Early-Career Discrimination:

Spiraling or Self-Correcting?

Arjada Bardhi¹ Yingni Guo² Bruno Strulovici³

SaMMF Workshop: Theories of Discrimination June 2020

¹Duke ²³Northwestern

Early-career discrimination

- Employers know little about the true productivity of early-career workers
- To address this, they rely on proxies for workers' productivities
 - · observable characteristics (race, gender, ethnicity etc.)
 - Goldin and Rouse (2000), Pager (2003), Bertrand and Mullainathan (2004), Bertrand and Duflo (2016) etc.
 - · once hired, on-the-job performance is informative
- When jobs are scarce, groups that are discriminated at the start miss on early opportunities
- · Even if groups' productivity distributions are very similar!

Questions

- 1. How important is early-career discrimination for workers' lifetime prospects?
- 2. As groups' productivities converge, do their payoffs converge too?

Two conjectures on the impact of group belonging:

- 1. small difference \rightarrow employers learn \rightarrow errors in hiring corrected quickly \rightarrow little impact
- small difference → unequal early career opportunities → different career trajectories → significant impact

Key insight:

How employers learn about workers' productivity matters.

Baseline model

Model

Players and types

- · One employer and two workers: a and b
- · Each worker from a distinct social group
- Productivity type of worker *i* is either high or low: $\theta_i \in \{h, \ell\}$
- Group i's average productivity: $p_i := Pr(\theta_i = h)$

Comparable social groups

- (i) group a has higher productivity: $p_a > p_b$
- (ii) groups have almost identical productivity distributions: $p_b o p_a$

3

Model

Task allocation and payoffs

- Continuous time $t \in [0, \infty)$ and long-lived players
- · At each t, employer allocates a divisible task

```
{ worker a, worker b, safe arm }
```

- Employer's flow payoff:
 - \cdot v > 0 if task goes to a high-type worker
 - 0 if task goes to a low-type worker
 - $s \in (0, v)$ if safe arm
- Worker's flow payoff:
 - fixed wage w = 1 if allocated the task
 - 0 otherwise

Employer's problem is a standard three-armed bandit problem.

Model

Learning environments

worker
$$i$$
 is allocated the task over $[t, t + dt)$

$$\downarrow t$$
employer learns about θ_i over $[t, t + dt)$

We contrast two learning environments:

Poisson signals arrive at rate λ_h and λ_ℓ respectively.

5

· Learning varies by occupation, rank, etc

- · Learning varies by occupation, rank, etc
- Tracking under-performance (breakdowns) vs. over-performance (breakthroughs)

- · Learning varies by occupation, rank, etc
- Tracking under-performance (breakdowns) vs. over-performance (breakthroughs)
- · Jacobs (1981), Baron and Kreps (1999):

"star jobs" vs. "guardian jobs"

- · Learning varies by occupation, rank, etc
- Tracking under-performance (breakdowns) vs. over-performance (breakthroughs)
- · Jacobs (1981), Baron and Kreps (1999):

"star jobs" vs. "guardian jobs"

'The first-rate salesman can often add a significant increment to the performance of his organization while his inferior will not impose unacceptable costs.' Jacobs, 1981

- · Learning varies by occupation, rank, etc
- Tracking under-performance (breakdowns) vs. over-performance (breakthroughs)
- · Jacobs (1981), Baron and Kreps (1999):

"star jobs" vs. "guardian jobs"

'The airline pilot who misses a landing or the operative who inadvertently blocks a long assembly line will produce rather destructive effects, but an outstanding performance in either position will be of little consequence for the organization.'

Jacobs, 1981

Baron and Kreps (1999)

Breakthrough vs. breakdown learning

- 1. Do workers' lifetime payoffs converge as $p_b \uparrow p_a$?
- 2. Which learning environment, if any, grants a disproportionate first-hire advantage?

Related work

- 1. Statistical discrimination:
 - o Phelps (1972), Aigner and Cain (1977), Cornell and Welch (1996), Fershtman and Pavan (2020)
 - o Arrow (1973), Foster and Vohra (1992), Coate and Loury (1993), Moro and Norman (2004)

Cumulative discrimination: Blank, Dabady, and Citro (2004), Blank (2005)

Discrimination in hiring and referrals: Bertrand and Mullainathan (2004), Bertrand and Duflo (2017), Sarsons (2019)

- Employer learning: Farber and Gibbons (1996), Altonji and Pierret (2001), Altonji (2005), Lange (2007), Antonovics and Golan (2012), Mansour (2012), Bose and Lang (2017)
- 3. **Bandit approach**: Felli and Harris (1996), Bergemann and Valimaki (1996), Keller, Rady, and Cripps (2005), Strulovici (2010), Keller and Rady (2010, 2015)

A stark contrast

Optimal allocation

Optimal allocation

Optimal allocation

Optimal allocation

Optimal allocation

Optimal allocation

Self-correction under breakthroughs

Proposition 1a

As $p_b \uparrow p_a$, the expected payoff of worker b converges to that of worker a.

• task assigned exclusively to worker a over $[0, t^*]$

$$t^* = \frac{1}{\lambda_h} \log \left(\frac{p_a/(1-p_a)}{p_b/(1-p_b)} \right)$$

- workers treated symmetrically after t*
- as $p_b \uparrow p_a$, grace period $t^* \to 0$
- the advantage of worker a vanishes

Optimal allocation

Optimal allocation

Optimal allocation

Optimal allocation

Optimal allocation

Spiraling under breakdowns

Proposition 1b

As $p_b \uparrow p_a$, the ratio of the expected payoff of worker b to that of worker a converges to

$$(1-p_a)\frac{\lambda_\ell}{\lambda_\ell+r}<1.$$

- task assigned to worker a until he realizes a breakdown
- worker a's payoff

$$\underbrace{p_a}_{\text{no breakdown ever}} + (1-p_a) \cdot \underbrace{\frac{r}{\lambda_\ell + r}}_{\text{expected time until a breakdown}}$$

Spiraling under breakdowns

Proposition 1b

As $p_b \uparrow p_a$, the ratio of the expected payoff of worker b to that of worker a converges to

$$(1-p_a)\frac{\lambda_\ell}{\lambda_\ell+r}<1.$$

- task assigned to worker a until he realizes a breakdown
- · worker a's payoff

$$\underbrace{p_a}_{\text{no breakdown ever}} + (1-p_a) \cdot \underbrace{\frac{r}{\lambda_\ell + r}}_{\text{expected time until a breakdown}}$$

· worker b's payoff

$$\underbrace{(1-p_a)\frac{\lambda_\ell}{\lambda_\ell+r}}_{\text{b gets a chance}} \left(p_b + (1-p_b)\frac{r}{\lambda_\ell+r}\right)$$

Contrast between breakthrough and breakdown learning

As $p_b \uparrow p_a$, worker a's advantage from early-career discrimination:

- · vanishes under breakthrough learning
 - comparable workers ⇒ comparable lifetime payoffs
- · persists under breakdown learning

 - · even for very fast learning: $\lambda_\ell \to +\infty$

Extensions

We explore this contrast in three directions:

- (i) Large labor market
- (ii) Flexible wages
- (iii) Opportunity to invest in productivity
 - · Inequality even higher in the breakdown environment!

The contrast is moreover robust to:

- (iv) Misspecified beliefs by employer: $p_a=p_b$ but $\tilde{p}_a>\tilde{p}_b$
- (v) Inconclusive breakthroughs / breakdowns
- (vi) Group differences in speed of learning: $\lambda^b \uparrow \lambda^a$

Investment in productivity

Large labor market

Breakthroughs

- unit mass of tasks, α mass a-workers, β mass b-workers
- frictionless matching
- task scarcity: more workers than tasks

Breakthroughs

- unit mass of tasks, α mass a-workers, β mass b-workers
- frictionless matching
- task scarcity: more workers than tasks

Under breakthrough learning:

Breakthroughs

- unit mass of tasks, α mass a-workers, β mass b-workers
- frictionless matching
- task scarcity: more workers than tasks

Under breakthrough learning:

Breakthroughs

- unit mass of tasks, α mass a-workers, β mass b-workers
- frictionless matching
- task scarcity: more workers than tasks

Under breakthrough learning:

Phase I: tasks split between a-workers only

Phase II: remaining tasks split between a-workers and all b-workers

Breakthroughs

- unit mass of tasks, α mass a-workers, β mass b-workers
- frictionless matching
- task scarcity: more workers than tasks

Under breakthrough learning:

Phase I: tasks split between a-workers only

Phase II: remaining tasks split between a-workers and all b-workers

Self-correction under breakthroughs

Delay for group *b* vanishes as $p_b \uparrow p_a$.

Breakdowns

- unit mass of tasks, α mass a-workers, β mass b-workers
- frictionless matching
- task scarcity: more workers than tasks

Breakdowns

- unit mass of tasks, α mass a-workers, β mass b-workers
- frictionless matching
- task scarcity: more workers than tasks

Under breakdown learning:

Breakdowns

- unit mass of tasks, α mass a-workers, β mass b-workers
- frictionless matching
- task scarcity: more workers than tasks

Under breakdown learning:

Breakdowns

- unit mass of tasks, α mass a-workers, β mass b-workers
- frictionless matching
- task scarcity: more workers than tasks

Under breakdown learning:

Phase I: a-workers hired only

Phase II: b-workers hired after sufficiently many a-workers failed

Breakdowns

- unit mass of tasks, α mass a-workers, β mass b-workers
- frictionless matching
- task scarcity: more workers than tasks

Under breakdown learning:

Phase I: a-workers hired only

Phase II: b-workers hired after sufficiently many a-workers failed

Spiraling under breakdowns

Delay for group b does not vanish as $p_b \uparrow p_a$.

How does group size affect inequality?

Proposition (Inequality increases in task scarcity)

Let $\alpha > 1$ and $\beta > 0$. As $p_b \uparrow p_a$, the limiting ratio of the expected payoff of a b-worker to that of an a-worker decreases in both α and β .

tasks become scarcer

- ⇒ more competition among workers
 - \Rightarrow *b*-workers are hurt more than *a*-workers
 - \Rightarrow inequality deepens

While all groups suffer during economic downturns, some suffer disproportionately more.

Flexible wages

Can flexible wages fix spiraling?

Answer: No, as long as wages are non-negative.

Approach:

- · cooperative solution: dynamic stability as in Ali and Liu (2020)
- repeating any stable stage-game matching (Shapley and Shubik, 1971) is dynamically stable

Can flexible wages fix spiraling?

Solution:

- workers with the highest belief are matched at any instant
- there is a history-dependent marginal belief p^M
- wage schedule is convex
 - $\cdot (p-p^{M}) v$ for matched workers and 0 for unmatched ones

Can flexible wages fix spiraling?

Intuition

- \cdot more learning about a worker's type \Rightarrow higher expected wage
- delay for group b does not vanish as $p_b \uparrow p_a$
- · more is learned about a-workers than b-workers

Two-period intuition:

Final thoughts

Final thoughts

'How economically relevant statistical discrimination is depends on how fast employers learn about workers' productive types.' Lange (2007)

- The nature of learning not just the speed is key for early-career discrimination.
- Early-career discrimination among comparable workers can have a significant lifetime impact
- More empirical work needed on the persistence and magnitude of discrimination in star vs. guardian jobs

Interpreting learning environments

Adapted from Fig. 2-2 in Baron and Kreps (1999)

Figure 1: Distribution of outcomes for different types of jobs.

Investment in productivity

How we model the investment opportunity?

- Before t = 0, each ℓ -type worker draws his investment cost from distribution F on [0,1], and decides whether to invest
- If a low-type worker invests, his type improves to h
- The pre-investment and post-investment types are private information to the worker
- \cdot F is the same for both groups

Investment in productivity

What is common between environments?

- (Post-investment) favored worker has stronger incentives to invest than the discriminated one
- · This self-fulfilling force leads to multiple equilibria
- There exist equilibria in which b overtakes a and becomes favored

Equilibrium sets

We compare the equilibrium sets across two learning environments.

Investment in productivity

Preview of key results

Result 1: equilibrium payoff

- Investment does not disturb the self-correcting property of breakthroughs
- Investment exacerbates spiraling under breakdowns: it makes the workers' payoffs more unequal than without investment

Result 2: investment behavior

 When learning is sufficiently fast, breakdown learning leads to more polarized investment across the two workers than breakthrough learning does

