
EXPERIMENTAL ANALYSIS OF HUMAN BEHAVIOR BULLETIN 2025, 36, 32-38

 32

TECHNICAL REPORT

DESCRIPTION AND VALIDATION OF A NOVEL
HUMAN-OPERANT RESEARCH SOFTWARE

Braden Toler1, David Legaspi2, Daniel Mitteer3, 4

1 THE STERN CENTER FOR DEVELOPMENTAL AND BEHAVIORAL HEALTH
2 UTAH STATE UNIVERSITY

3 SEVERE BEHAVIOR PROGRAM, CHILDREN’S SPECIALIZED HOSPITAL—RUTGERS UNIVERSITY
CENTER FOR AUTISM RESEARCH, EDUCATION, AND SERVICES (CSH-RUCARES)

4 RUTGERS ROBERT WOOD JOHNSON MEDICAL SCHOOL

In recent years, computer models have become an indispensable tool for conducting basic human-
operant research. However, one’s ability to conclude meaningful relations between independent
and dependent variables relies on the assumption that the computer software is reliable and
operates as intended. This technical report delves into the features and validation process of a novel
software entitled VirtuOperant; built using the Python programming language to support human-
operant research. Our software validation procedure draws inspiration from the methodology
developed by Smith and Greer (2022). This structured approach not only affirms the software's
efficacy but also emphasizes its potential for replicability across varied research scenarios (e.g.,
simulations of discrimination learning, treatment relapse). The focus of this report revolves around
the validation of the software and underscores the software's potential for future human-operant
research. We found VirtuOperant to be reliable at programming various reinforcement schedules
and phenomena. Given its reliability and ability to generate data automatically, we anticipate this
software becoming a useful tool for future research.

Keywords: apparatus; validation; human-operant; translational; Python

The operant conditioning chamber has long
served as a cornerstone for understanding
behavioral mechanisms in controlled settings.
Historically, this domain has been dominated by
animal studies, but the shift towards human-
operant research introduced a new layer of
complexity and relevance (Lattal & Perone, 1998;
Perone, 1985). The evolution of technology has
significantly impacted this field, with computer
models emerging as crucial tools to emulate and
study human-operant environments (Smith &
Greer, 2022). For example, research using
human-operant paradigms have provided
opportunities to study variables related to
treatment relapse without posing risks to
applied populations by increasing behavior of
significance (Bolívar et al., 2017; Kestner &

Peterson, 2017; Kestner et al., 2018; Ritchey et al.,
2021).

Despite the advances in technology, the
challenge remains to develop software that is
both accurate in its representation of operant
principles and versatile enough to accommodate
the varied nuances of human-operant research.
Saini and Mitteer (2020) noted that studies with
human participants often require a more
meticulous accounting of variables. Particularly,
when many studies span across several days,
there are potential confounds introduced by
gaps between experimental sessions, which
might obscure genuine instances of behavior
change. When our scientific interpretation of the
relations between independent and dependent
variables relies on minimization of threats to
internal validity (e.g., instrumentation), it is
imperative to demonstrate the reliability of novel
software prior to conducting research with it or
interpreting results derived from the software.

The software described in this report was
built using the Python programming language.
It allows experimenters to (a) customize up to
four response buttons, (b) program a dissimilar
control activity (i.e., drawing on a portion of the

Author Note: Any correspondence or requests for
access to the VirtuOperant software should be
addressed to Braden Toler.
Email: bjt0021@mix.wvu.edu.

Additional Author Information: Daniel R. Mitteer:
ORCID: 000-001-8940-0657

https://doi.org/10.17605/OSF.IO/8MJU4

mailto:bjt0021@mix.wvu.edu
https://doi.org/10.17605/OSF.IO/8MJU4

EXPERIMENTAL ANALYSIS OF HUMAN BEHAVIOR BULLETIN 2025, 35, 32-38

 33

screen), (c) manipulate response-based or
interval-based schedules of reinforcement (i.e.,
point gain) and punishment (i.e., point loss), and
(d) graph data automatically following the
experiment. While there is no explicit limit to
duration, experimental phases can be
programmed to be short (e.g., 120 s) and allow
participants to navigate all phases of the
experiment in a single iteration, thereby making
data obtainment practical and reducing the
inconsistencies that might arise from prolonged
gaps. Therefore, the purpose of this paper is to
introduce a novel software solution specifically
designed to overcome the limitations with
current technologies. Additionally, we provide
validation for this software, employing a
methodology adapted from Smith & Greer
(2022). We hope this will provide researchers
with a reliable and efficient tool that advances
the frontiers of human-operant research,
ensuring accuracy and consistency in data
collection.

PROGRAM SPECIFICATIONS

Overview
The operant conditioning chamber’s highly
controlled environment is an integral part of
basic animal research in behavior analysis. The
Python program serves as a digital emulation of
the environmental conditions utilized by basic
researchers; creating an environment in which
users can accrue points through the act of
engaging in an arbitrary button pressing task as
is common for human-operant research (Kestner
et al., 2018; Okouchi, 2015). This program
provides an interactive user interface (UI) that
enables users (participants of the experiment) to
interact with the experimental setup. The design
and flow of the experiment are based on a series
of preset experimental phases, each with its own
set of reinforcement schedules. The primary
functions of the program include: (a) setting up
the user interface, (b) tracking and storing user
interactions, (c) applying reinforcement
schedules, (d) managing the different phases of
the experiment, and finally, (e) analyzing and
visualizing the data collected during the
experiment.

Setup and Initialization
The setup and initialization process of the
program involves several key steps, which

prepare the application for user interaction and
establish the initial state of the experiment.
When the program starts, it sets up the UI. This
involves creating a main application window
that acts as a container for all other UI elements
(Figure 1). The window is configured to be
displayed in full screen mode, providing an
immersive experience for the user and helping to
eliminate extraneous variables. The program
incorporates a drawing canvas at the bottom of
the screen, outlined and accompanied by
instructive text. This canvas serves as a
deliberate design feature, granting users an
option to disengage from the primary
experiment. Drawing from insights by Bolivar et
al. (2017) and Sweeney and Shahan (2016), it is
crucial to provide participants with alternatives
to active engagement, minimizing any coerced
responses or persistent behavior in the absence
of alternatives (i.e., clicking response buttons
during extinction due to no other potential
activities).

Above this drawing canvas, an image canvas
is created to display images associated with each
phase of the experiment (Figure 2b).
Initialization of the experiment's parameters is
the next step. Parameters such as the list of
images to be displayed as stimuli, the count of
button presses, the remaining time, and the
reinforcement timestamps are initialized. These
parameters play vital roles in the progression

Figure 1. Setup Screen. Note: Set phases allows the
experimenter to set up the experimental procedure;
Save Phases allows the experimenter to save an
experimental arrangement for future use; Load Phases
allows the experimenter to load a previously existing
experiment.

BRADEN TOLER ET AL.

 34

and operation of the experiment. The program
also sets up lists to track button press timestamps
and the last reinforcement timestamps for each
button. Furthermore, it initializes counters for

different reinforcement schedules. A list to store
the different phases of the experiment is
initialized, and the experiment begins with the
first phase. These phases determine the duration
and reinforcement schedule(s) of the experiment.
Experiment Screen
In the experimental portion of the program, the
users interact with moving rectangular buttons,
which are in constant motion across the screen
(Figure 2a). These buttons move to a random
location on the screen every 3 seconds. This
creates an engaging and dynamic environment
where the users need to track and press the
moving buttons. This provides a consistent
challenge for the user to locate and press the
buttons. When a user presses a button, the
program registers the event and applies the
appropriate reinforcement rules depending on
the current phase of the experiment. If
reinforcement is available, pressing the button
will produce a brief green screen flash and bell
sound as the score counter increases (Figure 2c).

The program also includes aversive feedback
to implement punishment procedures. If the
user's button press triggers an aversive event
according to the assigned schedule, the user's

score is decreased. Aversive feedback is also
accompanied by a brief red flash on the screen
and the sound of a buzzer.

In the upper portion of the screen, the
program allows the experimenter to place image
files that can be varied by experimental phase.
This provides experimenters with a means of
creating variations in the experimental
environment for the purposes of testing concepts
such as renewal or discrimination (Saini &
Mitteer, 2020; Bernal-Gamboa et al., 2020).

Finally, at the bottom of the screen is where
the drawing canvas is placed so as to provide an
alternative option to interacting with the
experimental procedure (Figure 2e).

Reinforcement Schedules
In this program, the reinforcement schedules are
implemented in a function called
“apply_reinforcement_schedule”. This function
is called each time a button is pressed, and it
applies the corresponding reinforcement
schedule based on the current phase of the
experiment. For the fixed-ratio (FR) schedule, the
function checks if the count of button presses is a
multiple of the specified ratio. If it is,
reinforcement is delivered, which in this context
means increasing the user's points and providing
positive feedback. For fixed-interval (FI)
schedules, the function calculates the time
elapsed since the last reinforcement. If this time
is greater than or equal to the specified interval,
reinforcement is delivered. The timestamp for
the last reinforcement is then updated to the
current global time. Variable schedules of
reinforcement proved to be more complex to
program. For variable-ratio (VR) schedules, the
function generates a random number and checks
if it is less than the reciprocal of the specified
average. If it is, reinforcement is delivered. This
method effectively creates a probability of
reinforcement around the specified average. The
variable-interval (VI) schedule functions
similarly to the fixed-interval schedule, the
function calculates the time elapsed since the last
reinforcement. If this time is greater than or
equal to a randomly generated delay (ranging
from 50% to 150% of the specified average),
reinforcement is delivered, and the delay is
updated for the next interval. Noncontingent
reinforcement (NCR) is implemented slightly
differently from the others. It is controlled by a
function that is called every second and checks if
the time elapsed since the last reinforcement for

Figure 2. Experiment Screen. Note: The image depicts
the various features of the experimental window:
response buttons (a), visual stimulus (b), point counter
(c), time counter (d), and drawing canvas (e). The
program allows for up to four response buttons to be
active at a time.

EXPERIMENTAL ANALYSIS OF HUMAN BEHAVIOR BULLETIN 2025, 35, 32-38

 35

an NCR schedule is greater than or equal to the
specified interval. If it is, reinforcement is
delivered. For a response cost, the schedule is
functionally identical to the fixed-ratio schedule.
However, instead of providing reinforcement, it
delivers a punishment (decrementing the user's
points and providing aversive feedback) when
the count of button presses is a multiple of the
specified ratio. The implementation of these
schedules in the code accurately reflects their
theoretical descriptions as will be demonstrated
through validation.

Data Collection and Results
The program's data collection process is initiated
the moment the user starts interacting with it.
With every press of a button, a function is
activated, logging the global timestamp of the
event and incrementally increasing the count of
button presses. The function also records the
time of the corresponding reinforcement event
when the function is triggered. Simultaneously,
a separate function operates every second to
monitor the conditions for the NCR schedule,
updating the reinforcement timestamp when the
condition is met. The data collected throughout
the experiment is stored in real-time within the
program's memory. When the experiment
concludes, this collection of button-press
timestamps and other pertinent data is saved in
a Microsoft Excel file. This function ensures that

the dataset is safely stored for further analysis
post-experiment. Another function then steps in
to provide a visual interpretation of the collected
data. It produces two kinds of graphs: a
cumulative record displaying the total number
of button presses over time (Figure 3), and a rate-
of-responding graph which presents the
frequency of button presses (Figure 4). These
visuals provide an immediate depiction of the
user's interaction pattern throughout the
experiment. Additionally, a summary of the
results is tabulated to offer a snapshot of the key
data points. This task is performed by a function
that calculates the total responses and average
rate of responding for each button across
different phases of the experiment. The data is
neatly arranged in a table, providing quick
access to the phase number, button number,
phase duration, total responses, and the average
rate of responding for each button in each phase.
This table is also saved to an Excel file, providing
a reference for researchers to further analyze the
data (Figure 5).

VALIDATION

Dependent-Variable Validation
To validate the efficacy of our data collection
process, particularly concerning the dependent-
variable values, we implemented a 25-s

Figure 3. Sample output of cumulative record responses. Note: Cumulative record data paths are colored to match
the corresponding response button.

BRADEN TOLER ET AL.

 36

experimental trial. During the initial 5-s interval
of this experiment, a single response to the target
button was delivered. Progressing into the
subsequent intervals of 5 s each, we increased the
number of responses by one response per
interval, culminating in five responses in the last
five-second interval. This trial design was
deliberately chosen due to our program's
function to track and compute response rates. It
operates by aggregating the total number of
responses for each 5-s interval, dividing it by
five. The resultant figure is then recorded as a
data point on the response rate graph. Given the
approach of our testing, we predicted that the
data would illustrate a stable, ascending linear
progression, mirroring the systematic
increments in the responses. Indeed, our
expectations were met as depicted in Figure 6.
Additionally, the program reported an average
response rate of 0.6 responses per second, with a
cumulative total of 15 responses. This aligns with
our actual number of responses, further
substantiating the validity of the data collection
function.

Reinforcement Schedule Validation
To validate the reinforcement schedules, we
tested the software across various schedule types
and values, closely mirroring the method
employed by Smith and Greer (2022). For each

schedule, we collected data until 35 reinforcers
were delivered. This approach permitted
fluctuations in the trial durations, aligning with
the principles of reinforcement schedules: richer
schedules resulted in shorter trial durations to
reach the reinforcement quota, whereas leaner
schedules necessitated longer durations to
achieve the same number of reinforcers. For
interval schedules, we calculated the mean time
between reinforcers. For ratio schedules, our
focus was on determining the mean number of
responses before reinforcement was delivered.
Additionally, we computed standard deviations
to gauge the variability of these measures. These
calculated metrics, represented in Table 1, were
compared with the predefined schedule values

Figure 4. Sample Output of Rate of Responding. Note: Rate is calculated as the average number of responses per
second for each 5 s interval.

Figure 5. Sample Output of Excel Data. Note:
Experimenters have the option to select which response
options to include in the generated Excel file.

EXPERIMENTAL ANALYSIS OF HUMAN BEHAVIOR BULLETIN 2025, 35, 32-38

 37

to assess the software's adherence to established
operant scheduling principles. The results of this
validation process, summarized in Table 1,
suggest that the software closely aligns with the
specified reinforcement schedules. This is
particularly evident in the "Percentage within
range" column, where a score of 100% represents
full alignment with the set schedule values.

The alignment of the software with the
theoretical reinforcement values indicates its
reliability for use in human-operant research.
Given the rigorous validation and its consistency
with methods outlined by Smith and Greer
(2022), this software is poised to be a valuable
tool in the field, demonstrating its capability to
yield consistent and precise outcomes.

DISCUSSION

This report introduces and validates a new
software tool developed for human-operant
experimental designs. As behavior analysis has
advanced, particularly in the realm of human-
operant research (Lattal & Perone, 1998), there is
a growing demand for reliable tools. Our
software, written in Python, seeks to meet this
need, offering a platform for researchers to
further investigate human-operant translational
research. The software emphasizes ease-of-use
and technical reliability. To validate the
software, we adopted the validation methods
from Smith and Greer (2022) with the exception
of the functionality testing as the use of Python’s
rigorously tested and widely used library made

functionality testing redundant. Our testing
across various frameworks and domains
indicated that the software produces accurate,
replicable, and consistent results. It is important
to note, however, that the software was tested by
individuals who were not entirely naïve to
behavior analytic procedures, which might not
entirely reflect real-world research contexts.

VirtuOperant utilizes the Python
programming language, which is renowned for
its ability to function across different operating

Figure 6. Dependent Variable Rate Validation. Note: Each data point corresponds to a single 5 s interval.

 Schedule Values

Condition M SD % within
range

Variable-interval 5 s 5.28 s 1.63 s 100
Variable-interval 10 s 9.91 s 2.81 s 100
Variable-ratio 2 1.86 1.33 100
Variable-ratio 5 5.43 3.60 100
Fixed-ratio 1 1 0 100
Fixed-ratio 5 5 0 100
Response cost 1 1 0 100
Response cost 5 5 0 100

Noncontingent
reinforcement 5 s 5 0 100

Noncontingent
reinforcement 10 s 10 0 100

Table 1. Validation of reinforcement schedules. Note:
Response cost functions identically to the fixed-ratio
schedule of reinforcement with the delivery of a
correlated stimulus and score decrement instead of
reinforcement.

BRADEN TOLER ET AL.

 38

systems. This cross-platform compatibility
broadens the utility of our program for
researchers in various settings. Moreover, once
users have installed Python, the requisite
libraries, and our software, continuous
connection to the internet is not necessary. These
attributes offer benefits that enhance the
practicality and dependability of our software
for human-operant research endeavors. Many
contemporary studies have utilized comparable
software to evaluate operant behavior in human
subjects (Smith & Greer, 2023; Kimball et al.,
2023). Providing open-source software that can
be customized for human-operant research
could significantly enhance the efficiency of
translational studies and contribute to the rapid
growth of scholarly work in this area.

For future development, there is potential to
enhance the software's capabilities to simulate
more intricate operant scenarios. The present
validation results show the software's potential
utility in human-operant research. On a broader
scale, such tools are crucial in bridging the gap
between the experimental analysis of behavior
and applied behavior analysis. As highlighted by
Jarmolowicz (2018), a growing disconnect exists
between these two areas, which might prevent
the effective translation of experimental results
to applied contexts. Our software aims to offer a
resource for both experimental and applied
research, promoting a more integrated approach
between experimental analysis of behavior and
applied behavior analysis.

REFERENCES

Bernal-Gamboa, R., Nieto, J., & Gámez, A. M. (2020).
Conducting extinction in multiple contexts
attenuates relapse of operant behavior in humans.
Behavioural Processes, 181, 104261.
https://doi.org/10.1016/j.beproc.2020.104261

Bolívar, H. A., & Dallery, J. (2020). Effects of response
cost magnitude on resurgence of human operant
behavior. Behavioural Processes, 178, 104187.
https://doi.org/10.1016/j.beproc.2020.104187

Jarmolowicz, D. P. (2018). EAB is fine, thanks for
asking. Behavior Analysis: Research and Practice,
18(2), 169–173.
https://doi.org/10.1037/bar0000116

Kestner, K. M., & Peterson, S. M. (2017). A review of
resurgence literature with human participants.

Behavior Analysis: Research and Practice, 17(1), 1–17.
https://doi.org/10.1037/bar0000039

Kestner, K. M., Diaz-Salvat, C. C., St. Peter, C. C., &
Peterson, S. M. (2018). Assessing the repeatability
of resurgence in humans: Implications for the use
of within-subject designs. Journal of the
Experimental Analysis of Behavior, 110(3), 545–552.
https://doi.org/10.1002/jeab.477

Kimball, R. T., Salvetti, E. L., Day, L. E., Karis, R.,
Silveira, J., & Kranak, M. P. (2023). Operant ABA
renewal during dense and lean schedules of
differential reinforcement. Journal of the
Experimental Analysis of Behavior, 119(3), 529–538.
https://doi.org/10.1002/jeab.840

Lattal, K. A., & Perone, M. (Eds.). (1998). Handbook of
Research Methods In Human Operant Behavior.
Plenum Press.

Okouchi, H. (2015). Resurgence of two-response
sequences punished by point-loss response cost in
humans. Revista Mexicana de Análisis de La
Conducta, 41(2), 137–154.
https://doi.org/10.5514/rmac.v41.i2.63744

 Perone, M. (1985). On the impact of human operant
research: Asymmetrical patterns of cross-citation
between human and nonhuman research. The
Behavior Analyst, 8(2), 185–189.
https://doi.org/10.1007/bf03393150

Ritchey, C. M., Kuroda, T., Rung, J. M., & Podlesnik,
C. A. (2021). Evaluating extinction, renewal, and
resurgence of operant behavior in humans with
Amazon Mechanical Turk. Learning and
Motivation, 74, 101728.
https://doi.org/10.1016/j.lmot.2021.101728

Saini, V., & Mitteer, D. R. (2019). A review of
investigations of operant renewal with human
participants: Implications for theory and Practice.
Journal of the Experimental Analysis of Behavior,
113(1), 105–123. https://doi.org/10.1002/jeab.562

Smith, S. W., & Greer, B. D. (2022). Validating
human-operant software: A case example.
Behavior Analysis: Research and Practice, 22(4), 389–
403. https://doi.org/10.1037/bar0000244

Smith, S. W., & Greer, B. D. (2023). Translational
evaluation of on/Off Alternative Reinforcement
Cycling. Journal of the Experimental Analysis of
Behavior, 120(3), 429–439.
https://doi.org/10.1002/jeab.879

Sweeney, M. M., & Shahan, T. A. (2016). Resurgence

of target responding does not exceed increases in
inactive responding in a forced-choice alternative
reinforcement procedure in humans. Behavioural
Processes, 124, 80–92.
https://doi.org/10.1016/j.beproc.2015.12.007

https://doi.org/10.1016/j.beproc.2020.104261
https://doi.org/10.1016/j.beproc.2020.104187
https://doi.org/10.1037/bar0000116
https://doi.org/10.1037/bar0000039
https://doi.org/10.1002/jeab.477
https://doi.org/10.1002/jeab.840
https://doi.org/10.5514/rmac.v41.i2.63744
https://doi.org/10.1007/bf03393150
https://doi.org/10.1016/j.lmot.2021.101728
https://doi.org/10.1002/jeab.562
https://doi.org/10.1037/bar0000244
https://doi.org/10.1002/jeab.879
https://doi.org/10.1016/j.beproc.2015.12.007

