

# Puck® P3™Sheet #1 barrett.com

### PUCK® P3™ FEATURES

- High-speed CANopen communication with software-controllable termination resistor
- 4 or (optional) 5-wire bus topology: 2-wire CAN, servomotor power 12-50 vdc, Ground (Logic power optional)
- Up to 31 controllers/bus
- Built-in magnetic encoder
- 5- and 3.3-vdc auxiliary outputs
- Integrated current sensor
- Space-vector commutation
- 32-bit floating-point processor
- Low torque ripple
- Quiet, fanless operation
- Internal temperature sensors
- In-system field-upgradeable firmware
- Digital Hall-effect feedback
- Adjustable PWM frequency
- Servomotor-temperature sensor hook
- Dual analog inputs (16-bit)
- Up to 4 digital I/O
- External encoder capable: SPI or quadrature
- SPI master peripheral support

### **SPECIFICATIONS**

Input voltage: Min 12V, Max 50 vdc Drive current: Continuous 1.5A, Peak 3A

Output power: Continuous 70W,

Peak 150W

Dimensions: Width 18mm, Height 7mm

Mass: Total 4q

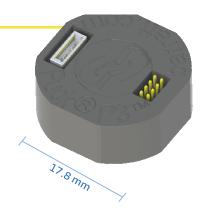
Absolute encoder: Rotary 4,096 cts/rev

Bus length: Max 20m

Operating temperature: Min 0°C,

Max 100°C

#### **PATENTS**


US Patent# 10,148,155 US Patent# 7,893,644 US Patent# 7,854,631 US Patent# 7,511,443

with international equivalents and more patents pending.

# Puck® P3™

# So many features, so little size...

Barrett's ultra-miniature, high-performance brushless servomotor controller makes complex multi-actuator designs simple! It is a truly sophisticated and revolutionary servomotor controller which is easily integrated into any application requiring high-performance, maximum power efficiency, low mass, and compact size.





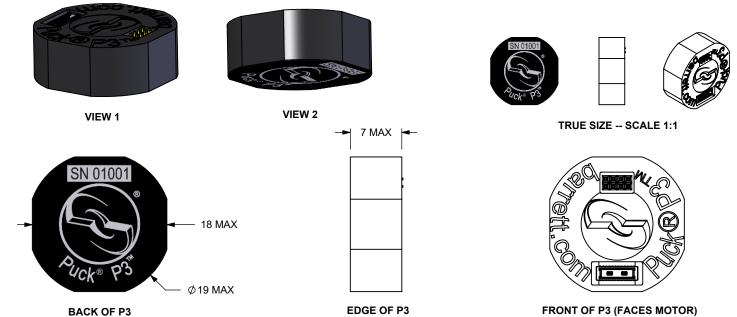


### **BIG FUNCTIONALITY, COMPACT FORM**

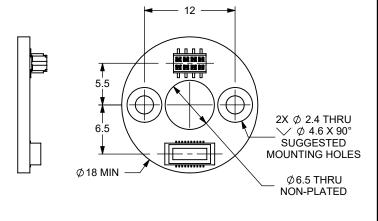
The Puck® P3™ is a networkable high-performance brushless single-axis motion controller and amplifier with an integrated encoder and precision current sensor. It controls the torque output of brushless servomotors with state-of-the-art space-vector commutation and low torque ripple. You can also command velocity, position, or give the controller a target position to reach using its built-in trapezoidal velocity controller.

P3™ (Puck®, version 3) is the product of two decades of design, development, testing, and refinement of the servomotor controllers used in our own robots.

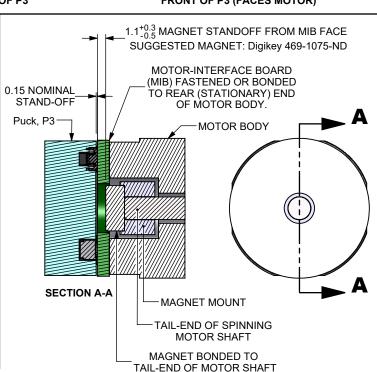
With a volume of only 1.9 cm³ and a total weight of only 4 grams, the Puck® P3™ is designed to replace a standard motion controller and amplifier while taking up less space than a typical encoder. When mounted directly onto the servomotor body, the close proximity of the controller eliminates encoder-to-controller wiring issues encountered with standard motion-control setups such as wire routing, connectors, signal degradation, EMI, I<sup>2</sup>R power losses, and cable bulk.


Up to 31 P3s may be networked together on a single, easy to manage, 4 or (optionally) 5-wire bus. Two wires are used for robust, high-speed industrystandard CANopen communications. One wire supplies servomotor power, one wire is a ground, and an optional wire supplies a separate logic power.

The P3 controls a wide range of servomotor voltages from 16 to 50 vdc without any reconfiguration. It is designed to command a smooth, continuous torque, even when the input voltage is unstable.




# Barrett Puck® P3™ Motor-Interface Board and Magnet-Mounting Specifications


This page contains Motor-Interface Board (MIB) specifications for Barrett Technology's Puck P3 module. The MIB is designed by the customer using the guidelines shown below. A  $\emptyset$  6 x 2.5mm magnet with a radial N-S field attached to the rotating shaft of the motor at the distance specified. Contact Barrett for design assistance.

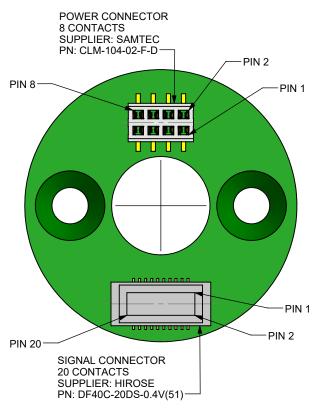


### MINIMUM RECOMMENDED SIZE OF MOTOR-INTERFACE BOARD (MIB)



SEE SHEET 3 FOR PINOUTS
FOR ELECTRICAL I/O, ADDITIONAL BOARD SPACE MAY BE NECESSARY




All dimensions in mm Scale: 2x

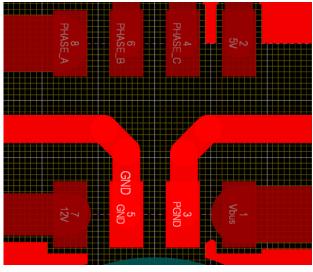
## barrett.com

# **Motor-Interface Board Guidelines**

This page contains Motor-Interface Board (MIB) specifications for Barrett Technology's Puck P3 module. The MIB is designed by using the guidelines shown below. Contact Barrett for design assistance. **Bold** contact numbers are mandatory connections

| Power Connector on Interface Board |           |              |                                             |  |  |
|------------------------------------|-----------|--------------|---------------------------------------------|--|--|
| Pin No.                            | Name      | Туре         | Description                                 |  |  |
| 1                                  | MotorV+   | Power        | Motor power input                           |  |  |
| 2                                  | 5V_Out    | Power        | 5V output from internal switching regulator |  |  |
| 3                                  | MotorGnd  | Power        | Motor power return                          |  |  |
| 4                                  | PhaseC    | Motor Driver | Output to motor phase C                     |  |  |
| 5                                  | Logic_GND | Power        | Digital ground                              |  |  |
| 6                                  | PhaseB    | Motor Driver | Output to motor phase B                     |  |  |
| 7                                  | Logic_12V | Power        | 12V digital power input                     |  |  |
| 8                                  | PhaseA    | Motor Driver | Output to motor phase A                     |  |  |




# MOTOR-INTERFACE BOARD (MIB) ELECTRICAL CONNECTIONS

## PCB Layout Note:

P3 pins interfacing with the power connector will create contact with traces routed directly under them. To avoid unintentional shorts, enforce keep-out areas underneath where these pins land, and route traces from pins 3 and 5 out from under the connector through its direct center with a trace width no greater than 0.5mm, as shown to the right.

| Pin No. | Name                | Туре          | Description                                               |
|---------|---------------------|---------------|-----------------------------------------------------------|
| 1       | CAN_Lo              | Digital I/O   | Low side of differential CAN                              |
| 2       | CAN_Hi              | Digital I/O   | High side of differential CAN                             |
| 3       | ~Reset              | Digital Input | Active-low reset Factory-use only                         |
| 4       | I2C_Data            | Digital I/O   | I2C Data                                                  |
| 5       | SPI_MOSI            | Digital I/O   | SPI MOSI                                                  |
| 6       | I2C_Clock           | Digital I/O   | I2C Clock                                                 |
| 7       | SPI_MISO            | Digital I/O   | SPI MISO                                                  |
| 8       | ADC1<br>DAC1_OUT    | Analog I/O    | 12-bit 3.3V analog input 1<br>12-bit 3.3V analog output 1 |
| 9       | SPI_Clock           | Digital I/O   | SPI Clock                                                 |
| 10      | Quadldx<br>JTAG_TMS | Digital I/O   | Quadradure encoder IDX<br>JTAG mode select                |
| 11      | Logic_GND           | Power         | Digital ground                                            |
| 12      | 3.3V_Out            | Power         | 3.3V output from internal LDO                             |
| 13      | QuadA<br>DI/O3      | Digital I/O   | Quadrature encoder input A I/O pin 3                      |
| 14      | SPI_CS<br>DI/O2     | Digital I/O   | SPI chip select line I/O pin 2                            |
| 15      | HallB<br>JTAG_TDI   | Digital I/O   | Hall input B<br>JTAG data input line                      |
| 16      | DI/O1               | Digital I/O   | I/O pin 1                                                 |
| 17      | HallC<br>JTAG_TDO   | Digital I/O   | Hall input C<br>JTAG data out                             |
| 18      | QuadB<br>DI/O4      | Digital I/O   | Quadrature encoder input B I/O pin 4                      |
| 19      | HallA<br>JTAG_TCLK  | Digital I/O   | Hall input A<br>JTAG Clock                                |
| 20      | ADC2                | Analog Input  | 12-bit 3.3V analog input 2                                |
|         |                     |               |                                                           |

Signal Connector on Interface Board

