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Abstract General-purpose robots operating in unstructured environments have the
potential to benefit by leveraging abstract, commonsense knowledge for task execu-
tion. In this paper, we present an approach for automatically generating a compact
semantic knowledge base, relevant to a robot’s particular operating environment,
given only a small number of object labels obtained from object recognition or
a robot’s task description. In order to cope with noise and non-deterministic data
across our data sources, we formulate our representation as a statistical relational
model represented as a Baysian Logic Network. We validate our approach in both
abstract and real-world domains, demonstrating the robot’s ability to perform infer-
ence about object categories, locations and properties given a small amount of local
information. Additionally, we present an approach for interactively validating the
mined information with the help of a co-located user.

1 Introduction
When a robot is tasked to operate in a new environment, it should have the abil-
ity to leverage external knowledge sources to acquire common knowledge about
its general environment instead of learning everything from scratch. For example,
a maintenance robot should have the ability to leverage common knowledge about
tools, just as a home robot should have access to knowledge about household items.
Multiple knowledge bases and semantic knowledge graphs have been developed
in the AI community that incorporate general, commonsense knowledge; examples
include WordNet [13], ConceptNet [18], and ResearchCyc [10, 12], as well as ex-
tensions of this work in other research communities, such as ImageNet in computer
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vision [4]. Prior work has shown that these language-based knowledge resources
can be used as a foundation for powerful reasoning methods [1, 24].

Within robotics, several projects have focused on constructing large-scale seman-
tic reasoning databases, often by mining the above resources. The RoboEarth [22]
and KnowRob [20] projects have contributed representations that allow semantic
data obtained from human labels and ontologies to be stored within the scope of
larger robotics architectures. The RoboBrain project [16] seeks to create a massive
general-purpose robot knowledge graph encompassing perception, planning, con-
trol, natural language and structured knowledge data. Our work considers semantic
data mining from a different perspective – given only information available in its
environment, how can a robot leverage existing semantic resources to construct a
small, situated knowledge base containing semantic information that is both gen-
eral and uniquely adapted to its particular environment. Thus, instead of creating
another general-purpose knowledge base, we study the extent to which local obser-
vations can be leveraged to retrieve relevant semantic information at a scale that is
more efficient, and often more computationally tractable.

In this paper, we contribute a domain-independent framework for generating a
context-specific knowledge network for commonsense reasoning. Given only a set
of seed words, obtained from object labels from object recognition or a task descrip-
tion (e.g., fork, dishwasher), our approach leverages existing semantic knowledge
bases to construct a unified probabilistic representation that allows for effective in-
ference and generalization over a wide range of tasks (e.g., IsA(fork,utensil), Used-
For(dishwasher,wash dishes)). In order to cope with noise and non-deterministic
data across our data sources, we formulate our representation as a statistical re-
lational model that enables efficient forward and reverse inference over the set of
known objects. Specifically, we utilize a Bayesian Logic Network (BLN) [8], which
combines a set of directed relations between abstract concepts, in our application
IsA, AtLocation, HasProperty, and UsedFor, with a corresponding probability dis-
tribution that models the uncertainty inherent in these relations. We describe how a
BLN can be automatically mined from a small number of seed words, and validate
its inference performance on 13 abstract domains seeded from object recognition
and robot task plans. We then embed the Bayesian reasoning framework within a
robot architecture and demonstrate its use in enabling a mobile robot to perform a
series of real-world tasks. Finally, we conclude the paper by describing an approach
for interactively validating and refining the information stored in the BLN with the
help of a co-present human.

2 Related Work
Numerous projects across the AI community have sought to make use of common-
sense and semantic knowledge. Three large-scale commonsense knowledge net-
works used across a wide range of applications are WordNet [13], ConceptNet [18],
and ResearchCyc [10, 12]. WordNet consists of a collection of synsets, which con-
nect concepts hierarchically through the IsA relation. WordNet also distinguishes
between different senses of the same word and provides glosses, or definitions, for
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each sense. While WordNet is clean and hand-coded, it also lacks diversity in the
types of relations it contains. ConceptNet, on the other hand, contains several dozen
different relations, but it does not distinguish between word senses and is largely
crowdsourced, leading to a large amount of noise. ResearchCyc uses an even larger
number of relations (currently around 17,000) to connect concepts. For the purposes
of this work, we choose to use data from WordNet and ConceptNet to take advan-
tage of the complimentary strengths of each. We do not currently use ResearchCyc
because its relational structure introduces significant challenges to automatic data
retrieval and generalization; prior work leveraging ResearchCyc has largely relied
on hand-picked data [20].

In other work, Zhu, et al. [24] perform affordance prediction on a set of images
by using a Markov Logic Network (MLN) [15] to represent affordance knowledge.
This work also does not deal with context and used hand-selected objects and affor-
dances in the network. In [3], contextual noise is addressed by disambiguating the
concepts in ConceptNet to enrich the WordNet senses with more diverse knowledge
for improved performance on word sense disambiguation tasks. While disambiguat-
ing ConceptNet helped provide context for each of its concepts, the resulting knowl-
edge base contained only abstract information. In contrast to this approach, [19] did
construct a situated knowledge hierarchy in a (nearly) automated way, however, the
resulting model only included hypernims (the IsA relation).

Within robotics, the KnowRob [20] and RoboBrain [16] projects are most closely
related to our work. In KnowRob, the authors create a knowledge network from a
variety of encyclopedic sources and represented the network using Prolog rules and
the Web Ontology Language. This network is then used to repair robot task plans by
filling in missing low-level details from high-level task descriptions. However, the
KnowRob representation results in a large network without contextual refinement,
and the concepts represented therein were manually selected according to perceived
relevance to robotic applications rather than automatically generated. In RoboBrain,
the authors generate a multimodal knowledge network for robotics using data col-
lected automatically from the web. Similar to KnowRob, the resulting network is
very abstract and does not account for the domain-specific details relevant to the sit-
uational context of the robot. Finally, the RoboEarth project focused on the creation
of a cloud repository of generalizable robot knowledge, including object models and
robot task descriptions, that could be transferred across robot platforms and domains
[22]. Our work is complimentary to the above research efforts, but differs in its fo-
cus, examining instead how local observations can be leveraged to retrieve relevant,
domain-specific semantic information.

3 Semantic Knowledge Mining and Representation
A Bayesian Logic Network [8] is a directed statistical relational model in which the
variables under consideration are represented as first-order terms or predicates with
arguments. BLNs allow logical constraints, represented as first-order logic rules,
to be imposed on the network. Prior work in computer vision has utilized Markov
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Fig. 1 A flowchart showing the overall approach taken to generate the network. The dashed box
shows the components of the algorithm, while white boxes are from external sources.

Logic Networks [15], a representation that unifies Markov Random Fields and first-
order logic, for modeling object attributes and affordances [24]. However, parameter
learning in MLNs is an ill-posed problem [7] and approximate inference is expen-
sive even for simple queries. In contrast, BLNs are easy to train, more efficient and
have scaled better to our application. Figure 3 shows a small example BLN, which,
once constructed, can be used to perform inference using likelihood weighting [5] to
answer queries such as AtLocation(Ob jecti,x) or HasProperty(Ob jecti,x). To con-
struct the BLN, we autonomously mine two online sources of semantic knowledge,
WordNet [13] and ConceptNet [18]. Figure 1 presents an overview of the BLN gen-
eration pipeline, with main components shown in gray.

Given seed words obtained from object recognition labels, the first step in the
pipeline is to perform word sense disambiguation to determine the contextually
correct senses of the words. Since WordNet provides information on the different
word senses, we use it to perform this disambiguation. For example, the word pan
has the following four senses in WordNet:

1. pan, cooking pan – cooking utensil consisting of wide metal vessel
2. Pan, goat god – (Greek mythology) god of fields and woods and shepherds and

flocks
3. pan – shallow container made of metal
4. Pan, genus Pan – chimpanzees; more closely related to Australopithecus than to

other pongids

Given a particular environment, not all of the above senses will be contextually
relevant. To keep the size of the network small and contextually accurate, we dis-
ambiguate the seed words and exclude the irrelevant senses from the generated net-
work. Our approach is similar to that in [21]. Given that the seed words originate
from the same context, they are likely to be semantically similar. Therefore, we per-
form disambiguation by finding the sense of each word that maximizes the overall
similarity between the seed words. To do so, the disambiguation algorithm finds
a Minimum Spanning Tree (MST), where each node represents the most relevant
sense of one of the seed words.

After disambiguating the seed words, we next populate the initial structure of the
BLN using hypernyms, object categories defined by the IsA relation. Categorical
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Fig. 2 An example of the IsA relation before (left) and after (right) compression. Compression
reduces the amount of redundant and high-level information in the network.

information is obtained by traversing the WordNet hypernym hierarchy from each
of the disambiguated seed words to the root node in WordNet and adding each node
along this path to the network (e.g., Tomato→ Solanaceous Vegetable→ Vegetable).
Although WordNet is hand-coded, it does contain a large number of redundant and
high-level concepts that convey little information, as shown in Figure 2. Including
these nodes can lead to rapid expansion in the size of the network, as well as inclu-
sion of uninformative information (e.g., IsA(Food,Entity)). To reduce the size of the
network to a manageable level and remove the high-level and redundant nodes, we
employ a compression strategy similar to [19]. The compression uses the following
three rules:

1. Eliminate selected top-level, very general, categories (e.g., abstraction, entity).
2. Starting from the leaves, eliminate a parent that has fewer than n children, unless

the parent is the root.
3. Eliminate a child whose name appears within the parent’s (e.g., Solanaceous Veg-

etable→ Vegetable).

For the first rule, we define “top-level” categories as words with an information con-
tent [17] of less than 5.0 when evaluated against the Brown corpus [9]. Additionally,
we choose n = 1 to remove nodes with only a single child. Figure 2(right) shows the
example BLN following compression.

Next, we expand the BLN to include the UsedFor, HasProperty, and AtLocation
relations from ConceptNet. To do so, we first disambiguate the relations in Con-
ceptNet to remove contextually irrelevant relations. ConceptNet does not include
sense information, so we use an approach similar to that in [3]. For each ConceptNet
relation, < c,relation,d >, where d is an ambiguous word and c is disambiguated,
we generate the Word Sense Profile, WSP(di) = w1,w2, ... for each sense, di, of
the word d. Each w j in the WSP is a word from one of the following sources in
WordNet:

1. All synonyms of di
2. All words (excluding stop words) in the gloss/definition for di
3. All direct hypernyms (parent nodes) and hyponyms (child nodes) of di in Word-

Net
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Fig. 3 An example of high-level knowledge representation using a BLN.

4. All meronyms/holonyms (has part or part of) relations in WordNet
5. All words (excluding stop words) in the glosses of the direct hyponyms of di

Once we generate the WSP for each sense, we compute a score for each WSP
equal to the sum of the semantic relatedness between the non-ambiguous word, c,
and each word in WSP(di). The relatedness measure is calculated using Explicit
Semantic Analysis (ESA) [6] based on word frequency count of Wikipedia entries.
We choose the sense of di that corresponds with the maximal relatedness value, and
add to the BLN only the relations corresponding to the selected senses of each word
to avoid contextually irrelevant information from being added to the network. Addi-
tionally, we exclude relations, < c,relation,d >, where d consists of more than one
word. Since ConceptNet is not hand-coded, it contains a significant amount of noisy
or erroneous relations, and excluding multi-word relations significantly reduced the
size of the network without removing a large number of correct relations.

The final step in BLN construction is to learn the conditional probability func-
tion for each fragment in the network. To do so, we generate training evidence with
a likelihood equal to a linear combination of the weights assigned to each relation
in ConceptNet and the Explicit Semantic Analysis relatedness measure between the
two concepts in the relation. This approach provides an initial estimate for real-
world probabilities and enable inference results to be ranked according to their rela-
tive likelihoods. Once we collect the evidence, the conditional probability functions
can be learned via maximum likelihood by counting the frequency of each child
node being true for each configuration of the parent nodes.

An example resulting BLN is shown in Figure 3. We chose the IsA, HasProperty,
AtLocation, and UsedFor relations because together they support a wide range of
inference queries that can be used across many domain-independent applications.
Understanding of object categorization, properties and uses can enable a robot to
identify objects that can perform a certain function, or act as a substitute for a miss-
ing item. Information about likely object locations can be used in locating objects
or act as a prior for semantic mapping. Similarly to the way in which humans use
prior knowledge when visiting a new location, we view the presented approach as a
means of providing a situated prior to the robot. In this work, we examine the per-
formance of the fixed prior; in future work, we will explore how the resulting model
can be refined over time to match a given environment.
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SUN1 (20) SUN2 (38) SUN3 (17)
...

SUN10 (35) SUN10 labels

Fig. 4 Four of the ten images of kitchens taken from the SUN database, and an example of the
accompanying object label information. Number of seed words generated per image is listed in
parenthesis.

4 Evaluation of Semantic Inference in Abstract Domains
The knowledge framework described so far has the ability to mine abstract semantic
information, but does not yet integrate data from situated robot interactions with
the environment. In this section, we briefly evaluate the quality of the abstract data
mined, before discussing application and refinement of this knowledge in a robotic
setting. We evaluate the performance of our approach on 13 abstract domains using
seed words obtained from two different sources:

• Ten segmented and labeled images of kitchen scenes obtained from the SUN
database [23] as an analog for object recognition output from a robot’s vision
system. Figure 4 shows each of the images with the number of seed words from
each image. Example seed words obtained for image SUN10 include basket,
cabinet, ceiling, ceiling lamp, clock, coffee maker, cup, curtain, desk lamp, etc.

• Three task descriptions related to typical household chores, including cooking a
recipe (spaghetti), doing laundry, and cleaning the house. Each of the manipula-
ble objects in the three tasks was used as a seed word. For example, the recipe
task included objects such as spaghetti, tomato sauce, and saucepan, doing laun-
dry included shirt, laundry detergent, and washer, and cleaning included vacuum,
mop, and soap. The three tasks contained 19, 15, and 11 seed words, respectively.

The size of the BLN generated from each of these data sets varied from 69 (cleaning
house) to 195 (SUN10) predicates, with an average size of 129.

For each set of seed words, we tested the word sense disambiguation accuracy
by computing the percentage of correctly disambiguated seed words. The mean dis-
ambiguation accuracy for the three task descriptions was 78.5%± 3.5, while the
SUN images averaged at 83.9%± 6.8. Overall, the disambiguation algorithm per-
forms better with larger numbers of seed words because the algorithm finds the set
of senses that maximizes the similarity between the seed words. This is reflected in
the three task description experiments, which had at most 19 seed words, compared
to as many as 38 seed words in SUN images. Thus, in a real-world setting, word
sense disambiguation will improve as the robot observes more objects.

Next, we evaluate the forward and reverse inference accuracy of the model result-
ing from each independent set of seed words by comparing the BLN output to a gold
standard1. For forward inference, we perform inference over the network where the

1 The gold standard was generated by hand based on commonsense information (e.g., Used-
For(Knife,Cut) is true), and then validated by comparing to crowd-generated labels from five
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Table 1 Forward and reverse (in parenthesis) inference accuracy (%) over the seed words from
each source when compared to the gold standard.

Source IsA AtLocation HasProperty UsedFor

Recipe 97.6 86.8 (71.4) 82.0 (84.4) 88.1 (88.0)
Laundry 98.3 77.3 (82.1) 88.9 (87.5) 89.5 (90.1)
Cleaning 98.6 72.7 (67.1) 94.7 (90.9) 79.2 (80.0)

SUN1 95.0 81.1 (93.9) 78.0 (85.3) 91.3 (93.5)
SUN2 94.1 84.4 (85.7) 90.4 (91.6) 93.7 (96.3)
SUN3 94.5 76.5 (85.9) 72.4 (81.5) 80.3 (86.9)
SUN4 95.1 78.7 (88.9) 65.2 (78.8) 87.7 (91.7)
SUN5 97.4 83.8 (89.3) 85.0 (87.3) 90.8 (93.7)
SUN6 96.6 73.2 (80.4) 87.2 (90.6) 88.8 (93.6)
SUN7 93.5 74.0 (81.0) 83.6 (90.8) 85.5 (92.1)
SUN8 94.2 77.3 (78.3) 84.9 (85.8) 87.8 (90.2)
SUN9 96.2 78.6 (78.6) 88.8 (89.8) 87.9 (91.4)
SUN10 97.0 75.7 (81.3) 88.2 (90.0) 91.4 (93.3)

Mean 96.0 78.5 (81.8) 83.8 (87.1) 87.9 (90.8)

evidence variable is IsA(Ob jecti,x) with a value set to true. We then query each of
the relations, IsA(Ob jecti,si), AtLocation(Ob jecti,si), HasProperty(Ob jecti,si), and
UsedFor(Ob jecti, si). These queries return the probability of x’s categorization,
likely location, properties, and affordances; a query result is considered true if the
associated probability is greater than 0.5, and false otherwise. Reverse inference
uses IsA as a query variable (instead of as an evidence variable), enabling the robot
to query for a list of objects that can be found at a particular location, have certain
properties, or can be used for a desired purpose. Table 1 shows the results across all
thirteen data sets, with reverse inference results listed in parenthesis.

Inference results for both the task descriptions and the SUN images showed high
accuracies for the IsA relation, with an average of 96%. This is due to the fact that
WordNet, the source of the IsA relation, is hand coded and thus contains highly ac-
curate data. The accuracies for the AtLocation, HasProperty, and UsedFor relations
average at 78.5%, 83.8% and 87.9%, respectively for forward inference, and 81.5%,
87.1% and 90.8% for reverse inference. All three query types show an increase in
performance as the number of seed words increases, in part due to the improve-
ments in the underlying disambiguation rate, and in part because of the richer set of
connections present with more data.

Critically, this promising result shows that as few as 20 words obtained from a
single image of the robot’s environment already allows the robot to mine sufficient
semantic information to predict many commonsense facts. Examples include identi-

crowd workers (0.8 agreement threshold). A comparison between hand-labeled and crowd-labeled
data resulted in accuracy values within 1% for all tested instances.
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Fig. 5 Robot architecture overview.

fying a table, dishwasher, and cabinet as likely locations for a bowl; predicting that
an apple has the properties red, round, and healthy; knowing that a knife can be used
to pare, scratch, and separate; and inferring that a drawer can be used to contain, or-
ganize, and hide. In the next section we discuss how this general knowledge can be
adapted to a specific robot environment.

5 Leveraging Semantic Knowledge in Situated Robotic System
To validate our Bayesian reasoning framework on a physical robot, we utilize the
robot architecture shown in Figure 5. The architecture consists of three main com-
ponents: Seed Word Generation, Abstract Knowledge Base, and Local Knowledge
Base. Below, we present the technical details of each component, including im-
provements made to the BLN generation process to improve location data process-
ing. In the next section, we report results from two trials with a mobile robot.

Object Recognition: The pipeline begins with object recognition, assigning ob-
ject class labels (e.g., cup, bowl, etc.) to objects detected in the robot’s environment.
The generated class names become seed words that are used to extract information
for the BLN. For object detection, we use the open source real-time object detection
system YOLOv2 [14]. YOLOv2 uses a convolutional neural network and computes
the location and classification of each object in an image in a single pass by dividing
the image into cells, calculating an objectness score and then object classification
probabilities over the individual cells, and then using anchor boxes to predict the ob-
ject bounding boxes. For our robot experiments, we trained YOLOv2 on a subset of
COCO [11] object classes, consisting of the following 31 objects commonly found
in a home environment: apple, banana, book, bottle, bowl, broccoli, cake, carrot,
chair, clock, couch, cup, donut, fork, glass, knife, laptop, microwave, orange, oven,
phone, pizza, plant, refrigerator, sandwich, sink, spoon, table, toaster, tv, vase. Each
time the system recognizes the object, the object label, bounding box of the object,
and raw rectangle segment of the object is sent to the Local Knowledge Base, and
the object labels are passed to the Abstract Knowledge Base.
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Metric map Topological map

Fig. 6 Topological and metric maps of the robot’s environment.

Abstract Knowledge Base (AKB): The Abstract Knowledge Base consists of
the pipeline described in Section 3, with two modifications. First, we use the SUN
image database as an additional source of AtLocation data, providing us with a richer
set of room-level locations than available in ConceptNet. Locations of an object are
imported based on probability of occurrence within the database. To maintain scope,
we add only locations related to the high level environment the robot is operating in
(i.e., related to house, eliminating park, grocery store, etc). Second, to ensure correct
probability distribution of hierarchical location information (e.g., counter-kitchen-
apartment), we encode transitivity properties using the first-order logic rules of the
BLN.

Local Knowledge Base (LKB): We represent the robot’s local environment
through a collection of object instances, forming a memory of encountered items,
and their locations and properties. For each object class o, we store i instances of
that object within the LKB, where each instance corresponds to a unique object of
that class. The LKB is implemented using PyTables and HDF5; each object class o
is stored as a database, with a table generated for each object instance. We distin-
guish instances using multi-object tracking that identifies instances using local fea-
tures. For each instance, we store the object label, previously seen locations (pose
and semantic label), image region corresponding to the bounding box from object
recognition, visual information (RGB-D values), and properties of the instance (e.g,
color, material), if known. The resulting representation provides a scalable memory
system that allows for efficient retrieval of all of its recent memories of instances.

To provide a semantic location for an object, we utilize a hybrid map [2], which
links a topological map, consisting of a tree graph representing human domain
knowledge, with a metric map of spatial locations in the environment. Figure 6
shows the topological and metric maps used in this work. The links between the
topological map and metric map are expressed directly in the topological map nodes;
association of each node with a volume in the metric map. This map structure en-
ables the robot to obtain a semantic label for any 3D point that is hierarchical (e.g.,
object o is in a drawer in the kitchen in the apartment).
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Fig. 7 Robot performing Case study 1. (a) scanning environment, (b) looking for bowl in refriger-
ator, (c) looking for and finding bowl in cabinet.

6 Evaluation in Robot Experiments
We evaluate our situated reasoning framework using two real-world case studies in a
small-scale apartment setting (Figure 6) using a mobile robot equipped with a laser
rangefinder and RGB-D camera.

Case study 1: In the first case study, we demonstrate the use of abstract se-
mantic knowledge to enable the robot to locate objects never before seen in the
environment. In this experiment, the robot begins by randomly exploring the en-
vironment shown in Figure 7, in which food items are visible on the table. The
robot obtains the following 11 seed words from object recognition: apple, ba-
nana, book, bottle, block, cup, donut, fork, orange, spoon, vase, using which it
constructs a BLN consisting of 97 nodes encoding the abstract knowledge of the
environment. Next, we request the robot to find a bowl within the environment.
Note that we provide the robot with the semantic map, shown in Figure 6, but no
other information beyond the seed words listed, which do not include the bowl.

Table 2 Ranked list of
likely bowl locations.

Location Prob.

refrigerator 1.000
cabinet 1.000
cupboard 1.000
kitchen 0.933
dishwasher 0.786
closet 0.773
food 0.724
sink 0.723
kitchen table 0.722
diningroom 0.273
bathroom 0.225

To complete this task, the robot must first add the word
bowl to the BLN, using the words already present in the
network to perform word sense disambiguation. The result
defines bowl as “a round vessel that is open at the top; used
chiefly for holding food or liquids” as opposed to “a large
structure for open-air sports or entertainments” or “a small
round container that is open at the top for holding tobacco”.
Given this definition, appropriate relations are mined from
WordNet and ConceptNet following previously described
processes. Once the BLN has been updated, the robot per-
forms a reverse inference query to locate the bowl, which
results in the list of possible locations, ranked by probabil-
ity value, shown in Table 2. Using the semantic map pro-
vided, the robot is able to ground the bolded words above
to known locations in its environment. Using the resulting
sorted list of locations (refrigerator, cabinet, cupboard, sink,
table), the robot explores the environment until it success-
fully locates the bowl in the cabinet. This case study vali-
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dates an important use case for the semantic reasoning framework in which situated
and abstract knowledge is combined to enable the robot to reason about a previously
unknown object.

Fig. 8 The robot recording
location of the bowl.

Case study 2: In the second case study, we exam-
ine the relative tradeoffs of using abstract versus local
knowledge in locating a known object given an increas-
ing number of observations. We utilize a bowl and a
potted plant as representatives of classes of objects that
have a high and low location distribution, respectively.
For this experiment, we allowed the robot to explore the
environment and observe the location of the two items
in 20 independent runs (Figure 8). During each run, the
plant and bowl were placed in a random location sam-
pled from the following distributions:

• plant: office desk: 50%, coffee table: 25%, counter: 25%
• bowl: dining table: 20%, kitchen table: 20%, counter: 12%, coffee table: 12%,

office desk: 12%, drawer1: 12%, drawer2: 12%

Leveraging this data, we conducted 5000 simulated trials, splitting the dataset of
the above observations into 75-25% randomized training-test set per trial. For each
trial, we present our system with an increasing number of object observations and
use the AKB and LKB to predict the location of the bowl and plant, comparing the
result to the hold-out test set. We consider the trial to be a success if the true object
location of the object is within the top 3 ranked locations returned by the algorithm.

Fig. 9 Average accuracy (AKB vs. LKB) across
5000 permutations to predict the locations of pot-
ted plant and bowl.

Figure 9 presents the results of the
experiment; solid lines represent infer-
ence using only local observations (in-
stances stored in the LKB) and dashed
lines represent inference performed us-
ing the Bayesian Logic Network based
on abstract knowledge. The two knowl-
edge bases share no information to il-
lustrate the relative strengths and weak-
nesses of each. For both objects, the
BLN provides the robot with the ability
to make an “intelligent guess” when no
other information is available, allowing
the robot to predict the correct location
of both plant and bowl with 60% accu-
racy. The robot’s local observations, by
comparison, become highly valuable as the robot gains information about the envi-
ronment, surpassing BLN performance after 2 and 11 observations for the plant and
bowl, respectively.

As this experiment demonstrates, the incorporation of semantic knowledge into
the robot architecture provides a way to supplement or guide local observations. Just
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as a person entering an unfamiliar house can leverage prior semantic knowledge to
guess likely item locations (e.g., search kitchen drawers for a fork), our robot is able
to infer likely object locations. Over time, a person would stop relying on abstract
information and instead utilize local knowledge, going directly to the needed drawer
without searching. This process is equivalent to enabling the robot to increasingly
rely on the LKB. Our future work will explore techniques for merging abstract and
local data sources, as well as ways in which the robot is able to leverage abstract
knowledge to guide exploration, semantic mapping, and task execution in unfamiliar
environments.

7 Human Refinement using Actively Situated Knowledge (ASK)
The final component of our work, is to consider refinement of the robot’s abstract
knowledge in the BLN from another situated knowledge source – a co-present hu-
man. Our prior case studies demonstrated the effectiveness of the BLN in predicting
location information. However, certain other types of object information, such as
material properties and affordances, are more difficult for the robot to acquire inde-
pendently. Additionally, the BLN contains a certain level of noise, due to both word
sense disambiguation errors and noise within ConceptNet. We, therefore, introduce
Actively Situating Knowledge (ASK), a technique which situates the general knowl-
edge in the BLN with the help of a human user2, which we apply to the HasProperty
and UsedFor relations in the BLN.

Note that the BLN contains too many property edges to make it practical to verify
each one with the human user. Thus, our goal is to intelligently query a subset of
property relations for validation while still obtaining verification of all the relations
within the BLN. For this, we first modify the BLN to add inter-property edges. For
all pairs of properties in the BLN, we add an edge if a relation exists between them in
ConceptNet. For example, since an IsA relation exists between Metal and Aluminum
in ConceptNet, and a HasProperty relation exists between Glass and Recyclable,
inter-property edges are added between these pairs of relations, respectively.

Next, given N, the number of known objects, and P, the number of known prop-
erties, we define:

• Tmaterial : a Px1 table listing all material properties present in our BLN (i.e., nodes
that hold a relation with material in the ConceptNet, e.g. metal, aluminum, plas-
tic, etc.).

• T O
assoc: a NxP table storing the ConceptNet association values between object O

and every property belonging to O, where the the association value is a measure
between 0 to 1 of how related two words are3.

• T O
interprop: a PxP table storing the ConceptNet inter-property association values

between any two properties, PO, associated with object O.

2 This approach could also be combined with crowdsourcing, although we relied on a co-present
expert for all experiments described here.
3 We ignore properties with value < 0.07
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Given the above tables, we select properties to verify with a human expert based
on the inter-property association value. For each object, we alternate between query-
ing the expert about property p ∈ PO with the highest association value and the
lowest association value in T O

assoc. We alternate queries between maximum and min-
imum inter-property association value in order to maximize information gain by
asking about properties that are least likely to occur together.

If a property is confirmed as true by the user, and exists in Tmaterial , then all
other material properties belonging to that object are assumed to be false and are
not queried (we make the simplifying assumption that each object only has a single
material property). Given this information, we can also infer that the predecessors of
that property are true for O (e.g., if aluminum is true, then wood is false but metal is
true). For the successors of O, we assume their hasProperty relations are true (e.g.,
if metal true, then opaque true), but that IsA relations must still be verified (e.g.,
if metal true, still need to verify aluminum). If a node in this isA set is verified to
be true, the rest are assumed to be false. However, if an attribute is verified to
be false, all its IsA successors are assumed to be false but its HasProperty succes-
sors are still queried (e.g., if metal is false, then tin is assumed to be false but
recyclable is still queried). We repeat this process until all the properties are veri-
fied as true/false and create an updated, expert-verified BLN (vBLN) using the
updated true verified property relations.

We evaluate ASK by comparing the accuracy of the resulting vBLN to a ground
truth BLN, gBLN, generated by an expert. The gBLN differs from vBLN in that ev-
ery edge was expert-verified instead of just the subset explored by ASK. To evaluate
ASK performance we calculate the dissimilarity index:

Idis =
Uncommon edges between ground truth, gBLN and vBLN

Total number of unique edges in gBLN and vBLN

To evaluate ASK, we trained a BLN using the 31 seed words from the COCO
dataset, resulting in a network consisting of 195 property edges. Using ASK, we
performed 84 clarifications, resulting in 50 pruned property edges in the vBLN.
While this is a large number of clarifications, during a deployment such queries
could occur over a length of time (multiple days) as the robot spends time learning
about its environment. The algorithm obtained a final dissimilarity score Idis = 0.11,
indicating that the vBLN contained only 6 extraneous edges in comparison to the
ground truth. In future work, this result can be further improved through selective
filtering of data imported from ConceptNet, or through the use of more reliable
data sources. The above experiment demonstrates that even with highly noisy data
sources, we are able to intelligently refine the robot’s semantic knowledge. Further-
more, the inference techniques used in ASK can be leveraged in combination with
the robot’s own sensing in addition to human input, such as if material information
were to become available.
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8 Conclusion
In this paper, we explore the ability of a robot to use limited local information,
sometimes as little as the set of object labels recognized in a single image, to auto-
matically mine semantic information about its environment. We embed the mined
information within a statistical relational model, and demonstrate its use on both
abstract tasks and as part of a robot architecture, as well as introduce a technique
for interactively refining the semantic knowledge with the help of a human expert.
Our results show that, just as for humans, semantic knowledge can provide valuable
guidance in the absence of extensive familiarity with the operating environment. In
future, we will explore how local and abstract information can be merged over time
to enable the knowledge framework to further adapt to the robot’s current environ-
ment.
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