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Introduction

In order for blood to be delivered properly to the tissues of the body, the heart has to contract in an organized and coordinated
fashion. The mammalian heart consists of both contractile (i.e., “working”) cardiomyocytes (located in the atria and ventricles) as
well as specialized pacemaker and conduction system cells that demonstrate automaticity (present at specific locations within the
heart). The precise activity of the specialized cell types demonstrating automaticity in the heart results in the coordinated excitation
of the contractile cardiomyocytes in the atria and ventricles, thereby ensuring proper pump function of the heart.

The components of the heart that demonstrate automaticity include the sinoatrial node (SAN), the atrioventricular node (AVN),
and the His-Purkinje network (Fig. 1). Myocytes in each of these locations are capable of generating spontaneous action potentials
(APs). Under normal conditions, the SAN demonstrates the highest rate of intrinsic spontaneous activity (and hence is normally
the primary pacemaker of the heart). The AVN has a lower rate of intrinsic spontaneous activity and normally functions to transmit
electrical signals (i.e., APs) from the atria to the ventricles. The His-Purkinje network, located in the ventricles, demonstrates the
lowest rate of intrinsic spontaneous activity and is responsible for the rapid delivery of electrical signals to the working ventricular
myocardium. Abnormal activity in any of these specialized components of the heart can result in cardiac arrhythmia.

Anatomy of the SAN and AVN

The SAN is a small, condensed area of tissue located subendocardially, adjacent to the cristae terminalis, and within the intercaval
region of the right atrium (Keith and Flack, 1907; Boyett et al., 2003; Dobrzynski et al., 2007; Mangoni and Nargeot, 2008; Liu
et al., 2007) (Fig. 1). Developmentally, the SAN and AVN are formed from specific populations of progenitor cells and are
regulated by specific transcriptional pathways that result in the specification and differentiation of the SAN and AVN. The reader is
referred to excellent reviews on the topic of patterning of the SAN and cardiac conduction system for additional information on
these topics (Christoffels et al., 2010; van Weerd and Christoffels, 2016; Vedantham, 2015).

SAN myocytes are smaller than atrial myocytes and exist in a number of morphologies including spindle shaped, elongated
spindle shaped, or spider cells (Anderson et al., 2009; Boyett et al., 2000; Mangoni and Nargeot, 2001). The SAN is a heterogeneous
structure that can be divided into the SAN center, which most frequently contains the leading pacemaker site, and SAN periphery
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Fig. 1 (A) Schematic illustration of the heart showing the location of the sinoatrial node (SAN) and the components of the cardiac conduction system
including the atrioventricular node (AVN), the atrioventricular bundle (AVB), the bundle branches (BB), and the Purkinje fiber network (PFN). LA, left
atrium; RA, right atrium; SCV, superior vena cava; IVC, inferior vena cava; CFB, central fibrous body; PV, pulmonary vein; TV, tricuspid valve; MV, mitral
valve; RV, right ventricle; LV, left ventricle. (B) The three-dimensional model of the SAN and cardiac conduction system including (1) a model of the heart
from the dorsal epicardial surface, (2) a transparent model of the heart with a view of the sinoatrial node and cardiac conduction system from the dorsal
surface, (3) a model of the SAN and cardiac conduction system in isolation as viewed from the dorsal surface, (4) a transparent model of the heart with a
view of the sinoatrial node and cardiac conduction system from the ventral surface, and (5) a model of the SAN and cardiac conduction system in
isolation as viewed from the ventral surface. (A) Reproduced with permission (Mangoni, M. E. and Nargeot, J. (2008). Genesis and regulation of the
heart automaticity. Physiological Reviews 88, 919-982). (B) Modified and reproduced with permission (Atkinson, A.J., Logantha, S.J., Hao, G., Yanni, J.,
Fedorenko, O., Sinha, A., Gilbert, S.H., Benson, A.P., Buckley, D.L., Anderson, R.H., Boyett, M.R. and Dobrzynski, H. (2013). Functional, anatomical, and
molecular investigation of the cardiac conduction system and arrhythmogenic atrioventricular ring tissue in the rat heart. Journal of the American Heart
Association 2, e000246).

(Dobrzynski et al.,, 2007). SAN myocytes in the center are smaller compared with those in the periphery, and have distinct
molecular and electrophysiological properties that will be discussed further throughout this chapter.

There is considerable variability in the structure of the SAN between different species. In the human and canine heart, the SAN is
commonly “cigar shaped” with the head located lateral to the crista terminalis near the opening of the superior vena cava and a tail
that extends toward the opening of the inferior vena cava to varying extents. In the rabbit heart, the SAN spans the region between
the superior and inferior vena cava (Inada et al., 2014). In contrast, the mouse SAN is “comma shaped,” with a dense region at the
top of the comma near the superior vena cava and a tail that runs adjacent to the cristae terminalis (Liu et al., 2007). SAN myocytes
are interspersed within a network of connective tissue that serves as an insulator (Opthof, 1988; Dobrzynski et al., 2007; Boyett
etal., 2003; Chandler et al., 2009). This connective tissue, along with the SAN arteries and adipose tissue, insulate the SAN from the
surrounding atrial myocardium (Fedorov et al., 2009, 2012). The mouse SAN contains relatively low levels of connective tissue and
has finger-like projections that are one to three cells long and one to two cells wide, which extend into the surrounding atrial
myocardium to a length of ~200 pm (Liu et al., 2007).

The anatomy of the AVN was first detailed in 1906, where Sunao Tawara meticulously detailed the cardiac conduction system in
various mammals, including humans (Tawara, 2000). The AVN is often separated into two regions including the compact node and
the lower nodal bundle (Fig. 2). The compact node is a half-oval shaped, small, dense region of interweaving spindle-shaped cells
situated at the apex of the triangle of Koch adjacent to the central fibrous body (Hucker et al., 2008; Dobrzynski et al., 2013; Meijler
and Janse, 1988; Inoue and Becker, 1998; Anderson and Ho, 1998). Morphologically, cells within the compact node are small and
spindle or ovoid shaped (Munk et al., 1996). The anterior portion of the AVN is occupied by the lower nodal bundle and includes
the rightward inferior nodal extension (INE). INEs are regions of specialized tissue that extend from the coronary sinus ostium and
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Fig. 2 Location of the atrioventricular node within the heart (left) and schematic illustration of the atrioventricular node junction including the fast and
slow pathways (right). Ao, aorta; CN, compact node; CS, coronary sinus; FO, fossa ovalis; IVC, inferior vena cava; SVC, superior vena cava; RA, right
atrium; RV, right ventricle. Reproduced with permission from Dobrzynski, H., Anderson, R.H., Atkinson, A., Borbas, Z., D’Souza, A., Fraser, J.F.,
Inada, S., Logantha, S. J., Monfredi, O., Morris, G.M., Moorman, A.F., Nikolaidou, T., Schneider, H., Szuts, V., Temple, I. P, Yanni, J. and Boyett,
M.R. (2013). Structure, function and clinical relevance of the cardiac conduction system, including the atrioventricular ring and outflow tract tissues.
Pharmacology and Therapeutics 139, 260-288.

are continuous with the compact node, which have been identified in the dog and human heart (Hucker et al., 2008; Inoue and
Becker, 1998; Anderson and Ho, 1998). Cells located in this region are smaller than atrial myocytes, yet larger than those in the
compact node. They are tightly packed and organized in a parallel configuration. Surrounding the compact node and INE are
transitional cells. These cells have a unique cellular phenotype as they exhibit morphological and electrophysiological character-
istics of cells within the compact node as well as the surrounding myocardium in which they are located (Anderson and Latham,
1971; Anderson et al., 1974; Temple et al., 2013; Efimov et al., 2004). Electrophysiology studies have identified three cell types
within the AVN including the atrio-nodal, the nodal, and the nodo-his cells (Nikolaidou et al., 2012).

SAN and AVN Conduction

In the intact SAN, the leading pacemaker site is the location of initial breakthrough of electrical activity and is most commonly
located within the intercaval region (Dobrzynski et al., 2007; Mangoni and Nargeot, 2008). It is estimated that the leading
pacemaker site accounts for roughly 1% (approximately 5000 cells) of the SAN in the rabbit heart (Bleeker et al., 1980; Kodama and
Boyett, 1985). In response to physiological and pathophysiological conditions, the location of the leading pacemaker site can
change. For example, a superior shift occurs in response to sympathetic nervous system activation with B-adrenergic receptor (B-AR)
agonists (Fedorov et al., 2012; Azer et al., 2014). Similarly, activation of the parasympathetic nervous system or application of
muscarinic (M,) agonists produces an inferior shift in leading pacemaker site (Fedorov et al., 2012; Vinogradova et al., 1998;
Krishnaswamy et al., 2015). Circulating hormones, such as natriuretic peptides (NP), can also modulate SAN function in
association with shifts in leading pacemaker site (Azer et al., 2014). Furthermore, in the aged mouse heart it has been shown
that the location of the leading pacemaker site can alternate between a superior and inferior position in subsequent beats and
change as a function of frailty (Moghtadaei et al., 2016a). It has been proposed that these shifts in leading pacemaker site alter heart
rate because of different properties of SAN myocytes at the different locations within the SAN.

Conduction across the SAN spreads from the leading pacemaker site toward the periphery of the SAN at the cristae terminalis
where it excites the surrounding atrial myocardium. Interestingly, there is a band of nonexcitable tissue, commonly referred to as a
“block zone,” at the periphery of the SAN, which slows or prevents conduction toward the left atrium (Boyett et al., 2000, 2003;
Bleeker et al., 1980; Nikolaidou et al., 2012). Myocytes at the center of the SAN exhibit poor electrical coupling, which has been
attributed to cell orientation, increased levels of connective tissue, and gap junction protein expression patterns (Boyett et al., 2000,
2003; Dobrzynski et al., 2007; Chandler et al., 2009).

Connexins (Cxs) are critical proteins in the SAN (and AVN) that facilitate the spread of electrical signals between adjacent cells
via gap junctions and are expressed heterogeneously in the SAN (and atria). The center of the SAN expresses the low conductance
Cx45, but lacks expression of Cx40 and Cx43 (Boyett et al., 2000; Coppen et al., 1999; Verheijck et al., 2001). In the SAN periphery,
both Cx43 and Cx45 are expressed, resulting in both an increase in electrical coupling between myocytes and increased conduction
velocity (Coppen et al., 1999; Verheijck et al., 2001). Heterogeneity in Cx expression results in a slower conduction velocity within
the SAN center compared with the periphery as well as the surrounding atrial myocardium and contributes to protecting the SAN
from the hyperpolarized atrial myocardium (Joyner and van Capelle, 1986; Boyett et al., 2000; Mangoni and Nargeot, 2008; Bartos
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et al,, 2015). Cxs are also critical for the activation of the atria by the SAN whereby the coupling of Cx45 expressing regions of the
SAN communicate with Cx40 and Cx43 positive regions of the atria (Verheijck et al., 2001). It has been proposed that the SAN
communicates with the surrounding atrial myocardium via distinct exit pathways in the SAN (Fedorov et al.,, 2012; Csepe
etal, 2016).

The AVN serves as a gateway to the ventricles as APs generated in the atria must pass through the AVN to excite the ventricular
myocardium. Conduction throughout the AVN is much slower than the atria, which has been attributed to numerous factors
including cell orientation, intracellular coupling, and ion channel expression. In larger animals, including humans, two distinct
pathways of conduction through the AVN have been identified based on electrophysiological characteristics and molecular
properties. These are referred to as the fast and slow pathways because of the ease with which conduction spreads through each,
which is correlated with Cx43 expression (Hucker et al., 2008; Kurian et al.,, 2010; Temple et al., 2013). The fast pathway
demonstrates relatively rapid conduction velocity, a long refractory period, and has very little to no Cx43 expression. This pathway
includes the transitional cells, leftward INE, and compact node (Temple et al., 2013; Hucker et al., 2008; Greener et al., 2011;
Efimov et al., 2004; Mani and Pavri, 2014). In contrast, Cx43 is expressed throughout the slow pathway (Cx43 positive region),
which includes the rightward INE and the lower nodal bundle, and is continuous with the His bundle (Hucker et al., 2008). As the
name suggests, conduction velocities are slow in this pathway (Mani and Pavri, 2014).

Sinoatrial Node Action Potentials

The quintessential feature of the SAN is its ability to generate spontaneous APs characterized by the presence of a slow diastolic
depolarization (DD) between successive APs (Fig. 3A). The DD occurs during diastole and is characterized by a gradual increase in
resting membrane potential, starting from the maximum diastolic potential (MDP) until the threshold for the next AP is reached
(DiFrancesco, 1993; Irisawa et al., 1993). In SAN myocytes the AP upstroke velocity (Vi) is slower, the overshoot (OS) is smaller,
and AP duration (APD) is longer compared to the surrounding contractile atrial myocytes (Monfredi et al., 2010; Dobrzynski et al.,
2007). AP morphology is also heterogeneous within the SAN from center to periphery (Fig. 3B). Using small ball preparations of
consecutive regions within the SAN, intrinsic differences in AP morphology have been characterized. Specifically, from the
periphery to the center of the SAN, there is a gradual decrease in AP V., OS, and MDP (Kodama and Boyett, 1985; Kodama
etal., 1997; Boyett etal., 1999). Furthermore, there is an increase in APD from the periphery toward the center of the SAN (Kodama
etal.,, 1997; Yamamoto et al., 1998; Boyett et al., 1999).

Morphologically, APs recorded from the periphery of the SAN have some resemblance to atrial APs while still retaining
properties of spontaneously active SAN myocytes (Yamamoto et al., 1998) (Fig. 3B). For example, peripheral SAN myocytes
have a prominent DD and display automaticity; however, V., is faster and APD is shorter in peripheral versus central SAN
myocytes (Boyett et al., 1999; Dobrzynski et al., 2007). Collectively, these AP differences across the SAN result in the leading
pacemaker site depolarizing first, but repolarizing last (Yamamoto et al., 1998; Boyett et al., 2000). This is of functional importance
because it prevents re-entrant activity.

(A) (8)

MDP

Fig. 3 Action potential morphologies in the sinoatrial node and atrial myocardium. (A) Overlay of representative action potentials from the working
atrial myocardium and the sinoatrial node. In comparison to atrial muscle, sinoatrial node action potentials are characterized by a depolarized MDP, a
diastolic depolarization (DD; also referred to as a “pacemaker potential”), a reduced upstroke velocity (Vimax, dV/dtnmay), lower action potential amplitude
and longer action potential duration. (B) Heterogeneity in spontaneous action potential morphology in the center, transitional zone, and periphery of the
sinoatrial node. (A) Modified and reproduced with permission from Boyett, M. R. (2009). “And the beat goes on.” The cardiac conduction system: The
wiring system of the heart. Experimental Physiology 94, 1035-1049. (B) Reproduced with permission from Boyett, M.R., Honjo, H., Yamamoto, M.,
Nikmaram, M.R., Niwa, R. and Kodama, I. (1999). Downward gradient in action potential duration along conduction path in and around the sinoatrial
node. The American Journal of Physiology 276, H686-H98.
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Atrioventricular Node Action Potentials

APs within the AVN are unique compared with other regions in the heart. Specifically, AVN myocytes generate spontaneous APs
that are characterized by much lower V., values compared to the working myocardium. Furthermore, APs in AVN myocytes are
shorter in duration compared with ventricular myocytes, but not atrial myocytes (Munk et al., 1996). While AVN myocytes are
spontaneously active, their APs are characterized by slower spontaneous beating rates, reduced DD slopes, more negative MDPs,
and reduced AP thresholds compared with SAN myocytes (Marger et al., 2011b).

Regional differences in AP morphology have been characterized in atrio-nodal cells (rod-shaped cells) and compact node or
nodo-his cells (ovoid cells) isolated from the rabbit heart. Compact AVN cells are characterized by the presence of a rounded AP OS
(Munk et al., 1996). Furthermore, these compact AVN cells have the lowest V ,,.,, OS, APD, and MDP compared with the other
regions of the AVN (Munk et al., 1996). In contrast, AP morphology of atrio-nodal cells demonstrates characteristics of both AVN
and atrial myocytes (Munk et al., 1996; Yuill and Hancox, 2002).

lonic Basis for SAN APs

The unique morphology of the SAN AP comes about due to the activities of a number of underlying ionic currents in SAN myocytes.
These include the hyperpolarization-activated current (If) carried by hyperpolarization-activated cyclic-nucleotide gated (HCN)
channels, T- and L-type Ca®* currents, a number of voltage-dependent K* currents, a sustained inward current (I), and a Na*-Ca**
exchange (NCX) current (Iycx) driven by the release of Ca”* from the sarcoplasmic reticulum (SR) (Mangoni and Nargeot, 2008;
Lakatta et al., 2010). Other currents and ion channels that have been shown to affect SAN AP firing include sodium channels, two
pore K* channels, inward rectifier K* channels, Ca®* activated K* channels, transient receptor potential (TRP) channels, and stretch-
activated ion channels. A terminology that has seen widespread adoption is that ionic currents across the plasma membrane that
affect SAN AP potential firing may be collectively referred to as a “membrane clock,” while the SR Ca®* release/Iycx mechanism
may be referred to as the “Ca”* clock” (Lakatta et al., 2010). There has been considerable debate regarding whether any one ionic
mechanism is essential for automaticity (i.e., generation of the DD) and regarding the relative importance of each of the ionic
mechanisms that underlie spontaneous activity in the SAN (Lakatta and DiFrancesco, 2009). There is currently no consensus on
these issues; however, when considered collectively, it appears that there is some redundancy in the ionic mechanisms that generate
the DD and automaticity in the SAN.

HCN channels

The hyperpolarization-activated current, also known as the “funny” current (If), is encoded by HCN channels and contributes to
the DD phase of the AP. Multiple HCN isoforms are expressed in the heart, including HCN1-4. HCN4 is thought to be the
predominant isoform in the SAN with contributions from HCN1 and HCN2 as well. Functionally, HCN isoforms assemble into
heteromultimeric complexes and the resulting I current has biophysical properties consistent with this structural arrangement
(Monfredietal., 2010; Accili et al., 2002; Bucchi et al., 2012). In many species, including mouse, rabbit, and dog, HCN4 expression
accounts for upward of 80% of the total HCN expression in the SAN (Shi et al., 1999; Zicha et al., 2005; Liu et al., 2007). However,
in the human SAN, HCNT1 is highly expressed in addition to HCN2 and HCN4 (Chandler et al., 2009; Li et al., 2015).

As their name suggests, HCN channels are activated by hyperpolarization of the membrane potential and play a role in the early
phase of DD (Baruscotti et al., 2010; DiFrancesco and Borer, 2007). If channels conduct both Na* and K*, are blocked by Cs™ in a
voltage-dependent fashion, have a reversal potential between — 10 and —20 mV, and exhibit slow activation and deactivation
kinetics (Baruscotti et al., 2010; DiFrancesco and Borer, 2007; Accili et al., 2002). Inside-out patch-clamp experiments have shown
direct activation of I; channels by cAMP (i.e., independently of protein kinase A (PKA) phosphorylation); therefore, these channels
are activated by both membrane voltage and cAMP (DiFrancesco and Tortora, 1991; Wainger et al., 2001). Physiologically, these
effects allow for cAMP-dependent regulation of Iy channels, which functions to shift the voltage dependence of activation of HCN
channels, increasing Ir currents and DD slope in SAN myocytes. In isolated rabbit SAN myocytes, 2 mM Cs* almost completely
blocks Ir (Denyer and Brown, 1990). Interestingly, the same concentration of Cs* slows AP firing frequency by ~30% rather than
causing a complete cessation of AP firing. Similarly, in isolated rabbit SAN myocytes, ivabradine, a selective It blocker, reduced the
spontaneous beating rate by 16%, which was attributed to a 32% reduction in early DD slope (Bucchi et al., 2007). Similar effects of
Cs* on Irand AP firing have been reported in the human heart (Verkerk et al., 2007).

Strong evidence of a role for I in the SAN, as well as the involvement of specific ion channel isoforms in its generation, comes
from studies using genetically modified mice. For example, HCN1 knockout mice display a significant reduction (~30%) in I¢
density and spontaneous AP firing frequency in isolated SAN myocytes (Fenske et al., 2013). Furthermore, HCN1 knockout mice
are characterized by bradycardia, impaired SAN conduction, and sinus pauses in vivo. Collectively, these findings confirm that
HCN1 is present in the SAN and contributes functionally to I¢ current generation.

Genetic deletion of HCN2 channels also results in a reduction in Ir density (~30%) in isolated SAN myocytes as well as a
slowing of It activation, indicating that HCN2 contributes to It in the mouse SAN (Ludwig et al., 2003). HCN2 knockout mice do
not show a change in heart rate, but they are characterized by enhanced SAN-mediated arrhythmias, suggesting that HCN2 is
important for normal SAN function.

Consistent with the hypothesis that HCN4 is the major isoform in the SAN, global deletion of HCN4 is embryonic lethal;
embryos lacking HCN4 die by day 12 post coitum (Stieber et al., 2003). Prior to day 12 HCN4 knockout embryos show near
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complete absence of Irand slow heart rates (Stieber et al., 2003). The impacts of inducible and tissue-specific HCN4 ablation have
also been investigated. In one study, Cre-lox methods were used to delete HCN4 from the adult mouse SAN, which reduced I by
~75% (Herrmann et al., 2007). Isolated SAN cells from these mice displayed irregular patterns of AP firing, but this could be
restored to normal upon application of isoproterenol (ISO), indicating that the cells were capable of beating spontaneously despite
the loss of It. The authors concluded that HCN4 was necessary for stable basal automaticity, especially at low heart rates (Herrmann
et al.,, 2007). A second study that investigated inducible, cardiac-specific deletion of HCN4 in mice reported a more severe
phenotype in which mice were characterized by severe bradycardia, as well as AV node block, ultimately resulting in death within
5 days of deletion (Baruscotti et al., 2011). Isolated SAN myocytes from these mice exhibited reductions in Iy of ~70%, while
spontaneous AP firing was reduced by 60%. Taken together, the available data clearly demonstrate that I is importantly involved in
generating automaticity in the SAN, although there is still continued debate on whether it is essential for this function.

T-type and L-type calcium channels

Voltage-gated calcium channels are expressed in the SAN and contribute to the DD in SAN myocytes (Mangoni et al., 2006a;
Marionneau et al., 2005). In the heart, L-type calcium current (Ic, ) is encoded by two subunits, Cay1.2 and Cay1.3, while the
T-type calcium current (I, 1) is encoded by the subunits Cay3.1, Cay3.2, and Cay3.3 (Marionneau et al., 2005). These o subunits
show distinct patterns of expression in different parts of the heart, as noted later.

With regard to I, ;, channel expression, studies have revealed that Cay1.2 is expressed through the myocardium including in the
SAN, while Cay1.3 has a more restricted expression pattern, being present in the SAN, AVN, and atrial myocardium, but absent
from the ventricular myocardium (Mangoni et al.,, 2003). Functionally, Cay1.3-mediated Ic, is activated at more negative
membrane potentials (compared with Cayl.2-mediated Ic,;), which correspond to membrane voltages during the DD
(Mangoni et al., 2003; Mesirca et al., 2016b). Cay1.2, on the other hand, is primarily active during the AP upstroke. Bradycardia
is observed in Cayl.3-deficient mice, which is attributed to a significant increase in the cycle length between successive APs in
association with a reduction in the slope of the DD (Mangoni et al., 2003; Torrente et al., 2016). Cay1.3-deficient mice display a
60%-70% reduction in I, density and a positive shift in I, 1 activation kinetics in SAN myocytes consistent with the remaining
Ica,1 being generated by Cayl.2 (Mangoni et al, 2003). Combined, these data indicate Cayl.3-mediated Ic,; contributes
importantly to SAN pacemaker activity during the late phase of the DD and that this is the predominant L-type Ca”* channel
contributing to automaticity. Cay1.2-mediated I, 1, while contributing importantly to the generation of the AP upstroke, does not
appear to be a major participant in the generation of the DD.

For Ic, 1, both Cay3.1 and Cay3.2 mRNAs have been found in the SAN; however, Cay3.1-mediated I, t appears to play a more
prominent functional role (Mesirca et al., 2014; Mangoni and Nargeot, 2008). I, demonstrates slower activation kinetics and
accelerated inactivation kinetics compared with I, (Mesirca et al., 2014; Mangoni and Nargeot, 2008). Furthermore, Ic,r
activates at more negative membrane potentials than Cay1.2- and Cay1.3-mediated I, and the peak I, t density is lower than
that of I, 1 in SAN myocytes. Nevertheless, Cay3.1-mediated I, r has been shown to contribute to pacemaker activity in the SAN.
Specifically, mice lacking Cay3.1 completely lack detectable Ic,t in SAN myocytes, which resulted in a 37% reduction in
spontaneous AP firing frequency (Mangoni et al., 2006b). Functionally, while basal heart rate was unchanged in Cay3.1 knockout
mice, intrinsic heart rate (measured in the presence of autonomic nervous system blockade) was reduced by 10%. The precise
mechanisms by which I, r affects the DD are still unclear, but may involve the generation of a window current or the coupling of
Icar to intracellular Ca** handling.

Sarcoplasmic reticulum Ca?* release and Na*-Ca** exchange
Evidence of a role for sarcoplasmic reticulum (SR) Ca®* release in cardiac automaticity was first shown in latent pacemaker cells in
the atria and in the SAN, whereby application of ryanodine was found to slow spontaneous pacemaker activity (Rubenstein and
Lipsius, 1989; Rigg and Terrar, 1996; Li et al., 1997). Since then, this phenomenon has been explored in great detail in the
mammalian SAN (Lakatta et al., 2010). The central tenet of this hypothesis is that localized subsarcolemmal Ca?* release (LCR)
events from the SR occur during the late DD. These LCRs occur rhythmically and lead to the activation of NCX, which extrudes this
Ca”* from the SAN myocytes, thereby generating an inward current (Incx) during the DD. This SR Ca®* release/Iycx mechanism
appears to depend on a high level of basal PKA activity in the SAN and is controlled by phosphodiesterases, which are responsible
for hydrolyzing cAMP (Vinogradova et al., 2006, 2008). It has been proposed that the LCR events present during the DD occur
spontaneously and do not depend on membrane depolarization (Lakatta et al., 2010). On the other hand, more recent evidence
has demonstrated that Cay1.3 Ca®* channels are colocalized with ryanodine receptors in the SAN (Christel et al., 2012) and it has
been suggested that Ca”* influx via Cay1.3 channels during the DD may lead to the opening of ryanodine receptors by Ca?*-
induced Ca”* release (Torrente et al., 2016). There has been considerable debate on the relative importance of this Ca”* clock
mechanism in SAN automaticity with some studies ascribing it a dominant or even essential role and others concluding that the
Ca”* clock is an important contributor, but that spontaneous activity in the SAN can continue without it, albeit with reduced rates
and/or stability (Lakatta and DiFrancesco, 2009; Honjo et al., 2003; Lakatta et al., 2010). Nevertheless, the evidence is overwhelm-
ing that SR Ca”* release occurs during the late DD and this leads to the activation of Iycx, which increases the rate of depolarization
during diastole and thus enhances spontaneous AP firing in the SAN.

Further evidence of a role for SR Ca?* release in automaticity comes from studies of IP5 receptors (IP3Rs) in the SAN. All three
IP5R subtypes (IP5R1, IP3R2, and IP3R3) are expressed in the heart and IP3R1 and IP;R2 have both been detected in the SAN (Ju
etal, 2011, 2012). Activation of IP;Rs with either membrane-permeable IP; or indirectly via application of endothelin-1 (which
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increases endogenous IP5 levels via the phospholipase C signaling pathway) caused a significant increase in Ca”* spark frequency
near the cell membrane, indicating SR Ca®* release. Furthermore, these IP;R agonists also increased spontaneous AP generation in
the SAN (Ju etal., 2011). Consistent with these findings, IP;R2 knockout mice as well as pharmacological inhibition of IP3Rs result
in a reduction in spontaneous Ca>* spark frequency and SAN AP firing rate (Ju et al., 2011; Kapoor et al., 2015). Combined, these
data indicate IP;R2-mediated SR Ca?* release can contribute to pacemaker activity in the SAN.

Sustained inward current

The sustained inward current, I, is a current carried by Na* that activates at ~—70 mV and peaks at ~—50 mV. I is enhanced by
B-AR agonists, is insensitive to TTX, and is blocked by dihydropyridine receptor antagonists as well as divalent cations (Mg>*, Ni**)
(Mitsuiye et al., 2000; Cho et al., 2003; Shinagawa et al., 2000; Toyoda et al., 2005). I has been detected in SAN myocytes and,
interestingly, appears to be present only in spontaneously beating, but not quiescent, SAN cells (Mitsuiye et al., 2000; Zhang et al.,
2002). Based on its biophysical and kinetic properties, I has been predicted to contribute to the generation of the DD, particularly
in the central regions of the SAN were Iy, is small or absent (Shinagawa et al., 2000). The molecular identity of the channels
responsible for I has not yet been identified and until this is accomplished it will remain difficult to determine the precise role of I
in the SAN.

Sodium channels

The heart expresses multiple sodium channel isoforms that can be categorized based on their sensitivity to tetrodotoxin (TTX). The
dominant cardiac sodium current (Iy;,) is carried by the TTX-resistant Nay1.5 channels. Nay1.5 is absent from the center of the SAN
(Lei etal., 2004, 2005, 2007), which is consistent with the low V. characteristic of central SAN myocytes. In contrast, Nay1.5, and
the resulting Iy, is detected in the larger cells of the peripheral SAN.

TTX-sensitive sodium channels (sometimes referred to as neuronal sodium channels) are also expressed in the heart, including
in the SAN. Specifically, Nay1.1 and Nay1.3 subunits have been detected in the mouse SAN (Maier et al., 2003) and Nay1.1,
Nay1.3, and Nay1.6 have been identified in the rat SAN (Huang et al., 2015). There is now evidence to suggest that TTX-sensitive
Na* channels play an important role in pacemaker activity in the SAN. For example, in Langendorff perfused mouse or rat hearts,
low concentrations of TTX result in a significant reduction in heart rate (Maier et al., 2003; Huang et al., 2015). Furthermore, in the
isolated rabbit SAN, application of nanomolar concentrations of TTX results in a reduction in spontaneous AP firing frequency (Lei
et al., 2004).

Detailed investigations have identified differential roles for TTX-sensitive and resistant sodium channels in cardiac pacemaking.
In optical mapping studies, nanomolar concentrations of TTX (which would only affect neuronal Na* channels) elicit an increase
in SAN cycle length, which is consistent with a slower heart rate, but no change in SAN conduction velocity. In contrast, application
of micromolar concentrations of TTX (which would block Nay1.5 as well as neuronal Na* channels) resulted in a greater increase in
cycle length as well as a reduction in conduction velocity across the SAN (Maier et al., 2003). Consistent with these observations,
Nay1.5-deficient mice have impaired SAN function resulting in a reduced heart rate attributed to slowed SAN conduction at the
peripheral regions of the SAN (Lei et al., 2005). Central SAN myocytes from Nay1.5 knockout mice showed no changes in AP
morphology or automaticity while larger peripheral SAN myocytes from Nay1.5 knockout mice had reduced spontaneous AP firing
and smaller AP peaks. Collectively, based on these findings, it has been suggested that TTX-sensitive Iy, contributes to pacemaker
function whereas, TTX-resistant Iy, does not contribute to automaticity in the central SAN, but can affect heart rate by modulating
conduction through the peripheral SAN and into the atrium (Lei et al., 2004, 2007).

Inward rectifier potassium channels

The inward rectifier K* current (I, ) is carried by K* channels made up of K;;2.1 and K;; 2.2 subunits. Iy, is importantly involved in
maintaining the resting membrane potential in working contractile myocytes; however, it is largely absent in SAN myocytes. The
lack of I, partly explains the more depolarized MDP in SAN myocytes relative to the hyperpolarized resting membrane potential in
contractile myocytes of the surrounding atrium (Mangoni and Nargeot, 2008). It should be noted that while not present in central
SAN myocytes, Ix; can be measured in peripheral SAN myocytes although at much lower densities than in the working
myocardium (Cho et al., 2003; Mangoni and Nargeot, 2001).

Delayed rectifier potassium channels

The ether-a-go-go family of proteins are responsible for the rapidly activating delayed rectifier potassium current (Ig,), which is
blocked by compounds such as E-4031 and dofetilide. The slow delayed rectifier K* current (Is) is encoded by KCNQ1 in the heart
and is sensitive to chromonol 293B. Both of these delayed rectifier currents have been described in the SAN, with some species
differences as noted later.

In mouse SAN myocytes, three splice variants for mERG1 (1a, 1a’, and 1b) are expressed (Clark et al., 2004). E-4031 application
results in depolarization of the MDP, a reduced AP amplitude and can completely prevent spontaneous AP firing in SAN myocytes
(Ono and Ito, 1995; Verheijck et al., 1995). Experiments performed in rabbit heart indicate that a gradient of Iy, is present across
the SAN such that the effect of E-4031 is greater in the center of the SAN compared with the periphery (Kodama et al., 1999).

Functionally, I, contributes to repolarization of the AP and determines the MDP in SAN myocytes (Clark et al., 2004; Verheijck
et al.,, 1995). Furthermore, kinetic analysis of I, indicates that these channels have an accelerated rate of deactivation, but Iy, may
not deactivate fully during the cardiac cycle so that a sustained current may be present throughout the DD. Inhibition of I, shifts
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the MDP and prolongs AP repolarization resulting in a slowing of spontaneous AP firing. This slowing effect is largely due to less
activation of I and Ca** channels.

While Iy, appears to the dominant delayed rectifier K* current in rabbit and rodent SAN, in the pig SAN Iy, has been found to be
responsible for repolarization of the SAN AP (Ono et al., 2000). In the pig, I appears to function in the same way as I,. Consistent
with this, block of Iy in pig SAN with chromanol 293B halts spontaneous AP firing in a similar fashion to E-4031 in rabbit SAN.

Transient outward potassium channels

The transient outward potassium current (I,,) plays a critical role in the working myocardium, but is less well understood in the
SAN. I, is characterized by fast activation and inactivation kinetics and can be subdivided into fast and slow components based on
differences in inactivation kinetics. The fast component of I, (I f) is encoded by Ky4.2 and Ky4.3, whereas the slow component
(Io,s) is encoded by Ky1.4 (Nerbonne and Kass, 2005).

I, density is significantly lower in rabbit SAN myocytes as compared to atrial myocytes (Uese et al., 1999). Within the SAN,
sensitivity to the I, channel blocker 4-aminopyradine (4-AP) was correlated with cell size such that larger SAN myocytes
(presumably from the peripheral SAN) exhibited larger responses to 4-AP compared with the smaller cells from the center of the
SAN (Lei et al., 2000). Consistent with these observations, 4-AP also results in AP prolongation in isolated SAN, but the effect is
more pronounced in larger SAN myocytes. Collectively, these findings demonstrate that I, is functional in the SAN, perhaps more
prominently in the SAN periphery, but more studies are needed to determine the precise role of I,, in regulating SAN function.

Two-pore potassium channels

Two-pore domain potassium channels (K,p) are a family of K* channels with emerging roles in the heart. Functionally, they
facilitate stabilization of the resting membrane potential and AP repolarization in cardiomyocytes (Wiedmann et al., 2016). Kyp
channels are not voltage dependent; rather they continually conduct currents throughout the various phases of the AP and are
hence referred to as background K" currents. Regulation of these channels is diverse, and includes factors such as temperature, pH,
lipids, and membrane stretch. Six subfamilies of K,p channels exist with the TWIK (two-pore domain weak rectifying potassium
channel), TREK (TWIK-related potassium channel), and TASK (TWIK-related acid-sensitive potassium channel) subfamilies being
expressed in the heart (Wiedmann et al., 2016; Gaborit et al., 2007).

Emerging evidence is suggestive of a role for K,p channels in SAN electrophysiology. For example, the stretch-sensitive TREK
channel is expressed in the mouse SAN and TREK-1 knockout mice have a reduced heart rate (Unudurthi et al., 2016). SAN
myocytes isolated from TREK-1-deficient animals exhibit an increased rate of DD and spontaneous AP firing rate as well as an
increase in APD at 50% repolarization. Furthermore, background K" current was significantly reduced in isolated SAN myocytes
from TREK-1 knockout mice. Thus, TREK-1 contributes to SAN automaticity by altering the rate of DD. Additional studies are
needed to further investigate the role of K,p channels in the SAN.

Calcium-activated potassium channels

Three types of calcium-activated K* channels have been categorized based on their single-channel conductance, including the big
conductance (BK), intermediate conductance (IK), and small conductance (SK) channels. These channels are coupled to L-type
Ca’* channels and, as their name suggests, are activated by an increase in intracellular calcium levels (Schmitt et al., 2014).
Relatively little is known about the role of these channels in the SAN, however emerging evidence is suggestive of a role for BK
channels in SAN excitability. Both pharmacological inhibition and genetic ablation of BK channels in isolated SAN myocytes leads
to a significant reduction in spontaneous AP firing with a corresponding increase in DD duration (Lai et al., 2014). A role for SK
channels has also been proposed in the SAN (Weisbrod et al., 2016).

TRP channels

TRP channels are a large and diverse family of ion channels divided into a number of subfamilies, including the short canonical
(TRPC) channels, the vanilloid receptor (TRPV) channels, the melastatin (TRPM) channels, the Ankyrin-repeat (TRPA) channels,
the polycystin (TRPP) channels, and the mucolipin (TRPML) channels (Clapham et al., 2001, 2003). Within each of these
subfamilies a number of channel isoforms exist. Several TRP channels have been implicated in SAN function including TRPM7,
TRMP4, and TRPC channels.

TRPM7 channels are permeable to divalent cations and generate an outwardly rectifying current. Furthermore, TRPM7 is
expressed in the SAN and TRPM7 currents are readily detectable in isolated SAN myocytes (Sah et al., 2013). Targeted global
knockout of TRPM7 as well as inducible SAN restricted deletion of TRPM7 in mice results in the generation of sinus pauses and
AVN block (Sah et al., 2013). Consistent with these observations, TRPM7 knockout mice display a reduction in spontaneous AP
frequency in association with a reduction in the DD slope in SAN myocytes. Interestingly the effects of TRPM7 ablation on DD
slope appear not to be related directly to the loss of TRPM7 current. Rather, TRPM7 knockout mice display a substantial reduction
in HCN channel expression and I current density, which appears to account for the reduction in DD slope. Consistent with this
hypothesis, a TRPM7 blocker, FTY720, did not affect spontaneous AP frequency in the SAN (Sah et al., 2013).

TRPM4 is a calcium-activated nonselective cation channel that is permeable to Na* and K*, but not Ca®* ions (Little and Mohler,
2013). TRMP4 is activated by intracellular calcium and phosphatidylinositol 4,5-bisphosphate, but inhibited by increases in
intracellular ATP. TRPM4 is expressed in the mouse SAN and a nonselective cation current with the properties of TRPM4 currents
has been measured in mouse SAN myocytes (Demion et al., 2007). Furthermore, pharmacological inhibition of TRPM4 with
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9-phenanthrol or genetic deletion of TRMP4 results in a significant reduction in beating rate within the right atria (Hof et al., 2013).
These effects have been attributed to a decrease in the rate of DD as assessed by microelectrode recordings in multicellular atrial
preparations. Interestingly, this effect was greater at lower beating rates, thereby suggesting TRPM4 functions in preventing
bradycardia. Importantly, the effects of TRPM4 deletion have yet to be studied in isolated SAN myocytes.

The mouse SAN has also been shown to express a number of TRPC channel transcripts, including TRPC1, 2, 3, 4, 6, and 7 and it
has been suggested that one or more of these TRPC channels may be involved in mediating Ca®* influx into SAN myocytes in a store
operated fashion (Ju et al., 2007). Consistent with this hypothesis, Gd>* and SKF-96355, two compounds known to antagonize
several TRPC channels, were shown to block Ca®* entry into SAN myocytes. Furthermore, SKF-96365 reduced pacemaker activity
(Ju et al., 2007). While these findings are very interesting, it must be noted that many of the pharmacological agents used in these
studies are not specific to TRPC channels and more work is needed to determine the precise role of TRPC channels in the SAN.

AVN lon Channels

Like SAN myocytes, myocytes isolated from the AVN are characterized by their ability to generate spontaneous APs with DDs.
Spontaneous AP frequency in AVN myocytes is lower than in SAN myocytes and less is known about ion channel function in the
AVN. At the molecular level, mRNA transcripts for HCN1, HCN4, Nay1.1, Cay1.3, Cay3.1, K;;3.4, and Cx45 have been detected in
the AVN and these transcripts are expressed at higher levels compared with the surrounding atrial myocardium (Greener et al.,
2011; Marionneau et al., 2005). On the other hand, Nay1.5, K;,;2.1, and Cx43 expression was lower in the AVN compared with the
atrium.

Consistent with their ability to intrinsically generate spontaneous APs, AVN cells display a prominent I, although I; density in
the AVN is ~50% smaller than in the SAN (Marger et al., 2011a,b; Mesirca et al., 2014). While I¢ is detected throughout the AVN,
regional differences exist such that Irin nodal or nodo-his cells is significantly higher compared with atrio-nodal cells (Munk et al.,
1996; Choisy et al., 2015).

Similar to the SAN, sodium channel expression is variable within the AVN. The compact AVN lacks Iy,, which is consistent with
the low V.« characteristic of the AVN (Efimov et al., 2004; Greener et al., 2011). On the other hand, Iy, is detected in all atrio-
nodal cells and approximately one-third of nodo-his cells in rabbit and Guinea-pig hearts (Munk et al., 1996; Yuill and Hancox,
2002). Furthermore, both TTX-resistant and TTX-sensitive Iy, have been recorded from isolated rabbit AVN myocytes, and
blockade of these channels using high levels of TTX can result in cessation of spontaneous AP firing (Marger et al., 2011b).

Multiple K* currents have been identified in AVN myocytes. I, density is variable within the AVN such that it is more commonly
detected in atrio-nodal cells compared with nodal cells (Marger et al., 2011b; Munk et al., 1996). In mouse AVN, the delayed
rectifier I, has been identified and found to be larger than in SAN myocytes (Marger et al., 2011b; Efimov et al., 2004). Iy, on the
other hand, was not detected in mouse AVN myocytes. Ix; has been recorded in AVN myocytes from mouse and rabbit AVN
myocytes (Choisy et al., 2015).

In AVN myocytes, both I, v and I, | contribute to automaticity and AVN function and transcripts for several Ca?* channels can
be detected including Cay1.2, Cayl.3, and Cay3.1 (Marger et al, 2011a,b; Marionneau et al.,, 2005). Ic,; in the AVN is
approximately half the magnitude of that in the SAN and application of L-type Ca?* channel blockers can completely suppress
spontaneous APs (Marger et al., 2011a; Greener etal., 2011). I, ;. density is approximately twice as large in rabbit AVN as compared
with mouse AVN (Choisy et al., 2015).

Consistent with an important role for Ca* channels in AVN function, Cay3.1 knockout mice are characterized by prolongation
of the P-R and P-Q intervals (indicators of conduction through the AVN) and a significant increase in AVN effective refractory
period (Mangoni et al., 2006b; Marger et al., 2011a). Furthermore, Cay1.3 knockout mice show a greater prolongation of the PR
interval than Cay3.1 knockout mice. This prolongation of the P-R interval is exacerbated in double knockouts lacking both Cav1.3
and Cav3.1. In isolated AVN myocytes, the generation of spontaneous APs was reduced by 70% in Cay3.1 knockout mice and
absent in Cav1.3 knockout animals.

SK2 knockout mice exhibit impaired SAN and AVN function, as indicated by a reduction in heart rate and prolongation of the
P-R interval (Zhang et al., 2008). AP firing frequency, the rate of DD, and V,,,,x were reduced, whereas APDs were prolonged in the
AVN of SK2 knockout mice. In contrast, overexpression of SK2 results in the opposite effects, including an increase in spontaneous
AP firing rate (Zhang et al., 2008). These effects were attributed to alterations in Ixc, densities in AVN myocytes. Combined, these
data indicate SK2 channels contribute to AVN function.

SR calcium release also affects AVN function. In isolated rabbit AVN cells, calcium transients correlate with AP generation
(Hancox et al., 1994). These Ca”* transients result in an increase in intracellular calcium at the periphery of the myocyte that
subsequently spreads throughout the cell. Pharmacological inhibition of SERCA pumps leads to a significant reduction in Ca**
transients and slowed the frequency of AP generation. Furthermore, interfering with SR calcium release by application of ryanodine
significantly decreases Ca”* transient amplitude in the AVN. This in turn slows the rate of spontaneous APs in AVN myocytes
(Ridley et al., 2008; Choisy et al., 2015). There is also data to suggest SR Ca”* release is coupled to Iycx because inhibition of NCX
prevents spontaneous Ca>* transients in AVN (Ridley et al., 2008). Combined, these data indicate both SR calcium release and Incx
facilitate the generation of spontaneous APs in the AVN, although compared to the SAN this is relatively poorly understood.
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Regulation by the Autonomic Nervous System

The SAN and AVN are both heavily innervated, allowing heart rate and conduction through the AVN to be altered by the release of
neurotransmitters (Pauza et al., 2013, 2014). The autonomic nervous system can be divided into two branches including the
sympathetic nervous system (SNS) and parasympathetic nervous system (PNS). Stimulation of the 3-ARs by SNS agonists results in
an increase in heart rate, whereas stimulation of muscarinic (M,) receptors by the PNS results in a decrease in heart rate. The
interplay between sympathovagal activity, combined with the intrinsic activity of the SAN, determines the rate of spontaneous AP
firing in SAN myocytes and hence the heart rate (Mangoni and Nargeot, 2008).

B-AR activation by catecholamines results in the activation of stimulatory G proteins (Gs) that cause an increase in cAMP
production by adenylyl cyclases and an increase in protein kinase A (PKA) activity. Increasing cAMP levels and PKA activity causes a
positive chronotropic effect and enhances conduction through the AVN following the activation of a number of targets including
ion channels and SR Ca”* handling.

In isolated SAN myocytes, B-AR activation leads to a rapid increase in the slope of the DD and a subsequent increase in
spontaneous AP firing frequency without affecting APD (Accili et al., 2002; Irisawa et al., 1993) (Fig. 4). I is modulated by cAMP
following the direct binding of cAMP to HCN channels (DiFrancesco and Tortora, 1991), which causes a positive shift in the I¢
activation curve and increases Ir during the DD. These effects of CAMP on I have been largely thought to occur independently of
PKA, although recent evidence suggests that HCN channels can also be phosphorylated by PKA (Liao et al., 2010).

L-type Ca®* currents contribute to the increase in spontaneous AP firing in the SAN following B-AR activation. Consistent with
this hypothesis, ISO can dose-dependently increase Ic,; in SAN myocytes with similar efficacy to Ir (Zaza et al., 1996). Further-
more, SAN myocytes isolated from Cay1.3 knockout mice show a blunted response to ISO, including impaired effects on DD slope
and AP firing frequency (Torrente et al., 2016). B-AR agonists are thought to modulate Ic,; (Cayl.2 and Cay1.3) in a PKA-
dependent fashion (Mangoni and Nargeot, 2008).

SR Ca?* release is also modulated by B-AR agonists and it has been suggested that this makes a major contribution to the effects
of the SNS on AP firing in the SAN (Lakatta et al., 2010). Enhancement of intracellular cAMP, PKA, and CaMKII activity following
B-AR activation leads to an increase in SR Ca®* spark amplitude, frequency, and SR filling rate (Vinogradova et al., 2006; Gao et al.,
2011). These effects have been attributed to increases in phosphorylation of ryanodine receptors and phospholamban. In SAN and
AVN myocytes, these effects result in increased SR calcium release, which enhances Iycx during the DD and increases AP firing
frequency (Vinogradova etal., 2002; Gao etal., 2011; Hancox et al., 1994). The relative importance of each of these mechanisms (I,
Ica1 SR Ca®* release) in mediating the positive chronotropic effects of SNS activation has not been resolved.

PNS (i.e., vagus nerve) stimulation causes a negative chronotropic effect and slowing of conduction in the SAN and AVN
following the release of acetylcholine (ACh), which activates M, receptors and inhibitory G proteins (Gy/,) (Irisawa et al., 1993).
The o; subunit of these G proteins inhibits AC activity and cAMP signaling. Reduced cAMP levels decrease the DD slope in SAN
myocytes and these effects can involve reductions in Iy, I, , and SR Ca** release (Mangoni and Nargeot, 2008; Lakatta et al., 2010)
(Fig. 4). In addition to these effects, the By subunits of the Gy, proteins can directly activate GIRK (K3 ) channels that mediate
Ixach currents (Mangoni and Nargeot, 2008). Activation of Ixaci, hyperpolarizes the SAN myocyte, which also slows spontaneous
AP firing. A significant amount of investigation has gone into trying to determine which ionic mechanism(s) are particularly
important for the negative chronotropic effects of PNS agonists. For example, Ki;4 or Gg, knockout mice have significant
reductions in PNS responsiveness, indicating that Ixac, makes a major contribution to the response (Wickman et al., 1998;
Gehrmann et al., 2002; Mesirca et al., 2016a). On the other hand, biophysical studies have suggested that Iy is more sensitive to
acetylcholine than Ixacp or I, (DiFrancesco etal., 1989; Zaza et al., 1996). From these studies it was concluded that I contributes
more importantly to changing pacemaker activity in the SAN. Still other studies have shown that PNS agonists suppress local Ca**
releases from the SR during the DD and this is a major determinant of the slowing in pacemaker activity, including in conditions
where Ixach would not be activated (Lyashkov et al., 2009; van Borren et al., 2010). Additional studies will be required to resolve
these issues.
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Fig. 4 Effects of the B-adrenergic receptor agonist ISO and the muscarinic agonist acetylcholine (ACh) on spontaneous action potential cycle length
and diastolic depolarization slope in the sinoatrial node. Note that these autonomic nervous system agonists modulate action potential cycle length in
association with changes in the slope of the diastolic depolarization. Reproduced with permission from Accili, E.A., Proenza, C., Baruscotti, M. and
Difrancesco, D. (2002). From funny current to HCN channels: 20 years of excitation. News in Physiological Sciences 17, 32-37.
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Hormonal Regulation of the SAN by Natriuretic Peptides

Natriuretic peptides (NPs) are a family of hormones with a number of potent effects in the cardiovascular system (Potter et al.,
2006; Kuhn, 2004). Several members of the NP family have been identified including atrial NP (ANP), B-type NP (BNP), and
C-type NP (CNP). Each of these peptides is expressed in the heart and is present in both cardiomyocytes and cardiac fibroblasts
(Moghtadaei et al., 2016b).

Three NP receptors, called NPR-A, NPR-B, and NPR-C, mediate the effects of NPs (Potter et al., 2006). NPR-A (which binds ANP
and BNP) and NPR-C (which is selectively activated by CNP) are guanylyl cyclase (GC) linked receptors that enhance cGMP
signaling (Lucas et al., 2000) while NPR-C (which binds all NPs with similar affinity) is coupled to inhibitory G proteins that
inhibit AC signaling (Rose and Giles, 2008; Anand-Srivastava, 2005).

NPs can potently regulate heart rate through effects on pacemaker myocytes in the SAN (Springer et al., 2012; Azer et al., 2012;
Rose et al., 2007). In isolated SAN myocytes, BNP and CNP each increase spontaneous AP firing frequency in association with
increases in the DD slope and APD, but without differences in MDP. These effects on SAN AP firing occurred in association with
increases in HR in intact hearts. Voltage clamp studies demonstrate that these changes in AP firing properties were the result of
increases in Ifand total I, in the presence of BNP or CNP along with shifts in the voltage dependence of channel activation (V7,»
(acty)- To determine the mechanism for these electrophysiological effects, NPR-C knockout (N PR-C™/7) mice and pharmacological
approaches have been used. The stimulatory effects of BNP and CNP on spontaneous AP firing, Irand Ic,1 in NPR-C ™/~ mice are
indistinguishable from wild-type mice in basal conditions. In contrast, the effects of BNP and CNP were occluded by the PDE3
inhibitor milrinone and the effects of BNP were antagonized following NPR-A blockade. Thus, these experiments illustrate that
BNP and CNP can potently increase HR and spontaneous AP firing in SAN myocytes by activating the GC-linked NPR-A and NPR-B
receptors and inhibiting PDE3 activity (Springer et al., 2012). Consistent with these findings, ANP has also been shown to elicit a
cGMP-dependent increase in Ir in human atrial myocytes (Lonardo et al., 2004).

Although NPR-C does not affect SAN function in basal conditions, it does contribute importantly in the presence of
B-adrenergic receptor (B-AR) activation (Azer et al., 2012; Springer et al., 2012). Specifically, in the presence of ISO, cANF dose-
dependently decreases HR and slows spontaneous AP firing by decreasing the DD slope in SAN myocytes (Azer et al., 2012). These
effects of cCANF are completely absent in NPR-C™/~ mice confirming they are mediated by the NPR-C receptor. To explore the
contributions of different NPRs to these responses, we compared the effects of BNP and CNP (which can activate NPR-A/B as well
as NPR-C) to cANF (which only activates NPR-C). These measurements show that BNP and CNP increase HR and AP firing in
submaximal (10 nM) doses of ISO, but these effects are smaller than those observed in basal conditions because, in the presence of
ISO, BNP, and CNP activate NPR-A/B (which mediate an increase in HR and AP firing) as well as NPR-C (which mediates a decrease
in HR and AP firing). Interestingly, in the presence of maximum doses of ISO (1 pM) BNP and CNP elicit reductions in HR and
cause slowing of spontaneous AP firing in SAN myocytes due to a greater contribution from NPR-C. In agreement with this
observation, CNP and cANF can also decrease I, ; in SAN myocytes in the presence of maximum doses of ISO (Rose et al., 2004).
These changes in ion channel function and AP firing properties correlate with changes in SAN activation and conduction patterns
that are also differentially modulated by the GC-linked NPRs and NPR-C (Azer et al., 2014). Collectively, these studies demonstrate
that NPs can modulate SAN function via the NPR-A/B receptors (stimulatory) and NPR-C (inhibitory) and that these receptors
elicit opposing effects. Because of this, NPs can increase HR and SAN function in some conditions, but decrease HR in others and
this is dependent on the extent of B-AR activation and the relative contribution of each NPR in different physiological conditions
(Azeretal, 2012, 2014; Moghtadaei et al., 2016b). In addition to these effects of NPs on SAN myocyte function, NPs also regulate
collagen deposition, and hence electrical conduction, in the SAN. Consistent with this, genetic loss of NPR-C results in SAN
dysfunction in association with enhanced fibrosis and slowed conduction in the SAN (Egom et al., 2015).

Mechanical Effects on the SAN

Mechanical effects on SAN activity (Quinn and Kohl, 2012) were first recognized in 1915 by Francis Bainbridge, who found that
intravenous fluid injections in anesthetized dogs resulted in right atrial distension and increased beating rate (Bainbridge, 1915)
(similar effects have been observed since in a wide variety of vertebrates (Pathak, 1973), including human (Donald and Shepherd,
1978)). Stretch-induced increases in beating rate also occur in the isolated (decentralized) heart (Blinks, 1956), SAN tissue (Blinks,
1956; Deck, 1964), and SAN cells (Craelius et al., 1988; Iribe et al., 2007), and are insensitive to ablation of intracardiac neurons
(Wilson and Bolter, 2002), block of neuronal Na* channels (Chiba, 1977; Wilson and Bolter, 2002), and adrenergic and
cholinergic blockade (Blinks, 1956; Brooks et al., 1966; Chiba, 1977; Wilson and Bolter, 2002), indicating that nonneuronal,
intracardiac mechanisms must be involved.

Microelectrode recordings in cat and rabbit right atrial tissue have demonstrated that stretch increases SAN MDP, reduces
maximum systolic membrane potential, and increases DD rate (Deck, 1964). Patch-clamp recordings in axially stretched isolated
rabbit SAN cells, combined with computational modeling, have established that this can be explained by a mechanosensitive
whole-cell current with a reversal potential of ~10 mV (Cooper et al., 2000). This current is presumably carried by cation
nonselective stretch-activated channels, which are rapidly activating, with a reversal potential between 0 and —20 mV in cardiac
cells (Craelius et al., 1988; Guharay and Sachs, 1984), and whose block causes a reversible reduction of stretch-induced changes in
beating rate (Cooper and Kohl, 2005). In fact, even if located outside of SAN cells in electrically coupled nonmyocytes (Quinn
et al., 2016), cation nonselective stretch-activated channels can account for stretch effects, as they are found in fibroblasts
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(Stockbridge and French, 1988), which are coupled to SAN cells in rabbit (Camelliti et al., 2004), and are depolarized by stretch
(Kohl and Noble, 1996; Kohl et al., 1994).

Stretch may also affect fundamental components of SAN function. When expressed in oocytes, current amplitude (Calloe et al.,
2005) and activation and deactivation rate (Lin et al., 2007) of HCN channels are increased with mechanical stimulation. Similarly,
Ca®* (Cay1.2) (Calabrese et al., 2002; Lyford et al., 2002) Na* (Nay1.5 and Nay1.6), and K* (Kv1, Kv3, Kv7, and KvCa) (Morris,
2011) channels are mechanically modulated in various expression systems. Axial stretch of guinea-pig (Iribe and Kohl, 2008) or rat
(Gamble etal., 1992; Prosser et al., 2011, 2013; Iribe et al., 2009) ventricular myocytes, on the other hand, causes an acute increase
in Ca®* sparks (spontaneous Ca®* release from the SR). This effect apparently occurs via augmented ryanodine receptor open
probability (Iribe et al., 2009), which may involve local activation by mechanically induced mitochondrial Ca®* release through
the mitochondrial NCX (Belmonte and Morad, 2008), a channel whose current alters beating rate in isolated rabbit SAN cells by
affecting Ca®* spark frequency (Yaniv et al., 2012). Thus, if any of these effects occurs also in SAN cells, they may contribute to
stretch-induced changes in beating rate.

In the whole heart, stretch of SAN tissue will vary regionally and with time. The SAN is structurally heterogeneous, resulting
in regional differences in stiffness. Changes in beating rate during externally applied force correlate best with maximum tissue
deformation, which occurs at the periphery of the SAN, a region more distensible than the central node (Kamiyama et al.,
1984). This difference could be important for transmission of electrical activity from the SAN to atrium (Garny et al., 2003), as
the SAN periphery is where (the possibly mechanosensitive) HCN channels are thought to play the largest role in SAN activity
(due to the more negative diastolic potential in that region) (Kreitner, 1985; Nikmaram et al., 1997). At the same time, SAN
stretch will be greatest at the end of atrial filling, which is when SAN cells are moving toward AP initiation. In this way,
mechanical priming of SAN cells could adjust function on a beat-by-beat basis to diastolic load, contributing to the matching
of cardiac output (beating rate x stroke volume) to venous return (and may also play a role in respiratory sinus arrhythmia, as
it continues to exist in the decentralized, transplanted heart (Bernardi et al., 1989)). Moreover, it appears that physiological
loading may be essential to SAN automaticity, as slack tissue often shows no or irregular rhythm, while moderate stretch can
restore normal activity (Brooks et al., 1966) (although excessive stretch can induce arrhythmias (Brooks et al., 1966; Hoffman
and Cranefield, 1960), so pathophysiological loading during atrial overload may unbalance pacemaker mechanisms). This
apparent requirement for a minimum mechanical stimulus is also apparent during ontogenetic initiation of the first heartbeat,
as fluid pressure build-up in the quiescent cardiac tube appears to be required for the initiation of its spontaneous activity
(Rajala et al., 1977).

There is also evidence supporting an interaction between mechanical and autonomic beating rate modulation. In intact
rabbit (Bolter and Wilson, 1999; Bolter, 1994), and isolated atria of rabbit (Bolter, 1996), guinea-pig (Wilson and Bolter,
2001), and rat (Barrett et al., 1998), an increase in right atrial pressure induces both beating rate acceleration and a significant
reduction in the percentage response to vagal stimulation. Vice versa, when beating rate is reduced by vagal stimulation the
stretch-induced beating rate response is augmented, an interaction that may be mediated by Ixach, as it is reduced with
increased right atrial pressure (Han et al., 2010). In this way, parasympathetic control of beating rate may be continuously
modified by atrial loading, further contributing to the stretch-induced adjustment of BR to fluctuations in venous return, and
helping prevent excessive slowing and diastolic distension, while maintaining cardiac output and adequate circulation (Brooks
and Lange, 1977).

Conclusions

Since the discovery of the SAN in 1907 and the AVN in 1906 substantial progress has been made in our understanding of the
cellular and molecular mechanisms for spontaneous activity in these specialized pacemaker regions of the heart. These discoveries
have been instrumental in facilitating a comprehensive understanding of cardiac electrical conduction. While progress has been
considerable, there is still much to be learned, as noted throughout the preceding text. Continuing to unravel the precise
determinants of cellular function in the SAN and AVN, and how each is regulated, is of paramount importance because dysfunction
in each of these regions can contribute in important ways to cardiovascular disease.

Current treatments for SAN and AVN disease often involve implantation of artificial pacemakers which, while effective, come
with a number of attendant risks and limitations. Because of this, and in parallel with the continued generation of novel insight
into the mechanisms for automaticity, the field of biological pacing, which seeks to engineer zones of focal spontaneous electrical
activity in regions of myocardium that are normally quiescent, has blossomed (Cho, 2015; Rosen et al., 2011). Such approaches, if
successful, would free the patient from all hardware associated with traditional artificial pacemakers. Given the challenges
associated with correcting SAN and/or AVN disease, motivation should remain high to continue to improve our understanding
of the basis for automaticity in the heart with the hopes that this knowledge will inform the next generation of therapeutics
targetting these specialized regions of the heart.
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