
1

Introduction

It is a commonly held belief that time is money. True as
that may be, when it comes to autonomous vehicles, a
more apt aphorism may read “time is safety.”

In emergent situations, the reaction speed of an autono-
mous vehicle determines whether a dangerous situation
can be resolved safely. In normal operations, the amount
of time a vehicle’s software spends accomplishing its bare
minimum objectives determines how much time remains
to be spent ensuring the situation does not become a
problem.

In this paper, we examine the possible effect that differ-
ences in the time budget consumption of cross-compo-
nent message serialization–a core vehicular software
function–have on overall system safety.

Background

Message encoding and decoding is essential every time a
vehicular system component needs to communicate with
another component. If we broadly divide an autonomous
system’s capabilities into the Sense-Plan-Act paradigm
[1], it’s clear that there’s communication between each
step. Sensors encode messages that are transmitting to
the autonomous planning layer, which must decode that
data, make decisions, and pass along command messag-
es to the actuating components. Depending on the sys-
tem’s architecture, these phases may be implemented by
multiple collaborating subcomponents rather than single
monolithic compute units, requiring further coordination
by some shared messaging approach. Even when hard-
ware architecture centralizes computational work onto
high-specification physical devices, it is still common for
co-located processes to communicate through message
passing.

The software industry has given rise to multiple message
serialization technologies that are relevant to the auton-
omous vehicle use case. Compared to ad-hoc solutions,

best practice message serialization approaches define
standardized representations to improve the assurance of
consistency across components. High-performance serial-
ization formats of note include Apache Thrift [2], Cap’n
Proto [3], Colfer [4], FlatBuffers [5], Lightweight Com-
munications and Marshalling (LCM) [6], Protocol Buffers
[7], Simple Binary Encoding [8], and the Object Man-
agement Group’s Common Data Representation (CDR)
[9]. Some formats are strongly linked to broader commu-
nications frameworks for embedded environments. For
example, CDR is the default message format for the Data
Distribution Service (DDS) real-time middleware system,
and was recently adopted into a similar role by the Robot
Operating System 2 (ROS2) [10]. Others, such as Proto-
col Buffers, Cap’n Proto, and Thrift were designed with
data center remote procedure calls in mind [2], but never-
theless possess embedded-system compatible implemen-
tations and competitive performance.

Significance Argument from End-to-End
Emergency Response

When a sudden development in the external environment
causes an emergency situation, an autonomous vehicle’s
end-to-end reaction time is critical in determining the
available set of safe responses and the success of their
execution. A simple example is the need to rapidly decel-
erate from highway speeds to avoid a dangerous obstacle.
Assuming a vehicle cruising at 60 miles per hour and an
emergent situation requiring a total stop at maximum de-
celeration, every millisecond of end-to-end reaction delay
extends the distance traveled by at least an inch. Anyone
who has skidded to a stop inches from a collision will be
able to appreciate the visceral significance of those milli-
seconds.

Significance Argument from More
Thoughtful Autonomy Modules

Naturally, messaging itself is not the primary goal of an
autonomous vehicle system. Nor is message serialization
frequently the primary computational-time-consumer.

Safety Implications of Serialization Timing in
Autonomous Vehicles

Zachary Pierce, Nathan Aschbacher
PolySync Technologies, Inc.

2

Environment perception and course planning are the
headline features of modern autonomous vehicles, and
traditionally the biggest spenders of allotted time budgets
for computational units due to the inherent complexity of
their tasks. Most algorithmic or machine learning tech-
niques implemented within these autonomy systems are
approximate, optimizing, or adaptational in nature. Of-
ten, the more computational resources that can be spent
on executing said algorithms, the better of a job they can
do at their essential roles. In that regard, computational
time spent elsewhere–without explicit safety motivation–
may be considered nonessential and ripe for minimiza-
tion. Selecting a high-efficiency serialization technology
can thus be cast as a matter of freeing up resources that
can be spent on autonomy tasks, therefore improving the
quality of operations.

Significance Argument from Smarter
Distributed Systems Robustness

Minimizing the time-cost of messaging enables the use
of distributed systems techniques for improving reliability
and safety. Autonomous vehicle software systems are al-
ways made of collaborating parts that communicate with
each other. However, they are not always architected with
distributed systems techniques such that the collaborating
components are redundant, capable of detecting flaws
in other subsystems, and self-recovering from individual
component failures. These desirable safety features are
accomplishable at the cost of communication beyond the
bare minimum.

Take, for example, a subsystem responsible for controlling
the steering angle of the vehicle. To enable some safe re-
dundancy, assume three physically separate computation-
al units are running software components that should be
capable of constructing and sending actuation-triggering
messages. In order to prevent conflicting messaging, at
any given time only a single one of those steering com-
ponents is the “leader” of the group and responsible for
actually sending actuation messages. All of the compo-
nents talk to each other to collectively determine which
one is presently the “leader” and check for faults. In the
event that the “leader” component fails to do its job, due
to some physical damage to the computational unit or a
software error, the remaining components must decide
which of them will become the new leader and take re-
sponsibility for the subsystem’s role of sending steering
actuation messages.

During all of this, the frequency and latency with which
messaging can be executed between the collaborating

components are key factors in settling how long it takes
for the subsystem to recover from failures. Another criti-
cal factor is the selected consensus algorithm or protocol
in use. If the computational cost of messaging were high,
it would necessarily drive down the frequency with which
components could check in on each other and detect po-
tential faults. Similarly, the fewer messages that a collab-
orating system can afford to send, the more limited the
options are for the choice of consensus algorithm. Thus
shrinking the range of possible levels of providable as-
surance.

Once again, the time required to do message serialization
and deserialization represents a plausible bound on the
level of safety possible for an autonomous vehicle.

Methods

In order to assess the significance of message serialization
technology selection on computational time consump-
tion, we set out to benchmark numerous serialization for-
mats for some representative scenarios, detailed below. All
measurements were executed with unified test harnesses
written in Rust, exercising optimized serialization codec
code implemented in C, C++, or Rust. The tested co-
decs were Bincode [11], Cap’n Proto (both standard and
packed variations of the Rust implementation [12]), Colf-
er, a commercial DDS CDR Stream, FastCDR (an open
source DDS CDR implementation) [13], JSON through
the serde_json library [14], LCM, the Prost Protocol Buf-
fers implementation [15], and the Quick Protobuf Proto-
col Buffers implementation [16].

All measurements were based on a single message lay-
out used in different manners. As sensor data represents
a significant proportion of total message data within
a typical autonomous vehicle, we selected an exemplar
message schema based on a LiDAR message. The sche-
ma contained both a fixed-size metadata portion and a
variable-length portion representing three-dimensional
points with associated intensities. Every serialization for-
mat evaluated was capable of representing a sufficiently
equivalent schema in its own Interface Definition Lan-
guage.

A normalized in-memory representation of the message
was implemented to enable confirmation of fully equiva-
lent message content for serialization and deserialization
across formats.

3

Additionally, a “no-operation” codec implementation was
constructed for each experiment to account for any over-
head associated with the measurement harness itself.

Encoding Time from Full Normalized
Form to Buffer

This experiment measured the time required to take an
in-memory struct instance of the normalized form, Li-
DARPointsMsg and encode its data into a pre-allocated
byte buffer and report the number of bytes encoded.

Some codecs made use of intermediate structures to hold
the data, and in those cases the time for each phase was
observed (normalized to intermediate as a first phase, and
intermediate to encoded in byte buffer as a second). This
distinction allows for evaluation of the effective encoding
cost of working with application-domain representative
structures (here, the normalized form) as opposed to a
representation specialized to the serialization format.

Decoding Time from Buffer to Full Nor-
malized Form

The natural parallel to the normalized encoding exper-
iment, the normalized decoding experiment measured
the time required to consume an in-memory byte buffer
containing a message encoded in the appropriate format
and decode that data into a newly instantiated struct of
the normalized representation.

// Rust language normalized form
of message structures

#[repr(C)]

pub struct LiDARPointsMsg {
	 pub msg_info: MsgInfo,
	 pub points: Vec<LiDARPoint>,
}

#[repr(C)]
pub struct MsgInfo {
	 pub kind: u64,
	 pub timestamp: u64,
	 pub guid: u64,
}

#[repr(C)]
pub struct LiDARPoint {
	 pub position: [f32; 3],
	 pub intensity: u8,
}

All use cases were measured and summary statistics
gathered on a Lenovo Thinkpad T460 with an Intel(R)
Core(TM) i5-6200U CPU at 2.30GHz and 12 GiB
DDR3 RAM running the 4.10.0 Linux kernel. The use
case experiments were repeated with varying numbers of
points in the encoded or decoded data, allowing for evalu-
ation of the impact of larger or smaller message contents.

Table 1. Summary of timings for key metrics, in microseconds, for the 10,000 points-per-message case. Includes
encoding time from normalized form, decoding to normalized form, decoding to full message projection and direct
consumption, projection of a fixed region field, and projection of a variable region member field.

Commercial DDS

4

Results

Table 1 shows the overall results of the experiments,
highlighting 10,000 points-per-message case. JSON is im-
mediately noteworthy, as it demonstrates slower perfor-
mance by a factor of 10 compared to the next-worst entry
for every measurement except encoding, where that fac-
tor drops to 3. As the sole text-based serialization format
in a field of binary formats, this difference is not suprising.
For the sake of improving clarity by reducing scale skew,
JSON is excluded from subsequent figures and tables.
Along those lines, the “packed” representation variation
of the Cap’n Proto serialization format is universally out-
performed by its “standard” representation alternative,
and is henceforth omitted to minimize clutter.

For several of the gathered measurements, there is a clus-
ter of high performers hovering within a range of ap-
proximately 1.3 from the fastest option. When measuring
encoding from normalized representation, LCM has the
fastest mean time, followed closely by FlatBuffers and
FastCDR. Similarly, for the decoding to normalized form
case and the decoding to full data projection cases, LCM,
FlatBuffers, and FastCDR are joined by Colfer. Consid-
ering all tested point ranges, Cap’n Proto, the commer-
cial DDS implementation, and the Protocol Buffers im-
plementations frequently do not approach within even a
factor of 2 of the slowest of the top tier.

Figure 1 emphasizes this gap in performance, as well as
identifies the serialization technologies that are most chal-
lenging to a two-tier classification. Figure 1 visualizes the
sum of duration of encoding and decoding to and from
the fully normalized form, with the Protocol Buffers op-
tions, DDS and Cap’n Proto separated by a gap of over
700 microseconds from LCM, FlatBuffers, and FastCDR
to the left. Bincode and Colfer straddle the middle, over 2
times slower than the fastest normalized round-trip tech-
nology (LCM) but twice as fast as the DDS implementa-
tion, Cap’n Proto, and Protocol Buffers group.

Figure 2 illuminates the performance of serialization
technologies as the number of data points encoded per
message increases. Predictably, duration required for en-
coding and decoding tends to rise as the points increase.
Most serialization formats appear to display similar rela-
tive speed at different sizes, with some exceptions. Flat-
Buffers begins with comparatively high overhead and
subpar performance for very small messages, but mi-
grates towards the front of the class as the points-per-mes-
sage crosses 10. The commercial DDS implementation
demonstrates exceptionally poor performance whenever

Again, some codecs made use of intermediate structures
to hold the data, and in those cases the time for each
phase was observed (byte buffer to intermediate as the
first phase and intermediate to normalized form as the
second).

Decoding and Consuming Full Data
Projection

This experiment measured the time it took to consume an
in-memory byte buffer containing an encoded message
and decode the message enough to extract every numeric
value from every sub-field and sub-structure. Said values
were cast to a float representation and summed.

This decoding use case is perhaps the most representative
of a fully optimized application consuming a tailor-made
message with a given serialization format. It bypasses any
cost associated with incidental mismatches between the
data as decodable and the data in the normalized form.
It also requires the decoding and usage of the entire mes-
sage contents, elucidating the complete cost of data inter-
pretation for formats where the intermediate form may
have a heavily deferred interpretation strategy.

Decoding Time from Buffer to Fixed-
Region Projection

This experiment measured the time it took each codec to
take an in-memory byte buffer containing a message en-
coded in the appropriate format and extract a single value
from a single field in the fixed-length region of the mes-
sage. In particular, implementations extracted the guid
field of the msg_info metadata. Due to the extremely low
time required for such a projection, repeated executions
were done in some cases, accumulating the sum of the
extracted values for correctness-checking.

Decoding Time from Buffer to Variable-
Region Projection

This final experiment measured the time it took each co-
dec to take an in-memory byte buffer containing a mes-
sage encoded in the appropriate format and extract a
float value from the middlemost point. Implementations
extracted the y-dimension value (index 1) of the position
field of the LiDAR point equidistant from the beginning
and the end of the set of available points. Due to the ex-
tremely low time required for such a projection in some
cases, repeated executions were done, accumulating the
sum of the extracted values for correctness-checking.

5

Figure 1. Round trip to normalized form serialization time for the 10,000 points−per−message case.

Figure 2: Round trip to decoded projection summation time, per message.

Normalized Encode + Decode Time per message in microseconds

designer

6

the points-per-message differs in order of magnitude from
the maximum allowed per its implementation schema.
Once the number of points tested matched the schema’s
theoretical maximum, DDS’ performance shifted from
abysmal to second-tier.

Conclusions

The results demonstrate clearly that some formats are
more time-efficient than others, often by wide margins.
Given that some of the differences between formats are
more than two orders of magnitude apart, it is difficult to
argue that format selection won’t affect the bottom line of
time available for accomplishing safety-critical tasks. The
fact that technologies not necessarily designed for the em-
bedded space consistently ranked among the fastest per-
formers for each experiment strongly suggests that there’s
room for reconsideration of extant serialization choices.

The poor showing of both Protocol Buffers implemen-
tations measured merits a recommendation against that
format’s use. This result is in contrast to prior experimen-
tation which demonstrated a Protocol Buffer implemen-
tation performing comparably to LCM [17], one of the
fastest formats presently under test. Given that it was de-
signed to be a faster version of Protocol Buffers by focus-
ing on fewer copies [3], Cap’n Proto also underperformed
expectations. Especially considering how FlatBuffers, an-
other low-copy-oriented format, excelled in most catego-
ries. The relatively new and unknown format Colfer did
well in decoding tasks, up there with more familiar em-
bedded-space formats like CDR and LCM.

Since time is safety in this industry, and serialization
formats display radically different profiles for time con-
sumed, there is significant opportunity to optimize reli-
ability by selecting a top-tier format.

References

[1]	 DiClemente J, Mogos S, Wang R (2014) Auton-
omous Car Policy Report. Available at: https://
www.cmu. edu/epp/people/faculty/course-re-
ports/Autonomous%20Car%20Final%20Re-
port.pdf.

[2]	 Slee M, Agarwal A, Kwiatkowski M (2007)
Thrift: Scalable Cross-Language Services. Avail-
able at: http://thrift.apache.org/static/files/
thrift-20070401.pdf.

[3]	 Varda K (2013) Bincode: A binary encoder /
decoder implementation in Rust. Available at:

https: //capnproto.org.
[4]	 de Kloe P (2016) Colfer binary serialization

format. Available at: https://github.com/pas-
caldekloe/colfer.

[5]	 FlatBuffers: Memory Efficient Serialization
Library. Available at: https://google.github.io/
flatbuffers.

[6]	 Huang A, Olson E, Moore D (2010) LCM:
Lightweight Communications and Marshal-
ling. Intelligent Robots and Systems (IROS),
2010 IEEE/RSJ International Conference on.
doi:10.1109/IROS.2010.5649358.

[7]	 Protocol Buffers. Available at: https://develop-
ers.google.com/protocol-buffers/.

[8]	 Montgomery T, Thompson M, Deheurles O,
Warburton R, Segall B (2014) Simple Binary
Encoding: High Performance Message Codec.
Available at: https://github.com/real-logic/sim-
ple-binary-encoding.

[9]	 DDS Interoperability Wire Protocol Available at:
http://www.omg.org/spec/DDSI-RTPS/.

[10]	 ROS on DDS (2015) Available at: http://design.
ros2.org/articles/ros_on_dds.html.

[11]	 Overby T (2014) Bincode: A binary encoder /
decoder implementation in Rust. Available at:
https: //github.com/TyOverby/bincode.

[12]	 Renshaw D Cap’n Proto for Rust. Available at:
https://github.com/capnproto/capnproto-rust.

[13]	 Fast-CDR. Available at: https://github.com/
eProsima/Fast-CDR.

[14]	 Serde JSON (2014) Available at: https://github.
com/serde-rs/json.

[15]	 Burkert D PROST! a Protocol Buffers imple-
mentation for the Rust Language. Available at:
https: //github.com/danburkert/prost/.

[16]	 Tuffe J Quick-Protobuf: A rust implementation
of protobuf parser. Available at: https://github.
com/ tafia/quick-protobuf.

[17]	 Borosean V, Eidukas S, Dang A (2015) Evaluat-
ing Data Marshalling Approaches for Embedded
Real-Time Systems on the Example of Autono-
mous Scaled Cars.

