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Currently, there is no fully reliable or accurate way to determine whether an individual has Parkinson’s disease. Moreover, 90% of 
clinically-confirmed Parkinson’s disease cases are idiopathic, suggesting the extent to which a more accurate and reliable diagnosis 
would be beneficial. This neurological disorder proffers a tremendous financial burden to the patient in terms of initial diagnostic and 
treatment costs. In this study, human demographic, movement, and speech data was analyzed to determine if an individual has Parkin-
son’s disease, thus resulting in a binary classification problem. Two datasets encompassed these categories: one for demographics and 
movement and another for speech data. Machine learning and statistical testing were conducted on the two datasets individually. Over 
30 different machine learning models, from lazy-based to tree-based, were analyzed through visualizations, model metric analysis, and 
external statistical testing. Upon in-depth exploration of the dataset and the multiple models, an Android application was created in order 
to prove the merits of each machine learning model. The application extracts users’ demographic, movement, and speech data – both 
through manual input and artificial intelligence components, such as automatic speech recognition and model optimization. Ultimately, 
after rigorous statistical testing procedures, the locally weighted learning (LWL) was the best demographic-movement model (accuracy 
= 98.8%) and an ensemble model was the best human speech model (accuracy = 95.5%). Cumulatively, the machine learning frame-
work founded on demographic, movement, and speech data suggests a more accurate, time-efficient, and cost-effective gold standard 
for Parkinson’s disease diagnosis.

INTRODUCTION
There is an absence of time-efficient, cost-effective, and biologi-
cally accurate diagnoses for Parkinson’s disease (PD) in the world, 
especially since doctors confound PD with other Parkinsonian syn-
dromes (Goldman et al., 2018). Though some particular diseases 
have accurate diagnoses based on patients’ biochemical responses, 
other recurrent diseases are difficult to detect early based on bio-
chemical data and composition. For example, diagnoses for wide-
spread ailments such as PD do not rely on firm biochemical data for 
determining whether the patient has the neurodegenerative disease. 
Instead, medical professionals depend solely on physical tests fo-
cusing on impaired movement and diminished hand-eye coordina-
tion for early detection. DatSCANs1 and SPECT2 analyses are also 
used to determine if a patient has PD. However, these are relatively 
cost-inefficient and inaccurate (Rizek, Kumar, & Jog, 2016). MRI3, 
CT4, and PET5 scans are used not to directly diagnose PD. Rather, 
they are used to eliminate the possibilities of other confounding 

diseases (Rizek et al., 2016). Doctors do not actually determine 
whether a patient has Parkinson’s; rather, they follow a process 
of elimination framework: by eliminating the likelihood for other 
diseases, they conjecture that the individual has PD. Addition-
ally, results from these examinations have very low correlations 
with the presence of PD, as many other diseases also have the 
same symptoms. For instance, anemia and hypoglycemia also 
have symptoms of dizziness and impaired movement. Some un-
intended outcomes of such coping medications for these diseases 
include confusion, hallucinations, delusions, mood swings, and 
psychological changes (Saria & Zhan, 2018). An early detection 
system for Parkinson’s will allow doctors to begin rehabilitative 
treatment early on, so the patient no longer has to consume medi-
cation for an extended period of time.

From a financial standpoint, it has been determined that 
widespread, inaccurately diagnosed diseases, such as PD, cost the 
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1 Synonymous to most Ioflupane I123 Injections 
2 Single-photon Emission Computed Tomography 
3 Magnetic Resonance Imaging
4 X-Ray Computed Tomography
5 Positron  Emission Tomography
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US government as much as twenty-five billion dollars and affect 
more than ten million people worldwide (Marras et al., 2018). 
Moreover, PD is expected to affect nearly one million citizens in 
America by 2020 and 1.2 million citizens in America by 2030. 
Overall, the number of people with PD has  already doubled with 
respect to its prevalence in 1978. Additionally, medication alone 
for PD costs $2,500 per year with therapeutic surgery (Marras et 
al., 2018).

Previous studies have utilized machine learning to devel-
op an effective diagnosis for heart failure (Mallya, Overhage, 
Srivastava, Arai, & Erdman,  2019) and cancer (Wong  & Yip, 
2018), among other diseases. Machine learning technology has 
also been used to identify brain tumours by analyzing images of 
the human brain, (Sakai & Yamada, 2019) and to detect retinal 
disease in laboratory settings (De Fauw et al., 2018).

Some other organizations have also used machine learning 
for disease diagnosis; however, they have specifically cautioned 
that some inherent pitfalls in the machine learning algorithms 
may deliver inaccurate results (Park, 2018). For instance, re-
searchers have suggested that machine learning techniques used 
to determine presence of disease have not always been successful 
in developing clinically validated diagnostic methods. In other 
words, some machine learning techniques such as classification 
and stochastic backpropagation are prone to over-fitting – not de-
livering a justified disease diagnosis.

On the other hand, other scientists in the machine learning 
community have suggested that machine learning techniques for 
diagnosis offer novel approaches to verify some unexplained 
phenomena in contemporary medicine – such as the relationship 
between demographics and disease prevalence (Sugai, Nomura, 
Gilmour, Stevens, & Shibuya, 2018). Thus, the introduction of a 
novel machine learning diagnosis for such diseases will not only 
reduce medical pecuniary losses but will also proffer a cost and 
time-efficient solution widely applicable in society.

Given the current constraints in Parkinson’s disease diag-
nosis, the main question of this investigation is: how accurately 
and efficiently can an automatic machine learning model, which 
analyzes historical and live user demographic, movement, and 
speech data, diagnose Parkinson’s disease as compared to exist-
ing, traditional procedures? The introduction of a novel machine 
learning diagnosis for Parkinson’s disease will not only reduce 
medical pecuniary losses, but also proposes a cost and time effi-
cient solution which is universally applicable.
METHODOLOGY
As previously mentioned, the project was divided into stages one, 
two, and three, each for distinct procedures in the investigation. 
The procedures of each of these stages are explicated below. For 
both datasets, the individuals were stratified across whether they 
had PD, early-stage or late-stage diagnosis, and geographical 
location. The geographical locations were equally balanced be-
tween North America, South America, India, and West Africa in 
order to sustain valid results.

Stage 1: Data Collection and Feature Processing
The data used in this investigation was accumulated from two 
main sources, as shown below, with multiple features, as shown 
in Table 1:
 • UCI Machine Learning Repository (Human Speech 
 Data) (Little, McSharry, Roberts, Costello, & Moroz, 
 2007).
 • PhysioNet Physiologic Database (Demographic and 
 Movement Data) (Frenkel-Toledo et al., 2005a) (Fren
 kel-Toledo et al., 2005b) (Hausdorff et al., 2007) (May
 berry et al., 2011).
In addition, each of the datasets includes a variable that indicates 
if a patient has Parkinson’s or not, namely:
 • PD10, CO11

Expressed in set notation, this means that the FOI could be one of 
two values: PD represents that the patient has Parkinson’s disease; 
whereas, CO represents “control,” meaning the patient does not 
have PD.

After each of the features in the demographic-move-
ment-speech (DMS) dataset were researched, feature processing 
was performed on both datasets. There were three steps in feature 
processing: recognition setting, feature ranking, and feature se-
lection.

Recognition setting deleted unrecognizable characters from 
the DMS data – any character which was not a comma. These 

Human Speech 
(n = 4485)

Demographic-Movement 
(n = 3700)

Vocal Fundamental Frequency Age
Jitter Height

Shimmer Weight
Harmonic-to-Noise Ratio6 UPDRS7

Non-linear dynamical complexity 
measures

TUAG8

Signal fractal scaling component9 Speed
Nonlinear measures of fundamental 

frequency variation
Gender

6Abbreviated as HNR and further known as Harmonicity metric 
7Abbreviation for Unified Parkinson’s Disease Rating Scale 
8Abbreviation for Timed Up and Go test
9Referred to as DFA value
10Parkinson’s disease patient
11Control patient

Table 1. Complete List of Human Speech, Demographic, and Move-
ment Features. The statements listed under the “Human Speech” col-
umn are simply names of the feature categories. Truly, there were many 
more sub-features under these headings which were used in the con-
firmatory procedures. Therefore, confirmation bias was diminished by 
ensuring the each of the features were distinct from each other.
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were deleted from the data because the comma-separated value 
(CSV) and ARFF file formats were used for data analytics. So, 
a data file with non-comma characters would not be processed 
correctly by the ML program.
Next, feature ranking was performed on both datasets; different 
attribute evaluator algorithms were run on the DMS data files to 
determine the optimal features in classifying the FOI. In other 
words, the different algorithms ranked which demographic, move-
ment, and speech factors were most important in determining if 
a patient is classified as PD or CO – the goal of the investigation. 
Though a single attribute evaluator algorithm would suffice for 
feature ranking, multiple were implemented to ensure consistent 
results (Blum & Langley, 2002). They are listed below as methods 
of the Weka-Java library:
weka.attributeSelection.ReliefFAttributeEval

      .ClassiferAttributeEval

      .ClassifierSubsetEval

      .CorrelationAttributeEval

      .PrincipleComponents
The weka.attributeSelection.PrincipleComponents at-
tribute selection algorithm is also referred to as Principle Com-
ponent Analysis (PCA). Feature selection was also performed as 
part of the feature processing stage, however this is further dis-
cussed in “Stage 2” as it is directly related to ML process.
Stage 2: Data Analysis and Machine Learning
For this investigation, the ML problem was a nominal, binary 
classification problem; the objective is to distinguish between two 
distinct outcomes under the FOI: PD or CO.

The main materials used in this investigation were a standard 
work computer, an Android device, and data from online reposi-
tories. The ML was conducted on data analytics software and raw 
programming IDEs using the Weka-Java API.

Classification algorithms were used to determine if the pa-
tient has PD and two methods were used to create the machine 
learning models: 10 fold cross validation (CV) across 400 repeti-
tions and 70% training-set/30% testing-set split (TTS).
      Both these methods were implemented to solidify the results 
of the investigation. The CV and TTS methods, along with the 
feature ranking and selection processes, ensured that over-fitting 
and mis-extrapolation of the DMS data were avoided (Ng, 1997). 
Further analysis of the model files, once they were created, also 
determined if they over-fitted, by investigating different perfor-
mance metrics for each machine learning model.

There are three main methods through which the ML models 
were analyzed: model metric analysis (MMA), data visualization 
(DV), and external statistical testing (EST). The purpose of the 
MMA is to identify under-performing models by evaluating their 
different model metrics. Over fifteen distinct ML models, from 

decision trees to random forests, were evaluated over 4 main met-
rics, as shown below. These four metrics were specifically due 
to their ability to effectively assess the performance of machine 
learning models, as opposed to other metrics (Model evaluation: 
quantifying the quality of predictions , n.d.).
 • Percent accuracy (closer to 100%, the better12)
 • Logarithmic Loss (closer to 0, the better)
 • Matthew’s Correlation (closer to 1, the better)
 • F-measure13 (closer to 1, the better)

Percent accuracy was the metric analyzed to assess the ef-
fectiveness of the ML models because it is a direct measurement 
of how accurate the model is during the classification process. In 
addition, the loss, correlation, and F-measure are more specified 
metrics that allowed the models to be validated (Goutte & Gauss-
ier, 2005). For example, a ML model with a high percent accuracy 
but equally high logarithmic loss means that the ML model is not 
reliable.

The DV process was conducted to further validate the ML 
models. Unlike the MMA and EST, the DV process does not di-
rectly relate to the ML models themselves. Instead, the original 
demographic, movement, and speech feature sets were visualized, 
in a 3D scatter-plot environment, in order to look for clustering of 
PD and CO instances. A relatively distinct cluster of PD and CO 
individuals would be in accordance with the “good” model statis-
tics potentially received in the MMA. On the other hand, less dis-
tinct clusters would not justify the same, potentially “good” mod-
el statistics. This method, despite its advantages, is not enough to 
entirely justify the performance of each of the machine learning 
models since it is a rough overview. For additional validation, the 
EST procedures were implemented.

The EST is essentially a group of distribution analysis and 
statistical significance tests. This is necessary to eliminate the 
potential drawback of any statistical mishap in the MMA. For 
instance, high percent accuracy and logarithmic loss scores may 
simply be due to an error during statistical analysis; the signifi-
cance tests allowed for us to differentiate between different ML 
models. The confidence level used for all the investigations was 
95% (α = 0.05).

Three main statistical significance tests (and test statistics) as 
presented below were used for analysis:
 • 2-sample Kolmogorov-Smirnov (KS) test
 • Student’s t-test
 • Welch’s t-test

Each of these significance tests compares the mean values for 
each of the machine learning model metrics, ranking each of the 
models. This ranking ultimately distinguishes which models jus-
tifiably performed better than others. This offers insight regarding 
which ML models should ultimately be implemented in the An-

12“Better” refers to the fact that the ML model is more reliable and 
accurate in binary classification
13Also known as “F1-score”
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droid application. Moreover, three different tests are conducted 
to bolster the results achieved in the MMA and DV sub-stages.
The fundamental architecture and paradigms governing the ML 
models were also investigated to have a comprehensive under-
standing of how the ML models classify a patient as having PD. 
This step allowed for the optimization of the ML models to gen-
erate the best performance.
Stage 3: Data Extraction and App Development
Once the ML models were created, the Android application was 
created. The Android application allows for a greater scope for 
user interaction, and thus greater DMS data collection. This 
DMS data is ultimately fed into incremental ML models. From 
the app development perspective, speech recognition APIs and 
Google Voice Analysis APIs were called upon to execute stage 
3 of the project.

Additionally, the mobile application will deliver a live diag-
nosis for PD to the user. Android Studio was the platform where 
the app was created, which used the Weka-Java API for machine 
learning integration. The original training data is imported into 
the Android Application upon which the ML procedures are per-
formed.

Three narrow14 artificial intelligence (AI) methods are also 
present in the Android application:
 • Automatic Speech Recognition (ASR)
 • Speech Feature Extraction
 • Automatic Model Picker

The ASR and extraction methods simply allow the app to 
recognize the user’s voice and harvest human speech features 
(such as those shown in Figure 2). In contrast to the MMA in 
Stage 2 of the project, over thirty ML models were trained and 
the best one  was picked, in terms of model metrics (such as those 
present in the MMA) and metric test-statistics (such as those con-
ducted in the EST in Stage 2).

From a computational perspective, the CPU times required 
to run the models are also analyzed, through the Android Studio 
integrated development environment, in order to create the most 
efficient prediction system for the user.
RESULTS
Demographic and Movement Data
First, feature selection ranking and selection was performed on 
the dataset. This step demonstrated which variables were the 
most important during the PD classification process. UPDRS, 
speed, and TUAG were the top three most important metrics in 
determining whether an individual may have PD - as expressed 
in Table 2.
The UPDRS is a questionnaire which reports the likelihood of 
individuals having Parkinson’s; this metric will be explored in 

more detail in the Discussion section. The speed simply refers 
to how fast the patient walks in meters per second. The TUAG 
test is a more quantitative measure of general human mobility: 
the patient starts sitting, walk to a point 3 meters away, and re-
turns to his or her chair (Barry, Galvin, Keogh, Horgan, & Fahey, 
2014). The time taken for this action is recorded as the TUAG 
score, which was the third most important metric in determining 
whether an individual has PD under the demographic-movement 
dataset.

Although the remainder of the features ranked below po-
sition three were much less effective in determining whether an 
individual has PD, these were nevertheless essential in creating 
accurate ML models. Holistically, the purpose of the feature se-
lection process was simply to determine which factors were the 
most important in determining whether an individual has PD.

As shown in Table 3, fifteen different ML models were cre-
ated via the MMA method and assessed according to the pre-
viously mentioned four model metrics. The MMA was used in 
order to discover which models had inconsistent results based on 
the metrics: no such models were identified. The best performing 
ML models in terms of accuracy were LWL (Locally Weighted 
Learning) at 98.8%, Boosted Decision Stump at 98.69%, and De-
cision Table at 98.62%.

The purpose of the DV was to determine a visual clustering 
of individuals who do and do not have PD. The top three features 
found in the feature selection process were plotted and distinct 
clusters of those with and without PD were found. This distinct 
clustering, as depicted in Figure 1, further justifies the high accu-
racy of the ML models in the Demographic-Movement dataset.

Once again, the EST allows us to differentiate between 
top performing models according to their model statistics. For 
instance, multiple sets of two models were compared based on 
metrics such as F-measure and percent accuracy to determine 
which model is better performing and is statistically significant 

14 Narrow AI refers to AI which can participate in just one spe-
cialized task

Average Merit Average Rank Attribute
0.71 ± 0.009 1  ± 0 UPDRS
0.481 ± 0.018 2 ± 0 Gait Speed (m/s)
0.376 ± 0.018 3 ± 0 TUAG
0.143 ± 0.034 4  ± 0 Age (years)
0.077 ± 0.022 5.2 ± 0.4 Gender (binary)
0.040 ± 0.024 6.1 ± 0.7 Height (m)
0.022 ± 0.012 6.7 ± 0.46 Weight (kg)

Table 2. Feature selection representation in the demographic-move-
ment dataset. The performance of the demographic-movement dataset 
attributes were determined by the “average merit” score in the first col-
umn. The average rank also is representative of the attributes’ perfor-
mance, though to a lesser degree.
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as opposed to the comparison mode.
Furthermore, different histograms of the model metrics 

were created in order to visualize their distributions; a few distri-
butions are depicted in Figure 2. For the demographic-movement 
dataset and the human speech dataset, the significance tests were 
performed to differentiate between the similar-looking distribu-
tions15. The reason there are distributions of values rather than 
single numbers for each metric-model cell is because the classifi-
cation process was run many times: this led to a range of values.

For the following tests (Kolmogorov-Smirnov (Table 4), 
Student’s-t (Table 5), and Welch’s-t (Table 6)), P-values greater 
than α = 0.05 do not represent a statistically significant difference 
and are presented more red. Similarly, P-values lower than α = 
0.05 indicate statistically significant results, and are presented in 
green. Additionally, for each of these tests, the green cells repre-
sent low KS P-values, which indicates higher chance of reject-
ing the null hypothesis. In this case, the null hypothesis is if the 
left-cell model is better than the top-cell model or if the top-cell 
model is better than the left-cell model. Conversely, the rela-

tively redder areas demonstrate higher P-values, failing to reject 
the null hypothesis. Ultimately, each of the models were ranked 
through these tests.

In conclusion, the locally weighted learning was the high-
est performing model in terms of the different model statistics: 
percent-accuracy, logarithmic loss, Matthew’s correlation, and 
F-measure.
Human Speech Dataset
The same three stages were conducted on the human speech data-
set: the MMA, DVs, and EST procedure.

In the feature ranking process, spread1, PPE, and spread2 
were discovered to be the most important features in determining 
whether an individual has PD, as expressed in Table 7. These 
features are examples of some of the dynamical complexity mea-
sures analyzed in the human speech.

Among the nine different types of speech information col-
lected, three of the categories were determined to have the most 
impact. In order from most important to least important, non-lin-
ear measure of fundamental frequency variation, shimmer, and 
minimal fundamental frequency variation were determined as the 
top features during the classification process.

Like the Demographic-Movement dataset, the remainder of 
the features which had a rank lower than three were less import-
ant in determining whether an individual has PD. Nevertheless, 
they were necessary to reach high levels of accuracy.

Once again, as shown below in Table 8, the MMA was con-
ducted across 15 different ML models for 4 different model met-
rics on the human speech dataset.

According the MMA, the “Stacking,” or ensemble, ML 
model had the highest accuracy at 94.6%. Consecutively, the 
“KStar” and the “Neural Network”16 were the next best perform-
ing models with accuracy levels of 91.8% and 91.3% respective-
ly.

Variables from the top three mentioned categories were 
plotted on the 3D scatterplot to determine a clustering between 
people who do and do not have PD. As shown in Figure 3, a 
cluster is demonstrated between the PD and CO groups. Though 

Figure 1. Demographic-Movement Top-Parameter Space. This was 
used to identify PD and CO distinctions.

15 60 histograms were created in total for further EST for each dataset, 
since 15 models were analyzed across 4 metrics.
16 This model is a class of feed-forward artificial neural networks 
(fANNs).

Table 3. Demographic-Movement Dataset: ML Model Metric Analysis. This represents how each of the ML models performed with respect to the 
model statistics. The green areas represent well-performing models while red areas represent relatively poor-performing models. The green and red 
highlights are determined by the distributions in each of the rows; in other words, for each of the model metrics.
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it is less distinct than the corresponding visualization in the de-
mographic-movement dataset, the visual separation is enough to 
justify the accuracy levels of the ML processes.

After the MMA and DV processes, the EST procedures 
were conducted in order to differentiate one top performing 
model from another. In other words, these procedures help rank 
the fifteen different ML models from “best” to “worst” as per 
their statistics. Once again, these statistical significance tests, 
the results of which are presented in Tables 9 - 11, followed the 
aforementioned guidelines and hypotheses at a 95% confidence 
level - as presented in Subsection Demographic and Movement 
Data. In conclusion, the ensemble/stacking ML model was the 
highest performing model in terms of the different model statis-
tics: percent-accuracy, logarithmic loss, Matthew’s correlation, 
and F-measure.

The only result analyzed in the app development process 
was the CPU time for running the app on an Android phone. This 
test was mainly conducted in order to determine the physical, 

computation efficiency of the application. The average build 
time for starting the application was about 0.231 milliseconds 
and the intermediate, artificial intelligence/machine learning pro-
cesses took a maximum of 3000 milliseconds. The overall build 
time, however, was reduced by using single variant project sync, 
a method to speed up application processing (Hohmuth & Her-
mann, 2001).
DISCUSSION
Once again, the purpose of this investigation is to determine if 
an individual has PD based on the DMS data. Speech data is a 
feature which is relatively unexplored as an indicator of PD (Bra-
benec, Mekyska, Galaz, & Rektorova, 2017); however, it was 
critical in this investigation. This investigation utilized both pure 
statistical and machine learning approaches to classify an indi-
vidual as PD or CO. Moreover, to phase the neurological disease 
diagnosis out to the public, an Android application was created 
which allows for a live diagnosis.

Through comprehensive statistical validation and machine 

Table 4. Heatmap of the 2-sample KS test results in demographic-movement dataset. In this scenario, F-measure was compared across the 
different models, via the 2-sample Kolmogorov-Smirnov test, to look for statistical significance at a 95% confidence level.

Table 6. Heatmap of the Welch’s t-test results in demographic-movement dataset. In this scenario, Matthew’s correlation was compared across 
the different models, via the Welch’s t-test, to look for statistical significance at a 95% confidence level.

Table 5. Heatmap of the Student’s t-test results in demographic-movement dataset. In this scenario, logarithmic loss was compared across 
the different models, via the Student’s t-test, to look for statistical significance at a 95% confidence level.
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learning, two types of diagnostic models were created: Category 
1 and Category 2. Category 1 models refer to those created with 
demographic and movement data, of which the highest model 
had an accuracy of 98.8%. Category 2 models refer to those cre-
ated with human speech data, of which the highest model had an 
accuracy of 95.5%. Both these accuracy levels are much higher 
than the existing diagnostic procedures. Consequently, the new 
models based off DMS data were proven to reduce the disease 
misdiagnosis rate from approximately 30% to 5%, offering a 
much more feasible and reliable diagnosis for PD.

The merits of the models and statistical analysis are depen-
dent on how closely demographic, movement, and human speech 
factors correlate to the onset and presence of PD. Before con-
ducting any statistical analysis regarding the DMS-based mod-
els, the features used in the study were analyzed to determine 
their correlations to PD. At its root, PD is caused by dopami-
nergic neurons in the substantia nigra pars compacta (Triarhou, 
2013). This reduction in dopamine production ultimately affects 

Average Merit Average Rank Attribute
0.565 ± 0.012 1  ± 0 spread1
0.531 ± 0.013 2 ± 0 PPE
0.455 ± 0.016 3 ± 0 spread2
0.368 ± 0.010 5.6 ± 1.11 MDVP:Shimmer
0.380 ± 0.023 6.0 ± 1.90 MDVP:Flo(Hz)
0.384 ± 0.029 6.3 ± 2.72 MDVP:Fo(Hz)
0.366 ± 0.013 6.5 ± 1.50 MDVP:APQ
0.362 ± 0.014 7.3 ± 1.42 HNR
0.351 ± 0.010 9.5 ± 1.63 MDVP:APQ5

Figure 2. The percent-correct metric distributions of four ML models in the demographic- movement  dataset.  The names of the models are 
shown in the individual header.   Panels A   and B show two similar metric distributions and panels C and D show additional, similar metric distribu-
tions.

Table 7. Feature selection representation in the human speech dataset. 
The performance of the human speech dataset attributes were determined 
by the “average merit” score in the first column. The average rank also is 
representative of the attributes’ performance, though to a lesser degree. The 
MDVP and spread attributes simply represent other properties and ratios of 
the human voice which were analyzed in the classification process. 



THE CANADIAN SCIENCE FAIR JOURNAL ARTICLE

CSFJ | Volume 2 | Issue 1
© Ray 2019

12

human cognition and, subsequently leads to physical and vocal 
impairment. Therefore, features in the DMS data were analyzed 
as potential predictors of PD and cross-validated with previous 
studies. For instance, many studies indicate that patients who 
are older (Reeve, Simcox, & Turnbull, 2014), shorter (Ragonese 
et al., 2007), and have a slower gait speed (Elbers, Van Wegen, 
Verhoef, & Kwakkel, 2013) have a significantly greater chance 
of having PD. Likewise, individuals have significant changes in 
their speech quality when they are beginning to show symptoms 
of the neurological disorder (Brabenec et al., 2017). Ultimately, 
all the features used in the machine learning process were con-
firmed to have some possible relationship to the presence of PD.

After this research process, the significantly higher accu-
racy levels found in this investigation – as compared to those 
currently present in the medical industry – were confirmed via 
rigorous statistical testing. These statistical techniques were used 
to validate the machine learning models. The feature ranking 
process determined that UPDRS was the top-ranked predictor of 
PD, although it had a merit score of 0.71 ± 0.009 at the 95% 
confidence level. This is important to note because, despite its 

Table 10. Heatmap of the Student’s-t test results in human speech dataset. In this scenario, F-measure was compared across the different models 
to look for statistical significance at a 95% confidence level.

Table 9. Heatmap of the 2-sample (KS) test results in human speech dataset. In this scenario, Matthew’s correlation was compared across the 
different models to look for statistical significance at a 95% confidence level.

Table 8. Human Speech Dataset: ML Model Metric Analysis. This represents how each of the ML models performed with respect to the model 
statistics. The green areas represent well-performing models while red areas represent relatively poor-performing models.

17 Also referred to as sensitivity
18 MDS-UPDRS in an abbreviation for the Movement Disorder Society 
Unified Parkinson’s Disease Rating Scale, a metric intended to be more 
accurate than the UPDRS

Table 11: Heatmap of the Welch’s-t test results in human speech dataset. In this scenario, logarithmic loss was compared across the different 
models to look for statistical significance at a 95% confidence level.
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inaccuracy, UPDRS is the most commonly used diagnostic tool 
for PD (Kostek, Kaszuba, Zwan, Robowski, & Slawek, 2012). 
With accuracies17 no higher than 85% and 74.3%, as found in 
other studies, UPDRS and MDS-UPDRS18 respectively are indi-
vidually unreliable metrics in determining whether an individual 
has PD (Starkstein & Merello, 2007) (Raciti et al., 2019). Despite 
the undependable performance of these metrics, UPDRS was still 
computationally determined to be a key feature in determining if a 
patient has PD in the demographic-movement dataset.

The 56% accuracy of ensemble method (stacking) in the de-
mographic-movement dataset represents a rare case of how en-
semble methods do not always produce higher prediction rates 
(Niculescu-Mizil & Caruana, 2012). It serves as a reminder than 
ensemble models should not simply be used due to their perceived 
efficiency as compared to standard, “regular” models. The low-
er-than-average accuracy level in the ensemble model was likely 
due to the superimposition of the noise in the datasets. For exam-
ple, the demographic and movement dataset has features which 

Figure 3. Human Speech Top-Parameter Space. This was used to iden-
tify PD and CO distinctions.

Figure 4. The F-measure metric distributions of four ML models in the demographic-movement dataset. The names of the models are shown in 
the individual header. Panels A and B show two similar metric distributions and panels C and D show additional, similar metric distributions.
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are integral to the classification process, such as UPDRS, Speed, 
and TUAG. It also has other features, which were not very import-
ant in the classification process, such as age, gender, height, and 
weight. These simply increased the noise and error of the dataset. 
Now, when combining different models through the ensemble ap-
proach, both the accuracy and noise of the individual models are 
also aggregated in the finalized, stacked model (Orrell, 2005). In 
this circumstance, the noise and error of the models overpowered 
the corresponding accuracies, as depicted in Figure 5.

In contrast to the Category 1 stacked model, the Category 
2 stacked model was the top performing model at 98.8% accura-
cy. By the same analogy, the high accuracies of the models had 
a greater impact than the combined noise-error value of the very 
same models. This resulted in an improved machine learning 
model for Parkinson’s classification in the human speech dataset.

It is also important to note the role of bias and different fea-
ture-weightings in the machine learning methods. This condition 
is required to achieve justifiable results for the investigation. First-
ly, unaltered and balanced data was used for the machine learning 
and statistical analysis procedures. Secondly, individual weight-
ings in the feature set were not predetermined. For instance, the 
researcher did not explicitly program either Category 1 or Cate-
gory 2 models to “focus more” on UPDRS or Speed when classi-
fying whether   a patient has PD. Every classification model used 
during training automatically decided which features were more 

important than the others and are depicted in feature ranking re-
sults. Specifically, in this scenario, the relatively low bias in this 
dataset proves the verity of the statistical and machine learning 
results.

The MMA conducted on both datasets was used to identify 
inconsistent models. An example of an inconsistent model would 
be shown on the heatmaps as a mixture of red and green: this 
would represent that some of the model statistics are unexpect-
ed, rendering the model worthless. However, such inconsistencies 
were not identified in heatmaps (as shown in Table 3 and Table 
8), meaning that all models were consistent and valid for further 
statistical analysis.

The DVs conducted for both datasets further confirmed the 
results of the machine learning models, specifically the accuracy 
levels. The distinct clusters shown in the 3D scatter-plots demon-
strate that it is possible to roughly identify both PD and CO groups 
based on the top three metrics found in the feature ranking pro-
cess. This is a significant step since it serves as a precursor for the 
machine learning classification process and allows us to achieve 
a greater understanding of the dataset. Without these visualiza-
tions, the machine learning process would be less intuitive and be 
treated more as a “black box,” which would result in a superficial 
understanding of how the DMS data is being processed.

The last method of verification, the EST, allowed us to rank 
the different machine learning models and subsequently deter-
mine which models were “better” and why. As seen in the panel 
in Figures 2 and 4, the histograms of the model statistics – spe-
cifically percent accuracy and F-measure – visually seem quite 
similar: it is difficult to differentiate between the different graphs, 
and, therefore, the models. To distinguish between the different 
machine learning models, statistical significance tests were im-
plemented (“Kolmogorov– Smirnov Test”, 2008), especially the 
non-parametric Kolmogorov-Smirnov test. Here the reference 
distribution was one of the histograms and the comparison distri-
bution was the other, similar-looking histogram in Figures 2 and 
4. As previously stated, the purpose is to distinguish between the 
two histograms in order the find the better model. The P-values 
greater than α = 0.05 indicated statistical significance, meaning 
that the comparison model was better than the reference model. 
Conversely, P-values lower than α = 0.05 indicated insignificance, 
meaning that the comparison model was worse than the reference 
model. The comparative heatmaps for each of the three signifi-
cance tests allowed us to create a relative matrix of P-values, pro-
viding a quick method to determine the top performing models in 
the DMS dataset.

Ultimately, this investigation offers a computational archi-
tecture which provides a significantly more accurate and cost-ef-
fective alternative to current procedures used to diagnose PD. 
Currently, there are four methods to determine if an individual 
has PD: physical tests, chemical tests, brain-imaging scans, and 
genetic testing. There is great discrepancy between the accuracy 

Figure 5. Ensemble Modeling Accuracy-Noise Trade-off in Cate-
gory 1 Models. The balance represents how ensemble modeling had a 
magnified error when considering the demographic-movement dataset. 
The two models which were stacked had a cumulative noise-error value 
which outweighed the individual accuracies of the models. For example, 
though model 1 had a high accuracy, it was outweighed by model 2s 
higher noise-error impact.
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levels of the UPDRS score, the most commonly used diagnosis for 
PD (Kostek et al., 2012), 2012).  However, they do fall in range 
between

0.51 ≤ r2 ≤ 0.71 (Brusse, Zimdars, Zalewski, & Steffen, 
2005), much lower compared to the 95.5% and 98.8% accura-
cies achieved in this investigation. Moreover, 90% of clinically 
confirmed cases of PD are idiopathic (Ben-Shlomo & Sieradzan, 
1995), meaning that the cause of the disease is unknown, and only 
10% of cases are due to genetic causes (i.e. an extended fami-
ly member was previously diagnosed with PD). Despite the high 
accuracy levels achieved in this study, many studies indicate that 
continuous testing is required to reduce the rate of mis-classifi-
cation as well. As of now, a single diagnostic test – founded on 
chemical, physical, etc. exams – is the only diagnosis a person 
receives (Rajput, 1993). However, a Danish study indicated that 
the accuracy level of the diagnostic dramatically increases from 
53% to 85%19 if patients are re-diagnosed (Wermuth, Cui, Greene, 
Schernhammer, & Ritz, 2015). This is because repeated-testing 
reduces the scope of Type I20 and Type II21 error, consequently 
reducing the mis-classification rate. The reason why there is an 
absence of repetitive testing of PD is likely due to the high finan-
cial burden on the patient and health sector: it is simply unfeasible 
to conduct more than one neuropathologic test, such as the UP-
DRS test, for PD. Currently, the average cost of diagnosis is about 
$2,31522 (Johnson et al., 2013) and treatment is about $1,000 per 
month (Brusse et al., 2005). Additionally, the burden of a Parkin-
son’s patient, including diagnostic and treatment  costs,  amounts  
to  a  minimum  of  $30,000  (Muñoz,  Kilinc,  Nembhard,  Tucker, 
& Huang, 2017). Melbourne’s Howard Florey Institute recently 
developed a relatively cost-efficient diagnosis for PD, totalling 
to $4,000 (Low-cost Parkinson’s disease diagnostic test a world 
first , 2007). However, this is only useful for the genetically-deter-
mined cases, not the larger proportion of idiopathic cases consid-
ered in this investigation.

Therefore, this machine learning framework will serve as a 
stronger prediction system for PD, however future re-diagnosis is 
recommended to ensure greater accuracy.

CONCLUSION

The current neuropathologic gold standard for PD is responsive-
ness to medication23 (Wermuth et al., 2015) with a maximum accu-
racy level of 85%. The procedures conducted in the gold standard 
do not truly diagnose a patient with Parkinson’s disease: they only 
eliminate the possibility of other diseases (Rajput, 1993). The bi-
nary (PD or CO) machine learning framework developed in this 
investigation determines if a patient has Parkinson’s disease using 
patients’ demographic, movement, and speech data – rather than 
following an unreliable process-of-elimination framework. This 
investigation suggests that instead of conducting the multitude 
of rudimentary physical tests and relatively inaccurate chemical 
and brain-imaging procedures, an analysis of demographic, move-
ment, and speech data – as per the DMS dataset features analyzed 
– is confirmed to be more accurate and reliable than the current-
ly accepted gold standard (minimum accuracy = 95%, maximum 
mis-classification = 5%). To further reduce this mis-classification 
rate, repetitive testing is now a feasible option as there are no costs 
related to inputting DMS data into the free Android application.
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