Resi-Coil™ Tie
Patent Pending

Versatile new tie for the 1-1/8” systems
- Standard snap tie on one end—coil rod adapter on the other
- Opens up the possibilities of industry-standard coil rod hardware to the 1-1/8” form user
- Low cost solution for one-sided forming and adjustable-length ties
- Welded to rigorous standards using computer-controlled equipment -- each RC is as strong as a standard snap tie

Adjustable-Length Ties
Make any-length ties at the job site
Use standard ½” coil rod and a pair of Resi-Coil™ Ties to create ties of any length with off-the-shelf components. Save time and set-up charges for custom-length ties.

Since RC’s are manufactured in a tightly-controlled process, you are assured of an adjustable long tie that is as strong as a standard tie (2500lbs SWL). Don’t take chances on field-welded ties or other make-do measures.

Ideal for:
- Battered walls
- Pilasters
- Machine bases
- Unusual forming situations
- Emergencies

Always keep RC’s on hand for the security of having a tie of any length when you need it.

Also available for other form systems:

One-Sided Forming
One-sided forming made easy
Resi-Coil™ Ties and short lengths of ½” coil rod allow you to quickly anchor forming panels onto existing structures. Use drop-in anchors, epoxy, or rock anchors to attach to concrete, rock, or masonry walls. Other standard ½” coil rod hardware (toggle bolts, plate washers and nuts, etc.) can be used to secure to sheet piling, plywood, or other materials.

The RC’s design simplifies the process of setting up forms for a one-sided wall. Since the tie is precisely in line with the coil rod, just drill holes at locations on the existing wall corresponding to tie locations on the forms.

Because they’re threaded onto the coil rod, RC’s are easy to adjust for wall thickness, or variations in the existing wall, by simply rotating (which may be done while the tie is placed in the form)
Here, a small number of long-length ties were needed quickly. Using Resi-Coil™ Ties, this contractor was able to get exactly what he needed for the job with off-the-shelf components on the same day. RC’s give both dealers and contractors the ability to keep ties of any length in stock all the time.

Don’t gamble on field-welded or makeshift ties—use an engineered product that’s rated to the full strength of a standard tie.

Determining Length of Coil Rod

Back-to-Back Adjustable

Take the desired wall thickness and subtract 7” to get the median length of coil rod. This will give a total range of adjustment of ±2 inches.

\[
L_{\text{mid}} = W - 7”
\]

Example: an 8” length of coil rod with RC-6’s would work for a 13” to 17” wall \((8 + 7 = 15” \pm 2”).\)

CAUTION: Always make sure that at least ½” of coil rod is threaded past each coil.

One-sided ties

Approx. Coil Rod Length \((L_{\text{mid}}) \) for One-Sided Forming with RC-6

<table>
<thead>
<tr>
<th>Wall Thickness ((W))</th>
<th>1</th>
<th>1 1/2</th>
<th>2</th>
<th>2 1/2</th>
<th>3</th>
<th>3 1/2</th>
<th>4</th>
<th>4 1/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>6”</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>13</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>14</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>14</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>16</td>
<td>16</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>17</td>
<td>15</td>
<td>15</td>
<td>16</td>
<td>16</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>18</td>
<td>16</td>
<td>16</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>18</td>
<td>19</td>
<td>19</td>
</tr>
</tbody>
</table>

The table values are for coil rod lengths in the middle of the \((2” \) range of adjustment, rounded to the nearest inch. To calculate the exact rod lengths for any width wall and rod depth use this formula:

\[
L_{\text{mid}} = (W + D) - 3 1/2”
\]

NOTE: Follow manufacturer’s recommendations for proper installation of anchor.