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Recent advances in single-cell genomics have spurred the charac-
terization of molecular states and cell identities at unprecedented 
resolution1–3. Droplet microfluidics, multiplexed nanowell arrays, 
and combinatorial indexing all provide powerful approaches to pro-
file the molecular landscapes of tens of thousands of individual cells 
in a time- and cost-efficient manner4–8. Single-cell RNA sequenc-
ing (scRNA-seq) can be used to classify cells into ‘types’ using gene 
expression signatures, and to generate catalogs of cell identities across 
tissues. Such studies have identified marker genes and revealed cell 
types that were missed in prior bulk analyses9–15.

Despite this progress, it has been challenging to determine the 
developmental trajectories and lineage relationships of cells defined 
by scRNA-seq (Supplementary Note 1). The reconstruction of devel-
opmental trajectories from scRNA-seq data requires deep sampling 
of intermediate cell types and states16–20 and is unable to capture 
the lineage relationships of cells. Conversely, lineage tracing methods 
using viral DNA barcodes, multicolor fluorescent reporters or somatic 
mutations have not been coupled to single-cell transcriptome read-
outs, hampering the simultaneous large-scale characterization of cell 
types and lineage relationships21,22.

Here we develop an approach that extracts lineage and cell 
type information from a single cell. We combine scRNA-seq with 
GESTALT23, one of several lineage recording technologies based 
on CRISPR–Cas9 editing24–28. In GESTALT, the combinatorial and 
cumulative addition of Cas9-induced mutations in a genomic bar-
code creates diverse genetic records of cellular lineage relationships 

(Supplementary Note 1). Mutated barcodes are sequenced, and cell 
lineages are reconstructed using tools adapted from phylogenetics23. 
We demonstrated the power of GESTALT for large-scale lineage trac-
ing and clonal analysis in zebrafish but encountered two limitations23. 
First, edited barcodes were sequenced from genomic DNA of dissected 
organs, resulting in the loss of cell type information. Second, barcode 
editing was restricted to early embryogenesis, hindering reconstruc-
tion of later lineage relationships. To overcome these limitations, we 
used scRNA-seq to simultaneously recover the cellular transcriptome 
and the edited barcode expressed from a transgene, and create an 
inducible system to introduce barcode edits at later stages of devel-
opment (Fig. 1). We applied scGESTALT to the zebrafish brain and 
identified more than 100 different cell types and created lineage trees 
that help reveal spatial restrictions, lineage relationships, and differ-
entiation trajectories during brain development. scGESTALT can be 
applied to most multicellular systems to simultaneously uncover cell 
type and lineage for thousands of cells.

RESULTS
Droplet scRNA-seq identifies cell types and marker genes in 
the zebrafish brain
To identify cell types in the zebrafish brain with single-cell resolu-
tion, we dissected and dissociated brains from animals at 23–25 days 
post-fertilization (dpf; corresponding to juvenile stage) and encap-
sulated cells using inDrops4 (Fig. 2a and Supplementary Fig. 1). We 
used manually dissected whole brains and forebrain, midbrain, and  
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hindbrain regions. In total, we sequenced the transcriptomes of 
~66,000 cells with an average of ~22,500 mapped reads per cell (see 
Online Methods and Supplementary Dataset 1 for details of ani-
mals used). After filtering out lower quality libraries, we generated 
a digital gene expression matrix comprising 58,492 cells with an 
average of ~3,100 detected unique transcripts from ~1,300 detected 
genes per cell. We used an unsupervised, modularity-based cluster-
ing approach5,29 to group all cells into clusters (Fig. 2b) and initially 
identified 63 transcriptionally distinct populations. All clusters were 
supported by cells from multiple biological replicates.

To classify each cluster, we systematically compared differentially 
expressed genes with prior annotations of gene expression in specific 
cell types or brain regions in the literature and the ZFIN database30,31. 
Initial analysis identified 45 neuronal subtypes, 9 neural progenitor 
classes, 3 oligodendrocyte clusters, microglial cells, ependymal cells, 
blood cells, and vascular endothelial cells (Supplementary Figs. 2, 3  
and Supplementary Dataset 2). We were able to resolve all but three 
neuronal clusters (clusters 0, 24, and 31), with cluster 0 likely cor-
responding to nascent neurons mostly from the forebrain, as it dis-
plays high levels of tubb5 expression and moderate levels of neurod1 
and eomesa. We captured multiple cell types that each comprised less 
than 1% of all profiled cells. These included aanat2+ neurons from 
the pineal gland (cluster 62), representing 0.04% of captured cells; 
sst1.1+ and npy+ neurons in the ventral forebrain (cluster 53, 0.34% 
of data); aldoca+ Purkinje neurons in the cerebellum (cluster 43, 
0.65% of data); and fluorescent granular perithelial cells (cluster 54, 
0.33% of data), a population of perivascular cells recently described 
in zebrafish32. Using known marker genes and gross spatial informa-
tion from manually dissected brain regions, most clusters could be 
assigned to specific brain regions (e.g., hypothalamus in forebrain 
and cerebellum in hindbrain; Fig. 2c, Supplementary Fig. 1, and 
Supplementary Dataset 3). Spatially restricted transcription factors 
were enriched in specific clusters, including dlx2a, dlx5a, emx3, and 
foxg1a in forebrain clusters; barhl2, gata2a, otx2, and tfap2e in mid-
brain clusters; and phox2a, phox2bb, and hoxb3a in hindbrain clusters. 
Thus, regional location in the brain was a strong contributor to gene 
expression differences and drove clustering outcomes.

To identify cell types that might have been masked when analyzing 
the whole data set in bulk, we performed a second round of cluster-
ing on the larger neuronal clusters (Supplementary Dataset 4 and 
Supplementary Fig. 4). For example, reanalysis of the eight initial 
hindbrain and cerebellum clusters identified 17 transcriptionally 
distinct groups (Fig. 2d,e). After removing 5 subclusters that did not 
separate further from the original clusters or had no clear gene mark-
ers, we classified the 12 remaining subclusters. For example, cluster 
23 (hindbrain) split into three subclusters enriched in hoxb3a (s9), 
hoxb5b (s10), and pou4f1 (s15). Combined with the whole-data set 
clustering results, iterative analyses identified a total of 102 transcrip-
tionally distinct cell types in the brain.

A large subset of sequenced cells (~13%, 8 clusters) was com-
posed of neural progenitors (Fig. 2b), consistent with the continuous 
growth and neurogenesis in the zebrafish brain33. Among the dis-
tinct categories of progenitor clusters, we identified radial glia cells, 
which are the neural stem cells of the brain and express gfap, fabp7a, 
and s100b (clusters 25, 33, 48). Astrocytes have not been described 
in zebrafish, but the close relationship and shared transcriptomes 
of radial glia and astrocytes raises the possibility that some of the 
cells assigned as radial glia are astrocytes or astrocyte progenitors. 
Additional progenitor clusters corresponded to intermediate pro-
genitors expressing proneural transcription factors such as ascl1a, 
neurog1, and insm1a (8, 17); and highly proliferative progenitors 

expressing pcna, mki67, and top2a (clusters 19, 22, 44) (Fig. 2f). 
Although three progenitor clusters could be assigned to specific 
regions, gene expression profiles suggested that most progenitors 
were more closely related to other progenitors than to their differ-
entiated neighbors (Fig. 2c).

Differential gene expression identified previously unrecognized 
marker genes (Fig. 2g). For example, aplnra and aplnrb, G-protein-
coupled receptors that are involved in cell migration34, were highly 
enriched in oligodendrocyte precursor cells (OPC). Subpopulations 
of quiescent and dividing radial glia cells, as well as OPCs, expressed 
ptgdsb.1 and ptgdsb.2, enzymes that regulate synthesis of prostaglan-
din D2. npb (neuropeptide b) and gem (GTP binding protein overex-
pressed in skeletal muscle) transcripts were detected in subclusters 
of optic tectum and pallium cells, respectively.
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Taken together, these results provide the first global catalog of pro-
genitor and mature cell types in the zebrafish brain and provide a 
resource for the study of specific cell populations and marker genes 
in a vertebrate brain.

Inducible Cas9 expression enables late barcode editing
Neurogenesis occurs after the onset of gastrulation, making lineage 
trajectories in the brain most informative after this developmental 
stage. In our initial implementation of GESTALT, all editing reagents 
(Cas9 protein and sgRNAs) were injected into one-cell-stage embryos, 
thus centering barcode editing on pre-gastrulation stages23. To enable 
recording of lineages at later stages, we added two novel components 
to our system: inducible Cas9 activity and genomic sgRNA expres-
sion. We generated transgenic zebrafish wherein Cas9 activity could 
be induced using a promoter activated by heat shock, and sgRNAs 

(sgRNAs 5–9) were constitutively and zygotically expressed via U6 
promoters. We then combined all these components such that edit-
ing activity could occur both early and late (Fig. 3a). We crossed the 
GESTALT barcode transgenic to the inducible Cas9 transgenic and 
injected single-cell embryos with Cas9 protein and sgRNAs 1–4. This 
strategy initiates an ‘early’ round of Cas9 activity that edits barcodes 
at target sites 1–4 and results in the zygotic expression of sgRNAs 5–9 
from U6 promoters. We then heat-shocked the embryos at 30 h post-
fertilization (hpf) to induce ubiquitous expression of transgenic Cas9. 
To evaluate this ‘early + late’ editing strategy, we extracted genomic 
DNA from 55 hpf control and edited double-transgenic embryos, 
and amplified and sequenced GESTALT barcodes23. We observed no 
substantial editing of the barcode when Cas9 and sgRNAs were not 
injected or expressed in the embryo (Fig. 3b). Injection of Cas9 protein 
alone resulted in little editing at sites 5–9 before heat shock (average  
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each t-SNE plot (n = 58,492 cells) are colored by marker gene expression level (gray is low, red is high). Dotted boxes highlight clusters where markers 
are enriched.
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editing rate = 25%, n = 5; Fig. 3b). Upon heat-shock-mediated  
induction of Cas9, mutations were predominantly confined to sites 
5–9 of the barcode, and average editing rates were higher (65%) 
than with Cas9 protein injection alone (Fig. 3b and Supplementary  
Fig. 5). As expected, after injection and expression of all editing rea-
gents, barcodes contained edits in early sites 1–4 and late sites 5–9. 
We found that all recovered barcodes were edited (100% editing fre-
quency) with a median of four independent edits per barcode. Each 
embryo had a median of 1,504 distinct barcodes (range 731–2,213), 
demonstrating the efficiency of the editing strategy for generating 
barcode diversity.

To quantify the diversity of barcodes resulting from early and late 
editing, we compared editing outcomes in different embryos (n = 8). 
Only 63 of the 12,277 distinctly edited barcodes (0.5%) were present in 
more than one embryo, demonstrating that nearly unique sets of bar-
codes were generated in each animal (Fig. 3c). To assess the spectrum 
of barcode repair products, we profiled the nature (insertion, deletion) 
and frequency of edits within all 24,360 recovered barcodes. The land-
scape of intrasite (edits within a site) and intersite (edits that span two 
or more sites) deletions varied highly among the different target sites, 
revealing a large ‘sequence space’ available for DNA repair outcomes 
from early and late editing (Fig. 3d–f and Supplementary Fig. 5).

The addition of late edits to earlier edits predicts increased barcode 
diversity. Indeed, full barcodes containing both early and late edits 
were greater in number and less clonal compared to the early edited 
barcodes (Fig. 3g). 4,141 early barcodes diversified to 12,277 full bar-
codes. Each early barcode was observed in an average of 2.97 distinct 
late barcodes (range 1–534). The diversity and editing efficiency was 
higher in the early sites as compared to the late sites (Fig. 3b,c). Later 
edits also resulted in more intersite deletions. This difference might 
reflect the activity of distinct DNA repair pathways35,36 during devel-
opment or susceptibility to recleavage from the extended presence 
of Cas9–sgRNA ribonucleoprotein during slower cell cycles at later 
stages. Collectively, these results show that Cas9-mediated editing 
is inducible at later stages of development, and in combination with 
early editing generates thousands of different barcodes.

scRNA-seq simultaneously recovers single-cell transcriptomes 
and lineage barcodes
To implement our goal of embedding both lineage and cell type infor-
mation in a cell’s transcriptome, we introduced the barcode into the 
3′ UTR of a heat-shock-inducible DsRed transgene (Fig. 3a). Upon 
heat shock, the edited barcode is expressed as part of the DsRed 
mRNA and can be isolated with the cellular transcriptome. To test this  
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technology (scGESTALT), we performed early and late editing at the 
one-cell stage and at 30 hpf and dissected whole brains at 23–25 dpf. 
Single cells were processed by inDrops (transcriptome clustering anal-
ysis shown in Fig. 2), enabling hybridization of endogenous mRNAs 
and lineage barcode mRNAs to oligo dT primers on hydrogels. Barcode 
libraries were prepared by PCR enrichment of lineage barcode cDNAs 
(Online Methods) and sequenced, resulting in barcode recovery from 
3,731 cells from three juvenile zebrafish brains (Supplementary  
Dataset 1; animals referred to henceforth as ZF1, ZF2, ZF3; 750, 2,605, 
and 376 cells, respectively, corresponding to 6–28% of all profiled cells 
per animal). To test if barcode recovery might be biased to specific 
cell types, we compared the cell types identified by scRNA-seq with 
the identity of cells with recovered barcodes. Strikingly, scGESTALT 
barcodes overlapped nearly all broadly defined cell types (62/63 broad 
clusters), indicating that the lineage transgene is widely expressed in 
the brain. We obtained a range of 150 to 342 distinct barcodes per 
animal, with a median of 1 (ZF1 and ZF3) or 3 (ZF2) cells per barcode, 
and found no shared barcodes between animals. The spectrum of 
barcode editing patterns was similar to that obtained from genomic 
DNA (Fig. 3b,f and Supplementary Fig. 6). These results establish 
scGESTALT as a technology that enables the simultaneous recovery 
of edited barcodes and transcriptomes from single cells.

Reconstructed lineage trees reveal relationships between 
neural cell types
To determine if scGESTALT can reveal lineage relationships, we 
reconstructed lineage trees for the recovered barcodes using a maxi-
mum parsimony approach (Online Methods) that anchored the tree 
with edits at sites 1–4 and extended it with edits at sites 5–9. scGE-
STALT generated highly branched multiclade lineage trees. For 
example, the smaller ZF1 and ZF3 lineage trees comprised 25 and 
23 major clades (marked by at least one early edit) that diversified 
into 193 and 150 late nodes with 341 and 256 branches, respectively  
(Fig. 4 and Supplementary Fig. 7; largest tree (ZF2) available online). 
Most late edits defined a single node branching from an earlier-marked 
node, but we also detected as many as 24 late nodes branching from an 
early-marked node. Thus, late edits greatly increased the branching of 
the lineage tree. These results provide the proof of concept that scGE-
STALT can reconstruct lineage trees from single-cell transcriptomes.

To determine the relationship of cells with respect to their cell 
type and position, we inspected the tree vis-à-vis the identity of cells. 
Analysis of groups of four or more cells with the same barcode revealed 
that descendants of single ancestral progenitors were spatially enriched 
in forebrain or midbrain or hindbrain (Fig. 5a and Supplementary 
Fig. 8). Such local enrichment is consistent with classical single-cell 
labeling studies that followed cells from gastrulation to day 1 of devel-
opment37. Notably, however, some barcodes were broadly distributed 
across the brain, for example, in hindbrain and midbrain (Fig. 5a 
and Supplementary Fig. 8), suggesting that ancestors of these cells 
may have been barcoded relatively early in development or that some 
embryonic progenitors can give rise to descendants that migrate across 
brain regions38. Although barcodes were mostly regionally enriched, 
they were not restricted to a neural cell type; single progenitors that 
acquired a specific barcode gave rise to descendants that mapped to 
multiple different clusters (Fig. 5b), suggesting that ancestral progeni-
tors were multipotent at the time of barcoding. In contrast to neural 
cells, we found more pronounced cell-type enrichment for non-neural 
cells, consistent with previous studies23. For example, endothelial and 
microglial cell lineages that shared edits with neural lineages subse-
quently diverged from the neural lineages during the early barcode 
editing period (Supplementary Fig. 8).

Despite the generally broad contribution of individual progenitors 
to multiple neural cell types, close inspection of the lineage trees also 
revealed divergent lineage trajectories. For example, we found that 
the hypothalamus/preoptic area, a brain region involved in complex 
behaviors such as thermoregulation, hunger, and sleep, contains cell 

Barcode Cell type BarcodeCell type

Cell types
Forebrain

Midbrain

Hindbrain Mixed

Blood

Progenitor Unassigned

Figure 4 A reconstructed lineage tree of a single juvenile zebrafish brain 
generated using scGESTALT. 376 barcodes recovered from ZF3 using 
scRNA-seq were assembled into a cell lineage tree based on shared edits 
using a maximum parsimony approach. Black nodes indicate early barcode 
edits; red nodes indicate late edits. Dashed lines connect individual cells to 
nodes on the tree. Cell types (identified from simultaneous transcriptome 
capture) are color coded as indicated in the legend. The barcode for each 
cell is displayed as a white bar with deletions (red) and insertions (blue). 
Tree depth is greater for the early editing events (maximum of four tiers), 
while late editing events generate a maximum of two tiers. For reasons 
of space, the tree is split into left and right halves. A larger lineage tree 
obtained for ZF1 is shown in Supplementary Figure 7. Interactive trees 
and the very large lineage tree for ZF2 can be found at: http://krishna.
gs.washington.edu/content/members/aaron/fate_map/harvard_temp_trees/

http://krishna.gs.washington.edu/content/members/aaron/fate_map/harvard_temp_trees/
http://krishna.gs.washington.edu/content/members/aaron/fate_map/harvard_temp_trees/
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types with distinct lineage relationships. In particular, analysis of six 
barcodes across 95 cells in ZF1 indicated that there were at least two 
distinct neural lineages in this region: sst3+ neurons39 (cluster 27) were 
clonally related to penkb+ neurons40 (cluster 30), while fezf1+ neurons 
(cluster 20) and hmx3a+ neurons (cluster 28) were clonally related to 
each other (Fig. 5c,d). Inspection of the ZF1 lineage tree revealed a late 
barcode editing event that marked the segregation between fezf1+ neu-
rons (cluster 20) versus sst3+ (cluster 27) and penkb+ neurons (cluster 
30) (Fig. 5e). Notably, these cells were all lineage related to cluster 2, 
which comprised GABAergic and a small population of glutamatergic 
neurons in the ventral forebrain, revealing a shared common progeni-
tor. In ZF2, eight barcodes across 113 cells supported a similar lineage 
restriction (Fig. 5c and Supplementary Fig. 8). This analysis suggests 
a lineage split after gastrulation between progenitors that give rise to 
distinct cell types in the hypothalamus/preoptic area. These results 
demonstrate the promise of scGESTALT to uncover the complex line-
age relationships of cells with respect to cell type and position.

Inheritance of edited barcodes tracks gene expression 
cascades during differentiation
The zebrafish brain maintains widespread neurogenic activity41, rais-
ing the possibility that scGESTALT could generate edited barcodes that 
are still shared between progenitors and differentiated cells at the time 

of cell isolation. Indeed, the most abundant barcodes, which comprised 
~10–26% of profiled cells, displayed broad cell type distributions 
(Supplementary Fig. 9) and were composed of 15–28% progenitor cell 
types (OPCs, radial glia, intermediate progenitors; Fig. 6a). This obser-
vation indicates that single cells marked during embryogenesis gave 
rise to descendants that developed both into differentiated cell types 
and into progenitors that maintained their capacity for neurogenesis. 
Although it is unknown if such late neurogenic progenitors are tran-
scriptionally identical to the ancestors in which the inherited lineage 
barcodes were generated, the observed lineage relationships raised the 
possibility of using shared barcodes to support potential gene expres-
sion trajectories deduced from scRNA-seq data. By ordering single 
cells in oligodendrocyte-related clusters, which comprise progenitors 
and differentiated cells, by gene expression signatures, we identified a 
trajectory from OPC to oligodendrocytes, as previously described in 
mouse11,42 (Supplementary Fig. 9). Similarly, cerebellar granule cell 
clusters followed a trajectory from atoh1c+ progenitors (cluster 19) 
to pax6b+ neurons (cluster 6) and then to gsg1l+ neurons (cluster 26)  
(Fig. 6b,c) that was accompanied by waves of gene expression changes 
(Fig. 6d). Strikingly, several barcodes were recovered from cells tran-
siting through these states, raising the possibility that the ancestor 
of these cells gave rise to progenitor pools that continued to pro-
duce differentiated descendants (Fig. 6c and Supplementary Fig. 9). 
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These results indicate the potential f combining scGESTALT with gene 
expression trajectories during differentiation.

DISCUSSION
Classic studies using markers such as viral DNA barcodes or fluorescent 
dyes have provided fundamental insights into clonal expansion and 
lineage relationships during development21,22. The recent application of 
DNA editing technologies to introduce cumulative, combinatorial, per-
manent, and heritable changes into the genome has enabled the recon-
struction of lineage trees at unprecedented scales but has been limited 
by the lack of high-resolution cell type information and the restriction 
of editing to early embryogenesis23,24,28. Here we begin to overcome 
these limitations by establishing a system for expressing both Cas9 and 
sgRNAs after zygotic activation, thus enabling early and late editing and 
applying scRNA-seq to identify both the identity and lineage of cells. 
Two parallel studies have also combined CRISPR–Cas9 genome editing 
and scRNA-seq in zebrafish to investigate early developmental lineages 

(ref. 43) and clonality in organ development and regeneration (ref. 44). 
We apply our technology, scGESTALT, to zebrafish brain development 
and establish its potential to simultaneously define cell types and their 
lineage relationships at a large scale.

The power of this approach rests on the high efficiency and diversity 
of barcode editing, the ubiquitous expression of the compact barcode, 
the ability to introduce mutations both early and late in development, 
the unequivocal profiling of the single-copy compact barcode from 
individual cells without the need for inference, the high-confidence 
reconstruction of lineage trees, and the simultaneous recovery of 
cellular transcriptomes to identify the associated cell types (Figs. 3 
and 4). We foresee many immediate applications of scGESTALT in 
zebrafish and other model systems applying the framework intro-
duced in this study. For example, it is now feasible to define dozens of 
cell types by profiling tens of thousands of cells from tissues such as 
spinal cord, liver, or skin using scRNA-seq and then use barcode edit-
ing to mark thousands of cells and reveal their lineage relationships.  
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Variations of this approach can also be used to uncover cell type diver-
sity and lineage relationships during tissue homeostasis and regenera-
tion or during tumor formation and metastasis. While scGESTALT 
is widely applicable, several optimizations can be foreseen. First, 
barcode editing is still restricted to two time points and leads only 
to thousands of different barcodes. To record the full complexity of 
vertebrate lineage trees, future implementations will need to enable 
continuous editing over long time periods and generate millions or 
billions of differently edited barcodes. Second, the recovery of all cells 
and all barcodes from a single animal remains elusive, restricting the 
isolation of rare cell types and the reconstruction of cellular pedigrees. 
Current droplet-based approaches recover only a minority of cells, 
and scGESTALT currently recovers the edited barcode in fewer than 
30% of transcriptomes. The low lineage barcode recovery rate could 
have several causes including low expression level of the barcode, 
inefficient capture of barcode transcript within droplets, or ampli-
fication bottlenecks during sequencing library preparation. In addi-
tion, current scRNA-seq technologies and computational approaches 
require high coverage to define rare cell types. For example, not all 
previously described hypothalamic or habenular cell types are defined 
by sequencing ~60,000 cells. Thus, the comprehensive and definitive 
construction of lineage trees will necessitate improvements in both 
cell and barcode recovery. Finally, although marker genes allowed 
us to assign isolated cells to broadly defined regions (Figs. 2 and 5), 
tissue dissociation results in the loss of precise spatial information. 
Future iterations of scGESTALT will need to identify high-resolution 
marker genes and create gene expression atlases to assign isolated cells 
to specific anatomical sites29,45–48.

The application of scGESTALT to brain development illustrates the 
potential of this approach to analyze lineage relationships in complex 
tissues. Our scRNA-seq analyses of the juvenile zebrafish brain identi-
fied more than 100 different cell types; it provides a unique resource 
to identify marker genes and associated cell types and lays the foun-
dation to generate a complete catalog of cell types in a vertebrate 
brain (Fig. 2). In combination with GESTALT, scRNA-seq generates 
hypotheses for potential developmental trajectories. For example, 
our results suggest that most descendants of an individual embry-
onic neural progenitor are enriched in spatial domains but constitute 
multiple cell types (Figs. 4 and 5). Interestingly, however, we also 
observed that some descendants appeared to acquire a broad spatial 
distribution, and some lineage branches separated cell types located 
in similar anatomical regions (Fig. 5). For example, differentially 
barcoded embryonic progenitors contributed to distinct neurotrans-
mitter, neuropeptide, and transcription-factor-expressing neurons in 
the hypothalamus/preoptic area. Many barcodes found in progenitor 
pools of juvenile animals were shared with differentiated cell types, 
suggesting that ancestral cells marked during embryogenesis were 
destined to contribute to long-term, self-renewing progenitor pools 
as well as differentiated cells. Such inheritance of barcode edits raises 
the possibility of combining lineage recordings and transcriptome 
data to support the reconstruction of developmental trajectories and 
the associated gene expression cascades (Fig. 6). The future combina-
tion of reconstructed large-scale lineage trees with inferred molecular 
developmental trajectories has the potential to uncover the develop-
mental statistics that generate complex multicellular assemblies.

scGESTALT lays the foundation for combining lineage recordings 
with single-cell measurements to reveal cellular relationships during 
development and disease. The finding that barcode mutations can be 
induced during a specific time window by an environmental signal 
(heat) also establishes the concept that this editing system can be ren-
dered signal-dependent25,26,49. This observation opens the possibility 

of recording endogenous or exogenous events by barcode editing; just 
as evolutionary history is recorded in genome sequence changes, a 
cell’s history might be recorded by barcode sequence edits.

METHODS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Zebrafish husbandry. All vertebrate animal work was performed at the facili-
ties of Harvard University, Faculty of Arts & Sciences (HU/FAS). This study 
was approved by the Harvard University/Faculty of Arts & Sciences Standing 
Committee on the Use of Animals in Research & Teaching under Protocol No. 
25–08. The HU/FAS animal care and use program maintains full AAALAC 
accreditation, is assured with OLAW (A3593-01), and is currently registered 
with the USDA.

Constructs for transgenesis. The GESTALT barcode transgenic vector pTol2-
hspDRv7 was constructed as follows. The v7 barcode sequence23 was cloned 
into the 3′ UTR of a DsRed coding sequence under control of the heat shock 
(hsp70) promoter. This cassette was placed in a Tol2 transgenesis vector con-
taining a cmlc2:GFP marker, which drives expression of GFP in the heart50.

The heat-shock-inducible Cas9 transgenic vector (pTol2-hsp70l:Cas9-
t2A-GFP, 5xU6:sgRNA) was constructed as follows. Individual gRNAs 
(Supplementary Table 1) targeting sites 5–9 of the GESTALT array were 
cloned into five separate U6x:sgRNA (Addgene plasmids 6245–6249) plasmids, 
as described previously51. The U6x:sgRNAs were assembled into a contiguous 
sequence in the pGGDestTol2LC-5sgRNA vector (Addgene plasmid 6243) by 
Golden Gate ligation. The resulting 5xU6:sgRNA sequence was PCR amplified 
and ligated into the backbone of pDestTol2pA2-U6:gRNA52 (Addgene plasmid 
63157) after the vector was first digested with ClaI and KpnI (U6:gRNA cassette 
of this vector was removed in the process) to generate the pDestTol2pA2-5xU6:
sgRNA plasmid. The final construct was generated with multisite Gateway 
with p5E-hsp70l (Tol2 kit53), pME-Cas9-t2A-GFP (Addgene plasmid 63155), 
p3E-polyA (Tol2 kit) and pDestTol2pA2-5xU6:sgRNA.

Plasmids are available from Addgene (https://www.addgene.org/Alex_
Schier/).

Generation of transgenic zebrafish. To generate GESTALT barcode founder 
fish, one-cell embryos were injected with zebrafish-codon-optimized Tol2 
mRNA and pTol2-hspDRv7 vector. Potential founder fish were screened for 
GFP expression in the heart at 30 hpf and grown to adulthood. Adult founder 
transgenic fish were identified by outcrossing to wild-type fish and screen-
ing clutches of embryos for GFP expression in the heart at 30 hpf. Single-
copy “heat shock GESTALT” F1 transgenics were identified using qPCR, as 
described previously23,54.

To generate inducible Cas9 founder fish, one-cell embryos were injected 
with Tol2 mRNA and the pTol2-hsp70l:Cas9-t2A-GFP, 5xU6:sgRNA vector. 
Injected embryos were heat-shocked at 8 hpf and potential founder fish were 
screened for GFP expression at 24 hpf and grown to adulthood. F1 transgenic 
“inducible Cas9” fish were identified by outcrossing potential founders to wild-
type fish and screening clutches of embryos for whole body GFP expression 
after heat shock at 24 hpf.

Early and late barcode editing. sgRNAs specific to sites 1–4 of the GESTALT 
array were generated by in vitro transcription as previously described23. Single 
copy “heat shock GESTALT” F1 transgenic adults were crossed to “inducible 
Cas9” F1 transgenic adults and one-cell embryos were injected with 1.5 nl of 
Cas9 protein (NEB) and sgRNAs 1–4 in salt solution (8 µM Cas9, 100 ng/µl 
pooled sgRNAs, 50 mM KCl, 3 mM MgCl2, 5 mM Tris HCl pH 8.0, 0.05% 
phenol red). Injected embryos were first screened for GFP heart expression 
at 30 hpf to identify the “heat shock GESTALT” transgene. These embryos 
were then heat-shocked for 30 min at 37 °C to induce Cas9 expression. Double 
transgenic embryos (1/4 of progeny, as expected from the genetic cross) were 
identified by GFP expression in the whole body. Cas9 protein injected into 
one-cell embryos does not persist until 23–25 dpf when inDrops experiments 
were performed. Cas9 protein expression from the heat-shock transgene at  
30 hpf is also expected to be absent by 23–25 dpf.

Preparation of GESTALT genomic DNA libraries. Genomic DNA from 
edited and unedited double-transgenic 55 hpf embryos were extracted using 
the DNeasy kit (Qiagen). Samples were UMI-tagged and PCR-amplified 
using primers flanking the barcode as previously described23. Sequencing 
adapters, sample indexes and flow cell adapters were incorporated by 
PCR, and libraries were quantified using the NEBNext Library Quant kit 

(NEB). Libraries were sequenced using NextSeq 300 cycle mid-output kits 
(Illumina).

Whole brain inDrops. Wild-type and early- and late-edited 23–25 dpf 
zebrafish brains were similarly processed for inDrops single-cell transcrip-
tome barcoding4,55 except that two-time point-edited zebrafish were first 
heat-shocked for 45 min at 37 °C to induce scGESTALT barcode mRNA 
expression. Whole brains were dissected and dissociated using the Papain 
Dissociation Kit (Worthington), according to the manufacturer’s instruc-
tions with the following modifications to ensure high-quality cell isolation 
for scRNA-seq56. Brains were dissociated with 900 µl of 10 units/ml of papain 
in neurobasal media (Life Technologies) and incubated at 34 °C for 20–25 min  
with gentle agitation. Samples were then gently triturated with p1000 and 
p200 tips until large pieces of tissues were no longer visible. Dissociated cells 
were washed twice with DPBS (Life Technologies) at 4 °C and sequentially fil-
tered through 35 µm (BD Falcon) and 20 µm (Sysmex) mesh filters. Cells were 
resuspended in 300–400 µl DPBS and counted using an automated Bio-Rad 
counter. Cells were then diluted to ~100,000 cells/ml in 18% optiprep/DPBS 
solution. Cells were loaded onto the inDrops device and encapsulated at a 
rate of 10,000–20,000 per hour. Transcriptomes were obtained for ~70% of 
cells introduced into the device.

inDrops transcriptome library prep. Transcriptome libraries were pre-
pared as previously reported55 with minor modifications. The product of 
the in vitro transcription (IVT) reaction was cleaned up using 1.3× AMPure 
beads (Beckman Coulter), eluted in 25 µL of RE Buffer (10 mM Tris pH7.5,  
0.1 mM EDTA) and analyzed on an Agilent RNA 6000 Pico chip. 9 µL of 
the post-IVT product was used to proceed with standard RNA-fragmenta-
tion and (untargeted) transcriptome library preparation. The remainder of 
the post-IVT product was left unfragmented and processed in parallel to 
generate scGESTALT-targeted library preps (see below). A subset of librar-
ies were prepared using ‘V3′ inDrops barcoded hydrogels and correspond-
ing sequencing adapters. V3 inDrops libraries are sequenced with standard 
Illumina sequencing primers in which the biological read is from paired end 
read1, cell barcodes are from paired end read2 and index read1, and library 
sample index is from index read2.

inDrops scGESTALT library prep. To generate scGESTALT libraries, 
inDrops samples post IVT were reverse transcribed as follows. Reactions with  
5 µl IVT anti-sense RNA, 1.5 µl 50 µM random hexamer, 1 µl 10 mM dNTP and  
3.5 µl water were incubated at 70 °C for 3 min, followed by addition of a reverse 
transcription mix (4 µl 5× PrimeScript buffer, 3.5 µl water, 1 µl RNase inhibitor 
[40U/µl], 0.5 µl PrimeScript RT enzyme). The reaction was incubated at 30 °C 
for 10 min, 42 °C for 60 min and 70 °C for 15 min, and then cleaned up using 
1.2× AMPure beads (Beckman Coulter) and eluted in 20 µl DS buffer (10 mM 
Tris pH8, 0.1 mM EDTA). scGESTALT cDNAs were PCR-amplified in a two-
step reaction involving: 1) GP6 and PE1S4 primers (Supplementary Table 1) 
and Q5 polymerase (NEB), and 2) GP12 and PE1S primers (Supplementary 
Table 1) and Phusion polymerase (NEB). The Q5 reaction (98 °C, 30s; 61 °C, 
25s; 72 °C, 30s; 15 cycles) was cleaned up with 0.6× AMPure beads and eluted 
in 20 µl DS buffer. 8 µl of the eluate was used in the Phusion reaction (98 °C, 
30s; 60 °C, 25s; 72 °C, 30s; 9 cycles). PCR products were once again cleaned 
up with 0.6× AMPure beads and eluted in 20 µl DS buffer. Finally, sequenc-
ing adapters, sample indexes, and flow cell adapters were incorporated as 
described for the V3 transcriptome libraries. Libraries were quantified using 
the NEBNext Library Quant kit (NEB).

Sequencing inDrops libraries. inDrops V2 and V3 transcriptome libraries 
were sequenced using NextSeq 75 cycle high-output kits. 15% PhiX spike-in 
was used for V2 libraries. Sequencing parameters for V2 libraries: Read1  
35 cycles, Read2 51 cycles, Index1 6 cycles. Custom sequencing primers4 
were used. Sequencing parameters for V3 libraries: Read1 61 cycles, Read2 
14 cycles, Index1 8 cycles, Index2 8 cycles. Standard sequencing primers were 
used. scGESTALT V3 libraries were sequenced using MiSeq 300 cycle kits 
and 20% PhiX spike-in. Sequencing parameters: Read1 250 cycles, Read2 
14 cycles, Index1 8 cycles, Index2 8 cycles. Standard sequencing primers 
were used.

https://www.addgene.org/Alex_Schier/
https://www.addgene.org/Alex_Schier/
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Bioinformatic processing of raw reads from transcriptome and scGE-
STALT inDrops libraries. Sequencing data (FASTQ files) were processed 
using the inDrops.py bioinformatics pipeline available at https://github.
com/indrops/indrops. Transcriptome libraries were mapped to a zebrafish 
reference built from a custom GTF file and the zebrafish GRCz10 (release-
86) genome assembly. Bowtie version1.1.1 was used with parameter –e 200; 
UMI quantification was used with parameter –u 2 (counts were ignored 
from UMIs split between more than two genes). scGESTALT libraries were 
processed in parallel up to the mapping step with modified Trimmomatic 
settings (LEADING: “10”; SLIDINGWINDOW: “4:5”; MINLEN: “16”). For 
both scGESTALT and transcriptome libraries, error-corrected cell barcode 
sequences were retained for each cell to enable direct comparisons of tran-
script and lineage information in downstream steps. Transcriptome libraries 
were further processed by removing UMI counts associated with low-abun-
dance cell barcodes. Within each biological sample, UMI counts tables (tran-
scripts x cells) were assembled.

Cell type clustering analysis. In total, we sequenced 6,759 cells (replicate 
f1), 7,112 cells (replicate f2), 15,172 cells (replicate f3), 12,128 cells (repli-
cate f4), 9,923 cells (replicate f5) and 6,026 cells (replicate f6) from whole 
brain samples. In addition, we sequenced 3,632 cells, 3,909 cells and 1,511 
cells from manually dissected forebrain, midbrain and hindbrain regions, 
respectively. This resulted in a total of 66,172 single-cell transcriptomes, 
which were further filtered and used for clustering analysis as described below. 
scGESTALT libraries were prepared from whole brain replicates f3 (750 cells 
recovered), f5 (2,605 cells recovered) and f6 (367 cells recovered) and were 
designated as ZF1, ZF2 and ZF3, respectively, for the purposes of lineage bar-
code analysis. Supplementary Dataset 1 summarizes all transcriptome and 
lineage barcode stats for each animal used in this study. Clustering analysis 
was performed using the Seurat v1.4 R package5,29 as described in the tuto-
rials (http://satijalab.org/seurat/). In brief, digital gene expression matrices 
were column-normalized and log-transformed. Cells with fewer than 500 
expressed genes, greater than 9% mitochondrial content or very high numbers 
of UMIs and gene counts that were outliers of a normal distribution (likely 
doublets/multiplets) were removed from further analysis. Variable genes 
(2,843 genes) were selected for principal component analysis by binning the 
average expression of all genes into 300 evenly sized groups, and calculating 
the median dispersion in each bin (parameters for MeanVarPlot function: 
x.low.cutoff = 0.01, x.high.cutoff = 3, y.cutoff = 0.77). The top 52 princi-
pal components were used for the first round of clustering with the Louvain 
modularity algorithm (FindClusters function, resolution = 2.5) to generate 
63 clusters. These initial clusters were compared pairwise for differential gene 
expression (parameters for FindAllMarkers function: min.pct = 0.18, min.
diff.pct = 0.15). Since the initial clustering contains many non-neuronal and 
progenitor cells, several of the top principal components were comprised of 
genes in those cell types. Thus, to more finely resolve transcriptional differ-
ences between neuronal clusters, select large clusters were again subjected to 
variable gene selection, principal components analysis, Louvain clustering and 
differential gene expression using the same strategy as above. This approach 
has been shown to uncover additional heterogeneities42,57. At most, 12 prin-
cipal components were used in these analyses. Clusters with no discernible 
markers or less than ten differentially expressed genes were merged together 
and classified as “unassigned” clusters.

Cell trajectory (pseudotime) analysis. Oligodendrocyte and granule cell 
populations were ordered in pseudotime using the Monocle 2 package58. The 
list of differentially expressed genes in each of these clusters identified by 
Seurat was used as input for temporal ordering in Monocle 2. The root of each 
trajectory was defined as the precursor (oligodendrocyte precursor cells) or 
progenitor (upper rhombic lip progenitors of granule cells) cell types in each 
of these two groups of cell populations.

scGESTALT barcode analysis. Sequencing data from genomic DNA and 
inDrops scGESTALT libraries were processed with a custom pipeline 
(https://github.com/aaronmck/SC_GESTALT) as previously described23 
with the following modifications. InDrops scGESTALT reads were grouped 
by the inDrops cell identifiers, trimmed with the Trimmomatic software to 

remove low-quality bases, and processed using a script designed for single-
end read data. A consensus sequence was called for each single cell by jointly 
aligning all of its reads using the MAFFT aligner59. Consensus sequences 
were aligned to a reference sequence for the scGESTALT amplicon using the 
NEEDLEALL aligner59 with a gap open penalty of 10 and a gap extension 
penalty of 0.5. Aligned sequences were required to match greater than 85% 
of bases at non-indel positions, to have the correct PCR primer sequence at 
the 5′ end, and to match at least 90 bases of the reference sequence. Target 
sites were considered edited if there was an insertion, deletion or substitu-
tion event present within three bases upstream of each target’s PAM site, or 
if a deletion spanned the site entirely. We noted that some larger intersite 
deletions were misaligned or unaligned with the above parameters. These 
deletions were reanalyzed using the aligner from the ApE software, which 
searches for specified lengths of exact matching blocks of sequence, and 
then performs a Needleman-Wunsch alignment of the sequences between 
the blocks. The inDrops scGESTALT barcode for each cell was matched to 
its corresponding cell type (t-SNE cluster membership) assignment using 
the inDrops cell identifier.

To determine the stochastic nature of barcode editing, pairwise comparisons 
of samples were performed using cosine similarity.

Construction of lineage trees from scGESTALT barcodes. To create the 
early- and late-edited lineage trees, scGESTALT barcodes were filtered to the 
editing outcomes (indels) that could only occur through the activity of Cas9 
complexed to sgRNA 1 through 4 (precluding events that may start in the first 
4 targets but extend into targets 5 to 9). All unique barcodes were then encoded 
into a paired-event matrix and weights file, as described previously23, and were 
processed using PHYLIP mix with Camin-Sokal maximum parsimony60. In 
the second stage, we repeated this process for the full barcode set: each node’s 
descendants (barcodes that contain the identical events over the first 4 targets) 
were used to create a subtree representing the second round of editing. The 
original node was then replaced by this generated subtree. After the subtrees 
were attached, we eliminated unsupported internal branching by pruning par-
ent-child nodes that had identical barcodes, unless this node was the junction 
point between the first stage node and one of its subtree members. Individual 
cells and their annotations were then added to the corresponding terminal 
barcodes. The resulting tree was converted to a JSON object, annotated with 
t-SNE cluster membership, and visualized with custom tools using the D3 
software framework.

Statistical parameters. The exact sample size used in each analysis is given in 
the legends. All inDrops and GESTALT libraries were generated from multiple 
independent animals. The “bimod” likelihood ratio test in Seurat was used 
for differential gene expression analysis (Supplementary Dataset 2 and 4).  
All calculated P-values are two-sided and no adjustments were made for mul-
tiple comparisons.

Life Sciences Reporting Summary. Further information on experimental 
design is available in the Life Sciences Reporting Summary.

Code availability. Computational scripts and analysis pipelines are avail-
able at https://github.com/aaronmck/SC_GESTALT and https://github.com/
indrops/indrops.

Data availability. The high-throughput data sets generated for this study 
have been deposited in the Gene Expression Omnibus under accession 
number GSE105010. Lineage trees are available for exploring at http://
krishna.gs.washington.edu/content/members/aaron/fate_map/harvard_
temp_trees/.
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    Experimental design
1.   Sample size

Describe how sample size was determined. >60,000 single cells were profiled from multiple brains and brain regions to obtain 
reproducible overall representation of the major cell types in the juvenile zebrafish brain. 
Sample size for assessing lineage barcode editing using genomic DNA was chosen to 
demonstrate highly independent editing patterns from multiple animals. 

2.   Data exclusions

Describe any data exclusions. Cells with fewer than 500 expressed genes, greater than 9% mitochondrial content or very 
high numbers of UMIs and gene counts that were outliers of a normal distribution (likely 
doublets/multiplets) were removed from further analysis of scRNA-seq data. 

3.   Replication

Describe the measures taken to verify the reproducibility 
of the experimental findings.

scRNA-seq and genomic DNA libraries were prepared from multiple biological replicates. All 
attempts at replications were successful. Clusters identified by scRNA-seq were supported by 
cells from multiple biological replicates. Lineage barcode editing was successful in multiple 
independent embryos

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

No randomization was required for this study since no comparisons were made between 
samples/experimental groups

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

No blinding was required for this study since no comparisons were made between samples/
experimental groups

Note: all in vivo studies must report how sample size was determined and whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

Test values indicating whether an effect is present 
Provide confidence intervals or give results of significance tests (e.g. P values) as exact values whenever appropriate and with effect sizes noted.

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars in all relevant figure captions (with explicit mention of central tendency and variation)

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

Bowtie1 was used for scRNA-seq alignments. Trimmomatic and PHYLIP packages were used 
for processing. MAFFT and NEEDLEALL aligners were used for aligment. Monocle 2 was used 
for differentiation trajectory analysis. Seurat v1.4 was used for clustering analysis. ApE 
(v2.0.50b3) was used for large deletion alignments. D3 software was used for tree 
visualization. R(v3.4.0) and Rstudio (v1.0.143) were used for data analysis. Custom data 
processing pipelines are available at: 
https://github.com/aaronmck/SC_GESTALT and https://github.com/indrops/indrops

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a third party.

There are no restrictions to materials availability

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used in this study

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used in this study

b.  Describe the method of cell line authentication used. No eukaryotic cell lines were used in this study

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

No eukaryotic cell lines were used in this study

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No eukaryotic cell lines were used in this study
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    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide all relevant details on animals and/or 
animal-derived materials used in the study.

Danio rerio. TL/AB strain. Embryos (2dpf) and juvenile animals (23-25dpf) were used. Sex 
indeterminate at these stages.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

This study did not involve human research participants
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