defined as

φ(θ) = P (T (X1, . . . , Xn) ≥ c|θ) = P (T ≥ c|θ)

In other words, φ(θ) represents the probability of rejection H0

if a particular θ were the true value of parameter of the pmt or
pdf f(x; θ).
In other words, if H0 is true, φ(θ) = Probability of type 1
error. If H0 is false, φ(θ) = 1- Probability of type 2 error.
A court trial, where the null hypothesis is ”not guilty” unless
there is convincing evidence against it. The aim or purpose of
court hearings (collecting data) is to establish the assertion of
”guilty” rather than to prove ”innocence.”
P-value (or observed signicance level) is the probability,
calculated assuming that H0 is true, of obtaining a value of the
test statistic at least as contradictory to H0 as the value
calculated from the available sample. It is also the smallest
significance level at which one can reject H0.
In other words, suppose we have observed a realization
xobs = (x1, . . . , xn) of our random sample
X1, · · · , Xn ∼ f(x, θ). We wish to investigate the
compatibility of the null hypothesis, with the observed data.
We do so by comparing the probability distribution of the test
statistic T (X1, · · · , Xn) with its observed value
tobs = T (xobs), assuming H0 to be true. As a measure of
compatibility, we calculate

p(xobs) = p-value = P (T (X1, . . . , Xn) ≥ tobs|H0)

In general, report the p-value. When it is less than 5% or 1 %,
the result is statistically significant.

Hypotheses and Test Procedures
Statistical hypothesis(hypothesis) is a claim or assertion
about the value of a single parameter, about the values of
several parameters, or about the form of an entire population
distribution.
In any hypothesis-testing problem, there are two contradictory
hypotheses under consideration.
The null hypothesis, denoted H0 is the claim that is initially
assumed to be true (the ”prior belief” claim). Often called the
hypothesis of no change (from current opinion) and will
generally be stated as an equality claim, equal to the null
value. The alternative hypothesis or researcher’s
hypothesis, denoted by Ha is the assertion that is
contradictory to H0. The alt hypothesis is often the claim that
the researcher would really like to validate.
The null hypothesis will be rejected in favor of the alternative
hypothesis only if sample evidence suggests that H0 is false. If
the sample does not strongly contradict H0, we will continue
to believe in the plausibility of the null hypothesis. The two
possible conclusions from a hypothesis-testing analysis are
then reject H0 or fail to reject H0.
A test of hypotheses is a method for using sample data to
decide whether the null hypothesis should be rejected.
A test procedure is a rule based on sample data, for
deciding whether to reject H0. A procedure has 2 consitutents:

1) a test static, or function of the sample data used to make a
decision and 2) a rejection region consisting of those x values
for which H0 will be rejected in favor of Ha.
A test procedure is specified by the following:

1. A test statistic, a function of the sample data on
which the decision (reject H0 or do not reject H0) is to
be based

2. A rejection region, the set of all test statistic values
for which H0 will be rejected. The basis for choosing a
rejection region lies in consideration of the errors that
one might be faced with in drawing a conclusion.

The null hypothesis will then be rejected if and only if the
observed or computed test statistic value falls in the rejection
region.
A type I error consists of rejecting the null hypothesis H0

when it is true- a false negative. A type II error involves not
rejecting H0 when H0 is false- a false positive.
In the best of all possible worlds, test procedures for which
neither type of error is possible could be developed. However,
this ideal can be achieved only by basing a decision on an
examination of the entire population. The difficulty with using
a procedure based on sample data is that because of sampling
variability, an unrepresentative sample may result, e.g., a value
of X̄ that is far from µ or a value of p̂ that differs considerably
from p.
Suppose an experiment and a sample size are fixed and a test
statistic is chosen. Then decreasing the size of the rejection
region to obtain a smaller value of α results in a larger value of
β for any particular parameter value consistent with Ha. In
other words, once the test statistic and n are fixed, there is no
rejection region that will simultaneously make both α and all
β’s small. A region must be chosen to effect a compromise
between α and β.

Tests About a Population Mean

σX̄ =
σ
√
n

α = P(H0 is rejected when H0 is true) = false negative =
P (X̄ ≤ 70.8 when X̄ ∼ normal with µX̄ = 75, σX̄ = 1.8) =
P (Z ≥ c null when Z ∼ N(0, 1))
β = P(H0 is accepted when H0 is false) = false positive =
P (X̄ > 70.8 when X̄ ∼ normal with µX̄ = 72, σX̄ = 1.8)

Tests about a Population Mean

Case1: A Normal Population with a Known σ

Assuming that the sample mean X̄ has a normal distribution
with µX̄ = µ and standard deviation σX̄ = σ/

√
n. When H0 is

true, µX̄ = µ0. Consider now the statistic Z obtained by
standardizing X̄ under the assumption that H0 is true:

Z =
X̄ − µ0

σ/
√
n

5. Simple Linear Regression and
Correlation
Common theme: to study the relationships among variables.

Model and Summary Statistics

Bivariate Data: (x1, y1), (x2, y2) · · · (xn, yn)
Generic Pair (X,Y ) X- predictor, independent variable,
covariate
Simple Linear Regression: Y = β0 + β1x+ ε
Betas regression coeffs, ε measurement error, cannot be
explained by x
The ith observation is given by yi = β0 + β1xi + εi and we
further assume that εi are iid N(0, σ2)

Conditional Expected Value: For the linear model we have
that E(Y |x) = E(β0 + β1x+ ε0) = β0 + β1x which is the
average for the group with covariate ∼ x
Conditional Standard Deviation: Similarly we have that
V (Y |x) = σ2 which is the variance for the group with
covariate ∼ x
Summary Stats x: x̄ and SDx =

√
Sxx
n−1

or Sxx =
∑

(xi − x̄)2

Sum Stats y: ȳ and SDy =
√

Syy
n−1

or Syy =
∑

(yi − ȳ)2

Strength of Linear Assoc: r =
Sxy√
SxxSyy

the sample

correlation coeff.

Sxy =
∑

(xi − x̄)(yi − ȳ) =
∑

xiyi − nx̄ȳ

Purpose of the Regression: To quantify the contribution of
the predictors X1 . . . Xp on the outcome of Y, given
(x1, . . . , xp) predict the mean response, quantify the
uncertainty in this prediction (with standard error/confidence
interval), extrapolate

Estimation of Model Parameters

Data are modeled as

yi = β0 + β1xi + εi, i = 1 . . . n εi ∼ N(0, σ2)

How to find good estimates for β0 & β1?

- The error between yi and β0 + β1x is εi and we want to
minimize the total ”loss”

-In the case of squared-error loss functions, the total loss is∑
ε2i

-To minimize, take partial derivatives of SSE wrt each β and
set each to zero. Then solve the system of linear equations for
each β. In this case

β̂1 =

∑
xiyi − nx̄ȳ∑
x2
i − nx̄2

=
Sxy

Sxx
= r

SDx

SDy

β̂0 = ȳ − β̂1x̄

Fitted Values: ŷi = β̂0 + β̂1xi The value yi predicted based
on xi
Residuals: ε̂i = yi − ŷi Difference between predicted and
actual y
Residal Sum of Squares: SSE = SSE (β̂0, β̂1) =

∑
ε̂i

2

Regression Line:ŷ = β̂0 + β̂1x Used to predict the mean
response ŷ for a given x



Estimating σ2

σ2 =
1

n− 2

∑
ε̂2 = SSE/2

It can be shown that SSE = Syy −
S2
xy

Sxx
= Syy(1− r2) and

hence

σ̂ =

√
SSE

n− 2
=

√
n− 1

n− 2
SDy

√
1− r2

which is smaller that SDy- the regression has decreased
uncertainty about y.

Goodness of fit
Sum of squares due to regression (SSR)

SSreg = Syy − SSE
Coeff of Determination R2: Percentage of variability of Y
explained by the regression on X. The larger it is, the better
the fit.

R2 =
S2
xy

SxxSyy
= r2

Inference for Model Parameters

β̂1 =
Sxy

Sxx
β̂0 = ȳ − β̂1x

SE(hat)(β̂1) = σ̂/
√
Sxx SE(hat)(β̂0) = σ̂

√
1

n
+

x̄2

Sxx

where the T-statistic is:

T =
β̂1 − β1

ŜE(β̂1)

Standard Errors: SInce the estimators are linear in Y
Confidence Intervals: β̂0 ± tα/2,n−2

6. Goodness of Fit
Condition: for each cell, the expected count is greater than five
Multinomial dist: probability weights on discrete, unordered
possible outcomes
Homogeneity: Along the rows we have diff populations and
columns are difference categories.
H0: proportion of individuals in category j is the same for each
population and that is true for every category. p1j = . . . = pIj
for j = 1 . . . J

Estimated expected: êij =
(ith row total)(jth column total)

n
Test

Statistic:

χ2 =
∑ (ob− estex)2

estex
=
∑∑ (nij − êij)2

êij

Rejection Region: χ2 ≥ χ2
α(I−1)(J−1)

Independence: Only one population but looking at the
relationship btwn 2 different factors. Each individual in one
category associated with first factor and one category
associated with second factor.
H0: The null hypothesis here says that an individuals category
with respect to factor 1 is independent of the category with
respect to factor 2. In symbols, this becomes pij = pipj∀(i, j).
Test Statistic, RR and Condition: Same as above
State the uncertainty in a particular estimate of ours.

Basics

The actual sample observations x1, . . . , xn are assumed to be
the result of a random sample X1, . . . , Xn from a normal
distribution with mean value µ and standard deviation σ. We
know then(from Ch5) that X̄ ∼ N(µ, σ2/n). Standardizing
yields

Z =
X̄ − µ
σ/
√
n

Obtain an inequality such as

P (−1.96 ≤
X̄ − µ
σ/
√
n
≤ 1.96) = 0.95

and we manipulate the inequality so that it apprears in the
form l ≤ µ ≤ u where l,u involve factors save µ.
This interval we now describe is random since the endpoints
involve a random variable and centered at X̄. It says the
probability is .95 that the random interval includes or covers
the true value of µ. The confidence level 95% is not so much a
statement about any particular interval, instead it pertains to
what would happen if a very large number of like intervals
were to be constructed using the same CI formula.
CI for Normal Population: A 100(1− α)% CI for the mean µ
of a population when σ is known is(

x̄− zα/2 ·
σ
√
n
, x̄+ zα/2 ·

σ
√
n

)
or equivalently,

x̄± zα/2σ/
√
n

Necc Sample Size: for a CI to have width w is
n = (2zα/2 · σw )2

Note that for sufficiently large n, σ is replaced by S, the
sample variance.
General Large-Sample CI: Suppose that θ̂ is an estimator
approx normal, unbiased, and has an expression for σθ̂. Then
standardizing yields

P (−zα/2 <
θ̂ − θ
σθ̂

< zα/2) ≈ 1− α

Population Mean (if variance unknown)
With 95% chance the random interval covers µ, population
mean.
Interpretation: When the estimator is replaced by an
estimate, the random interval becomes a realized interval. The
word confidence refers to the procedure. If we repeat the
experiment many times and construct 95% confidence intervals
int he same manner, about 95% of them cover the unknown,
but fixed, µ. We don’t know whether the current interval
covers µ or not but we know that of all the intervals ever
constructed 95% will cover.

General Confidence Intervals
When the sample size is large (> 40), the (1− α) confidence
interval for a population mean µ is

X̄ ± zα/2
S
√
n

For a population proportion

p̂± zα/2
√
p̂(1− p̂)/n p̂ = X̄

Steps for calculating Confidence Intervals
1) Find an RV having an (approximately) known distribution
2) Cut off tails, that is, select a confidence level (1− α)
3) Solve the equation to obtain confidence intervals- isolate the
population mean in an approbate string of inequalities.

Intervals Based on a Normal Population
When the sample size is small, we can no longer use the CLT.
But maybe we can assume that the data comes from a normal
population. In that case we need to account for the
uncertainty in estimating σ but by how much?
T-Statistic: When X̄ is the sample mean of a SRS of size n
from a Normal(µ, σ2) population then the RV

T =
X̄ − µ
S/
√
n

has a probability distribution-t with n-1 degrees of freedom.
Note: the density of tν is symmetric around 0. tν is more
spread out than a normal, indeed the few dof the more spread.
When dof is large (< 40), the t and normal curve are close. In
addition we have that

P (
∣∣ X̄ − µ
S/
√
n

∣∣ ≤ tα/2,n−1) = 1− α

As a result, the (1− α)% CI for the population mean µ under
the normal model is

X̄ ± tα/2,n−1
S
√
n

Note that here we make the assumption that the observations
are realizations of a SRS from a Normal distribution with
unknown mean and variance.

One-Sided Confidence Bounds
Lower Confidence Bound: When n is large, then

P

(
X̄ − µ
S/
√
n
≤ zα

)
= 1− α

and solve to find the (1− α) confidence bound X̄ − zα s√
n

.

Upper Confidence Bound: With (1− α) confidence, µ is
bounded by X̄ + zα

s√
n

Note that when n is small, replace zα by tα,n−1.

CI for the Variance of a Normal Population
Theorem: Let X1, ..., Xn be a SRS from a Normal(µ, σ2)
population, where both parameters are unknown. The RV

(n− 1)S2

σ2
=

∑n(Xi −X)2

σ2

has a probability distribution called the χ2 distribution with
n-1 dof.
The density of chi is always positive and has long upper tails.
As n increases, the densities become more symmetric.
Furthermore, we have that

P

(
χ1−α/2,n−1 ≤

(n− 1)S2

σ2
≤ χα/2,n−1

)
= 1− α

Hence, the (1− α) CI for the population variance σ2 under the
normal model is [

(n− 1)S2

χα/2,n−1

,
(n− 1)S2

χ1−α/2,n−1

]


	Ch 1: Overview & Descriptive Stats
	Populations, Samples and Processes
	Measures of Location
	Measures of Variability
	Box Plots


	Ch 2: Probability
	Sample Space and Events
	Axioms, Interpretations and Properties of Probability
	Axioms & Properties of Probability:

	Counting Techniques
	Conditional Probability
	Baye's Theorem

	Independence
	Random Variables

	1. Distributions
	Discrete RVs
	Cumulative Distribution Function

	Continuous RVs
	Discrete Distributions
	The Binomial Probability Distribution
	Negative Binomial Distribution
	Geometric Distribution
	The Poisson Probability Distribution

	Continuous Distributions
	The Normal Distribution, X N(, 2)
	The Exponential Distribution, X Exp()

	Joint Probability Dist
	Expected Values, Covariance & Correlation
	Stats & Their Distributions
	Fxns of Observed Sample Observ

	The Dist % Sample Mean
	Distribution of The Sample Mean 
	Dist of a Linear Combination


	2. Estimators
	Estimators
	Method of Moments
	Maximum Likelihood Estimator


	3. Confidence Intervals
	Tests in a single sample
	When measuring n random variables Yi i.i.d.
	When measuring two variables for each unit (Xi,Yi ) i.i.d.

	Tests in two non-paired, independent samples 

	4. Hypothesis Testing
	Power Function
	Hypotheses and Test Procedures
	Tests About a Population Mean

	Tests about a Population Mean
	Case1: A Normal Population with a Known 


	5. Simple Linear Regression and Correlation
	Model and Summary Statistics
	Estimation of Model Parameters
	Estimating 2
	Goodness of fit
	Inference for Model Parameters

	6. Goodness oF Fit
	Basics
	Population Mean (if variance unknown)
	General Confidence Intervals
	Steps for calculating Confidence Intervals
	Intervals Based on a Normal Population
	One-Sided Confidence Bounds
	CI for the Variance of a Normal Population


