Bird-friendly Native Landscapes for Coastal Georgia

Keren Giovengo
EcoScapes Sustainable Land Use Program Manager
giovengo@uga.edu
912-280-2586

Will Stuart
black-throated blue warbler on American beautyberry (Callicarpa americana)

UGA EcoScapes Sustainable Land Use Program
UGA EcoScapes Resources

- Points to Live by When Shopping and Gardening with Native Plants
- Purchasing Native Plants: Considerations and Nursery Sources
- Creating Native Habitat Guidance Series for wildlife and pollinators
- Checklist to Reduce and/or Eliminate Chemical Use in Landscapes
- EcoScapes Native Plant Search Engine
- EcoScapes Native Plant Search Engine Guidance Document

Gardening for Bird Books

Gardening FOR THE Birds
How to Create a Bird-Friendly Backyard

Native Plant Landscaping FOR Florida Wildlife

*Books not in use for the moment but supporting and registries for life community.
A healthy ecosystem consists of native plant and animal populations interacting in balance with each other and nonliving things. Coastal Georgia is made up of a vast array of beaches, dunes, wetlands, rivers, creeks, forests, meadows, bogs, and other habitats that support rich and diverse communities of plants and animals.
The UN Millennium Ecosystem Assessment established that "ecosystems are critical to human well-being – to our health, our prosperity, our security, and to our social and cultural identity."

Healthy Ecosystems Provide Us Ecosystem Services

- Supporting Services: Soil Formation, Pollination, Seed Dispersal, Pollination, Natural Pesticides, Seed Dispersal
- Provisioning Services: Food, Wood, Clean Water
- Cultural Services: Heritage, Education, Spiritual \& Ceremonial, Tourism
- Regulating Services: Climate Regulation, Pollination, Nutrient Cycling, Water Regulation
- Categorization: Ecosystem Services what nature provides us for free.
Biodiversity = Ecosystem Services

Biodiversity is the key indicator of the health of an ecosystem. People obtain the benefits of ecosystem services from the diversity of life around them. The more diverse an ecosystem is, the more services it will provide for us.

Plant Diversity: Key Ecological Role

All energy is captured by plants and all animals get their food from plants. Therefore, the amount of vegetation in any given area determines the amount of life that can be supported in that area.
Insect Diversity: Key Ecological Role

Insects are the most important group of animals that transfer energy captured by plants to other animals.

For example, insects are a critical food source for the survival of 96% of all terrestrial birds’ young who are reared on insects.

Embracing insect diversity in landscapes creates balance and plays a key ecological role.

350-570 caterpillars/day (6,000-9,000 to raise clutch of 16-18 days)

Insects and Native Plants

90% of all insects that eat plants require native plants to complete their development.

In many cases, an insect’s adaptation focuses on a limited range of closely related native plants that occur within that insect’s native range.

Insects that evolved to feed on specific native plant species cannot survive if those plants are not available.

Gulf fritillary (Agraulis vanillae) on purple passionflower (Passiflora incarnata)
A diversity of native plants = animal diversity = supports a functioning ecosystem

Insect diversity increases with locally native plant diversity which further supports birds and other wildlife. By using a diversity of local native plants, we help preserve the balance and beauty of natural ecosystems.

Human Actions are Taking Their Toll on Biodiversity

With ever growing human populations, we need more ecosystem services. However, as we reduce biodiversity, we are getting fewer and fewer services from our ecosystems.
Invasive Species

Estimates of environmental and ecological costs of invasive species in the U.S. alone approach $120 billion/year (Pimental et al. 2005) with more than 100 million acres affected (about the size of California).

Eighty-five percent of invasive woody plants have escaped from ornamental industry plantings.

Pesticides: Case Study - Native Bee Poisonings

"The bumble bees were literally falling out of the trees. To our knowledge, this is one of the largest documented bumble bee deaths in the western U.S. It was heartbreaking to watch."

- Rich Hatfield, Conservation Biologist, Xerces Society

Up to 50,000 bumble bee deaths in 2013 after neonicotinoid dinofeturan (Safari) was sprayed on linden trees in Wilsonville, Oregon.
Study 1: Global Threats to Biodiversity

Habitat loss is a major threat to biodiversity
The Living Planet Report assesses key drivers of species loss

- Habitat degradation
- Exploitation
- Invasive species and disease
- Pollution
- Climate change

Birds
Reptiles and amphibians
Mammals
Fish

Note: A sample of 3,789 populations evaluated by the Living Planet Index
Source: WWF, Living Planet Report 2018

Study 2: Decline of wild bird populations in North America

Wild bird populations in the continental U.S. and Canada have declined by almost 30% since 1970. More than 1 in 4 birds have disappeared in the last 50 years (Rosenberg et al., 2019).
Losses in Every Biome

The massive loss of birdlife reaches into every biome in the U.S. and Canada (Rosenberg et al., 2019)

Steep Losses Among Major Bird Families

“We want to keep common birds common, and we’re not even doing that.”
(Pete Marra, study coauthor)

The species that many people see every day represent the greatest losses of birdlife.

Declines are not restricted to rare and threatened species. More than 90% of the losses come from once considered common and widespread - just 12 families including sparrows, blackbirds, warblers, and finches (Rosenberg et al., 2019).
Call to Action

“These results have major implications for ecosystem integrity, the conservation of wildlife more broadly, and ... the protection of birds and native ecosystems upon which they depend.”

“Our results signal an urgent need to address the ongoing threats of habitat loss...to advert continued biodiversity loss and potential collapse of the continental avifauna.”

(Rosenberg et al., 2019)

Global Insect Declines in Diversity and Abundance

According to the first global scientific review (April 2019), dramatic rates of decline in diversity and abundance that may lead to the extinction of 40% of the world’s insect species over the next few decades. The rate of extinction is 8x faster than that of mammals, birds and reptiles.

Insects are essential for the proper functioning of healthy ecosystems.

41% of global insect species have declined over the past decade...

Causes of insect decline:
1. Habitat loss and degradation conversion to urbanization and intense agriculture;
2. Exposure to pesticides (insecticides, herbicides and fungicides, fertilizers);
3. Climate change and extreme weather;
4. Biological factors (disease, invasive/introduced species, pathogens);
5. Nonnative ornamental plants.

... compared with 22% of vertebrate species:
"A rethinking of current practices, in particular a serious reduction in pesticide usage and its substitution with more sustainable, ecologically-based practices, is urgently needed to slow or reverse current trends, allow the recovery of declining insect populations and safeguard the vital ecosystem services they provide."

(Sanchez-Bayo and Wyckhuys. Biological Conservation 232 (2019) 8-27)

OUR Call for Action

We must raise the bar for what we ask our landscapes to do.
We can make a difference!

“Gardeners have become important players in the management of our nation’s wildlife. It is now within the power of individual gardeners to do something that we all dream of doing; to make a difference. In this case, the ‘difference’ will be to the future of biodiversity, to the native plants and animals of North America and the ecosystems that sustain them.”

– Dr. Doug Tallamy, Bringing Nature Home

Native Landscapes Can Change the World

“Our world is asking for landscapes to be more, to light the way to a new relationship with nature.”

(Benjamin Vogt, A New Garden Ethic, 2017)

Our challenge is to design and enhance our landscapes so that they become healthy, functioning and resilient parts of our local ecosystems.
Our landscapes can mimic the complexity of disappearing habitats and provide food, nesting and shelter for pollinators, other beneficial insects, songbirds, and other wildlife, while improving water quality, conserving water and enhancing our community’s sense of place, beauty, and vitality.

Step 1. Identify your ecoregion

Knowing your ecoregion provides the baseline that will help you key in on the kinds of plants and plant communities that are indigenous to the site and offers basic information about its climate and precipitation, soils, types of landforms, and complex biological relationships.

On the other hand, the USDA Hardiness Zone Map is based on how well plants survive low temperatures in winter. It is defined by average annual minimum winter temperatures which is best suited for ornamental exotic plants.
Step 2. Identify any native plant communities adjacent to or near your site

If possible, select native plants that complement the nearby natural areas by using similar species composition.

The book *The Natural Communities of Georgia* (Ambrose, Kirkman and Edwards 1999) provides descriptions of individual natural communities and the characteristic native plants that make up each community.
Step 3. “Read the landscape”: Identify plants and site conditions that exist on your site

- Determine your site conditions (sunlight, moisture, soil type, salt exposure, wind and any microhabitat conditions)
- Inventory the existing vegetation (native and non-native, invasive). This may assist in determining what plant communities may do best at the site.
- Remove any invasive plants that exist

Native plants reduce invasive species impacts

<table>
<thead>
<tr>
<th>Invasive</th>
<th>Native Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chinese tallowtree (Triadica sebifera)</td>
<td>Eastern redbud (Cercis canadensis)</td>
</tr>
<tr>
<td>Swamp titi (Cyrilla racemiflora)</td>
<td>Swamp titi (Cyrilla racemiflora)</td>
</tr>
</tbody>
</table>

Planting invasive plants severely reduces the carrying capacity for that environment. By using native plants, we help limit the chances that potentially invasive, exotic plant species will be introduced into natural environments.

List of non-native invasive plant list from GA Exotic Pest Plant Council: https://www.gaeppc.org/list/
Coastal Georgia Cooperative Invasive Species Management Area (CoGACISMA): coastalgeorgacisma.org
Step 4. ID the site’s existing aesthetic attributes, liabilities, and limitations (what keep, what change)

Step 5. Assess the presence of wildlife
Think like a bird! Analyze your site for structural diversity (“habitat layers”) including large canopy trees, shrubs and small trees, herbaceous plants, decaying leaves, wood, detritus and soil.

Diverse vertical structure

Vertical layering emanates natural landscapes.
Larger patches of native habitat will create a rich wildlife habitat and lovely effect in your landscape. The addition of native ground covers, herbaceous grasses and flowering perennials with some woody shrubs and small trees is a quick and easy way to reduce lawn area, chemical and water use, and provide for the birds.

Keep pet cats indoors! The largest human-caused mortality to birds: domestic and feral cats kill some 2.4 billion birds annually in the U.S.
Are there places for the birds to nest?

Where safety is not an issue (danger to people, power lines or structures), dead and dying trees have an afterlife as a place for wildlife to nest, den, perch, and search for food. Work with an arborist to help stabilize and transition them to wildlife trees or snags.

More than 40 bird species in North America depend on woodpecker carpentry for their nest and roost cavities. These secondary nesters cannot create cavities, but quickly adopt abandoned holes. Sap wells also provide other bird species to ensure early food sources.

Are there sheltered areas where birds can protect themselves from the elements (cold, wind, rain)?
Is there food?

Look for presence of bugs, fruit, nuts and seeds, nectar

Is there water?

Water is an often overlooked resource that birds need year round. Consider including hollowed rocks that catch rainwater or a man-made bird bath for birds to drink and bathe in.
Step 6. Determine desired native plants from your ecoregion that are appropriate for your site conditions.
Choose the right plant for the right site conditions

Lobelia cardinalis
cardinal flower

Salvia coccinea
scarlet sage

This is KEY to ensuring the survival and remaining healthy in your landscape. Plants must be selected to suit existing soil, moisture, sunlight and other site conditions.

Audubon Society Native Plants Database
https://www.audubon.org/native-plants

Bring more birds to your home with native plants
Step 7. Eliminate or reduce chemical use on your landscape

By reducing or not using pesticides, we protect pollinators, other beneficial insects, birds and other wildlife. These insects are a necessary protein source for nesting songbirds, which also provide great insect pest control. Not using pesticides are also beneficial to humans, pets and our environment.
A mere 1% of the insects we come across in our lives are actually harmful. These are the creatures that consume our plants, introduce disease, bite our flesh, feed on our pets, and cause economic, aesthetic, or medical damage.

➢ The remaining 99% of insects are either beneficial or benign. These insects provide pest control, pollination and food for wildlife.

➢ Many beneficial insects provide natural pest control which minimizes or eliminates chemical use.
Know your beneficial insects!

Support beneficial insects who provide natural pest control and keep our landscapes healthy

We can focus on preventive rather than reactive approaches to pest management. By increasing biodiversity in our landscapes and creating habitat for natural enemies, we can boost natural pest control services and reduce our reliance on pesticides.
Natural Pest Control Mantra

When nature is in balance, you will find a mixture of good AND bad insects in your garden.

Step 8: Bird-friendly Maintenance Considerations

Leave the leaves!! Leaf litter, long grass and brush piles are vital for the insects they harbor, which are so critical for bird survival.

Leave plants standing. Both migrants and winter resident birds rely on the seeds of native perennials.

Avoid extensive pruning. Pruning shrubs and hedgerows, other than to increase fruiting, is not needed for bird habitat. It should be especially avoided in spring and early summer when birds are likely to be nesting there.
Bird-friendly Native Plants for Coastal Georgia Landscapes: Plant It and They Will Come!

- Common yellowthroat feeding on goldenrod

Bird-friendly Native Shrubs and Trees

- American beautyberry (Callicarpa americana)
- American black elderberry (Sambucus nigra ssp. canadensis)
- Devil’s walking stick (Aralia spinosa)
- Florida swamp privet (Forestiera segregata)

American black elderberry (Sambucus nigra ssp. canadensis)
Bird-friendly Native Shrubs and Trees

- sweet pepperbush (Clethra alnifolia)
- southern arrowwood (Viburnum dentatum)
- red buckeye (Aesculus pavia)
- highbush blueberry (Vaccinium corymbosum)
- red cardinal (Erythrina herbacea)
- wax myrtle (Morella cerifera)
- sparkleberry/farkleberry (Vaccinium arboreum)
- winged sumac (Rhus copallina)

61

Bird-friendly Native Shrubs and Trees

- red buckeye (Aesculus pavia)
- wax myrtle (Morella cerifera)
- sparkleberry/farkleberry (Vaccinium arboreum)

62
Bird-friendly Native Palms, Shrubs and Trees

Adam's needle (Yucca filamentosa) (E)
saw palmetto (Serenoa repens) (E)
dwarf palmetto (Sabal minor) (E)
cabbage palm (Sabal palmetto) (E)

flatwoods plum (Prunus umbellata) (E)
common serviceberry/downy serviceberry (Amelanchier arborea)
parsley hawthorn (Crataegis marshallii)
southern dewberry (Rubus trivialis)
Bird-friendly Native Shrubs and Trees

- Bald cypress (Taxodium distichum)
- Black gum/black tupelo (Nyssa sylvatica)
- Longleaf pine (Pinus palustris)
- Pond cypress (Taxodium ascendens)
- Sassafras (Sassafras albidum)
- Blackjack oak (Quercus marilandica)
- Live oak (Quercus virginiana)

Bird-friendly Native Shrubs and Trees: Oaks

- Water oak (Quercus nigra)
- Suwanee oak (Quercus virginiana)
- Scarlet oak (Quercus coccinea)
- Black oak (Quercus velutina)
Bird-friendly Native Shrubs and Trees: Holly

American holly (Ilex opaca) (E)
dahoon holly (Ilex cassine) (E)
Yaupon (Ilex vomitoria) (E)
Possumhaw/Deciduous holly (Ilex decidua)

Bird-friendly Native Shrubs and Trees

Southern red cedar (Juniperus virginiana var. silicicola) (E)
Sweetbay (Magnolia virginiana) (E to semi-E)
Bird-friendly Native Grasses

- switchgrass (Panicum virgatum)
- little bluestem (Schizachyrium scoparium)
- purpletop (Tridens flavus)
- wiregrass (Aristida beyrichiana)
- Indiangrass (Sorghastrum nutans)
- purple lovegrass (Eragrostis spectabilis)
- broomsedge bluestem (Andropogon virginicus)
- sand cordgrass (Spartina bakeri)
Bird-friendly Native Vines

Carolina jessamine (Gelsemium sempervirens)

Trumpet honeysuckle (Lonicera sempervirens)

Virginia creeper (Parthenocissus quinquefolia)

Turkey tangle frogfruit (Phyla nodiflora)

Sarsaparilla vine (Smilax pumila)

Muscadine (Vitis rotundifolia)

Bayhops or railroad vine (Ipomoea pes-caprae)

Bird-friendly Native Vines

Honeysuckle (Lonicera sempervirens)

Virginia creeper (Parthenocissus quinquefolia)

Morning glory (Ipomoea pes-caprae)

Muscadine (Vitis rotundifolia)
Bird-friendly Native Forbs/Herbs

Joe-pye weed (Eupatoriadelphus fistulosus) formerly Eutrochium fistulosum or Eupatorium fistulosum

giant ironweed (Vernonia gigantea)

swamp milkweed (Asclepias incarnata)

Bird-friendly Native Forbs/Herbs

Appalachian mountainmint (Pycnanthemum flexuosum)

hairy white oldfield aster (Symphyotrichum pilosum)

common sneezeweed (Helenium autumnale)

Spanish needles/beggarticks/romerillo (Bidens alba)
Bird-friendly Native Forbs/Herbs

Indian blanket (Gaillardia pulchella)
American pokeweed (Phytolacca americana)
Swamp rosemallow (Hibiscus moscheutos)
Pinkscale blazing star (Liatris elegans)
Yellow thistle (Cirsium horridulum)
Source: w3.biosci.utexas.edu

Jack-in-the-pulpit (Arisaema triphyllum)
Bandanna of the Everglades (Canna flaccida)
Carolina wild petunia (Ruellia caroliniensis)

Bird-friendly Native Forbs/Herbs

White-thistle (Cirsium horridulum)
Baneberry of the Everglades (Arisaema triphyllum)
Carolina wild petunia (Ruellia caroliniensis)
Bird-friendly Native Forbs/Herbs

- dense blazing star (Liatris spicata)
- cardinal flower (Lobelia cardinalis)
- sweet goldenrod (Solidago odora) (clump forming, not rhizomatous, which spreads by roots)
- swamp sunflower (Helianthus angustifolius)
- butterfly milkweed (Asclepias tuberosa)
- black-eyed susan (Rudbeckia hirta)
- American pokeweed (Phytolacca americana)

Bird-friendly Native Forbs/Herbs

- southern carpenter bee (Xylocopa micans) nectaring on blood sage (Salvia coccinea)
- eastern bluebird (Sialia sialis) feeding on black-eyed susan (Rudbeckia hirta)
- monarch butterfly (Danaus plexippus) on butterfly milkweed (Asclepias tuberosa)
- swamp sunflower (Helianthus angustifolius)
Bird-friendly Native Forbs/Herbs

- Virginia spiderwort (Tradescantia virginiana)
- Blue mistflower (Conoclinium coelestinum)
- Lyreleaf sage (Salvia lyrata)
- Sundial lupine (Lupinus perennis)

Questions?