Recall

Last lecture we discussed risk measures.

- Value-at-risk;
- Coherent risk measures;
- Risk-based performance measures;
- Estimating risk measures;
- Extreme value theory; and,
- Types of convergence.

Today we will talk about diversification.
Diversification

Chapter 9, *A Quantitative Primer on Investments with R*
This part discusses diversification, specifically:

- Risk aversion;
- Utility and indifference;
- Allocation between risk-free and risky assets;
- Finding the optimal risky portfolio; and,
- Finding the optimal complete portfolio.
Risk Aversion and Utility

- Can think of risk-averse investor’s *utility* function.
 - Values expected return less some multiple of risk.
 - What captures risk? If returns log-normal, variance σ^2.

\[
U_\lambda(E(r_P), \sigma_P) = E(r_P) - \lambda \text{Risk}^\omega
\] \hspace{1cm} (1)

(usually proxied as:) \quad = E(r_P) - \frac{\lambda}{2} \sigma_P^2. \hspace{1cm} (2)

- To invest: Maximize utility when choosing a portfolio.

- λ expresses the investor’s risk aversion.

- How to know your risk aversion λ? HARD.
 - How to simulate the fear of losing your life’s savings?
 - For same variance, do you prefer more/less skewness, kurtosis?

- Ignoring these concerns: common λ’s in 2–4 range.

2Log-returns are not normal, but this can (should) be done with ES.
Risk Aversion and Utility: Example

- Consider 3 portfolios:

<table>
<thead>
<tr>
<th>Risk</th>
<th>Risk Prem.</th>
<th>$E(r_p)$</th>
<th>σ_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0%</td>
<td>4%</td>
<td>0%</td>
</tr>
<tr>
<td>Low</td>
<td>2%</td>
<td>6%</td>
<td>8%</td>
</tr>
<tr>
<td>High</td>
<td>8%</td>
<td>12%</td>
<td>20%</td>
</tr>
</tbody>
</table>

- The utilities of these for various risk aversions λ:

<table>
<thead>
<tr>
<th>λ</th>
<th>$U(\text{no-risk})$</th>
<th>$U(\text{low-risk})$</th>
<th>$U(\text{high-risk})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.04 = 4%</td>
<td>6.00%</td>
<td>12.00%</td>
</tr>
<tr>
<td>2</td>
<td>4%</td>
<td>5.36%</td>
<td>8.00%</td>
</tr>
<tr>
<td>4</td>
<td>4%</td>
<td>4.72%</td>
<td>4.00%</td>
</tr>
<tr>
<td>6</td>
<td>4%</td>
<td>4.08%</td>
<td>0.00%</td>
</tr>
<tr>
<td>7</td>
<td>4%</td>
<td>3.76%</td>
<td>-2.00%</td>
</tr>
</tbody>
</table>
We are *indifferent* between outcomes of equal utility. In other words, we would be equally happy with any of them.

Rearrange (2) to get *indifference curve*.

\[E(r_P) = U + \frac{\lambda}{2} \sigma_P^2. \] (3)

N.B. Different \(\lambda \)'s yield different indifference curves.

If \(\lambda = 3 \), we’re equally happy with:

- \(E(r_P) = 0.04, \sigma_P^2 = 0; \)
- \(E(r_P) = 0.10, \sigma_P^2 = 0.04, \sigma_P = 0.20; \)
- \(E(r_P) = 0.20, \sigma_P^2 = 0.106, \sigma_P = 0.327. \)
How do we create different portfolios on indifference curve?

- Idea: Put some money in risk-free investment F.
- Complete portfolio includes risk-free, risky portfolio (F, P).

Say P is 40% corp bonds, 60% equities; investing $300k:

- 1/3 in F, 2/3 in P: $100k$ T-bills, $80k$ corp bonds, $120k$ equities.
- 1/2 in F, 1/2 in P: $150k$ T-bills, $60k$ corp bonds, $90k$ equities.

As we change allocation between F and P:

- We do not change what is in F and P.
Allocate fraction y of investment to P, $1 - y$ to F.

Let r_f, r_P and 0, σ_P be rates of return, volatilities of F, P.

Then the rate of return for complete portfolio C is:

$$E(r_C) = yE(r_P) + (1 - y)r_f = r_f + y\left(E(r_P) - r_f\right)$$ \hspace{1cm} (4)

The volatility of the complete portfolio C is:

$$\sigma_C = y\sigma_P \Rightarrow y = \frac{\sigma_C}{\sigma_P}.$$ \hspace{1cm} (5)

Thus we can restate the expected return on C as:

$$E(r_C) = r_f + \sigma_C \frac{E(r_P) - r_f}{\sigma_P}.$$ \hspace{1cm} (6)

3Why 0 for F volatility?
Look more closely at what we have:

\[E(r_C) = r_f + yE(r_p - r_f) = r_f + \frac{E(r_p - r_f)}{\sigma_P} \sigma_C = r_f + S_P \sigma_C. \]

(7)

Defines a line relating \(E(r_C) \) and \(\sigma_C \).

We call this line the *capital allocation line* (CAL).

- Slope: Sharpe ratio of portfolio \(P \).
- Gives transition from all \(F \) to all \(P \): \(F \) at \(y = 0 \), \(P \) at \(y = 1 \).
Where to be along the CAL? What \(y \) makes us happiest?

To find out, maximize utility along the CAL.

\[
U^* = \max_y U_\lambda(y) = \max_y E(r_C) - \frac{\lambda}{2} \sigma_C^2
\]

(8)

\[
= \max_y r_f + y(E(r_P) - r_f) - \frac{\lambda}{2} y^2 \sigma_P^2.
\]

(9)

We could also constrain \(0 \leq y \leq 1 \) (i.e. no SS).

Since \(U \) concave, set \(U' = 0 \) and solve:

\[
U' = E(r_P) - r_f - y^* \lambda \sigma_P^2 = 0 \quad \implies y^* = \frac{E(r_P) - r_f}{\lambda \sigma_P^2}
\]

(10)

N.B. Must be very risk averse to invest only risk-free.
Recall the indifference curve definition (for portfolio C):
- Equally-pleasing $(E(r_C), \sigma_C)$ pairs given our λ.
- Thus any pair of $(\lambda, \text{utility})$ defines a curve.

Utility gives indifference curves $E(r_C) = U + \lambda/2\sigma_C^2$:

Ceteris paribus...

...prefer a higher curve for given λ.

But higher curves may not be possible.
Optimal Risky Portfolios
Diversification and Risk

- **Diversification** is splitting capital among many instruments.
- Idea: Reduces instrument-specific risk.

Some risk eliminated (or greatly reduced) by diversification.
- Call this *idiosyncratic risk* or *specific risk*.

However, some risk may be common to all instruments.
- Call this *systematic risk*. (“Market risk” is inaccurate.)
- This risk cannot be made to vanish under diversification.

4 This is merely an expression of the Gauss-Markov Theorem.
Explore diversification further; consider two-asset portfolio:

- Invest in risky bond portfolio B or equity portfolio E.
- Shares invested: w_B and w_E; $w_B + w_E = 1$.

Portfolio return: \[r_P = w_B r_B + w_E r_E. \]

Portfolio variance: \[\sigma_P^2 = w_B^2 \sigma_B^2 + w_E^2 \sigma_E^2 + 2 w_B w_E \text{Cov}(r_B, r_E). \]

Don’t forget: \[\text{Cov}(r_B, r_E) = \rho_{BE} \sigma_B \sigma_E. \]
Two Risky Assets: Varying Weights

- Can vary w_B ($w_E = 1 - w_B$).
- Frontiers: $B - E$ curves.
- $|\rho_{BE}| = 1$? Can make $\sigma_P = 0$.

Minimum variance portfolio may have $\sigma_P < \sigma_i$ for all stocks i.
- N.B. green and blue curves have points with lower volatility.
- Points right of curve define opportunity set of risky assets (OSRA).
Two Risky and One Risk-Free Asset

- What if we add money market to “bond and equity” universe?
 - CAL gives possible allocations to risky, risk-free portfolios.
 - OSRA gives possible risky portfolios.
 - Thus we must invest on the CAL and OSRA.
- Also means the all-risk endpoint of CAL must be on OSRA.
 - This gives many possible CALs; which to use?
 - Want CAL with greatest slope (i.e. Sharpe ratio).
Find the CAL

* Want to maximize Sharpe ratio.

* CAL for P has slope $\frac{E(r_P) - r_f}{\sigma_P}$.

\[
\max_{P \in OSRA} S_P = \max_{P \in OSRA} \frac{E(r_P) - r_f}{\sigma_P}.
\]

(11)

That gives the line from F tangent to the top of the OSRA.

* Point of tangency yields the *optimal risky portfolio*.

 * One Risky Portfolio to Rule Them All! (…Sort of.)

* Why not pick a point on red dashed frontier?
Maximizing utility on CAL gives *optimal complete portfolio*.

Thus utility guides allocation between F and optimal P.

Find tangency indifference curve to get tangency point C.

C is optimal complete portfolio, mix of F and P.

![Graph showing the relationship between expected return ($E(r_P)$) and standard deviation (σ_P) for different portfolios, including the optimal complete portfolio (C), mean-variance (MV), and F. The graph is labeled OSRA.](image)
We can now outline the process to find C:

- Get $rf \rightarrow F$;
- Get expected returns $E(r_i)$, variances σ_i^2, correlations $\rho_{ij} \rightarrow$ OSRA;
- Find optimal risky portfolio P and resulting CAL;
- Use risk aversion λ to get indifference curves; and,
- Find optimal complete portfolio C.

This is the idea of Markowitz (1952) and Roy (1952).

Usually, we skip finding the OSRA and just solve for P.

superscript 5 Harry Markowitz received the Nobel Prize for this. He has said that Arthur Roy should have also won.
Markowitz-Roy Terminology

- Markowitz-Roy approach has yielded useful terminology.
- OSRA includes minimum variance portfolio MV;
- Minimal variance for any target return: *minimum variance frontier*.
- Top-half of OSRA is the *efficient frontier* (of risky assets).
- Bottom-half of OSRA is the *inefficient frontier* (of risky assets).

Diagram:

- $E(r_P)$ vs σ_P
- F, MV, and P points
- OSRA shaded area

Dale W.R. Rosenthal
Quantitative Investments
1Jun2018 21 / 25
Why doesn’t everyone use the same optimal risky portfolio?

- People estimate inputs with different data;
- Taxes differ based on holding period, etc.
- Self-imposed constraints (risk, ethical/religious issues).
- Life exposures: Do not forget exposure to your employer!
- Home bias: You don’t own Canadian, Mexican stocks??
- Different levels of financial education.
Other Problems with Markowitz-Roy

- Even with same inputs, taxes, Markowitz-Roy is not perfect.
- Must estimate $> n^2/2$ inputs; quickly exhausts info in recent data.
- Consider randomness! $\max E(\text{utility}) \gg \max$ based on averages.
 - However, stochastic optimization is not easy.
- Why not use higher moments, better risk measures?

$$U = E(r) - \frac{\lambda}{2} \sigma^2 + \frac{\lambda^2}{6} \gamma - \frac{\lambda^3}{24} \kappa + \ldots.$$ (12)

- Should consider transactions costs: lower return, add risk.
Diversification in the Limit

- How well does diversification work? Consider an example:
 - Suppose we invest equal amounts in \(n \) risky assets\(^6\).
 - All risky assets: same \(E(r) \), \(\sigma \), pairwise correlation \(\rho \).

- Portfolio variance is then:

\[
\sigma^2_P = \sum_{i=1}^{n} \frac{\sigma^2}{n^2} + \sum_{i=1}^{n} \sum_{j \neq i} \frac{\rho \sigma^2}{n^2} = \frac{\sigma^2}{n} + \frac{n-1}{n} \rho \sigma^2. \quad (13)
\]

- As \(n \to \infty \), \(\frac{\sigma^2}{n} \downarrow 0 \), \(\frac{n-1}{n} \rho \sigma^2 \to \rho \sigma^2 \).
- Thus \(\rho \sigma^2 \) is the common (systematic) variance.
- Portfolio variance mostly due to correlation among assets.
- Why we like assets that are uncorrelated with other assets.

\(^6\)The well-known “1/\(n \) portfolio” which sometimes also beats MPT.
We have covered diversification; on to statistical modeling next time!

- Measuring: Statistical Modeling;
- Valuation: Fixed Income, Yield Curves, Equity Valuation;
- Valuation II: Factor Models, Microfoundations, Global Investing, FX;
- Risk Alleviation: Futures, Options, Credit, Structured Products; and,
- All Together Now: Active Portfolios, Investment Firms, Crises.