Does the placenta and appetite hormone, GDF15, cause NVP and HG?

Marlena S. Fejzo, Ph.D.

No conflicts of interest to report

Why use a genetic approach?

- Decades of research has failed to find a cause.
- Commonly assumed to be hCG and/or psychological with little scientific evidence.
- Heritability estimate for presence of NVP is 73% based on twin studies.
- > 50% of variation in duration and severity of NVP is heritable.
- Familial aggregation of HG
- 17-fold increased risk if sister has it
- 27-fold risk to daughter if mom has it with both daughters
- GWAS approach to etiology is unbiased with respect to which genes are involved.

Over 15 million variants scanned and NO evidence to support hCG gene, nor LHCGR

SCAN 1

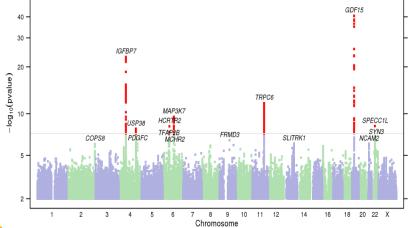
• HG 1,306

SCAN 2

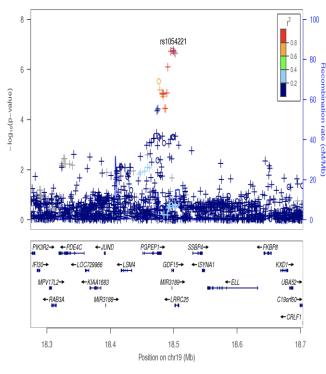
None 14,988

Slight 14,292

Severe 5,445


Moderate 17,786

Very Severe 1,220


• No NVP 15,756

1. GDF15 P=6.8x10⁻¹⁵ 14 12 10 10 10 11 12 11 12 13 4 5 6 7 8 9 10 11 12 14 16 18 20 22 X

2. GFRAL P=6.2X10⁻⁹, GDF15 P=2.4x10⁻⁴¹

3. Conditional analysis identifies another GDF15 SNP

Fejzo et al., Nature Communications, 2018

Replication results

A.GDF15-rs1	0000045						
A.GDF 15-15 II	N	GG	AG	AA	P-value	OR	95% CI
HG	789	540	229	20	7 -value	OK	33 /0 01
CONTROL	581	330	210	41	2.80E-07	1.63	1.35-1.98
HG TPN	103	68	33	2	2.002 07	1.00	1.00 1.00
NO NVP	136	75	51	10	0.04	1.61	1.01-2.60
B. GDF15 -rs	1054221						
D. 02. 10 10	N	TT	СТ	СС	P-value	OR	95% CI
HG	893	712	173	8			
CONTROL	635	465	155	15	1.00E-03	1.44	1.16 to 1.79
HG TPN	112	89	23	0			
NO NVP	136	105	27	4	0.37	1.29	0.74 to 2.26
C. GFRAL -rs	7761177						
	N	СС	СТ	TT	P-value	OR	95% CI
HG	759	250	366	143			
CONTROL	593	143	310	140	4.00x10 ⁻⁰⁴	1.31	1.13 to 1.53
HG TPN	110	25	49	36			
NO NVP	140	34	71	35	0.3	1.2	0.85 to 1.72
D. IGFBP7-rs	4865234						
	N	AA	AG	GG	P-value	OR	95% CI
HG	778	404	312	62			
CONTROL	603	259	273	71	3.50E-04	1.35	1.14-1.59
HG TPN	110	64	38	8			
NO NVP	143	57	66	20	2.81E-03	1.81	1.21-2.73
E. PGR-rs794	8518						
	N	TT	СТ	СС	P-value	OR	95% CI
HG	773	398	333	42			
CONTROL	606	402	178	26	7.82E-07	0.63	0.53-0.76
							+

HG TPN

NO NVP

109

139

55

98

2

4

9.90E-03

0.24

0.35-0.88

52

37

GENE/GWAS OVERLAP (GWAS CATALOG-4220 PUBS)

GDF15 -GDF15 protein levels, periodontitis, systemic lupus erythematosus, taste preference*

GFRAL- glomerular filtration rate, blood urea nitrogen levels, insomnia/morning person, body mass index, high IL-1beta levels in gingival crevicular fluid/periodontal inflammation, blood protein levels, heel bone mineral density/osteoporosis, HIV-1 infection

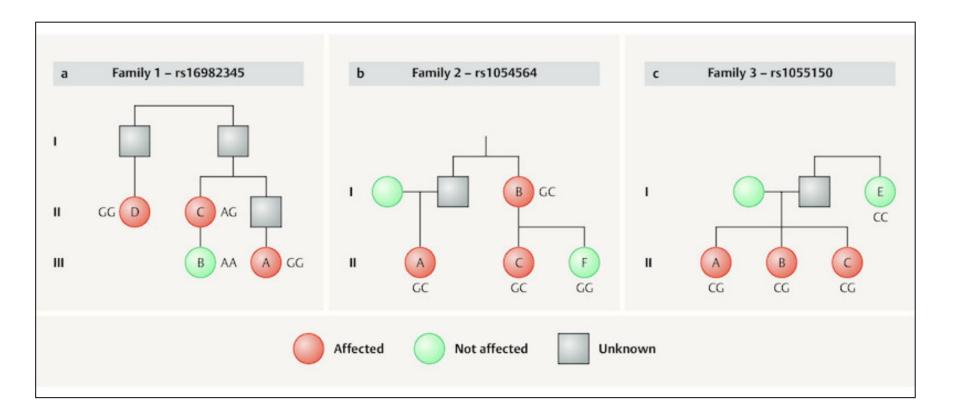
*from 23andMe blog

No evidence for association between HG-risk genes and emotional disorders in GWAS Catalog:

DISORDER	GWAS STUDIES	ASSOCIATIONS	GDF15, GFRAL, IGFBP7, PGR
Neurotic Disorder	16	53	0
Neurotic Measurement	15	1647	0
Neuroticism Item-level	13	743	0
Anxiety Disorder	37	176	0
Unipolar Depression	99	1307	0

8-fold increased odds of NO recurrence for GDF15 rs16982345 A/A

- 84% RECUR (HG with iv P1 and >5% weight loss in P2)
- 16% NO RECUR (HG with iv P1 and ≤5% weight loss in P2)


rs16982345	Recur	No recur
	N=119	N=25
A/A	2 (1.7 %)	3 (12%)
A/G	34 (28.6%)	4 (16%)
G/G	83 (69.7%)	18 (72%)

AA: (P=0.03, OR=7.98, 95%CI=1.26-50.55)

GDF15 variants associated with altered blood levels segregate with HG in 3/5 families

*Gene combinations with lowest/highest risk of HG (TPN)

1. Comparing 136 women with NO NVP to 102 women with TPN For either homozygous GDF15 rs16982345-AA or rs1054221-TT

NO NVP	HG TPN	P-value	OR	CI
14 (10%)	1 (1%)	0.02	11.59	1.50 to 89.66

~12X more likely to have no NVP than HG(TPN)

2. Comparing 134 women with NO NVP to 106 women with TPN (GDF15-rs16982345-GG, IGFBP7-AA, PGR-CT)

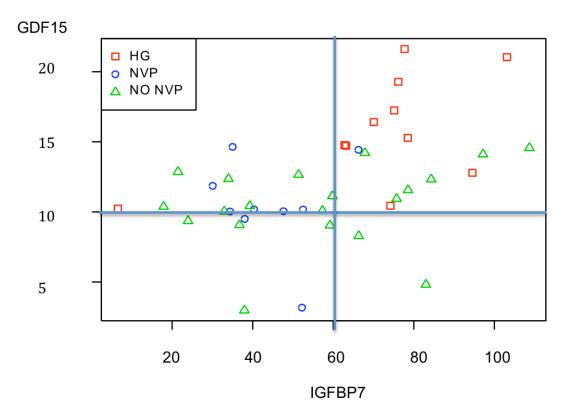
NO NVP	HG TPN	P-value	OR	CI
7 (5.2%)	22 (20.8%)	0.0006	4.75	1.94 to 11.62

~5X more likely to have HG(TPN) than no NVP

3. Comparing 132 women with NO NVP to 106 women with TPN (GDF15-rs16982345-GG, GFRAL-TT, PGR-CT)

NO NVP	HG TPN	P-value	OR	CI
4 (3.0%)	15 (14.2%)	0.0041	5.27	1.70 to 16.41

~5X more likely to have HG(TPN) than no NVP

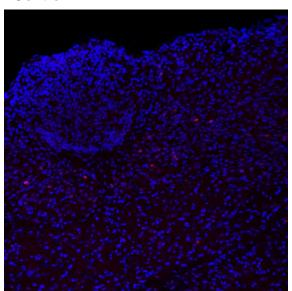


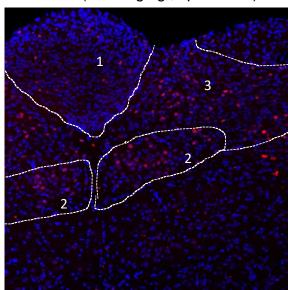
10

^{*}must be verified in other cohorts

Can GDF15 and IGFBP7 blood levels be used to predict/diagnose HG?

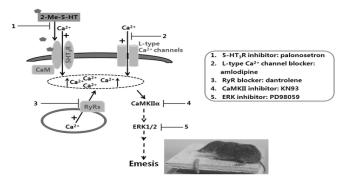
GDF15 ng/ml vs IGFBP7 ng/ml scatterplot. Dividing serum values into high (GDF15>10 ng/ml and IGFBP7>60 ng/ml) vs low (GDF15< 10 ng/ml and IGFBP7< 60 ng/ml respectively), p-value is 0.000199, thus there is a significant difference for HG vs. no HG in the categories high and low serum values.





rGDF15 ACTIVATES VOMITING CENTER, BUT NO INCREASE IN VOMITING

Control



rGDF15 (0.08 mg/kg., i.p. 90 min)

C-fos (red) Dapi (blue)

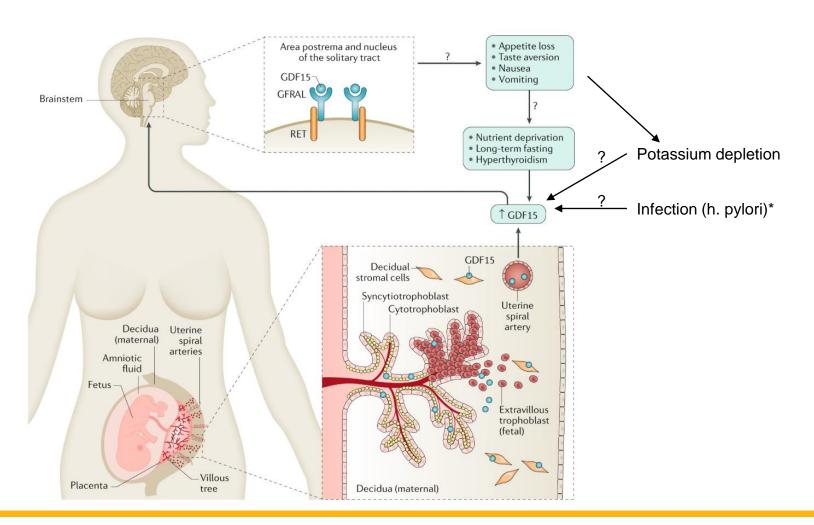
- 1. Area Postrema
- 2. DMNV
- 3. NTS

The vomiting **center** is comprised of two major groups of **brain**stem nuclei known as the nucleus tractus solitarius (NTS) and the dorsal motor nucleus of the vagus (DMNV).

Zhong et al, 2014

DU145 Prostate Cancer Cells transfected with:

A. empty vector B. overexpressing GDF15 14 d post xenograft C. B+ 1 mg GDF15-mAb i.p. 9 d earlier


Nature Medicine, 2007: Tumor Induced anorexia and weight loss mediated by GDF15 And rescued by anti-GDF15!!!

Possible model for the role of GDF15 in HG pregnancies Nature Reviews Disease Primers volume 5, Article number: 62 (2019), *added after publication

Summary

- 1. 2 unlinked variants in GDF15 and 1 in GFRAL are associated with HG
- 2. No variants in hCG nor LHCGR are associated with HG
- 3. GDF15 associated with levels, periodontitis, lupus, taste preference GWASes
- 4. GDF15 does NOT show up in neuroticism/anxiety/depression GWASes
- 5. GDF15 is associated with recurrence risk defined by >5% weight loss
- 6. GDF15 variants segregate with disease in HG families
- 7. We are starting to tease out how genes and combinations may be used in the future to predict risk, but these studies must be replicated.
- 8. Preliminary evidence suggests GDF15 hormone levels may be increased in HG pregnancies, but more work must be done in larger cohorts at different GA
- 8. rGDF15 activates the brainstem, but does not increase vomiting in the least shrew
- 9. GDF15/GFRAL therapeutics developed for cachexia are promising.
- 10. Other factors that increase GDF15 levels in addition to genetics may explain HG.

Conclusion: there is a larger body of evidence to support a role for GDF15 in HG than for any other theory at this time.

What is next?

- Are the findings replicated in other populations?
- What else contributes to HG (ie rare variants, fetal DNA)?
- Can serum levels of GDF15, IGFBP7 be used to predict, diagnose, and eventually treat HG?
- Can a GDF15/GFRAL inhibitor work as a drug for HG?

Acknowledgements

- Drs. P Mullin, P Fasching, W Zhong, DJ Slamon
- Drs. F Schoenberg-Paik, N Mancuso
- 23andMe
- Kimber MacGibbon RN, HER Foundation
- Paul and Janis Plotkin Family Foundation
- Participants in UCLA/USC HG Research
- Students R Tian and D Arzy
- NVP/HG, GDF15, GWAS Catalog researchers

