Weatherproofing of New York City Public Housing for Energy Savings

Natasha Stamler
Professor David Hsu
Department of Urban Studies and Planning, MIT
Contact: stamlern@mit.edu
Built Environment and Infrastructure
https://youtu.be/BL4UcOQq_dY

For attendees: during review of the presentation, please direct comments to the presenter by using “@PresenterName”. This will ensure they receive your comments and questions directly.
Introduction

- Nearly **70% of greenhouse gas emissions** in New York City come from buildings (City of New York, 2018).
- As the largest landlord in the City, the New York City Housing Authority (**NYCHA**), is the greatest contributor to these emissions.
- NYCHA funding has declined in the past few decades and NYCHA housing is currently in need of **$32 billion in repairs** (NYCHA, 2019a). This means that NYCHA lacks the resources to invest in high-cost clean energy solutions, but would benefit greatly from them.
- Over **30% of these repairs** are for building components such as **windows**, **floors**, **roofs**, and doors, which can be improved to **increase insulation**, reducing heating and cooling demands.
- Increased insulation would improve quality of life of NYCHA’s 400,000 residents by reducing drafts.

(Ferré-Sadurní, 2018)
Objective

- This project proposes a two-pronged approach for NYCHA to improve insulation of the most expensive aspects of its buildings that it has not already upgraded: roofs and windows.
- Although it is acknowledged that existing regulations should be amended to reduce energy use in subsidized housing (Reina & Kontokosta, 2017), it is important to evaluate the extent to which positive change can be seen within the current legal and economic constraints.
- New York City has the greatest amount of public housing and some of the most progressive energy policies of all U.S. cities, so NYCHA is the ideal setting to evaluate how effective retrofitting can be in easing the transition to more energy efficient public housing, if they are effective at all. This would inform other cities on whether to implement similar policies.
Methods: Cost Benefit Analysis for Windows

Found U-value for combination of each shade type with single pane glass and 1-2” air space (Boschetti, 1984):

$$U\text{-value } \left[ \frac{\text{BTU}}{^\circ\text{F} \cdot \text{ft}^2 \cdot \text{h}} \right] = \frac{1}{R\text{-value}_1 + R\text{-value}_2 + R\text{-value}_3 + \ldots \left[ \frac{^\circ\text{F} \cdot \text{ft}^2 \cdot \text{h}}{\text{BTU}} \right]}$$ (1)

Then, calculated heat loss for each combination of single pane glass and shade type (Boschetti, 1984):

$$H \text{ [kWh]} = 24 \left[ \frac{\text{h}}{\text{d}} \right] \cdot \text{HDD} \left[ \frac{^\circ\text{F}}{\text{y}} \cdot \text{U\text{-value}} \left[ \frac{\text{BTU}}{^\circ\text{F} \cdot \text{ft}^2 \cdot \text{h}} \right] \cdot \frac{\text{A \text{[ft}^2]} \cdot \# \text{ windows}}{3412 \text{ BTU}} \right]$$ (2)

Calculated payback period for each window combination. 7.52¢/kWh used as the fuel cost, representing average 2018 cost of U.S. No. 2 fuel oil with losses and conversion factors for standard boilers.

$$\text{PB \text{[y]} } = \frac{\text{Cost}_{\text{window}} [\$]}{\text{Cost}_{\text{fuel}} [\frac{\$}{\text{kWh}}] \cdot \left( H_{\text{original}} [\frac{\text{kWh}}{\text{y}}] - H_{\text{insulated}} [\frac{\text{kWh}}{\text{y}}] \right)}$$ (3)
Methods: Cost Benefit Analysis for Roofs

- Three main energy-saving roofing alternatives to standard black asphalt roof: green roofs, white (or cool) roofs, and solar panels. Solar panels removed from analysis due to ACCESSolar program.

- Factored in fixed costs such as installation, variable costs such as maintenance, and benefits such as energy cost savings. Additionally, considered current roofing types and ease of implementation.
Methods: Selecting Roof Area

- A small number of large buildings consume far more energy per year than the vast majority of others.
- 10,000 ft² roof area used for initial analysis as this is average roof size of top 20% of NYCHA developments by 2017 energy consumption.
- Smaller and larger areas tested to confirm trends hold.
## Results: Windows

<table>
<thead>
<tr>
<th>Material</th>
<th>U-value H (kWh)</th>
<th>Payback (y)</th>
<th>Factor</th>
<th>Value</th>
<th>Source</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single pane glass</td>
<td>0.5</td>
<td>63.24</td>
<td>-0.9541809</td>
<td>Original H</td>
<td><a href="https://www">Link</a></td>
<td>U-value of 0.23</td>
</tr>
<tr>
<td>Double pane glass</td>
<td>0.2674</td>
<td>33.8182</td>
<td>-14.760367</td>
<td>Tax credit ($)</td>
<td>0.1</td>
<td><a href="https://www">Link</a></td>
</tr>
<tr>
<td>Air space</td>
<td>0.1818</td>
<td>22.9964</td>
<td>28.873876</td>
<td>Convection and drapery</td>
<td>0.3226</td>
<td>40.8</td>
</tr>
<tr>
<td>Drapery</td>
<td>0.5051</td>
<td>63.8788</td>
<td>-8.02853612</td>
<td>3/4&quot; polyethylene core b/w 1/8&quot; plywood panels</td>
<td>0.1493</td>
<td>18.8776</td>
</tr>
<tr>
<td>Cellular shades</td>
<td>0.2941</td>
<td>37.2</td>
<td>-28.7004633</td>
<td>Single cell</td>
<td>0.1471</td>
<td>18.6</td>
</tr>
<tr>
<td>Insulation board</td>
<td>0.1563</td>
<td>19.7625</td>
<td>28.649269</td>
<td>Premium light filtering double</td>
<td>0.1626</td>
<td>20.5659</td>
</tr>
<tr>
<td>Insulated Roman shades</td>
<td>0.0752</td>
<td>9.50978</td>
<td>0.42792167</td>
<td>Clip-on</td>
<td>0.2326</td>
<td>29.414</td>
</tr>
<tr>
<td>Roman shades</td>
<td>0.137</td>
<td>17.326</td>
<td>5.34174724</td>
<td>2 layers of fiberfill</td>
<td>0.1136</td>
<td>14.3727</td>
</tr>
</tbody>
</table>

Single pane glass with prelayered insulated Roman shades was most cost-effective window pairing:

- **3.56-year payback period**
- **Nearly 50% less heat loss than current NYCHA windows.**

### Layers of Fabric

- **Outer fabric**
- **Vapor barrier (4 mil plastic)**
- **3 layers fiberfill**
- **Lining fabric**
Results: Roofs

Green roofs were the most cost-effective alternative roofing.

- White roofs have a near-zero payback period, while green roofs have a 2.17-year payback period.
- After 2.17 years, green roofs save far more in energy costs than white roofs. For example, after 5 years, green roofs save $85,000 in energy costs, while white roofs save only $200.
- This trend holds for smaller roof areas.
- Green roofs provide supplementary benefits, including for air quality, biodiversity, and mental health.
Conclusions

- Overall, NYCHA’s implementation of energy-saving roofing and windows would improve the energy efficiency and climate resiliency of its buildings.
- Green roofs were found to be the most beneficial roofing material, with $85,000 in energy costs for the NYCHA buildings that consume the top 20% most energy.
- Single pane glass with Roman shades with prelayered fabric was the most cost-effective window pairing, decreasing heat loss by nearly 50% relative to current NYCHA windows.
- Combined, these improvements would take under six years to pay off, and would provide long-lasting benefits, ranging from energy and maintenance savings for NYCHA to an increased quality of life for residents of NYCHA buildings.
- Improved insulation would provide NYCHA with the much-needed funds to repair the aging infrastructure on its properties, creating a sustainable solution, both environmentally and economically, that targets the root cause of the problems that affect NYCHA residents.
Future work

- Evaluate effects of increased insulation on indoor air quality and compare to existing NYCHA plans to update ventilation in their apartment buildings, as detailed in its NextGeneration Sustainability Agenda (Ghabae, 2019).
- Develop maintenance plan for green roofs and shades as NYCHA has struggled with its inability to address major maintenance issues due to a lack of funds and manpower (Santiago, 2019).
- Discuss findings with NYCHA to incorporate into sustainability planning.
- Perform similar analysis with on other public housing systems to determine universality of strategy.
References


Acknowledgments

- Thank you to Professor David Hsu, MIT DUSP, for teaching relevant calculations.
- Further thanks to Dr. Stuart Gaffin, Columbia University, for introducing me to green and white roofs.
- MIT Energy Initiative (MITEI) for encouraging my interest in energy.