An Integrated Climate Change Assessment & Adaptation Framework for Conservation Planning & Management in the Southwestern US: *translating the science*

Jemez Mountains Climate Change Workshop
Carolyn Enquist *et al.*
April 21, 2009
Key Outcomes of Workshop:

1. Develop **landscape-scale adaptation pilot projects**;

2. Identify **adaptation options & best climate change management practices**;
 - share, apply, and test these ideas collaboratively across the Southwest;

3. Develop a **regional climate change adaptation network program** for information sharing, networking, professional development, and capacity building.

(McCarthy, Enquist & Garfin, Eos, 2008)
An Integrated Assessment Framework

1) Regional climate impacts assessment
 • Assess climate change “exposure” using spatial climate data and available data sets
 (Girvetz et al., ms in prep)

2) Determine vulnerability of conservation priorities
 • Perspective for refining existing priorities or defining new ones
 (Enquist et al. 2008 reports, ms in prep)

3) Landscape scale conservation adaptation planning
 • Implement at a high priority site/landscape where adaptation measures have potential for success (case study workshops)
 (Cross et al, in review)

4) Ancillary Information & Tools
 • Incorporate as become available to inform all stages of framework; such as:
 • NatureServe’s species vulnerability index (Young et al.) & ecosystem national map (Comer et al.); USFS RM Research Station’s species vulnerability analyses (Finch et al.) and climate stress index (Joyce et al.)
Identify research showing climate-linked physical changes across the West:

- Increased aridity
- More rain than snow
- Declines in snowpack
- Changes in the timing of peak stream flows

Look for evidence of this across the state:

Declines in snowpack
(NRCS SNOTEL, green dots)

Earlier peak streamflows
(Stewart et al. 2004, blue dots)
State-wide impacts assessment

Identified cases of climate-linked ecological changes across New Mexico & environs:

- Population changes
 - Mortality & recruitment
 - Shifts in distributions
 # Cases: 40

- Changes in phenology
 # Cases: 2

- Invasive species
 - Non-native & native
 # Cases: 5

- Altered disturbance regimes
 - Fire, erosion, etc.
 # Cases: 2
State-wide impacts assessment

Recent & future (*forthcoming*) climate change “exposure” using ClimateWizard analysis tool:

Composite of T & PPT departures (relative to 1961-1990)
Base data source: PRISM (Daly et al. 1994), Enquist & Gori 2008, TNC report, ms in prep.

Base data source: PRISM (Daly et al. 1994) Enquist, Girvetz & Gori, TNC report, ms in prep.
Implications on Conservation Priorities

Consider “exposure” to change by geography & ancillary data.

Source: SWreGAP
Case Study Selection
(or “Why the Jemez Mountains?”)

Use results of regional impacts assessment, analysis of conservation implications, & other information as guide.

Catastrophic Fire (2000)

Goat Peak pika

Post-fire Erosion

Jemez Mountains salamander
Recent trends in the Jemez

Snowpack in Jemez watershed (pink dots)

<table>
<thead>
<tr>
<th>NRCS SNOTEL Site</th>
<th>ELEV (m)</th>
<th>Period of Record</th>
<th>Mar 1 SWE (in)</th>
<th>Apr 1 SWE (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senorita Divide #2</td>
<td>2,621</td>
<td>1981-2006</td>
<td>-0.207</td>
<td>-0.308*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>= ~8 in total</td>
</tr>
<tr>
<td>Quemazon</td>
<td>2,895</td>
<td>1981-2006</td>
<td>-0.141</td>
<td>-0.298*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>= ~7 in total</td>
</tr>
</tbody>
</table>
Recent trends in the Jemez

Timing of peak flow in Jemez River (purple dot)

<table>
<thead>
<tr>
<th>Jemez River</th>
<th>USGS Gage</th>
<th>ELEV (m)</th>
<th>Period of Record</th>
<th>Change in Peak Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10802</td>
<td>1,714</td>
<td>1950-2002</td>
<td>-2 days</td>
</tr>
</tbody>
</table>

Data provided by Iris Stewart, Santa Clara U (Stewart et al. 2005)
Regional vegetation die-off in response to global-change-type drought

(PNAS 2005)

David D. Breshearsa,b, Neil S. Cobbc, Paul M. Richd, Kevin P. Pricee,f, Craig D. Alleng, Randy G. Baliceh, William H. Rommei, Jude H. Kastensj,1, M. Lisa Floydk, Jayne Belnapl,m, Jesse J. Andersone, Orrin B. Myersm, and Clifton W. Meyerd

Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global change-type drought

(PNAS 2009)

Henry D. Adamsa,b,1, Maite Guardiola-Claramontea,c, Greg A. Barron-Gafforda,b, Juan Camilo Villegase,d,e, David D. Breshearsa,b,d,f, Chris B. Zoug, Peter A. Trocha,c, and Travis E. Huxmana,b,f

Photos: C.D. Allen, USGS
Future trends in the Jemez?

“Climate Change Adaptation Planning”
or step 3 in our integrated assessment framework & focus of this workshop

“But wait, there’s more:”
Expansion of this framework to the 4-Corner states.....
Southwest Climate Change Initiative (SWCCI)

I. Regional impacts assessment for each state

II. Determine Conservation Implications w/regional experts

III. Landscape adaptation planning
 Case study in each state

IV. Climate Change Learning Network
 I. Refine process
 II. Identify generalities and differences
 III. Make policy recommendations

Source: Hoerling & Eischeid 2007
<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carolyn Enquist</td>
<td>TNC-NM</td>
</tr>
<tr>
<td>Dave Gori</td>
<td>TNC-NM</td>
</tr>
<tr>
<td>Molly Cross</td>
<td>WCS</td>
</tr>
<tr>
<td>Evan Girvetz</td>
<td>U Washington</td>
</tr>
<tr>
<td>Lisa Graumlich</td>
<td>U Arizona</td>
</tr>
<tr>
<td>Gregg Garfin</td>
<td>U Arizona</td>
</tr>
<tr>
<td>Anne Bradley</td>
<td>TNC-NM</td>
</tr>
<tr>
<td>Rob Marshall, Marcos Robles, Ed Smith, Gita Bodner</td>
<td>TNC-AZ</td>
</tr>
<tr>
<td>Tim Sullivan, Betsy Neely</td>
<td>TNC-CO</td>
</tr>
<tr>
<td>Joel Tuhy & Staff</td>
<td>TNC-UT</td>
</tr>
<tr>
<td>Jack Triepke</td>
<td>USFS-R3</td>
</tr>
<tr>
<td>Deborah Finch, Karen Bagne</td>
<td>USFS-RMRS</td>
</tr>
</tbody>
</table>

For more information & report downloads: www.nmconservation.org
Recent trends in the Jemez Streamflow

Jemez River Discharge, 1972-2007

\[y = -0.003x + 101.57 \]

\[r^2 = 0.0061, \ P < 0.05 \]

Data provided by: Bob Parmenter, VCNP
Recent trends in the Jemez Fire Frequency
The West faces a 90% chance of (IPCC 2007):

- declining snowpack
- earlier peak stream flows
- greater ET & evaporation from reservoirs

- Southwest a “Dust Bowl” by mid-21st century?
 (Seager et al. 2007, Science)

... leading to increased competition for already over-allocated water resources.

Source: Hoerling & Eischeid 2007