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Introduction

It is a commonly held belief  that time is money. True as 
that may be, when it comes to autonomous vehicles, a 
more apt aphorism may read “time is safety.”

In emergent situations, the reaction speed of  an autono-
mous vehicle determines whether a dangerous situation 
can be resolved safely.  In normal operations, the amount 
of  time a vehicle’s software spends accomplishing its bare 
minimum objectives determines how much time remains 
to be spent ensuring the situation does not become a 
problem.

In this paper, we examine the possible effect that differ-
ences in the time budget consumption of  cross-compo-
nent message serialization–a core vehicular software 
function–have on overall system safety.

Background

Message encoding and decoding is essential every time a 
vehicular system component needs to communicate with 
another component. If  we broadly divide an autonomous 
system’s capabilities into the Sense-Plan-Act paradigm 
[1], it’s clear that there’s communication between each 
step. Sensors encode messages that are transmitting to 
the autonomous planning layer, which must decode that 
data, make decisions, and pass along command messag-
es to the actuating components. Depending on the sys-
tem’s architecture, these phases may be implemented by 
multiple collaborating subcomponents rather than single 
monolithic compute units, requiring further coordination 
by some shared messaging approach. Even when hard-
ware architecture centralizes computational work onto 
high-specification physical devices, it is still common for 
co-located processes to communicate through message 
passing.

The software industry has given rise to multiple message 
serialization technologies that are relevant to the auton-
omous vehicle use case. Compared to ad-hoc solutions, 

best practice message serialization approaches define 
standardized representations to improve the assurance of  
consistency across components. High-performance serial-
ization formats of  note include Apache Thrift [2], Cap’n 
Proto [3], Colfer [4], FlatBuffers [5], Lightweight Com-
munications and Marshalling (LCM) [6], Protocol Buffers 
[7], Simple Binary Encoding [8], and the Object Man-
agement Group’s Common Data Representation (CDR) 
[9]. Some formats are strongly linked to broader commu-
nications frameworks for embedded environments. For 
example, CDR is the default message format for the Data 
Distribution Service (DDS) real-time middleware system, 
and was recently adopted into a similar role by the Robot 
Operating System 2 (ROS2) [10]. Others, such as Proto-
col Buffers, Cap’n Proto, and Thrift were designed with 
data center remote procedure calls in mind [2], but never-
theless possess embedded-system compatible implemen-
tations and competitive performance.

Significance Argument from End-to-End 
Emergency Response

When a sudden development in the external environment 
causes an emergency situation, an autonomous vehicle’s 
end-to-end reaction time is critical in determining the 
available set of  safe responses and the success of  their 
execution. A simple example is the need to rapidly decel-
erate from highway speeds to avoid a dangerous obstacle. 
Assuming a vehicle cruising at 60 miles per hour and an 
emergent situation requiring a total stop at maximum de-
celeration, every millisecond of  end-to-end reaction delay 
extends the distance traveled by at least an inch. Anyone 
who has skidded to a stop inches from a collision will be 
able to appreciate the visceral significance of  those milli-
seconds.

Significance Argument from More 
Thoughtful Autonomy Modules

Naturally, messaging itself  is not the primary goal of  an 
autonomous vehicle system. Nor is message serialization 
frequently the primary computational-time-consumer. 
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Environment perception and course planning are the 
headline features of  modern autonomous vehicles, and 
traditionally the biggest spenders of  allotted time budgets 
for computational units due to the inherent complexity of  
their tasks. Most algorithmic or machine learning tech-
niques implemented within these autonomy systems are 
approximate, optimizing, or adaptational in nature. Of-
ten, the more computational resources that can be spent 
on executing said algorithms, the better of  a job they can 
do at their essential roles. In that regard, computational 
time spent elsewhere–without explicit safety motivation–
may be considered nonessential and ripe for minimiza-
tion. Selecting a high-efficiency serialization technology 
can thus be cast as a matter of  freeing up resources that 
can be spent on autonomy tasks, therefore improving the 
quality of  operations.

Significance Argument from Smarter 
Distributed Systems Robustness

Minimizing the time-cost of  messaging enables the use 
of  distributed systems techniques for improving reliability 
and safety. Autonomous vehicle software systems are al-
ways made of  collaborating parts that communicate with 
each other. However, they are not always architected with 
distributed systems techniques such that the collaborating 
components are redundant, capable of  detecting flaws 
in other subsystems, and self-recovering from individual 
component failures. These desirable safety features are 
accomplishable at the cost of  communication beyond the 
bare minimum.

Take, for example, a subsystem responsible for controlling 
the steering angle of  the vehicle. To enable some safe re-
dundancy, assume three physically separate computation-
al units are running software components that should be 
capable of  constructing and sending actuation-triggering 
messages. In order to prevent conflicting messaging, at 
any given time only a single one of  those steering com-
ponents is the “leader” of  the group and responsible for 
actually sending actuation messages. All of  the compo-
nents talk to each other to collectively determine which 
one is presently the “leader” and check for faults. In the 
event that the “leader” component fails to do its job, due 
to some physical damage to the computational unit or a 
software error, the remaining components must decide 
which of  them will become the new leader and take re-
sponsibility for the subsystem’s role of  sending steering 
actuation messages.

During all of  this, the frequency and latency with which 
messaging can be executed between the collaborating 

components are key factors in settling how long it takes 
for the subsystem to recover from failures. Another criti-
cal factor is the selected consensus algorithm or protocol 
in use. If  the computational cost of  messaging were high, 
it would necessarily drive down the frequency with which 
components could check in on each other and detect po-
tential faults. Similarly, the fewer messages that a collab-
orating system can afford to send, the more limited the 
options are for the choice of  consensus algorithm. Thus 
shrinking the range of  possible levels of  providable as-
surance. 

Once again, the time required to do message serialization 
and deserialization represents a plausible bound on the 
level of  safety possible for an autonomous vehicle.

Methods

In order to assess the significance of  message serialization 
technology selection on computational time consump-
tion, we set out to benchmark numerous serialization for-
mats for some representative scenarios, detailed below. All 
measurements were executed with unified test harnesses 
written in Rust, exercising optimized serialization codec 
code implemented in C, C++, or Rust. The tested co-
decs were Bincode [11], Cap’n Proto (both standard and 
packed variations of  the Rust implementation [12]), Colf-
er, a commercial DDS CDR Stream, FastCDR (an open 
source DDS CDR implementation) [13], JSON through 
the serde_json library [14], LCM, the Prost Protocol Buf-
fers implementation [15], and the Quick Protobuf  Proto-
col Buffers implementation [16].

All measurements were based on a single message lay-
out used in different manners. As sensor data represents 
a significant proportion of  total message data within 
a typical autonomous vehicle, we selected an exemplar 
message schema based on a LiDAR message. The sche-
ma contained both a fixed-size metadata portion and a 
variable-length portion representing three-dimensional 
points with associated intensities. Every serialization for-
mat evaluated was capable of  representing a sufficiently 
equivalent schema in its own Interface Definition Lan-
guage.

A normalized in-memory representation of  the message 
was implemented to enable confirmation of  fully equiva-
lent message content for serialization and deserialization 
across formats.
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Additionally, a “no-operation” codec implementation was 
constructed for each experiment to account for any over-
head associated with the measurement harness itself.

Encoding Time from Full Normalized 
Form to Buffer

This experiment measured the time required to take an 
in-memory struct instance of  the normalized form, Li-
DARPointsMsg and encode its data into a pre-allocated 
byte buffer and report the number of  bytes encoded.

Some codecs made use of  intermediate structures to hold 
the data, and in those cases the time for each phase was 
observed (normalized to intermediate as a first phase, and 
intermediate to encoded in byte buffer as a second). This 
distinction allows for evaluation of  the effective encoding 
cost of  working with application-domain representative 
structures (here, the normalized form) as opposed to a 
representation specialized to the serialization format.

Decoding Time from Buffer to Full Nor-
malized Form

The natural parallel to the normalized encoding exper-
iment, the normalized decoding experiment measured 
the time required to consume an in-memory byte buffer 
containing a message encoded in the appropriate format 
and decode that data into a newly instantiated struct of  
the normalized representation.

// Rust language normalized form 
of message structures

#[repr(C)]

pub struct LiDARPointsMsg {
	 pub msg_info: MsgInfo,
	 pub points: Vec<LiDARPoint>, 
}

#[repr(C)]
pub struct MsgInfo {
	 pub kind: u64,
	 pub timestamp: u64, 
	 pub guid: u64,
}

#[repr(C)]
pub struct LiDARPoint {
	 pub position: [f32; 3],
	 pub intensity: u8, 
}

All use cases were measured and summary statistics 
gathered on a Lenovo Thinkpad T460 with an Intel(R) 
Core(TM) i5-6200U CPU at 2.30GHz and 12 GiB 
DDR3 RAM running the 4.10.0 Linux kernel. The use 
case experiments were repeated with varying numbers of  
points in the encoded or decoded data, allowing for evalu-
ation of  the impact of  larger or smaller message contents.

Table 1. Summary of  timings for key metrics, in microseconds, for the 10,000 points-per-message case. Includes 
encoding time from normalized form, decoding to normalized form, decoding to full message projection and direct 
consumption, projection of  a fixed region field, and projection of  a variable region member field.

Commercial DDS
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Results

Table 1 shows the overall results of  the experiments, 
highlighting 10,000 points-per-message case. JSON is im-
mediately noteworthy, as it demonstrates slower perfor-
mance by a factor of  10 compared to the next-worst entry 
for every measurement except encoding, where that fac-
tor drops to 3. As the sole text-based serialization format 
in a field of  binary formats, this difference is not suprising. 
For the sake of  improving clarity by reducing scale skew, 
JSON is excluded from subsequent figures and tables. 
Along those lines, the “packed” representation variation 
of  the Cap’n Proto serialization format is universally out-
performed by its “standard” representation alternative, 
and is henceforth omitted to minimize clutter.

For several of  the gathered measurements, there is a clus-
ter of  high performers hovering within a range of  ap-
proximately 1.3 from the fastest option. When measuring 
encoding from normalized representation, LCM has the 
fastest mean time, followed closely by FlatBuffers and 
FastCDR. Similarly, for the decoding to normalized form 
case and the decoding to full data projection cases, LCM, 
FlatBuffers, and FastCDR are joined by Colfer. Consid-
ering all tested point ranges, Cap’n Proto, the commer-
cial DDS implementation, and the Protocol Buffers im-
plementations frequently do not approach within even a 
factor of  2 of  the slowest of  the top tier.

Figure 1 emphasizes this gap in performance, as well as 
identifies the serialization technologies that are most chal-
lenging to a two-tier classification. Figure 1 visualizes the 
sum of  duration of  encoding and decoding to and from 
the fully normalized form, with the Protocol Buffers op-
tions, DDS and Cap’n Proto separated by a gap of  over 
700 microseconds from LCM, FlatBuffers, and FastCDR 
to the left. Bincode and Colfer straddle the middle, over 2 
times slower than the fastest normalized round-trip tech-
nology (LCM) but twice as fast as the DDS implementa-
tion, Cap’n Proto, and Protocol Buffers group.

Figure 2 illuminates the performance of  serialization 
technologies as the number of  data points encoded per 
message increases. Predictably, duration required for en-
coding and decoding tends to rise as the points increase. 
Most serialization formats appear to display similar rela-
tive speed at different sizes, with some exceptions. Flat-
Buffers begins with comparatively high overhead and 
subpar performance for very small messages, but mi-
grates towards the front of  the class as the points-per-mes-
sage crosses 10. The commercial DDS implementation 
demonstrates exceptionally poor performance whenever 

Again, some codecs made use of  intermediate structures 
to hold the data, and in those cases the time for each 
phase was observed (byte buffer to intermediate as the 
first phase and intermediate to normalized form as the 
second).

Decoding and Consuming Full Data 
Projection

This experiment measured the time it took to consume an 
in-memory byte buffer containing an encoded message 
and decode the message enough to extract every numeric 
value from every sub-field and sub-structure. Said values 
were cast to a float representation and summed.

This decoding use case is perhaps the most representative 
of  a fully optimized application consuming a tailor-made 
message with a given serialization format. It bypasses any 
cost associated with incidental mismatches between the 
data as decodable and the data in the normalized form. 
It also requires the decoding and usage of  the entire mes-
sage contents, elucidating the complete cost of  data inter-
pretation for formats where the intermediate form may 
have a heavily deferred interpretation strategy.

Decoding Time from Buffer to Fixed-
Region Projection

This experiment measured the time it took each codec to 
take an in-memory byte buffer containing a message en-
coded in the appropriate format and extract a single value 
from a single field in the fixed-length region of  the mes-
sage. In particular, implementations extracted the guid 
field of  the msg_info metadata. Due to the extremely low 
time required for such a projection, repeated executions 
were done in some cases, accumulating the sum of  the 
extracted values for correctness-checking.

Decoding Time from Buffer to Variable-
Region Projection

This final experiment measured the time it took each co-
dec to take an in-memory byte buffer containing a mes-
sage encoded in the appropriate format and extract a 
float value from the middlemost point. Implementations 
extracted the y-dimension value (index 1) of  the position 
field of  the LiDAR point equidistant from the beginning 
and the end of  the set of  available points. Due to the ex-
tremely low time required for such a projection in some 
cases, repeated executions were done, accumulating the 
sum of  the extracted values for correctness-checking.
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Figure 1. Round trip to normalized form serialization time for the 10,000 points−per−message case.

Figure 2: Round trip to decoded projection summation time, per message.

Normalized Encode + Decode Time per message in microseconds

designer
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the points-per-message differs in order of  magnitude from 
the maximum allowed per its implementation schema. 
Once the number of  points tested matched the schema’s 
theoretical maximum, DDS’ performance shifted from 
abysmal to second-tier.

Conclusions

The results demonstrate clearly that some formats are 
more time-efficient than others, often by wide margins. 
Given that some of  the differences between formats are 
more than two orders of  magnitude apart, it is difficult to 
argue that format selection won’t affect the bottom line of  
time available for accomplishing safety-critical tasks. The 
fact that technologies not necessarily designed for the em-
bedded space consistently ranked among the fastest per-
formers for each experiment strongly suggests that there’s 
room for reconsideration of  extant serialization choices.

The poor showing of  both Protocol Buffers implemen-
tations measured merits a recommendation against that 
format’s use. This result is in contrast to prior experimen-
tation which demonstrated a Protocol Buffer implemen-
tation performing comparably to LCM [17], one of  the 
fastest formats presently under test. Given that it was de-
signed to be a faster version of  Protocol Buffers by focus-
ing on fewer copies [3], Cap’n Proto also underperformed 
expectations. Especially considering how FlatBuffers, an-
other low-copy-oriented format, excelled in most catego-
ries. The relatively new and unknown format Colfer did 
well in decoding tasks, up there with more familiar em-
bedded-space formats like CDR and LCM.

Since time is safety in this industry, and serialization 
formats display radically different profiles for time con-
sumed, there is significant opportunity to optimize reli-
ability by selecting a top-tier format.
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