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In recent years, computer models have become an indispensable tool for conducting basic human-
operant research. However, one’s ability to conclude meaningful relations between independent 
and dependent variables relies on the assumption that the computer software is reliable and 
operates as intended. This technical report delves into the features and validation process of a novel 
software entitled VirtuOperant; built using the Python programming language to support human-
operant research. Our software validation procedure draws inspiration from the methodology 
developed by Smith and Greer (2022). This structured approach not only affirms the software's 
efficacy but also emphasizes its potential for replicability across varied research scenarios (e.g., 
simulations of discrimination learning, treatment relapse). The focus of this report revolves around 
the validation of the software and underscores the software's potential for future human-operant 
research. We found VirtuOperant to be reliable at programming various reinforcement schedules 
and phenomena. Given its reliability and ability to generate data automatically, we anticipate this 
software becoming a useful tool for future research. 
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The operant conditioning chamber has long 
served as a cornerstone for understanding 
behavioral mechanisms in controlled settings. 
Historically, this domain has been dominated by 
animal studies, but the shift towards human-
operant research introduced a new layer of 
complexity and relevance (Lattal & Perone, 1998; 
Perone, 1985). The evolution of technology has 
significantly impacted this field, with computer 
models emerging as crucial tools to emulate and 
study human-operant environments (Smith & 
Greer, 2022). For example, research using 
human-operant paradigms have provided 
opportunities to study variables related to 
treatment relapse without posing risks to 
applied populations by increasing behavior of 
significance (Bolívar et al., 2017; Kestner & 

Peterson, 2017; Kestner et al., 2018; Ritchey et al., 
2021). 

Despite the advances in technology, the 
challenge remains to develop software that is 
both accurate in its representation of operant 
principles and versatile enough to accommodate 
the varied nuances of human-operant research. 
Saini and Mitteer (2020) noted that studies with 
human participants often require a more 
meticulous accounting of variables. Particularly, 
when many studies span across several days, 
there are potential confounds introduced by 
gaps between experimental sessions, which 
might obscure genuine instances of behavior 
change. When our scientific interpretation of the 
relations between independent and dependent 
variables relies on minimization of threats to 
internal validity (e.g., instrumentation), it is 
imperative to demonstrate the reliability of novel 
software prior to conducting research with it or 
interpreting results derived from the software. 

The software described in this report was 
built using the Python programming language. 
It allows experimenters to (a) customize up to 
four response buttons, (b) program a dissimilar 
control activity (i.e., drawing on a portion of the 

 

Author Note: Any correspondence or requests for 
access to the VirtuOperant software should be 
addressed to Braden Toler.  
Email: bjt0021@mix.wvu.edu. 
 
Additional Author Information: Daniel R. Mitteer: 
ORCID: 000-001-8940-0657 
 
https://doi.org/10.17605/OSF.IO/8MJU4 
 

 

mailto:bjt0021@mix.wvu.edu
https://doi.org/10.17605/OSF.IO/8MJU4


EXPERIMENTAL ANALYSIS OF HUMAN BEHAVIOR BULLETIN 2025, 35, 32-38 
 

 33 

screen), (c) manipulate response-based or 
interval-based schedules of reinforcement (i.e., 
point gain) and punishment (i.e., point loss), and 
(d) graph data automatically following the 
experiment. While there is no explicit limit to 
duration, experimental phases can be 
programmed to be short (e.g., 120 s) and allow 
participants to navigate all phases of the 
experiment in a single iteration, thereby making 
data obtainment practical and reducing the 
inconsistencies that might arise from prolonged 
gaps. Therefore, the purpose of this paper is to 
introduce a novel software solution specifically 
designed to overcome the limitations with 
current technologies. Additionally, we provide 
validation for this software, employing a 
methodology adapted from Smith & Greer 
(2022).  We hope this will provide researchers 
with a reliable and efficient tool that advances 
the frontiers of human-operant research, 
ensuring accuracy and consistency in data 
collection. 
 

 
PROGRAM SPECIFICATIONS 

 
Overview 
The operant conditioning chamber’s highly 
controlled environment is an integral part of 
basic animal research in behavior analysis. The 
Python program serves as a digital emulation of 
the environmental conditions utilized by basic 
researchers; creating an environment in which 
users can accrue points through the act of 
engaging in an arbitrary button pressing task as 
is common for human-operant research (Kestner 
et al., 2018; Okouchi, 2015). This program 
provides an interactive user interface (UI) that 
enables users (participants of the experiment) to 
interact with the experimental setup. The design 
and flow of the experiment are based on a series 
of preset experimental phases, each with its own 
set of reinforcement schedules. The primary 
functions of the program include: (a) setting up 
the user interface, (b) tracking and storing user 
interactions, (c) applying reinforcement 
schedules, (d) managing the different phases of 
the experiment, and finally, (e) analyzing and 
visualizing the data collected during the 
experiment. 
 
Setup and Initialization 
The setup and initialization process of the 
program involves several key steps, which 

prepare the application for user interaction and 
establish the initial state of the experiment.  
When the program starts, it sets up the UI. This 
involves creating a main application window 
that acts as a container for all other UI elements 
(Figure 1). The window is configured to be 
displayed in full screen mode, providing an 
immersive experience for the user and helping to 
eliminate extraneous variables. The program 
incorporates a drawing canvas at the bottom of 
the screen, outlined and accompanied by 
instructive text. This canvas serves as a 
deliberate design feature, granting users an 
option to disengage from the primary 
experiment. Drawing from insights by Bolivar et 
al. (2017) and Sweeney and Shahan (2016), it is 
crucial to provide participants with alternatives 
to active engagement, minimizing any coerced 
responses or persistent behavior in the absence 
of alternatives (i.e., clicking response buttons 
during extinction due to no other potential 
activities).  

Above this drawing canvas, an image canvas 
is created to display images associated with each 
phase of the experiment (Figure 2b). 
Initialization of the experiment's parameters is 
the next step. Parameters such as the list of 
images to be displayed as stimuli, the count of 
button presses, the remaining time, and the 
reinforcement timestamps are initialized. These 
parameters play vital roles in the progression 

 
 
Figure 1. Setup Screen. Note: Set phases allows the 
experimenter to set up the experimental procedure; 
Save Phases allows the experimenter to save an 
experimental arrangement for future use; Load Phases 
allows the experimenter to load a previously existing 
experiment. 
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and operation of the experiment. The program 
also sets up lists to track button press timestamps 
and the last reinforcement timestamps for each 
button. Furthermore, it initializes counters for 

different reinforcement schedules. A list to store 
the different phases of the experiment is 
initialized, and the experiment begins with the 
first phase. These phases determine the duration 
and reinforcement schedule(s) of the experiment. 
Experiment Screen 
In the experimental portion of the program, the 
users interact with moving rectangular buttons, 
which are in constant motion across the screen 
(Figure 2a). These buttons move to a random 
location on the screen every 3 seconds. This 
creates an engaging and dynamic environment 
where the users need to track and press the 
moving buttons. This provides a consistent 
challenge for the user to locate and press the 
buttons. When a user presses a button, the 
program registers the event and applies the 
appropriate reinforcement rules depending on 
the current phase of the experiment. If 
reinforcement is available, pressing the button 
will produce a brief green screen flash and bell 
sound as the score counter increases (Figure 2c).  

The program also includes aversive feedback 
to implement punishment procedures. If the 
user's button press triggers an aversive event 
according to the assigned schedule, the user's 

score is decreased. Aversive feedback is also 
accompanied by a brief red flash on the screen 
and the sound of a buzzer.  

In the upper portion of the screen, the 
program allows the experimenter to place image 
files that can be varied by experimental phase. 
This provides experimenters with a means of 
creating variations in the experimental 
environment for the purposes of testing concepts 
such as renewal or discrimination (Saini & 
Mitteer, 2020; Bernal-Gamboa et al., 2020).  

Finally, at the bottom of the screen is where 
the drawing canvas is placed so as to provide an 
alternative option to interacting with the 
experimental procedure (Figure 2e).  
 
Reinforcement Schedules 
In this program, the reinforcement schedules are 
implemented in a function called 
“apply_reinforcement_schedule”. This function 
is called each time a button is pressed, and it 
applies the corresponding reinforcement 
schedule based on the current phase of the 
experiment. For the fixed-ratio (FR) schedule, the 
function checks if the count of button presses is a 
multiple of the specified ratio. If it is, 
reinforcement is delivered, which in this context 
means increasing the user's points and providing 
positive feedback. For fixed-interval (FI) 
schedules, the function calculates the time 
elapsed since the last reinforcement. If this time 
is greater than or equal to the specified interval, 
reinforcement is delivered. The timestamp for 
the last reinforcement is then updated to the 
current global time. Variable schedules of 
reinforcement proved to be more complex to 
program. For variable-ratio (VR) schedules, the 
function generates a random number and checks 
if it is less than the reciprocal of the specified 
average. If it is, reinforcement is delivered. This 
method effectively creates a probability of 
reinforcement around the specified average. The 
variable-interval (VI) schedule functions 
similarly to the fixed-interval schedule, the 
function calculates the time elapsed since the last 
reinforcement. If this time is greater than or 
equal to a randomly generated delay (ranging 
from 50% to 150% of the specified average), 
reinforcement is delivered, and the delay is 
updated for the next interval. Noncontingent 
reinforcement (NCR) is implemented slightly 
differently from the others. It is controlled by a 
function that is called every second and checks if 
the time elapsed since the last reinforcement for 

 
 
Figure 2. Experiment Screen. Note: The image depicts 
the various features of the experimental window: 
response buttons (a), visual stimulus (b), point counter 
(c), time counter (d), and drawing canvas (e). The 
program allows for up to four response buttons to be 
active at a time. 
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an NCR schedule is greater than or equal to the 
specified interval. If it is, reinforcement is 
delivered. For a response cost, the schedule is 
functionally identical to the fixed-ratio schedule. 
However, instead of providing reinforcement, it 
delivers a punishment (decrementing the user's 
points and providing aversive feedback) when 
the count of button presses is a multiple of the 
specified ratio. The implementation of these 
schedules in the code accurately reflects their 
theoretical descriptions as will be demonstrated 
through validation.  

 
Data Collection and Results 
The program's data collection process is initiated 
the moment the user starts interacting with it. 
With every press of a button, a function is 
activated, logging the global timestamp of the 
event and incrementally increasing the count of 
button presses. The function also records the 
time of the corresponding reinforcement event 
when the function is triggered. Simultaneously, 
a separate function operates every second to 
monitor the conditions for the NCR schedule, 
updating the reinforcement timestamp when the 
condition is met. The data collected throughout 
the experiment is stored in real-time within the 
program's memory. When the experiment 
concludes, this collection of button-press 
timestamps and other pertinent data is saved in 
a Microsoft Excel file. This function ensures that 

the dataset is safely stored for further analysis 
post-experiment. Another function then steps in 
to provide a visual interpretation of the collected 
data. It produces two kinds of graphs: a 
cumulative record displaying the total number 
of button presses over time (Figure 3), and a rate-
of-responding graph which presents the 
frequency of button presses (Figure 4). These 
visuals provide an immediate depiction of the 
user's interaction pattern throughout the 
experiment. Additionally, a summary of the 
results is tabulated to offer a snapshot of the key 
data points. This task is performed by a function 
that calculates the total responses and average 
rate of responding for each button across 
different phases of the experiment. The data is 
neatly arranged in a table, providing quick 
access to the phase number, button number, 
phase duration, total responses, and the average 
rate of responding for each button in each phase. 
This table is also saved to an Excel file, providing 
a reference for researchers to further analyze the 
data (Figure 5).  
 

 
VALIDATION 

 
Dependent-Variable Validation  
To validate the efficacy of our data collection 
process, particularly concerning the dependent-
variable values, we implemented a 25-s 

 
 
Figure 3. Sample output of cumulative record responses. Note: Cumulative record data paths are colored to match 
the corresponding response button.  
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experimental trial. During the initial 5-s interval 
of this experiment, a single response to the target 
button was delivered. Progressing into the 
subsequent intervals of 5 s each, we increased the 
number of responses by one response per 
interval, culminating in five responses in the last 
five-second interval. This trial design was 
deliberately chosen due to our program's 
function to track and compute response rates. It 
operates by aggregating the total number of 
responses for each 5-s interval, dividing it by 
five. The resultant figure is then recorded as a 
data point on the response rate graph. Given the 
approach of our testing, we predicted that the 
data would illustrate a stable, ascending linear 
progression, mirroring the systematic 
increments in the responses. Indeed, our 
expectations were met as depicted in Figure 6. 
Additionally, the program reported an average 
response rate of 0.6 responses per second, with a 
cumulative total of 15 responses. This aligns with 
our actual number of responses, further 
substantiating the validity of the data collection 
function. 
 
Reinforcement Schedule Validation 
To validate the reinforcement schedules, we 
tested the software across various schedule types 
and values, closely mirroring the method 
employed by Smith and Greer (2022). For each 

schedule, we collected data until 35 reinforcers 
were delivered. This approach permitted 
fluctuations in the trial durations, aligning with 
the principles of reinforcement schedules: richer 
schedules resulted in shorter trial durations to 
reach the reinforcement quota, whereas leaner 
schedules necessitated longer durations to 
achieve the same number of reinforcers. For 
interval schedules, we calculated the mean time 
between reinforcers. For ratio schedules, our 
focus was on determining the mean number of 
responses before reinforcement was delivered. 
Additionally, we computed standard deviations 
to gauge the variability of these measures. These 
calculated metrics, represented in Table 1, were 
compared with the predefined schedule values 

 
 
Figure 4. Sample Output of Rate of Responding. Note: Rate is calculated as the average number of responses per 
second for each 5 s interval.  

 
 

 
 
Figure 5. Sample Output of Excel Data. Note: 
Experimenters have the option to select which response 
options to include in the generated Excel file. 
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to assess the software's adherence to established 
operant scheduling principles. The results of this 
validation process, summarized in Table 1, 
suggest that the software closely aligns with the 
specified reinforcement schedules. This is 
particularly evident in the "Percentage within 
range" column, where a score of 100% represents 
full alignment with the set schedule values.  

The alignment of the software with the 
theoretical reinforcement values indicates its 
reliability for use in human-operant research. 
Given the rigorous validation and its consistency 
with methods outlined by Smith and Greer 
(2022), this software is poised to be a valuable 
tool in the field, demonstrating its capability to 
yield consistent and precise outcomes.  

 
DISCUSSION 

 
This report introduces and validates a new 
software tool developed for human-operant 
experimental designs. As behavior analysis has 
advanced, particularly in the realm of human-
operant research (Lattal & Perone, 1998), there is 
a growing demand for reliable tools. Our 
software, written in Python, seeks to meet this 
need, offering a platform for researchers to 
further investigate human-operant translational 
research. The software emphasizes ease-of-use 
and technical reliability. To validate the 
software, we adopted the validation methods 
from Smith and Greer (2022) with the exception 
of the functionality testing as the use of Python’s 
rigorously tested and widely used library made 

functionality testing redundant. Our testing 
across various frameworks and domains 
indicated that the software produces accurate, 
replicable, and consistent results. It is important 
to note, however, that the software was tested by 
individuals who were not entirely naïve to 
behavior analytic procedures, which might not 
entirely reflect real-world research contexts.  

VirtuOperant utilizes the Python 
programming language, which is renowned for 
its ability to function across different operating 

 
 
Figure 6. Dependent Variable Rate Validation. Note: Each data point corresponds to a single 5 s interval. 

 Schedule Values 

Condition M SD % within 
range 

Variable-interval 5 s 5.28 s  1.63 s  100 
Variable-interval 10 s 9.91 s 2.81 s 100 
Variable-ratio 2 1.86 1.33 100 
Variable-ratio 5 5.43 3.60 100 
Fixed-ratio 1 1 0 100 
Fixed-ratio 5   5 0 100 
Response cost 1 1 0 100 
Response cost 5 5 0 100 

Noncontingent 
reinforcement 5 s 5 0 100 

Noncontingent 
reinforcement 10 s 10 0 100 

 
Table 1. Validation of reinforcement schedules. Note: 
Response cost functions identically to the fixed-ratio 
schedule of reinforcement with the delivery of a 
correlated stimulus and score decrement instead of 
reinforcement. 
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systems. This cross-platform compatibility 
broadens the utility of our program for 
researchers in various settings. Moreover, once 
users have installed Python, the requisite 
libraries, and our software, continuous 
connection to the internet is not necessary. These 
attributes offer benefits that enhance the 
practicality and dependability of our software 
for human-operant research endeavors. Many 
contemporary studies have utilized comparable 
software to evaluate operant behavior in human 
subjects (Smith & Greer, 2023; Kimball et al., 
2023). Providing open-source software that can 
be customized for human-operant research 
could significantly enhance the efficiency of 
translational studies and contribute to the rapid 
growth of scholarly work in this area. 

For future development, there is potential to 
enhance the software's capabilities to simulate 
more intricate operant scenarios. The present 
validation results show the software's potential 
utility in human-operant research. On a broader 
scale, such tools are crucial in bridging the gap 
between the experimental analysis of behavior 
and applied behavior analysis. As highlighted by 
Jarmolowicz (2018), a growing disconnect exists 
between these two areas, which might prevent 
the effective translation of experimental results 
to applied contexts. Our software aims to offer a 
resource for both experimental and applied 
research, promoting a more integrated approach 
between experimental analysis of behavior and 
applied behavior analysis. 
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