Quantitative Investments

Dale W.R. Rosenthal

1 June 2018

1 info@q36llc.com
Last lecture we discussed yield curves.

- Yield curves;
- What yield curves tell us;
- Monetary policy; and,
- Interest rate dynamics.

Today we will talk about equity valuation.
Today we will discuss equity valuation. Specifically:

- Sector and industry analysis;
- Fundamental analysis and comparables;
- Issues with discounted cashflow (DCF) models;
- Dividend discount models (DDMs);
- Free cashflow methods;
- The value of growth; and,
- Thoughts on the pricing kernel.
Sector and Industry Analysis

- Below economy, must consider sectors and industries.
 - Investing well is easier in well-performing industries.
 - Sectors/industries have different sensitivities to economy.
 - Firms within an industry are exposed to similar risk factors.

- Economic sensitivity metric: degree of operating leverage.

\[
DOL = \frac{\% \text{ change in profits}}{\% \text{ change in sales}} = 1 + \frac{\text{fixed costs}}{\text{profits}}. \tag{1}
\]

- Pure borrowing (leverage) also increases cycle sensitivity.

- Thus we expect certain ranges of DOL for different industries, e.g.:
 - Software: high fixed cost, tiny variable costs = high DOL; vs
 - Construction: medium fixed cost, large variable costs = low DOL.
Sectors often respond coherently to the business cycle.
Suggests choosing sector weights in light of business cycle.
Rotation reweights sectors optimally given business cycle.
Thus if we are entering a contraction, we might:
- overweight defensive stocks; and,
- underweight cyclical stocks.
How to define sectors and industries?

- Barra has defined national/world sectors, industries.
- S&P also has their own definitions.
- Nat’l/Int’l industry codings, *e.g.* NAICS, UKSIC, NACE, ISIC.

National/international codings use a hierarchy: SSIIi...i

- SS = sector (1–2 characters); II = industry;
- i...i = characters/symbols for sub-industry.
- *e.g.* NAICS: 20 sectors; 92 industries (sub-sectors).
- Often use code substrings SS or SSII as categorical variable.
⚠️ Periklu! Accounting measures may be “smoothed” or “managed.” This make them less reliable.

- Fundamental analysts compare companies using:
 - financial filings (in US: from SEC’s EDGAR); and,
 - derived measures, *e.g.* from Compustat.

- We often compare firms by *comparables*:
 - Price ratios: earnings (P/E), book (P/B), even website clicks;
 - Per-share ratios: earnings, book, sales, cashflow.

- Idea: Similar companies should have similar measures.

- All imply prices the analyst takes into consideration.
Criticisms of P/E analysis abound, among them:

- Earnings is an accounting construct.
 - Economic earnings may diverge (e.g. depreciation).
- Companies manage (inflate, smooth) earnings.
- Assumes earnings rise smoothly; ignores lumpiness.
- P/E for cycicals is less stable.
- P/E may be meaningless for start-ups.
Price-to-Earnings: Alternatives

- Can use P/E and forecasted dividends to predict target price.
 - Feed this into DCF models to get intrinsic value.
- Can look at other ratios:
 - *Price/book*: how aggressively market values assets.
 - *Price/cashflow*: avoids earnings management.
 - *Price/sales*: useful for valuing firms without earnings.
Limitations of Book Value

- Equity holders are “residual claimants.”
 - But, what are assets (and hence residual) worth?
- Problem: book value = original cost less depreciation.
- We might instead ask: What would assets sell for?
 - This is critical for debt analysts.
 - If liquidation value\(^2\) exceeds market cap, expect raiders.
- Consider replacement cost of assets less liabilities.
- Leads to Tobin’s \(q\): \(q = \frac{\text{market price of firm}}{\text{replacement cost of assets}}\).
 - \(q\) should tend to 1 due to competition.
 - If \(q > 1\), competitors can replicate firm for cheaper.

\(^2\)Money left after selling assets and repaying debt.
Basic approach for a certain time horizon:
- For now, assume we have prediction of price at year-end.

\[
\text{Expected HPR} = \frac{E(\text{annual div.})}{P_0} + \frac{E(\text{annual } \Delta \text{price})}{P_0} = E(\text{div. yield}) + E(\text{cap gain yield})
\]

Is expected HPR attractive for risk? Think about expected return.
- Think of \textit{stochastic discount factor }d\textit{ for return factor }R
 - We then expect that competitive pricing yields \(E(dR) = 1\).
- We often think in terms of \textit{pricing kernel }k = 1/d - 1.
When discounting cashflows, we use the pricing kernel \(k \).

However, if \(k \) is uncertain, that biases the valuation.

For a convex \(f \), Jensen’s Inequality says:

\[
E(f(k)) > f(E(k)) \quad \forall f : f'' > 0
\]

(4)

This is trouble; cannot just plug in averages. Must correct:

\[
E(f(k)) \approx f(E(k)) + \frac{1}{2} f''(E(k)) \sigma_k^2
\]

(5)

Thus if we discount cashflows:

\[
\tilde{V} = \sum_t \frac{C_t}{(1 + k)^t} + \frac{1}{2} \sum_t t(t + 1) C_t \sigma_k^2
\]

(6)

We will come back to this shortly.
Intrinsic Value

- *Intrinsic value* uses price target, pricing kernel k.
 - Computes what would be a fair price for stock.

- One-year horizon, annual dividend D_1, EOY target price P_1:

 $$V_0 = \frac{E(D_1) + E(P_1)}{1 + k} \quad (7)$$

- For a two-year investment horizon:

 $$V_0 = \frac{E(D_1)}{1 + k} + \frac{E(D_2) + E(P_2)}{(1 + k)^2} \quad (8)$$

- This prepares us for the world of DDMs.
Dividend Discount Model (DDM)

- Intrinsic value hints at valuing stock at any horizon.
- Basic *dividend discount model* (DDM) for H-year horizon:\n
$$V_0 = \frac{D_1}{1 + k} + \frac{D_2}{(1 + k)^2} + \cdots + \frac{D_H + P_H}{(1 + k)^H}$$ \hspace{1cm} (9)

- If dividends constant D, annuity price yields P_H, V_0:\n
$$P_H = \frac{D}{k} \Rightarrow V_0 = \sum_{t=1}^{\infty} \frac{D}{(1 + k)^t} = \frac{D}{k}$$ \hspace{1cm} (10)

- Thus we value stock as the sum of all discounted dividends.
- But for estimated \hat{k}, we adjust for Jensen’s Inequality:\n
$$V_0 = \frac{D}{k} + \frac{D}{k^3} \sigma_k^2.$$ \hspace{1cm} (11)

\[Q_36\]

\[Q_36\]

3 We suppress most of the expectations from here forward.
Gordon-Shapiro Constant-Growth DDM

- Reasonable extension: dividends which grow at rate g.
- This yields the constant-growth dividend discount model:

$$V_0 = \frac{D_0(1 + g)}{1 + k} + \frac{D_0(1 + g)^2}{(1 + k)^2} + \ldots = \frac{D_0(1 + g)}{k - g} = \frac{D_1}{k - g} \quad (12)$$

- Instant implication: dividend growth at/above k is unsustainable.
- We can also invert this formula to estimate k:

$$k = \frac{D_1}{P_0} + g = \text{div. yield} + \text{capital gains rate.} \quad (13)$$

- For estimated \hat{k} and \hat{g}, we Jensen correct to get:

$$\hat{V}_{0,G-S} = \frac{\hat{D}}{\hat{k} - \hat{g}} + \frac{\hat{D}}{(\hat{k} - \hat{g})^3} (\hat{\sigma}_k^2 + \hat{\sigma}_g^2 - 2 \text{Cov}(\hat{k}, \hat{g})). \quad (14)$$

4Discovered by Gordon and Shapiro (1956).
Reinvestment, Gordon-Shapiro, and DuPont

Does Gordon-Shapiro suggest companies pay out all dividends?
- No; Gordon-Shapiro shows this may be unwise.

Suppose we lower our dividend payout ratio.
- Reinvest fraction b of dividends in company.\(^5\)
- If company's $ROE > k$, this seems sensible.

Then, dividends grow at rate $g = b \cdot ROE$, implying

$$V_0 = \frac{E_1 (1 - b)}{k - g} = \frac{E_1 (1 - b)}{k - b \cdot ROE}.$$ \hfill (15)

The DuPont model decomposes ROE into separate tasks:

$$ROE = \frac{\text{net profits}}{\text{sales}} \times \frac{\text{sales}}{\text{average assets}} \times \frac{\text{average assets}}{\text{average equity}}.$$ \hfill (16)

\(^5\)Unpaid dividends are also called retained earnings.
Multistage Growth DDMs

- Constant ROE sounds great; contradicts observed life cycles.
- Instead, use a life cycle model and basic DDM to value firm.
- Basic idea: value modeled dividends via discounting.
 - Near dividends are discounted individually.
 - Assume decreasing dividend growth during maturity stage.
 - Then use Gordon model for dividends thereafter.
 - This also handles one-time special dividends.
Multistage Growth DDM Example

Insert example here valuing an actual company.

Except that multi-stage modeling was an exercise in frustration.

- The multistage growth DDM is flexible — maybe too flexible.
- You can work hours trying to make a nice example of a real firm.
- But when the model works, it gives highly varying prices.
- If you torture the model, it will confess.
Free Cashflow Models and WACC

- Instead of dividends, can value free cashflow to all/part of firm.
- Discount by firm’s *weighted average cost of capital* (WACC).
- Funding: consider sources of funding for cashflow destination.
 - Firm? Use equity, bond, bank loans in fractions $w_e + w_b + w_\ell = 1$.
- For funding sources having rates of return r_e, r_b, r_ℓ:
 \[
 WACC = w_e r_e + (w_b r_b + w_\ell r_\ell)(1 - \tau). \quad (17)
 \]
- Why multiply bonds, loans by $1 - \tau$? Tax advantage of debt.
Free Cashflow to the Firm

Find cost of replicating free cashflow to the firm (FCFF):

$$FCFF = EBIT (1 - \tau) + \text{depreciation} - \text{capex} - \Delta NWC$$ \hspace{1cm} (18)

where τ is tax rate, NWC is net working capital.

Then discount FCFF by WACC:

$$\text{Firm value} = F_0 = \sum_{t=1}^{T} \frac{FCFF_t}{(1 + WACC_t)^t} + \frac{F_T}{(1 + WACC_T)^T},$$ \hspace{1cm} (19)

or $F_0 = \frac{FCFF_1}{WACC - g}$. \hspace{1cm} (20)

Subtract debt, compute per-share value: $V_0 = \frac{\text{firm value} - \text{debt}}{\text{shares outstanding}}$.

Q36
If we estimate FCFF and WACC \((i.e. r_e = \hat{k})\), firm value is:

\[
F_0 = \sum_{t=1}^{T} \left(\frac{\hat{\text{FCFF}}_0 (1 + \hat{g})^t}{(1 + \text{WACC}_t)^t} + \frac{t(t+1)\hat{\text{FCFF}}_0 (1 + \hat{g})^t}{2(1 + \text{WACC}_t)^{t+2}} \hat{\sigma}_{\text{WACC}-g}^2 \right) + \frac{\hat{\text{V}}_T}{(1 + \text{WACC}_T)^T},
\]

\[
\hat{\text{V}}_T = \frac{\hat{\text{FCFF}}_0 (1 + \hat{g})^T}{\text{WACC} - \hat{g}} + \frac{\hat{\text{FCFF}}_0 (1 + \hat{g})^T}{(\text{WACC} - \hat{g})^3} \hat{\sigma}_{\text{WACC}-g}^2, \text{ where}
\]

\[
\hat{\sigma}_{\text{WACC}-g}^2 = \hat{\sigma}_{\text{WACC}}^2 + \hat{\sigma}_g^2 - 2 \text{Cov}(\text{WACC}, \hat{g}).
\]
Free Cashflow to Equity

- Find cost of replicating *free cashflow to equity* (FCFE).

\[
FCFE = FCFF - \text{interest}(1 - \tau) + \Delta\text{net debt}. \quad (24)
\]

- Find change in firm leverage from time 0 → t: \(l_t = \frac{1 + \text{debt}_t(1 - \tau)}{1 + \text{equity}_t(1 - \tau)} \).

- Adjust \(k \) for change in leverage: \(k_{E,t} = r_f + l_t(k - r_f) \).

- Discount cashflows at \(k_{E,t} \) and apportion per share:

\[
V_t = \frac{FCFE_t}{k_{E,t} - g}, \quad \text{or} \quad \hat{V}_t = \frac{\hat{FCFE}_t}{\hat{k}_{E,t} - \hat{g}} + \frac{\hat{FCFE}_t}{(\hat{k}_{E,t} - \hat{g})^3} \hat{\sigma}_t^2 k_{E,t-g}, \quad (25)
\]

\[
V_0 = \frac{\sum_{t=1}^{T} FCFE_t}{(1+k_{E,T})^T} + \frac{V_T}{(1+k_{E,T})^T} \text{ shares outstanding} \quad \text{or estimated version}.... \quad (26)
\]
In theory, these valuation models should all be equivalent.

- *Modigliani-Miller Theorem* says dividends, debt irrelevant.
- Thus DDM, G-S, FCFF, FCFE, P/E should all yield same values.

Why do these valuations differ then?

- Uncertainty in assumptions. (*e.g.* When is firm “mature?”)
- Uncertainty in direct inputs.
- Non-constancy of inputs (*r_f* varies).
- M&M ignores taxes, creditor rights, costs, other frictions.
- \(WACC_T - g\) and \(k_{E,T} - g\) near 0 \(\Rightarrow\) fat-tailed valuations.

A good analyst would consider all these models.
Growth Opportunities and P/E

- If $ROE > k$, re-investing is better than value without: $\frac{E_1}{k}$.
- Difference = present value of growth opportunities (PVGO):

$$PVGO = P_0 - \frac{E_1}{k} \quad (27)$$

- Can rearrange PVGO formula to see P/E relationship:

$$\frac{P_0}{E_1} = \frac{1}{k} \left(1 + \frac{PVGO}{E_1/k}\right). \quad (28)$$

- Thus if PVGO is 0, stock trades like an annuity.
- As growth opportunities become more valuable, P/E rises.
- What is $PVGO / (E_1/k)$? Ratio of growth value to asset value.
 - If growth value high relative to assets, P/E will be high.
Recall Gordon-Shapiro model: \(P_0 = \frac{D_1}{k-g} \).

Substituting in \(D_1 = E_1(1 - b) \) and \(g = b \cdot \text{ROE} \):

\[
P_0 = \frac{E_1(1 - b)}{k - b \cdot \text{ROE}} \Rightarrow \frac{P_0}{E_1} = \frac{1 - b}{k - b \cdot \text{ROE}}. \tag{29}
\]

Note effect of \(b, \text{ROE} \) on P/E for \(k = 10\% \):

<table>
<thead>
<tr>
<th>Retained earnings (b)</th>
<th>ROE</th>
<th>0%</th>
<th>25%</th>
<th>50%</th>
<th>75%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7%</td>
<td>10.0</td>
<td>9.1</td>
<td>7.7</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td>10%</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td></td>
<td>13%</td>
<td>10.0</td>
<td>11.1</td>
<td>14.3</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Rough guide: \(\text{P/E} \approx g \Rightarrow \frac{\text{P/E}}{g} < 1 \) attractive.
Big question: what *really* is the pricing kernel k?

Efficient markets: $k = r_f + $ some multiples of risk premia.

But then we estimate k, yielding \hat{k}.

Why not use average excess returns of a stock? Could, but . . .

1. We think that model reduces noise (and thus valuation variation);
2. We can correct for time trends; and,
3. We can exclude alpha — which allows for mispricings.
4. Also nice: it helps reveal relevant economic forces.

Use risk-free rate based on our investment/decision horizon.

Probably should allow for multiple risk factors.\(^6\)

\(^6\)Serious foreshadowing here.
We have covered equity valuation; on to the CAPM next time!

- Valuation II: CAPM, Factor Models, Microfoundations, Global;
- Risk Alleviation: Futures, Options, Credit, Structured Products; and,
- All Together Now: Active Portfolios, Investment Firms, Crises.