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D Axiomatization of the Ornstein-Uhlenbeck correlation structure

The Ornstein-Uhlenbeck process introduced in Assumption 2 uniquely satisfies the following set of

natural axioms on the outcome mapping β.

A.1 (Principle of maximal ignorance) For any group of citizens {i1, . . . , in}, outcomes {β(i1), . . . ,

β(in)} follow a multivariate Gaussian distribution.

A.2 (Similar citizens, similar outcomes) β(·) is almost surely continuous.

A.3 (Identical outcome uncertainty) For each i ∈ [0, 1], β(i)− B̄ ∼ N (0, 1).

A.4 (Distance-based correlation) For any two i1, i2 ∈ [0, 1], the correlation between β(i1) and β(i2)

depends only on the distance |i1 − i2|.

A.5 (Look to your left, look to your right) For any i1 < . . . < ik < . . . in, the distribution of β(ik)

depends on the outcomes of other citizens in the set only through β(ik−1) and β(ik+1).

Axiom A.1 imposes a general Gaussian structure, whereas Axioms A.2-A.5 specify additional

properties. A.1 can also be interpreted as a maximal-ignorance desideratum. The Gaussian distribu-

tion maximizes entropy among all unbounded distributions of a fixed mean and variance, therefore

the Gaussian structure allows one to draw the weakest conclusions possible from a set of outcomes.

A.2 requires that for any two citizens that are arbitrarily close to each other, their realized outcomes

are also close. A.3 requires that all citizens face the same uncertainty about their outcomes. In

understanding how informative a citizen’s outcome is for the rest of the citizenry, this axiom allows
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us to isolate the role of the citizen’s position in [0, 1] from the role of the outcome uncertainty that

he faces. Axioms A.4 and A.5 specify how a citizen’s position determines his correlation to other

citizens. Correlation between any two citizens’ outcomes depends only on how far the two citizens

are from each other (A.4). Moreover, given a set of citizens the outcomes of which are observed,

the best conjecture for the outcome of any citizen outside this set depends only on the outcomes of

his closest neighbors in this set (A.5).

Corollary D.1, which follows from Theorem 1.1 of Doob (1942), establishes that not only does the

Ornstein-Uhlenbeck process satisfy this set of natural axioms A.1-A.5, but it is the only stochastic

process that does so.

Corollary D.1 (Doob (1942)). The Ornstein-Uhlenbeck process on domain [0, 1] uniquely satisfies

Axioms A.1 - A.5.

E General distributions

Let F denote the distribution of the policymaker’s threshold of adoption with full support over

(−∞,∞) with continuously differentiable density f . The citizen’s interim payoff for a realized

post-minipublic value B̃ ∈ R is

v(B̃) := B̃ Pr(c 6 B̃) = B̃F (B̃).

Note that v(0) = 0, v′(B̃) > 0 for B̃ > 0, limB̃→+∞ v(B̃) = +∞, and limB̃→−∞ v(B̃) = 0 from

below. The following lemma identifies a sufficient condition for v to be U-shaped. We say that a

function h(x) is concave-convex-concave in x if there exists x1, x2 ∈ R∪ {−∞,+∞} such that h(x)

is concave for x 6 x1 and x > x2, and convex for x ∈ (x1, x2).

Lemma E.1. Let f be log-concave. Then v(B̃) is (i) U-shaped in B̃ and (ii) concave-convex-concave

in B̃.

Proof. (i) The interim payoff v is first decreasing and then increasing if its derivative v′(B̃) :=

B̃f(B̃) + F (B̃) is single-crossing in B̃, in the sense that if v′(B̃) > 0, then v′(B̃′) > 0 for any

B̃′ > B̃. First, note that v′(B̃) > 0 for any B̃ > 0. Consider B̃ < B̃′ < 0. Because f is log-concave,

F is also log-concave and the ratio f/F is nonincreasing.1 Hence, if v′(B̃) > 0 then

B̃′
f(B̃′)

F (B̃′)
> B̃

f(B̃′)

F (B̃′)
> B̃

f(B̃)

F (B̃)
> −1

1For standard properties and examples of log-concave densities, see Bagnoli and Bergstrom (2005).
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which implies that v′(B̃) > 0 as well. Similarly, by log-concavity of f , v′(B̃) < 0 for B̃ � 0. This

implies that v′ is single-crossing in B̃ from below.

(ii) We need to inspect the sign of v′′(B̃) = 2f(B̃)+B̃f ′(B̃)⇒ v′′(B̃)/f(B̃) = 2+B̃f ′(B̃)/f(B̃). By

the log-concavity of f , the ratio f ′(B̃)/f(B̃) is nonincreasing in B̃. The log-concavity of f implies

that f is unimodal, so f ′ changes sign only once from above—suppose without loss that the mode

is at B̃0 > 0. Consider first B̃ < 0. Then B̃f ′(B̃)/f(B̃) is increasing in B̃ < 0. But v′′(0) > 0,

so v′′ changes sign at most once over B̃ ∈ (−∞, 0). For B̃ ∈ (0, B̃0), B̃f ′(B̃)/f(B̃) > 0 > −2,

so v′′(B̃) > 0. For B̃ > B̃0, B̃f ′(B̃)/f(B̃) < 0 and decreasing, so v′′ changes sign at most once

over (B̃0,∞). If limB̃→−∞ B̃f
′(B̃) < −2 (limB̃→+∞ B̃f

′(B̃) < −2) then v is strictly concave for B̃

sufficiently negative (positive). �

Some log-concave distributions that are widely used in economic applications are the Laplace

distribution, the extreme value distribution, the exponential distribution, and the Gamma distri-

bution.

Consider a family of distributions over post-minipublic values {Gb(B̃)}b∈[0,∞) such that each G

has a binary support over {B̄− b, B̄+ b̄}, where b, b̄ > 0, with probabilities p and 1−p, respectively.
For Bayes rule to hold, it must be that b̄ = bp/(1−p). The support expands, in the sense that both

post-minipublic values are further away from B̄, as b increases. Hence, b is a proxy for spread. The

expected payoff of the citizen is

ṼC(b) = p(B̄ − b)F (B̄ − b) + (1− p)(B̄ + b̄)F (B̄ + b̄).

Analogously to our baseline analysis, we seek to understand the monotonicity of ṼC in the

spread b in this setting with a log-concave threshold distribution and binary distribution over post-

minipublic values. The shape of the citizen’s expected payoff is qualitatively the same as in our

baseline Gaussian model for b sufficiently close to zero and sufficiently far from zero. We first show

that for b sufficiently large, the citizen’s expected payoff increases in b and the citizens prefer the

lottery over post-minipublic values {B̄ − b, B̄ + b̄} to no lottery.

Proposition E.1. Let f be log-concave. There exists β > 0 such that for all b > β, ṼC(0) < ṼC(b)

and ∂ṼC(b)/∂b > 0.

Proof. Because lim
B→−∞

v(B) = 0 and lim
B→+∞

v(B) =∞, it holds that lim
b→∞

(1− p)v(B̄+ bp/(1− p)) +

pv(B̄ − b) = +∞ for any p ∈ (0, 1). Hence, for any B̄ and any p, there exists β such that (i)

(1 − p)v(B̄ + βp/(1 − p)) + pv(B̄ − β) > B̄, (ii) v(B̄ + βp/(1 − p)) > 0, and (iii) v(B̄ − β) < x1.

This implies that for all b > β, v(B̄ − b) and v(B̄ + bp(1− p)) are both increasing in b. Hence, ṼC
is increasing in b for any b > β. �
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By the same effect which led to the curse of too little information in the baseline model, here,

a small amount of information (via a small mean preserving spread) can strictly harm the citizens

if the prior value B̄ corresponds to low expected misalignment.

Proposition E.2. Let f be log-concave and B̄ lie in a concave region of v, i.e., B̄ < x1 or B̄ > x2.

Then, there exist β > 0 such that ∂ṼC(b)/∂b < 0 for all b < β.

Proof. By the premise, because B̄ lies strictly in the concave region, there exists β sufficiently small

such that for all b < β, B̄− b and B̄+ bp/(1−p) lie both in the same concave region around B̄. The

result follows because a higher b corresponds to a mean preserving spread along a concave interim

payoff, which reduces the expected payoff ṼC . �

When is ṼC quasiconvex on the entire domain? Beyond our Gaussian baseline model, this

remains an open question for a general framework, even with a log-concave threshold density f . The

following example points out one instance in which, among two available experiments π1 and π2 such

that π2 is a mean-preserving spread of π1, the citizen strictly prefers π1 to both the uninformative

experiment {B̄} and π2; hence ṼC is not quasiconvex in this example.

Example 1 (Single-peaked payoff over ordered experiments). Suppose the policymaker has a deter-

ministic threshold c̄ = 5 and the prior value is B̄ = 8. Let π0 denote the uninformative experiment

with degenerate distribution at {B̄}. We consider two experiments π1 and π2 that induce the

following distributions over post-minipublic values B̃:

π1 :

−2 w.p. 1/3

13 w.p. 2/3
, π2 :


−12 w.p. 1/9

3 w.p. 4/9

18 w.p. 4/9

.

It is straightforward to verify that the distribution corresponding to π2 is a MPS of that correspond-

ing to π1. Then, ṼC(π1) = 1/3 · 0 + 2/3 · 13 = 26/3 > 8, so the citizen prefers π1 to no information.

However, ṼC(π2) = 4/9 · 18 = 8 = ṼC(π0). Therefore, the citizen strictly prefers π1 to both π0 and

π2, so ṼC is no longer quasiconvex over a sequence of ordered experiments {π0, π1, π2}.

F Additional results for Section 4.2

F.1 General characterization

Lemma F.1. If m∗ has the (δ,∆)-alternating pattern, then no ∆-equidistant minipublic is feasible.
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Proof. We prove the contrapositive. Suppose the set of feasible ∆-equidistant minipublics is nonempty,

and let ∆′ be the smallest distance across all minipublics in this set, corresponding to m′ =

{i′1, i′2, ..., i′n}. First, consider a (δ,∆)-alternating minipublic with i′′2 6 i′2 and i′′n−1 = 1 − i′′2 >

i′n−1 = 1 − i′2. Such a minipublic has strictly lower informativeness than the ∆′′-equidistant

minipublic with the same i′′2 and i′′n−1. In turn, this ∆′′-equidistant minipublic is less informative

than the ∆′−equidistant minipublic because ∆′′ > ∆′. Hence, any (δ,∆)-alternating minipublic

with i′′2 6 i′2 is suboptimal. Second, consider a (δ,∆)-alternating minipublic with i′′2 > i′2 and

i′′n−1 = 1 − i′′2 < i′n−1 = 1 − i′2. The passive informativeness of i′′1 in this minipublic is strictly

lower than the passive informativeness of the leftmost citizen in the ∆′′− equidistant minipublic

with the same i′′2 and i′′n−1. But the leftmost citizen is passive in the ∆′′-equidistant minipublic

because ∆′′ < ∆′. Hence, i′′1 must be passive in the (δ,∆)-alternating minipublic as well. Therefore,

(δ,∆)-alternating minipublic with i′′2 > i′2 is not feasible. �

Lemma F.2. Let n > 5 odd and m∗ 6= mf
n. The optimal minipublic is either of the ∆-equidistant

pattern or empty. Moreover, if the (ED) constraints of all citizens are violated in mf
n, then m∗ = ∅.

Proof. By Proposition 4.3, any optimal (δ∗,∆∗)-alternating minipublic has i∗3 − i∗2 = i∗n−1 − i∗n−2 =

∆∗. For n odd, this is impossible since there is an even number of alternating distances between i∗2
and i∗n−1. Hence, if m∗ 6= ∅ then m∗ is ∆-equidistant with ∆ > ∆f . This implies that Mou

3 (m∗) >

Mou
3 (mf

n). But if3 is passive in mf
n, so i∗3 is passive in m∗ as well. �

F.2 Formal results for “Demographic diversity and representativeness”

Lemma F.3. Suppose the Ornstein-Uhlenbeck structure of Section 4.2.2. For any j = 1, . . . , n,

ifj < j/(n+ 1) for ifj < 1/2 and ifk > k/(n+ 1) for ifk > 1/2.

Proof. In order to show that if1 < 1/(n+ 1), we invoke the first-order condition of Σou with respect

to if1 . The function

g(i1) := 1− e−i1/` + tanh

(
1− 2i1

2`(n− 1)

)
is strictly increasing in i1. Moreover, g(1/(n + 1)) > 0. Because g(if1) = 0 by FOC, then if1 <

1/(n+ 1). By a similar argument, ifn > n/(n+ 1). The rest of the claim follows because both mf
n

and {1/(n+ 1), . . . , n/(n+ 1)} are symmetric about 1/2 and ifn − if1 > (n− 1)/(n+ 1). �

Lemma F.4. Suppose the Ornstein-Uhlenbeck structure of Section 4.2.2. For any m = {i1, . . . , in},

Ψ(m) =
1

2
`
(

1− e−2i1/`
)

+
1

2
`
(

1− e−2(1−in)/`
)

+
n∑
j=2

`+ (ij − ij−1)

(
1− coth

(
ij − ij−1

`

))
.
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Proof. For each i ∈ [0, 1], the distribution of β(i) conditional on β(m) is Gaussian and it depends

only on i’s closest neighbors in m. By Gaussian updating, the conditional variance of β(i) given

β(m) is e−(i1−i)/` for i ∈ [0, i1], e−(i−in)/` for i ∈ [in, 1], and

csch
(
ij − ij−1

`

)(
sinh

(
ij − i
`

)
e−(i−ij−1)/` + sinh

(
i− ij−1

`

)
e−(ij−i)/`

)
for i ∈ [ij−1, ij ]. Integrating over each interval [0, i1], [i1, i2], . . . , [in, 1] and adding up these terms

gives the desired expression. �

Example 2 (mf
4 more Ψ-representative than m∗). Fix ` = 3 and n = 4. Figure 8(a) in the

main text plots the first-best minipublic, the Ψ-maximal minipublic, and the optimal minipublic

for τ = 1/2 and B̄ = 2.5182. Using the characterization in Lemma F.4, it is straightforward to

compute Ψ(mf
4) = 0.968946 and Ψ(m∗) = 0.968806. Therefore, the first-best minipublic is more

representative than the optimal minipublic with respect to Ψ. This is because in the optimal

minipublic, the citizens i∗2 and i∗3 are shifted outwards towards the periphery by a large margin

relative to the respective second and third citizen in the Ψ-maximal minipublic.

Example 3 (m∗ more Ψ-representative than mf
4). Following up on Example 2, we keep all pa-

rameters the same except for B̄ = 2.517. The first-best minipublic and the Ψ-maximal minipublic

continue to be the same as before, because they depend only on `. The optimal minipublic is dis-

torted in such a way that each citizen in the optimal minipublic is between their counterpart in the

first-best minipublic and their counterpart in the Ψ-maximal minipublic. See Figure 8(b) in the

main text. By a similar calculation, Ψ(m∗) = 0.969053 > 0.968946 = Ψ(mf
4). This is an instance

in which the optimal minipublic is more representative than the first-best one with respect to the

measure Ψ.

G Formal results for Section 6

G.1 Private evidence discovery

We consider an alternative game of private evidence discovery in which the timing is as follows: (i)

the policymaker chooses m ∈Mn, (ii) each citizen i ∈m decides whether to discover β(i), which is

observed by the rest of m but not the policymaker, (iii) a citizen j is drawn randomly with uniform

probability from m, (iv) citizen j sends a message x ∈ R about the post-minipublic value B̃ ∈ R to

the policymaker, and (v) the policymaker makes an adoption decision based on her belief E[B | x].

A communication strategy for citizen j in (iv) is a distribution α(· | B̃) over x ∈ R. Without loss,
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each equilibrium message x̃ can be relabelled so that x̃ = E[B | x̃]. An equilibrium is informative if

there exists at least two equilibrium messages x̃0 6= x̃1 .

Proposition G.1. In the private evidence discovery game described above: (i) the optimal minipub-

lic is m∗ = mf
n; (ii) there exists an informative equilibrium in mf

n; (iii) in any informative equi-

librium in mf
n, each citizen ifj ∈ mf

n is active, each citizen follows the same communication strat-

egy α∗, and there exist on-path messages x∗0, x
∗
1 such that α∗(x∗0 | Bmf

n
) = 1 for B

mf
n
< 0 and

α∗(x∗1 | Bmf
n
) = 1 for B

mf
n
> 0.

Proof. Fix an arbitrary minipublic m ∈ Mn and let m̂ ⊆ m be the active minipublic with post-

minipublic value Bm̂. Consider the following communication strategy: α(x0 | Bm̂) = 1 for Bm̂ < 0

and x0 = E[B | Bm̂ < 0], and α(x1 | Bm̂) = 1 for Bm̂ > 0 and x1 = E[B | Bm̂ > 0]. Then

x1 > 0 > x0. Also, suppose the policymaker assigns off-path belief E[B | Bm̂ = 0] = 0 to any other

message x 6= x0, x1. It is straightforward that this strategy is a best response for any randomly

drawn citizen i ∈ m. Therefore, an informative equilibrium exists for any m, m̂, and i ∈ m.

Now, given m, m̂, and i ∈m, consider an arbitrary informative equilibrium α∗ that assigns nonzero

probability to messages X ∗ := {x0, x1, . . . , xN}. Without loss, we can relabel these messages so that

E[B | x0] < E[B | x1] < . . . < E[B | xN ], or equivalently, x0 < x1 < . . . < xN . If α∗(xk | Bm̂) > 0

for Bm̂ < 0, then it must be that xk ∈ arg minx∈X ∗ E[B | x] because the probability of adoption

Pr(c 6 xk) is increasing in xk. This implies that xk = x0. Hence, α∗(x0 | Bm̂) = 1 for any Bm̂ < 0.

By a similar argument, α∗(xN | Bm̂) = 1 for any Bm̂ > 0. Hence the policymaker learns the sign

of Bm̂. For Bm̂ = 0, which is realized with zero probability, the citizens are indifferent across all

messages. Therefore, in any informative equilibrium, any randomly drawn citizen generically (i.e.,

up to the message for Bm̂ = 0) sends at most two messages: x0 = E[B | Bm̂ < 0] for Bm̂ < 0 and

x1 = E[B | Bm̂ > 0] for Bm̂ > 0.

Next, we establish that in any m and for any informative equilibrium in the continuation game,

every citizen i ∈ m is active with probability one. First, for any m̂ ⊆ m, the distribution of Bm̂∪i

is a mean-preserving spread of Bm̂. Second, the interim payoff is Bm̂ Pr(c 6 E[B | Bm̂ > 0]) if

Bm̂ > 0 and Bm̂ Pr(c 6 E[B | Bm̂ < 0]) if Bm̂ < 0. Because this is a piecewise linear function with

a lower slope for Bm̂ < 0, the interim payoff is convex. Hence any citizen i ∈m prefers to be active

for any active subset m̂ ⊆m. Therefore, any m ∈ Mn is active for any informative equilibrium in

the continuation game.

Finally, we show that m∗ = mf
n for some mf

n ∈ Mf
n. For any m ∈ Mn and mf

n ∈ Mf
n, the

distribution of B
mf

n
is a mean-preserving spread of Bm. Correspondingly, the distribution that

7



assigns probability 1/2 to two posterior values{
E[B | B

mf
n
< 0],E[B | B

mf
n
> 0]

}
is a mean-preserving spread of the distribution that assigns probability 1/2 to two posterior values

{E[B | Bm < 0],E[B | Bm > 0]}. Therefore, the policymaker strictly prefers the distribution with

support {
E[B | B

mf
n
< 0],E[B | B

mf
n
> 0]

}
.

Hence, m∗ = mf
n.

�

G.2 Biased policymaker and uncertain thresholds for citizens

We enrich the baseline model in two ways. First we let the policymaker’s threshold be drawn from

c ∼ N (c̄, τ2), where c̄ ∈ R is the ex ante bias of the policymaker. Second, we let citizen i’s threshold

be drawn from ci ∼ N (0, τ2
i ), where τi > 0 is arbitrary across i and ci is independent from c. We

derive the players’ payoffs in this general environment and argue that the dependence of the payoffs

on Σ continues to be qualitatively the same as in Lemma 3.1 in the baseline model.

Proposition G.2 (Dependence of payoffs on informativeness).

(i) The expected payoff of the policymaker is strictly increasing in Σ.

(ii) The expected payoff of any citizen i does not depend on τi and it is strictly quasiconvex in Σ,

with a minimum at

Σ = max

{
0,

1

2

(
(B̄ − c̄)c̄− 3τ2 +

√
(B̄ − c̄)2c̄2 + 2(2B̄ − 3c̄)(B̄ − c̄)τ2 + τ4

)}
.

Proof. (i) Following steps similar to the proof of Lemma A.1, we observe that

Pr [Bm̂ − c > 0] = Φ

(
B̄ − c̄√
τ2 + Σ(m̂)

)
, E[Bm̂−c|Bm̂−c > 0] = B̄−c̄+

√
τ2 + Σ(m̂)λ

(
c̄− B̄√
τ2 + Σ(m̂)

)

where λ is the inverse Mills ratio. Therefore, taking the product of the two expressions, the expected

payoff of the policymaker is (suppressing the dependence on m̂)

VP (Σ) =
(
B̄ − c̄

)
Φ

(
B̄ − c̄√
Σ + τ2

)
+
√

Σ + τ2φ

(
B̄ − c̄√
Σ + τ2

)
.

Differentiating VP with respect to Σ gives
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∂VP (Σ)

∂Σ
=
φ
(

B̄−c̄√
τ2+Σ

)
2
√

Σ + τ2
> 0.

(ii) Citizen i’s expected payoff is

Vi(Σ(m̂)) :=

∫ ∞
−∞

∫ +∞

−∞
Pr [Bm̂ − c > 0] E [Bm̂ − ci|Bm̂ − c > 0] dΦ

(
c− c̄
τ

)
dΦ

(
ci
τi

)
= V̄C(Σ(m̂))−

(∫ ∞
−∞

Pr [Bm̂ > c] dΦ

(
c− c̄
τ

))∫ ∞
−∞

ci dΦ

(
ci
τi

)
= V̄C(Σ(m̂))

= B̄Φ

(
B̄ − c̄√
τ2 + Σ(m̂)

)
+

Σ(m̂)√
Σ(m̂) + τ2

φ

(
B̄ − c̄√

Σ(m̂) + τ2

)

where V̄C is the expected payoff of citizen i if all citizens’ thresholds are deterministically zero, i.e.,

τi = 0 for all i ∈ [0, 1], and hence it is the same for all citizens. The second equality follows from

EBm̂
[ci | Bm̂ − c > 0] = ci and the third equality uses E[ci] = 0. Therefore, the expected payoff of

citizen i does not depend on τi. The expression for V̄C follows from a similar reasoning to part (i),

using the fact that the probability of adoption is the same but the conditional expectation of Bm̂ is

E[Bm̂|Bm̂ − c > 0] = B̄ +
Σ(m̂)√
τ2 + Σ(m̂)

λ

(
c̄− B̄√
τ2 + Σ(m̂)

)
.

Taking the derivative of V̄C(Σ) with respect to Σ gives

∂V̄C(Σ)

∂Σ
=

φ
(

B̄√
τ2+Σ

)
2 (τ2 + Σ)5/2

(
Σ2 + 2τ4 + 3τ2Σ + (c̄− B̄)(Σc̄+ τ2B̄)

)
. (1)

Then, V̄C strictly increases in Σ if and only if Σ2 + 2τ4 + 3τ2Σ + (c̄− B̄)(Σc̄+ τ2B̄) > 0. Because

Σ > 0, the only admissible root of Σ2 + 2τ4 + 3τ2Σ + (c̄− B̄)(Σc̄+ τ2B̄) = 0 is

Σ0 :=
1

2

(
(B̄ − c̄)c̄− 3τ2 +

√
(B̄ − c̄)2c̄2 + 2(2B̄ − 3c̄)(B̄ − c̄)τ2 + τ4

)
,

so Σ = max {0,Σ0} . Therefore, the citizen’s expected payoff is strictly decreasing at Σ ∈ [0,Σ) and

strictly increasing at Σ ∈ (Σ,∞). �

The following corollary establishes that if the policymaker’s bias is such that she takes a different

decision from what citizens prefer ex ante if no evidence is discovered, then any citizen in any

minipublic prefers to be active in order to overturn the policymaker’s default decision. Therefore,
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a necessary condition for a distorted optimal minipublic to arise is for the policymaker and the

citizens to prefer the same decision ex ante, i.e., B̄ 6 min{0, c̄} or B̄ > max{0, c̄}.

Corollary G.1. Fix c̄ ∈ R.

(i) If the citizens and the policymaker prefer different decisions ex ante, i.e., c̄ < B̄ < 0 or

0 < B̄ < c̄, then m∗ ∈Mf
n.

(ii) There exists b̄ > |c̄| such that if |B̄| > b̄ and sgn(B̄) = sgn(c̄), then m∗ = ∅.

Proof. (i) If c̄ < B̄ < 0 or if 0 < B̄ < c̄, then (c̄−B̄)(Σc̄+τ2B̄) > 0. Because also Σ2+2τ4+3τ2Σ > 0,

we have that ∂Vi(Σ)/∂Σ > 0 in equation (1). Hence Vi strictly increases in Σ for any i. This means

that in any m, each citizen i ∈ m strictly prefer being active to being passive. Therefore, any

mf
n ∈Mf

n is feasible so m∗ ∈Mf
n.

(ii) Without loss, let B̄ > 0 and c̄ > 0. Then, for B̄ sufficiently high, ∂Vi(Σ)/∂Σ < 0 in equation

(1) for any Σ ∈ [0, σ2]. Since citizens’ expected payoff is strictly decreasing in informativeness, no

minipublic can be incentivized to be active. �

Suppose τ = 0 and c̄ > 0, so there is no political uncertainty and the policymaker follows a more

demanding threshold on the adoption decision. The citizen’s expected payoff is strictly decreasing

for low levels of informativeness if and only if Σ = c̄(B̄ − c̄) > 0, i.e., if and only if the players are

in ex ante agreement about their preferred adoption decision and the citizens lean more strongly

toward it. If B̄ � c̄ > 0 or B̄ � c̄ < 0, then Σ is sufficiently high and the curse of too little

information arises even in the absence of any political uncertainty.

G.3 Private interest

This appendix considers a variation of the model in Section 4.2.2 in which citizen i obtains β(i) if

the policy is adopted (instead of the policy value B) and 0 otherwise. The rest of the structure is

the same as in the model of Section 4.2.2. Proposition G.3 shows that a citizen’s expected payoff

from a minipublic depends on two sufficient statistics: (i) its minipublic informativeness, and (ii)

the covariance induced between the citizen’s local evidence and the post-minipublic value.

Proposition G.3. Consider an active minipublic m = {i1, . . . , in} ∈ Mn. The expected payoff of

any citizen i ∈ [0, 1] from minipublic m is

Vi(m) = B̄Φ

(
B̄√

τ2 + Σou(m)

)
+

σou(i,m)√
τ2 + Σou(m)

φ

(
B̄√

τ2 + Σou(m)

)
=: ṼC(σou(i,m),Σou(m)),

where Σou(m) is the minipublic informativeness of m as derived in Lemma B.1 and

10



σou(i,m) := cov(β(i), Bm) =


√

Σou(i) if i ∈m∑n
j=1 γj(m)e−|i−ij |/` if i /∈m.

Proof. Fix a post-minipublic value Bm. Observing that the joint distribution of β(i) and Bm is

Gaussian, the interim payoff of citizen i is

vi(Bm) = E[β(i) | Bm] Pr(c 6 Bm)

=

(
B̄ +

σou(i,m)

Σou(m)
(Bm − B̄)

)
Φ

(
Bm

τ

)
=

Σou(m)− σou(i,m)

Σou(m)
B̄Φ

(
Bm

τ

)
+
σou(i,m)

Σou(m)
BmΦ

(
Bm

τ

)
Integrating with respect to the distribution of Bm ∼ N (B̄,Σou(m)), we obtain the expected payoff

Vi(m) =
Σou(m)− σou(i,m)

Σou(m)
B̄

∫ ∞
−∞

Φ

(
Bm

τ

)
1√

Σou(m)
φ

(
Bm − B̄√

Σou(m)

)
dBm +

σou(i,m)

Σou(m)
VC(Σou(m))

=
Σou(m)− σou(i,m)

Σou(m)
B̄Φ

(
B̄√

τ2 + Σou(m)

)
+
σou(i,m)

Σou(m)
VC(Σou(m))

= B̄Φ

(
B̄√

τ2 + Σou(m)

)
+

σou(i,m)√
τ2 + Σou(m)

φ

(
B̄√

τ2 + Σou(m)

)
,

where VC is the citizen’s expected payoff from our baseline model of common interest. The first

line uses the fact that VC(Σou(m)) = EBm [BmΦ(Bm/τ)], the second line follows from identity

(10, 010, 8) in Owen (1981), and the third line uses the expression for VC(Σou(m)). Because m

enters Vi(m) through two sufficient statistics—namely, σou(i,m) and Σou(m)—we can express it

as ṼC(σou(i,m),Σou(m)). Finally, note that the payoff characterization thus far holds not only for

Σ = Σou, but for any Σ that satisfies Assumption 1.

Next, if i ∈m, then supposing that he is the jth citizen in it, we have

σou(i,m) = cov

(
β(ij),

n∑
k=1

γk(m)β(ik)

)
= γj(m) +

∑
k 6=j

γk(m)e−|ij−ik|/` =
√

Σou(ij)

where the last equality follows from calculations in the proof of Lemma B.1. By a similar calculation,

if i /∈m, then

σou(i,m) = cov

(
β(i),

n∑
k=1

γk(m)β(ik)

)
=

n∑
k=1

γk(m)e−|i−ik|/`.

�

Note that ṼC(Σou,Σou) = VC(Σou). In terms of monotonicity, it is immediate that ṼC is strictly
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increasing in its first argument and, similarly to our baseline analysis, quasiconvex in the second

argument. We can now rewrite the (ED) constraints for a citizen ij ∈ m based on the payoff

characterization of Proposition G.3:

ṼC

(√
Σou(ij),Σou(m)

)
> ṼC (σou(ij ,m \ ij),Σou(m \ ij)) . (ED)

There is a substantial increase in dimensionality of this problem relative to our baseline analysis.

The set of (ED) constraints for a minipublic of size n depends on the minipublic through (3n+ 1)

variables (rather than n+1 variables under common interest): the active informativeness Σou(m), n

terms of passive informativeness {Σou(m\i1), . . . ,Σou(m\in)}, n terms of singleton informativeness

{Σou(i1), . . . ,Σou(in)}, as well as n covariance terms {σou(i1,m \ i1), . . . , σou(in,m \ in)}.
For a singleton minipublicm = {i}, σou(i,m) =

√
Σou(i) and σou(i, ∅) = 0. The (ED) constraint

simplifies to ṼC
(√

Σou(i),Σou(i)
)
> ṼC(0, 0) = VC(0). Because Σou(1/2) > Σou(i) for any i 6= 1/2,

the incentives to discover evidence are strongest for this median citizen. Hence, if n = 1, the optimal

minipublic is either m∗ = {1/2} or empty.

For a two-citizen minipublic m = {i1, i2}, the (ED) constraints for i1 and i2 are

ṼC

(√
Σou(i1),Σou(m)

)
> ṼC

(√
Σou(i2)e−(i2−i1)/`,Σou(i2)

)
,

ṼC

(√
Σou(i2),Σou(m)

)
> ṼC

(√
Σou(i1)e−(i2−i1)/`,Σou(i1)

)
,

respectively, whereas the (ED) constraints from our common interest model can be rewritten as

ṼC(Σou(m),Σou(m)) > ṼC(Σou(i2),Σou(i2)), ṼC(Σou(m),Σou(m)) > ṼC(Σou(i1),Σou(i1)).

Example 4. This is a numerical example in which the optimal minipublic is the first-best one

under private interest but it is a distorted minipublic under common interest. Let n = 2, ` = 1/2,

τ = 1, and B̄ = 1.861. The first-best minipublic is given by mf
2 = {if1 , i

f
2} = (0.274589, 0.725411).

This first-best minipublic satisfies the (ED) constraints under private interest, hence the optimal

minipublic is exactly m∗PI = mf
2 . However, it violates the (ED) constraints under common interest.

The optimal minipublic under common interest is the distorted minipublic m∗ = {0.2778, 0.7222}.

Example 5. This is a numerical example in which the optimal minipublic is distorted under private

interest but it is the empty minipublic under common interest. Let n = 2, ` = 1/2, τ = 1, as

in Example 4, but now B̄ = 3.02. The first-best minipublic is not feasible under either private

or common interest. Moreover, the prior value B̄ is so extreme that the optimal minipublic is

m∗ = ∅ under common interest. However, the optimal minipublic under private interest is m∗PI =

12



{0.285883, 0.714117}.

G.4 Delegation of decisional authority

We consider an alternative delegation game, that varies from our baseline model in who has decisional

authority: at the minipublic choice stage, the policymaker also decides whether to delegate (d = 1)

decisional authority to the minipublic or retain it (d = 0). If d = 0, the continuation game coincides

with our baseline model. If d = 1, then at the adoption stage, a randomly drawn citizen (as opposed

to the policymaker) in the minipublic decides whether to adopt the policy.2 We denote the optimal

strategy of the policymaker at the minipublic choice stage as d∗ and m∗del.

Proposition G.4. Let m∗ = ∅ in the baseline model, and mf
n ∈ Mf

n. Then, in the delegation

game,

1. if τ2 < Σ(mf
n), then d∗ = 1 and m∗del = mf

n. The policymaker is strictly better off than in the

baseline model.

2. if τ2 > Σ(mf
n), then d∗ = 0 and m∗del = ∅. The policymaker has the same payoff as in the

baseline model.

Proof. By the premise, m∗ = ∅ in the baseline model and Σ(∅) = 0. Hence, the policymaker’s payoff

if the decision is not delegated is VP (0) = Pr[c < B̄]E
[
B̄ − c|c < B̄

]
= B̄Φ

(
B̄/τ

)
+ τφ

(
B̄/τ

)
. If

the policymaker delegates the decision to a minipublic m, then all citizens in m are active. Then,

the policy gets adopted if and only if Bm > 0, so the policymaker’s payoff is

V del
P (Σ(m)) = Pr [Bm > 0] E [Bm − c|Bm > 0] = B̄Φ

(
B̄√

Σ(m)

)
+
√

Σ(m)φ

(
B̄√

Σ(m)

)
.

By the same argument as in Section G.2, the policymaker’s payoff does not depend on τ since

E[c | Bm > 0] = 0.

The policymaker’s payoff V del
P is strictly increasing in Σ(m). Therefore, if d∗ = 1, then m∗del ∈

Mf
n. Finally, we observe that VP (0) > V del

P (Σ(mf
n)) if and only if τ2 > Σ(mf

n). �

G.5 No commitment in evidence disclosure

The game of Section 2, which the discussion below refers to as the commitment game, assumes

commitment in evidence disclosure: the outcome of each active citizen is disclosed publicly regardless

of its realization. The citizen cannot withhold unfavorable outcome realizations. We examine here
2All citizens are perfectly aligned on which adoption decision they prefer for any post-minipublic value. The

assumption of a randomly citizen having decisional authority is for concreteness.
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the robustness of our analysis to this commitment assumption. To do so, we consider the following

no-commitment game which differs from the commitment game only at the evidence discovery stage:

(i) each minipublic citizen simultaneously decides whether to discover evidence,3 (ii) each citizen who

discovers evidence observes his outcome privately, and (iii) citizens decide simultaneously whether

to disclose or conceal their privately observed outcomes. That is, citizens’ evidence is verifiable

(e.g., as in Milgrom and Roberts (1986)).

Proposition G.5 establishes that for any feasible minipublic in the commitment game, there

exists an equilibrium in the no-commitment game in which the policymaker perfectly infers all

minipublic outcomes. In particular, this equilibrium guarantees that in the no-commitment game the

policymaker can attain at least the same level of informativeness as that of the optimal minipublic

in the commitment game.

Assumption 3. For any m and i ∈m, the post-minipublic value Bm is strictly increasing in β(i).

Proposition G.5. Suppose that Assumption 3 holds. Let m be any feasible minipublic in the

commitment game. Then, in the no-commitment game, there exists an equilibrium for minipublic

m in which (i) all citizens in m discover evidence, and (ii) the policymaker infers all outcomes

β(m) perfectly.

Proof. We prove that the following constitutes an equilibrium: (i) each citizen i ∈ m discovers

evidence, (ii) each citizen i ∈m discloses β(i) 6= xi and conceals β(i) = xi, where xi uniquely solves

E[B | β(i) = xi] = 0, and (iii) the policymaker adopts the policy if and only if her post-minipublic

value is higher than her realized threshold of adoption c.

First, (iii) is a best response for the policymaker. Because there is a single outcome realization

β(i) = xi which citizen i ∈m conceals and both disclosure and no disclosure are on the equilibrium

path, the policymaker perfectly infers β(m) and the post-minipublic value Bm = E[B | β(i), β(m \
i)]. Therefore, she best responds as in the commitment game.

Second, we show that it is a best response for citizen i to disclose β(i) if β(i) 6= xi conditional

on i having discovered β(i) and all other citizens following strategy (ii). Consider first β(i) 6= xi.

For simplicity of notation, let µ := E[B|β(i)]. The distribution of the post-minipublic value from

the perspective of citizen i with evidence β(i) is denoted by Bm|β(i). Using the law of iterated

expectations, we have E[Bm|β(i)] = E[E[B|β(m\i), β(i)]|β(i)] = E[B|β(i)] = µ. Let Σ̃ be the

variance of Bm|β(i), which does not depend on the realization of β(i).4 The random variable
3We assume that discovery decisions are observable to the policymaker: she can distinguish between a citizen

with no evidence and one who conceals evidence. Yet this assumption is without loss for Proposition G.5. If the
decision were instead unobservable, it would be weakly dominant for each i ∈ m to discover evidence.

4The variance Σ̃ is independent of β(i) because the joint distribution of B and β(i) is Gaussian. The functional
form of Σ̃ is inconsequential for this proof and therefore omitted.
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Bm|β(i) is distributed according to Bm|β(i) ∼ N (µ, Σ̃). If citizen i discloses β(i), the policymaker’s

post-minipublic value is Bm. By standard Gaussian updating, the post-minipublic value is linear in

local evidence. Hence, if i conceals β(i), the policymaker’s post-minipublic value is B̂m = Bm − λ
for some λ ∈ R. That is, concealing β(i) shifts the policymaker’s post-minipublic value either up

or down by |λ|. By similar calculations as in the proof of Lemma A.1, we calculate the expected

payoff of citizen i if he discloses or conceals β(i). If he discloses β(i), he obtains

VC(β(i)) := E[Bm|Bm > c, β(i)] Pr[Bm > c|β(i)] = µΦ

(
µ√

τ2 + Σ̃

)
+

Σ̃√
τ2 + Σ̃

φ

(
µ√

τ2 + Σ̃

)

Similarly, if he conceals β(i) 6= xi, he obtains

ṼC(β(i)) := E[Bm|B̂m > c, β(i)] Pr
[
B̂m > c|β(i)

]
= µΦ

(
µ− λ√
τ2 + Σ̃

)
+

Σ̃√
τ2 + Σ̃

φ

(
µ− λ√
τ2 + Σ̃

)

The function f(a) := µΦ( a√
τ2+Σ̃

)+ Σ̃√
τ2+Σ̃

φ( a√
τ2+Σ̃

) varies in a depending on the sign of µ and the

relation between µ and a:

∂f(a)

∂a
= φ

(
a√

τ2 + Σ̃

)
µ(τ2 + Σ̃)− aΣ̃

(τ2 + Σ̃)
3
2

> 0 if µ > 0 and a < µ,

< 0 if µ < 0 and a > µ.

Next, we show that VC(β(i)) > ṼC(β(i)) for every β(i) 6= xi. Let β(i) > xi. Then, by the definition

of xi and Assumption 3, µ > 0 and λ > 0. This means that disclosing evidence in favor of the

policy yields a higher payoff than concealing it, as f(a) is increasing in a for these parameters and

µ − λ < µ. Similarly, let β(i) < xi. In this case, µ < 0 and λ < 0. Disclosing evidence in favor of

the status quo yields a higher payoff than concealing it. If β(i) = xi, then λ = 0. Then, concealing

is a weak best response because VC(β(i)) = ṼC(β(i)).

Finally, we show that (i) holds: it is a best response for citizen i to (privately) discover β(i) if all

other citizens in m discover their respective outcomes. Because in the continuation equilibrium (ii)

and (iii) all minipublic outcomes β(m) are perfectly inferred by the policymaker, citizen i discovers

β(i) if and only if his (ED) in the commitment game holds. By the premise, every i ∈ m in the

commitment game is active, hence citizen i prefers to discover β(i) in the no-commitment game as

well. �

In this equilibrium, each minipublic citizen i ∈ m discloses all but a single outcome realization

β(i) = xi, which is pinned down by E[B | β(i) = xi] = 0. This is the unique realization that leaves

him indifferent between the policy and the status quo. To see that this is indeed an equilibrium,
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consider a minipublic of two citizens {i, j}. If citizen i conceals evidence in favor of the policy

β(i) > xi, this encourages the policymaker to be more demanding on β(j) for adoption because she

incorrectly believes that β(i) = xi. This has two opposing effects on i’s payoff: the expected value

of the policy conditional on its being adopted increases, but the probability of such an adoption

decreases. The latter effect dominates. Some policies that are preferable to the status quo, given i’s

favorable evidence, are forgone. Because citizen i’s preference is aligned with the policymaker’s ex

ante, he does not benefit from inducing false pessimism by concealing favorable evidence about the

policy. The reasoning is analogous if citizen i holds unfavorable evidence β(i) < xi instead. False

optimism from concealing β(i) would lead to policy adoption with too high of a probability.

Thus, for any minipublic that is feasible in the commitment game, the policymaker is not worse

off if citizens lack commitment in disclosure. However, there might exist minipublics which are not

feasible in the commitment game but are informative in the no-commitment game. Therefore, the

policymaker attains weakly higher informativeness in the no-commitment game.
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