
Economy RO

Installation, Operation & Service Instructions with Parts List Economy Reverse Osmosis Drinking Water System

Models: R075, R075BP

Canature WaterGroup Canada Inc. 855 Park St., Unit 1 Regina, SK, S4N 6M1 Toll Free: (877) 288-9888 Canature WaterGroup U.S.A. Inc. 6353 Commerce Drive Whitestown, IN, 4607 Toll Free: (877) 288-9888

Attention Economy RO Customer:

This system is intended for use on potable water supplies or disinfected water containing cysts. Do not use where water is microbiologically unsafe or with water of unknown quality. If bacterial contamination is present, a recognized method of water disinfection is required.

Check with your public works department for applicable local plumbing and sanitation codes. Follow your local codes if they differ from the standards used in this manual.

The Economy RO Drinking Water System contains a replaceable reverse osmosis membrane filter which is critical for the effective reduction of Total Dissolved Solids. The filtered water should be tested periodically to verify that the system is performing properly.

Safe Practices

Throughout this manual there are paragraphs set off by special headings.


NOTE: Note is used to emphasize installation, operation or maintenance information which is important, but does not present any hazard. Example:

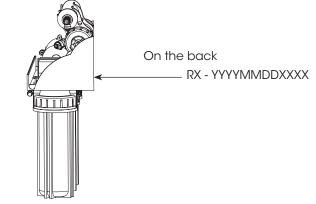
NOTE: The nipple must extend no more than 1 inch above the cover plate.

Caution I: Caution is used when failure to follow directions could result in damage to equipment or property. Example:

CAUTION! Disassembly while under water pressure can result in flooding.

WARNING!: Warning is used to indicate a hazard which could cause injury or death if ignored. Example:

Serial Number

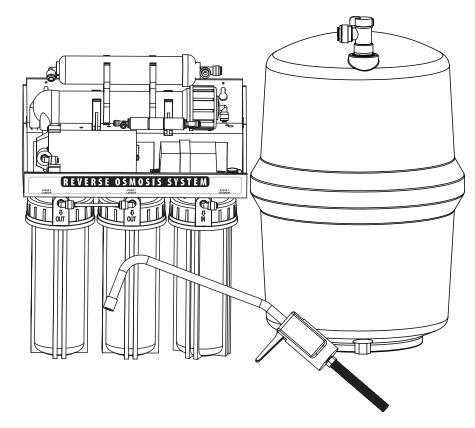

The serial number is located on the rear of the R.O. manifold housing. Record this number on the warranty page located at the end of this manual.

NOTE: Do not remove or destroy the serial number. It must be referenced on requests for warranty repair or replacement.

Symbols in the Manual

Please familiarize yourself with symbols in the manual:

- 1. Faucet
- 2. Drain
- 3. Inlet
- 4. Storage Tank


This publication is based on information available when approved for printing. Continuing design refinement could cause changes that may not be included in this publication.

WARNING! If incorrectly installed, operated or maintained, this product can cause severe injury. Those who install, operate, or maintain this product should be trained in its proper use, warned of its dangers, and should read the entire manual before attempting to install, operate or maintain this product.

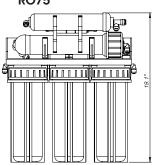
Installation, Operation & Service Instructions with Part List

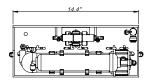
Economy Reverse Osmosis Drinking Water System

Table of Contents

Specifications and Performance Data Sheet
Suggested Installation Equipment
Overview of the Economy RO System's Components (Line Pressure Model)
Overview of the Economy RO System's Components (Booster Pump Model)
Package Contents
Product Information
Preparations
Installation
Start-Up
Service and Maintenance
Parts Breakdown
Troubleshooting Guide
Warranty

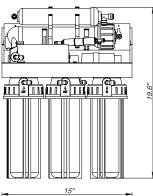
Specifications and Performance Data Sheet

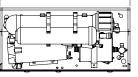

Model #	Part #	Stage 1	Stage 2 and 3	Stage 4	Stage 5	Storage Tank	Part #	Faucet			
R075	20010073		Activated Carbon	Reverse Osmosis	Activated Carbon	Plastic Tank - 3.8 Gallons	70020002	Chrome - AirGap			
RO75BP *	20010074	Sediment Filter	Block Filter	Membrane	Polishing Filter	Plastic Tank - 3.8 Gallons	70020002	or Standard			
Daily Pr	Daily Production Rate Gallon/day (L/day) 76.8 (290.7)										
Efficiency Rating* * %			12%								
Recovery Rating***%			21%	21%							
Average Reduction %			85%								
Typical System Flow Sequence			Revers	Sediment Filter → Activated Carbon Prefilter → Activated Carbon Prefilter → Reverse Osmosis Membrane → Storage Tank → Activated Carbon Postfilter → Dispensing Faucet							
Sediment Filter (Stage 1)			5 Micr	5 Micron							
Activated Carbon Prefilter (Stage 2 and 3) Carbon Block 5 Micron											
Reverse Osmosis Membrane (Stage 4)			ge 4) Thin Fi	Thin Film Composite							
Polishing Filter (Stage 5)			Granu	Granular Activated Carbon or Carbon Block							
Storage Capacity			Plastic	Plastic - Capacity 3.8 Gallons (14.36 Liters)							

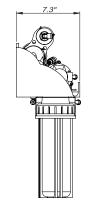

* BP Stands for Booster Pump

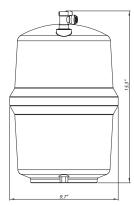
Efficiency rating means the percentage of the influent water to the system that is available to the user as RO treated water under operation conditions that approximate typical daily use. *Recovery rating means the percentage of the influent water to the membrane portion of the system that is available to the user as RO treated water when the system is operated without a storage

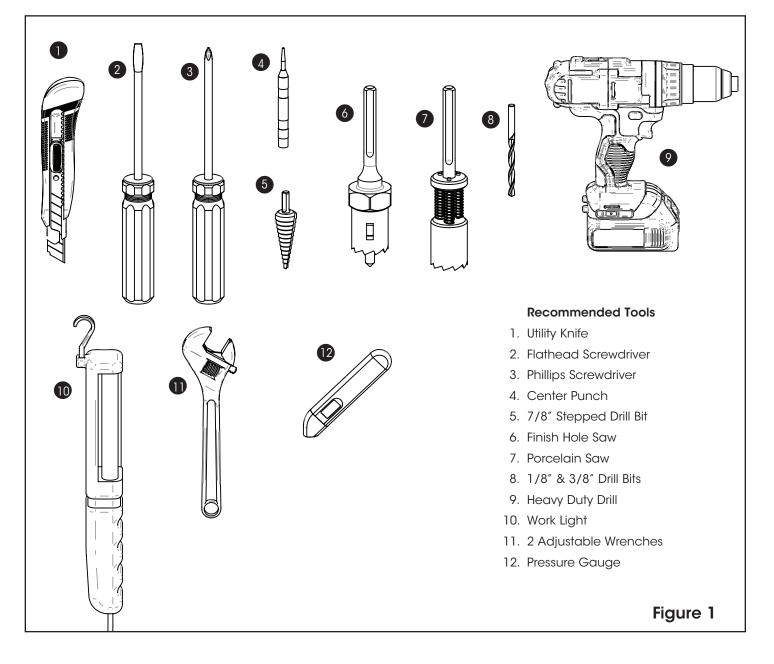
tank or when the storage tank is bypassed.


Dimensions RO75






RO75BP



Product Water Storage Tank

		NOTES		
Recommended Influe	nt Water Characteristic	1.	A booster is strongly recommended to improve the reduction of	
Pressure	40 - 100 psi (275-690 kPa) 40 - 77 °F (4-25 °C) 0 - 2500 ppm (0 - 2500 mg/L)		TDS. Higher pressures will help maintain the membrane's maximum rejection performance.	
Temperature			The reverse osmosis membrane used in these systems may be damaged by chlorine. These systems include activated carbon filte	
Total Dissolved Solids (TDS) ¹				
рН	5 - 10	1	which protect the membranes by reducing chlorine. Influent chlorine should not exceed 3 mg/L.	
Chlorine ²	0 - 3 ppm (0 - 3 mg/L)	3.	A softener is strongly recommended for water over 10 gpg hard.	
Chloramine	0 - 3 ppm (0 - 3 mg/L)		Installing a system without a softener on water with hardness higher than 10 gpg will reduce the life of the membrane.	
Turbidity	0 - 10 NTU		 Additional information on factors that affect RO performance can found in the "Performance & Technical Information" section. 	
Hardness ³	0 - 10 gpg			
Iron	0 - 1 ppm (0 - 1 mg/L) Potable		Table 1	
Bacterial Quality				

Suggested Installation Equipment

Overview of the Economy RO System's Components (Line Pressure Model)

Manifold Assembly

The manifold assembly serves as the functional hub of the Economy RO system by directing the flow through each of the system's main components.

2 Sediment Filter

The sediment filter screens out particulate material, such as dirt, sand, or rust, which may clog the other filters in the system.

3 Activated Carbon Filter

The activated carbon prefilter reduces chlorine which may damage the RO membrane filter. It must be regularly checked and/or replaced to prevent premature membrane failure and poor water quality.

Reverse Osmosis Membrane

The RO membrane (4) reduces dissolved substances and other microscopic impurities. It consists of a membrane envelope wound around a perforated tube. Product water diffuses through the membrane to the inside of the envelope where it flows to and is collected by the tube. Impurities are flushed away in the drain stream.

The RO membrane featured in the Economy RO system offers exceptional contaminant rejection, application versatility, and long life. The membrane material is sensitive to an attack by chlorine. The activated carbon filter must be maintained properly to prevent premature failure of the RO membrane.

For long term storage the RO membrane should be refrigerated to maximize performance once used. **DO NOT ALLOW TO FREEZE.**

NOTE: This preservative must be flushed from membrane before use. If ingested it may cause irritation of the gastrointestinal tract, colic, diarrhea, or other similar symptoms. The manufacturer recommends discarding all the product water for at least one hour of operation before drinking or use in food preparations. Canature WaterGroup highly recommends discarding the product water for a full 24 hours to flush the preservative and to properly hydrate the membrane for maximum performance.

5 Polishing Filter

The polishing filter (5) adsorbs any residual tastes and odors just before the water is delivered through the faucet.

6 Drain Line Flow Control

The flow control assembly or concentrate flow control (6) regulates the flow rate of the flushing (drain) stream and to maintain pressure in the RO membrane filter. This is located inside the manifold assembly.

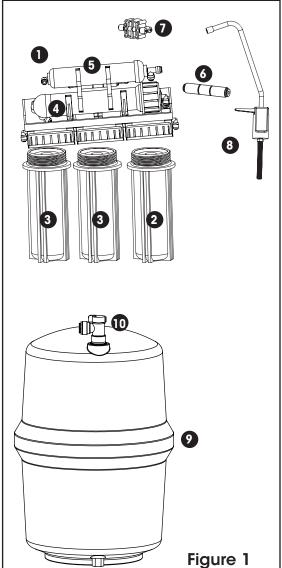
7 Automatic Shutoff

The automatic shutoff (7) automatically stops the flow of water

through the Economy RO system when the storage tank is full. This is located inside the manifold assembly

3 Dispenser Faucet

The faucet (8) allows the product water to be drawn from the system with a simple rotation of the handle. There is an option of an air gap style faucet which prevents the unit from siphoning drain water back into the system. It features a built-in siphon break for concentrate discharge as required by most plumbing codes.


9 Storage Tank

The storage tank (9) collects and stores the water produced by the RO system. A compressed air diaphragm drives the water to the polishing filter and faucet. The ball valve (10) provides a convenient way to lock water in the tank during transport and filter changes.

10 Shut off Valve

To Control the flow from Manifold, Faucet to the tank.

NOTE: Cleanliness is essential in the Preparation procedure. Be sure to wash your hands thoroughly before handling filters. The use of surgical gloves is strongly recommended.

Overview of the Economy RO System's Components (Booster Pump Model)

Manifold Assembly

The manifold assembly serves as the functional hub of the Economy RO system by directing the flow through each of the system's main components.

2 Sediment Filter

The sediment filter screens out particulate material, such as dirt, sand, or rust, which may clog the other filters in the system.

3 Activated Carbon Filter

The activated carbon prefilter reduces chlorine which may damage the RO membrane filter. It must be regularly checked and/or replaced to prevent premature membrane failure and poor water quality.

Reverse Osmosis Membrane

The RO membrane (4) reduces dissolved substances and other microscopic impurities. It consists of a membrane envelope wound around a perforated tube. Product water diffuses through the membrane to the inside of the envelope where it flows to and is collected by the tube. Impurities are flushed away in the drain stream.

The RO membrane featured in the Economy RO system offers exceptional contaminant rejection, application versatility, and long life. The membrane material is sensitive to an attack by chlorine. The activated carbon filter must be maintained properly to prevent premature failure of the RO membrane.

For long term storage the RO membrane should be refrigerated to maximize performance once used. **DO NOT ALLOW TO FREEZE.**

NOTE: This preservative must be flushed from membrane before use. If ingested it may cause irritation of the gastrointestinal tract, colic, diarrhea, or other similar symptoms. The manufacturer recommends discarding all the product water for at least one hour of operation before drinking or use in food preparations. Canature WaterGroup highly recommends discarding the product water for a full 24 hours to flush the preservative and to properly hydrate the membrane for maximum performance.

5 Polishing Filter

The polishing filter (5) adsorbs any residual tastes and odors just before the water is delivered through the faucet.

Drain Line Flow Control

The flow control assembly or concentrate flow control (6) regulates the flow rate of the flushing (drain) stream and to maintain pressure in the RO membrane filter. This is located inside the manifold assembly.

Automatic Shutoff

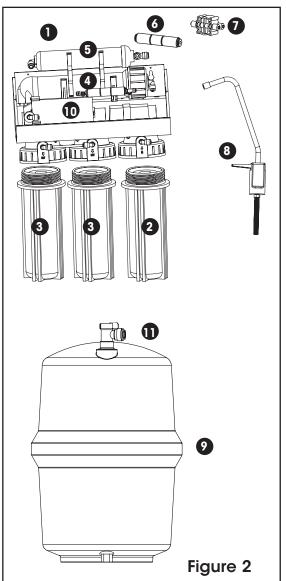
The automatic shutoff (7) automatically stops the flow of water through the Economy RO system when the storage tank is full. This is located inside the manifold assembly

8 Dispenser Faucet

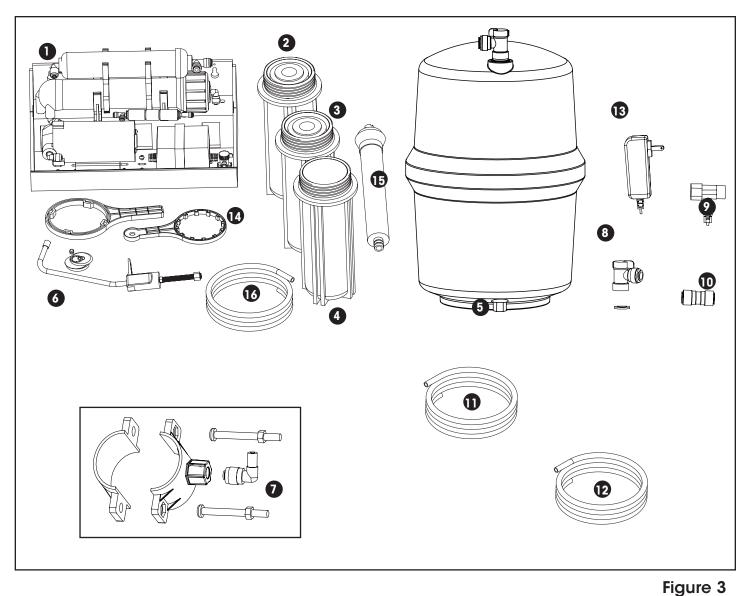
The faucet (8) allows the product water to be drawn from the system with a simple rotation of the handle. There is an option of an air gap style faucet which prevents the unit from siphoning drain water back into the system. It features a built-in siphon break for concentrate discharge as required by most plumbing codes.

9 Storage Tank

The storage tank (9) collects and stores the water produced by the RO system. A compressed air diaphragm drives the water to the polishing filter and faucet. The ball valve (11) provides a convenient way to lock water in the tank during transport and filter changes.


Booster Pump

The booster pump built inside the manifold assembly improves the production rate and reduction of dissolved substances from water. It runs on electricity.


Shut off Valve

To Control the flow from Manifold, Faucet to the tank.

NOTE: Cleanliness is essential in the Preparation procedure. Be sure to wash your hands thoroughly before handling filters. The use of surgical gloves is strongly recommended.

Package Contents

- 1. RO Manifold with Flow Control
- 2. Sediment Filter
- 3. Carbon Block Filter
- 4. Carbon Block Filter
- 5. Metal or Plastic Storage Tank
- 6. Faucet and Hardware

- **7.**Drain Saddle (1/4" or 3/8")
- 8. Tank Shut-off Valve
- 9. Inlet 3-Way Valve
- 10. Faucet Adapter
- **11.** 1/4" Tubing (4 ft. White)
- 12. 3/8" Tubing (4 ft. White)
- **13.** Transformer (for Booster pump model only)
- 14. Wrenches
- 15. RO Membrane
- 16. 3/8" Tubing (4 ft. Blue)

Product Information

This manual covers the technical aspects of the Economy RO drinking water systems. It is important to read this manual thoroughly so that you can properly apply, install, and service these systems.

The substances reduced by this system are not necessarily in the customer's untreated water.

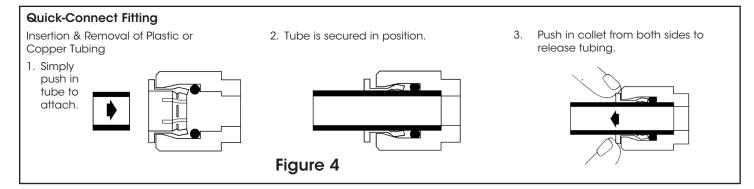
Warranty

A limited warranty is extended to the original end user from Canature WaterGroup. This warranty is printed on the back cover of the Owner's Guide.

Application Guidelines

The system is designed for use on potable water supplies meeting the guidelines outlined in Table 1. The system should be installed on a home's cold water line. The flushing stream should discharge through an approved siphon break. Installation of this system must comply with state and local laws and regulations.

Package Content


The Economy RO system is shipped from the factory in carton:

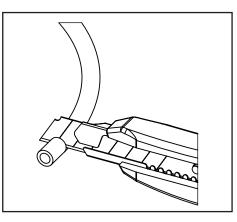
NOTE: The filter elements are shipped in their own sealed packaging. This will help to simplify preparation of the system and to maximize the shelf life of the RO membrane element.

Preparation

Tubing Connectors

The Economy RO system features reliable and convenient push-to-connect tubing connectors. Tubing is easily connected and disconnected from these fittings as follows.

Connect:

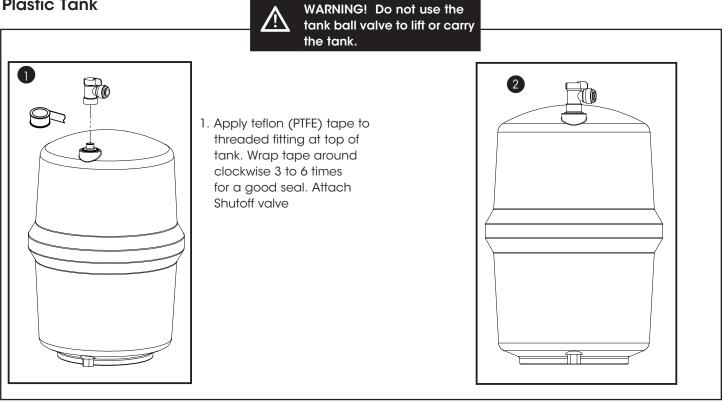

Cut the tubing squarely with a sharp knife. Be careful not to crush the tubing. To avoid leaks, make sure the tubing end is smooth and free of burrs and abrasions. Lubricate the end of the tube with water or a light coat of silicone and push the tube end firmly into the fitting. You should feel it push past the O-ring. Avoid bending the tubing sharply away from the fitting.

Disconnect:

Hold the collar against the fitting body and pull the tube from the fitting.

In the unlikely event that the connection leaks, remove and recut the tubing. Check the inside of the fitting for debris or O-ring damage. Reconnect.

Push-to-connect tubing connectors grip the outside diameter of the tube. To help assure a reliable connection, it is important to use high quality tubing with a consistent outside diameter.



^{1.} Cut tube squarely with a sharp knife.

Storage Tank Preparation

NOTE: Changing the air pressure will alter the amount of water stored in the tank. Increasing the pressure will decrease capacity while decreasing pressure will increase capacity.

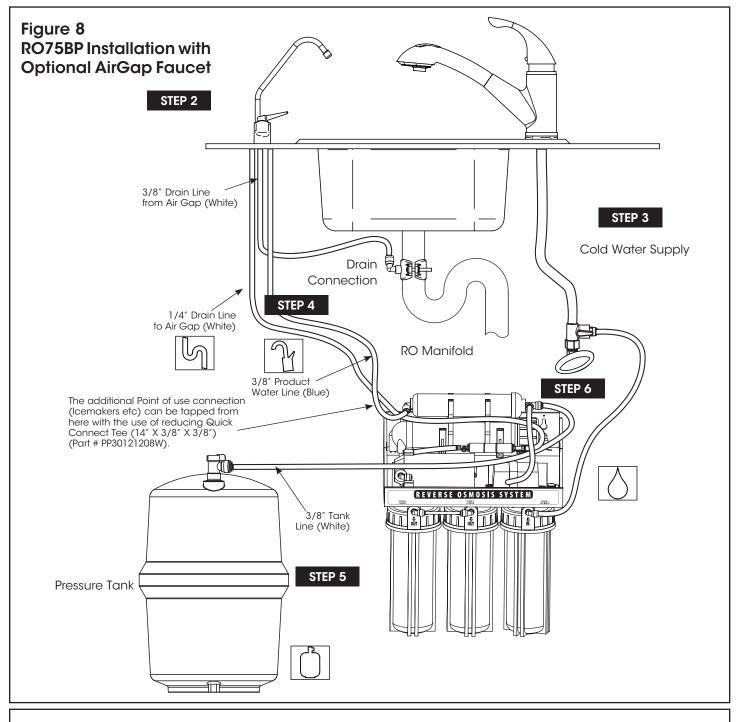
Plastic Tank

Installation: R075BP Unit

The exact placement of the components will vary by installation. Although shown beneath a sink, it may be installed in a basement, crawl space, or in an adjacent cabinet. Regardless of where the system is installed, the flow sequence described by (figure 7) must be observed.

The Economy RO drinking water system is designed to be mounted near a sink for easy access to cold water and drain lines. Lengths of 1/4-inch and 3/8-inch OD plastic tubing will be required to make this installation.

Evaluate the installation site to determine the easiest path for the plumbing to follow. Take care to make the installation as neat as possible.

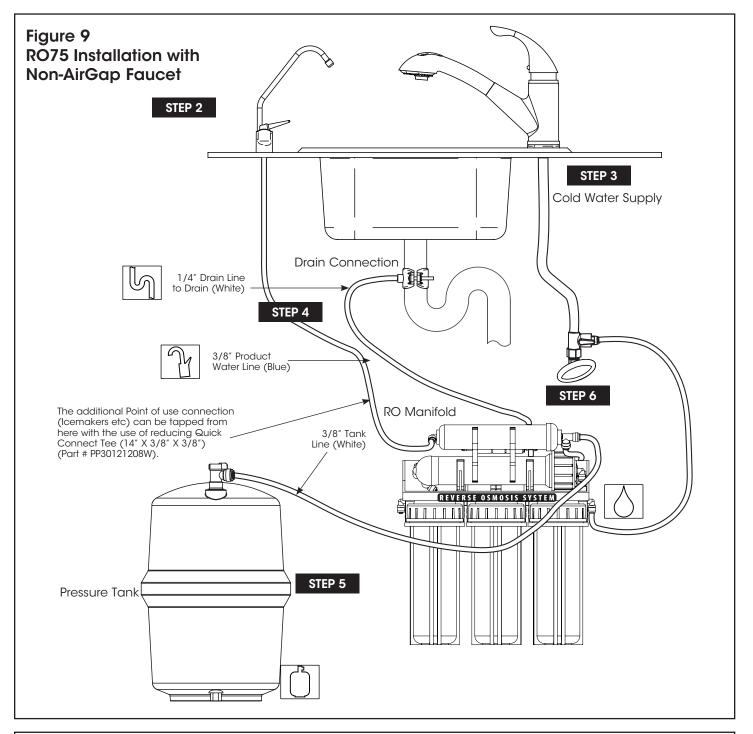


Installation: R075BP Unit

The exact placement of the components will vary by installation. Although shown beneath a sink, it may be installed in a basement, crawl space, or in an adjacent cabinet. Regardless of where the system is installed, the flow sequence described by (figure 7) must be observed.

The Economy RO drinking water system is designed to be mounted near a sink for easy access to cold water and drain lines. Lengths of 1/4-inch and 3/8-inch OD plastic tubing will be required to make this installation.

Evaluate the installation site to determine the easiest path for the plumbing to follow. Take care to make the installation as neat as possible.

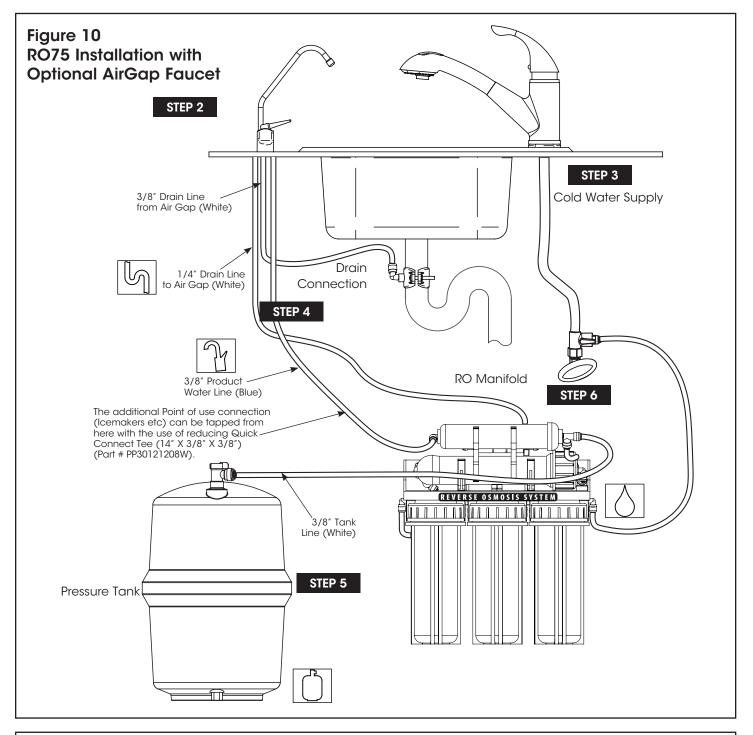


Installation: R075 Unit

The exact placement of the components will vary by installation. Although shown beneath a sink, it may be installed in a basement, crawl space, or in an adjacent cabinet. Regardless of where the system is installed, the flow sequence described by (figure 8) must be observed.

The Economy RO drinking water system is designed to be mounted near a sink for easy access to cold water and drain lines. Lengths of 1/4-inch and 3/8-inch OD plastic tubing will be required to make this installation.

Evaluate the installation site to determine the easiest path for the plumbing to follow. Take care to make the installation as neat as possible.



Installation: R075 Unit

The exact placement of the components will vary by installation. Although shown beneath a sink, it may be installed in a basement, crawl space, or in an adjacent cabinet. Regardless of where the system is installed, the flow sequence described by (figure 8) must be observed.

The Economy RO drinking water system is designed to be mounted near a sink for easy access to cold water and drain lines. Lengths of 1/4-inch and 3/8-inch OD plastic tubing will be required to make this installation.

Evaluate the installation site to determine the easiest path for the plumbing to follow. Take care to make the installation as neat as possible.

The following steps will enable you to install the system quickly and orderly. Some variation may be necessary depending on the installation. See page 4 for a check list of tools and materials.

Typical installations follow this sequence:

- 1. Select Component Installation Locations
- 2. Faucet Installation
- 3. Install Adapter Valve on Water Supply
- 4. Connect System Drain
- 5. Install Reservoir Tank
- 6. Install Filter System Assembly
- 7. Start-Up

Step 1 - Select Component Installation Locations

- **Dispenser Faucet** The faucet is designed to be mounted on the rear lip of the sink. It may be installed in an existing sprayer attachment hole or in a hole drilled at the time of installation. It may also be mounted to an adjacent counter top. It should be positioned so that water is dispensed over the sink. A 7/8" diameter hole is required.
- Important considerations:
 - Access to the bottom (undersink) of the faucet is required for attachment of product water line.
 - There should be no undersink obstructions which would prevent smooth tubing runs to the drain connection, or RO module assembly.
- Filter System Assembly The filter system assembly is designed to be mounted on any rigid vertical surface such as a cabinet sidewall, sheetrock in exposed stud. It should be positioned such that there is access to an inlet water source and drain. The installation should also allow convenient access for servicing.
- Inlet Water Supply Connection Once a location is chosen for installation of the filter system assembly, select a nearby cold water line to provide the water source for the system.

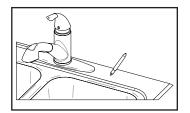
NOTE: Follow all local plumbing codes when connecting to service water.

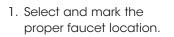
• **The Reservoir Tank** – Position the reservoir tank near the faucet for optimum convenience. The reservoir tank will weigh about 28 pounds (13 kg) when full of water, so it must be positioned on a stand.

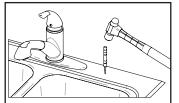
The reservoir operates best in the vertical position, but it will operate on its side.

• Drain Connection – The most convenient entry to the drain is directly above the P-trap of the kitchen sink. However, the drain water from the system can be connected to adjacent sinks or a floor drain. Extra care should be taken when entering drains near dishwashers or food waste disposals as back flow may occur through the air gap and cause flooding.

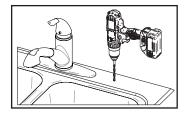
NOTE: Follow all local plumbing codes when connecting to drain.

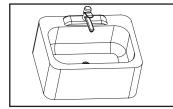

Step 2 - Faucet Installation

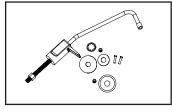

To simplify its access and installation, we suggest you install the faucet on the rear lip of the sink. It should be evenly positioned with the sink faucet and spray attachment. Should the spray faucet hole not be available for the installation, the sink must be drilled.

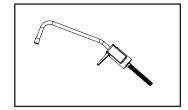

NOTE: It is recommended retaining the services of a professional counter top craft person when a hole is needed in granite or other specialty counter top materials.

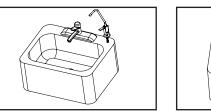
Sink Drilling Instructions

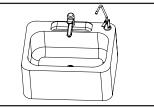

Stainless Steel Sink

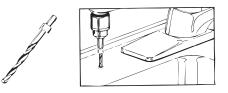



2. Center punch hole to provide a starting point for your drill.




 Drill a 7/8" hole in the sink using a stepped 7/8" drill bit. If no stepped bit is available, start by drilling a 1/4" hole. Using this hole as a starting point progressively drill larger holes. Increase drill size by 1/8" until you reach a 7/8" hole.

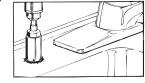




Porcelain Enamel Sink

Follow these basic guidelines when drilling a porcelain sink:

Pilot Drill


Penetrate the porcelain to the base material.

Spring Loaded Porcelain Saw

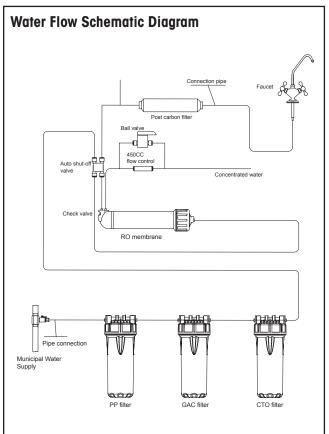
Finish Hole Saw

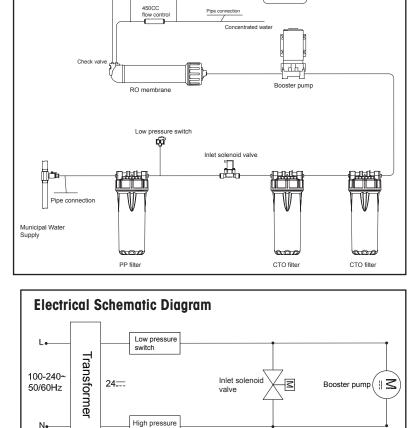
Protect the surrounding porcelain material.

Use the appropriate tool to drill the base material.

One proven tool is the Relton porcelain cutter kit when used with a slow speed drill (300-400 rpm).

- Drill a pilot hole through the porcelain and base material with the carbide tip drill.
- Build a putty dam around the drill area. Add enough water to lubricate cutters and reduce cutting noise.
- Insert the porcelain cutter into the drill. Place the drill tip in the pilot hole. Check for free movement.
- Apply light pressure to the cutter tool and start the drill motor at low speed (300-400 rpm). When the initial cut has been made in the porcelain, speed may be increased. After a complete ring has been cut through the porcelain, change over to the metal cutter. Avoid contacting the outer rim of cut porcelain when drilling.




CAUTION! Avoid high drill speed during penetration of porcelain. A single speed drill can be used at a slow speed by switching it on and off quickly.

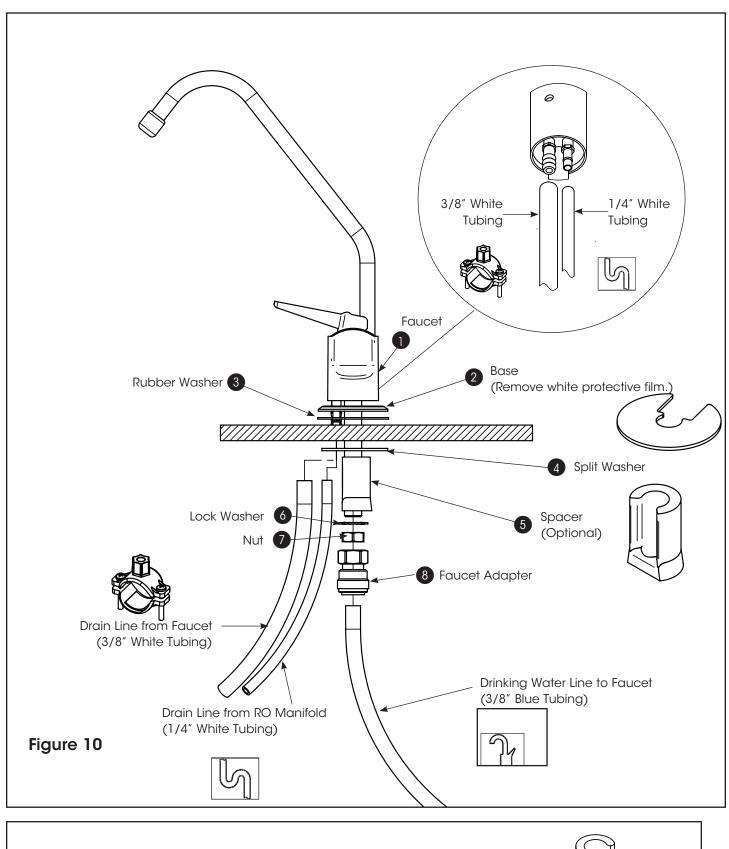
- Use a slow speed and light pressure to cut away the porcelain.
- Stop when you reach the metal under the porcelain. Remove the cutter and clean the porcelain chips from the surface. Continue cutting through the metal.

NOTE: Ceramic tile counters should be treated like porcelain when penetrating the surface, then treated as metal to complete the hole with carbide drills. Formica countertops can be drilled with a high-speed wood drill.

Water Flow And Electrical Diagrams

Water Flow Schematic Diagram - with Booster Pump

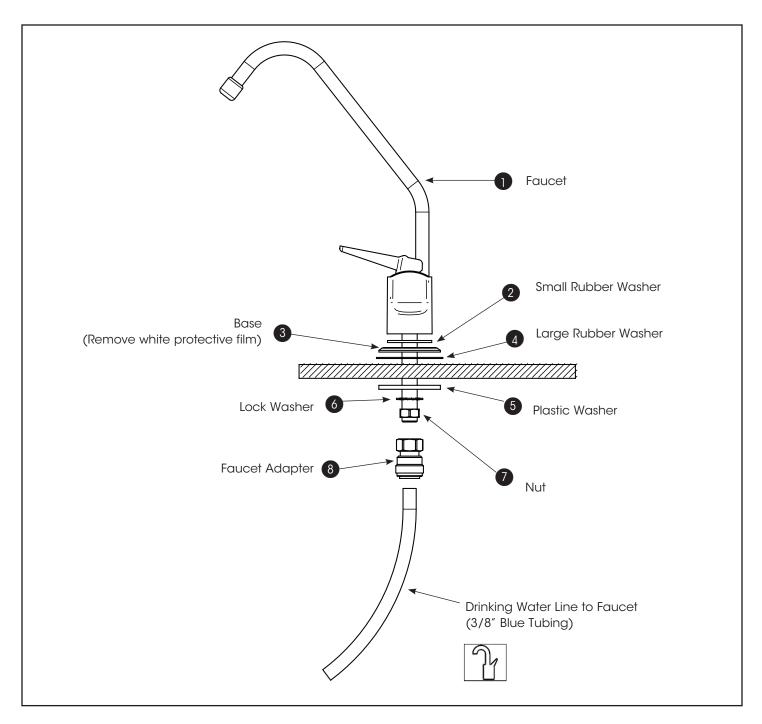
di -- 11


Ball valv

switch

00

Faucet


Feed Water Guidelines				
Maximum TDS	20 - 2500 ppm (0 - 2500 mg/L)			
Hardness	0 - 10 gpg			
Iron (Fe)	0 - 1 ppm (0 - 1 mg/L)			
Manganese (Mn)	<0.05 ppm			
Hydrogen Sulfide	0.0 ppm			
Turbidity	0 - 10 NTU			
Feed Water Pressure	40 - 100 psi (275-690 kPa)			
Temperature	40 - 77 °F (4-25 °C)			
pH Range	5 - 10			

Air Gap Faucet (Optional - Not Supplied With this Product)

NOTE: The spacer is required for stainless steel sinks and thin counter tops. If sink is being installed on a thick (5/8" or thicker) counter the spacer is not required. Remove white protective film from faucet base.

Non Air Gap Faucet (Supplied With the Product)

Standard Faucet Installation

- 1. Remove white protective film from faucet base. Install faucet body, small rubber washer, metal base, and large rubber washer above sink (items 1-4).
- 2. Install plastic washer, lock washer and nut (items 5-7) onto faucet stem below sink and tighten. Be sure to properly align the faucet.
- 3. Install the faucet adapter (item 8). Connect the 3/8" blue tubing to the faucet adapter.

NOTE: If installing a standard faucet the red 1/4" drain line will be installed directly to the drain. Disregard the instructions on the following page.

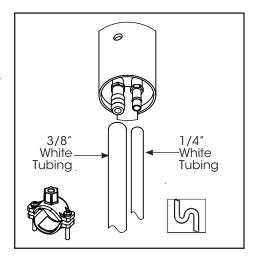
Air Gap Faucet Installation

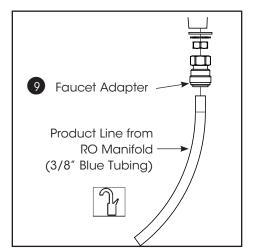
Remove white protective film from faucet base. Verify faucet body, metal base, and rubber base washer are in place above sink (Items 1, 3, and 2).

Lower faucet into mounting hole and place faucet over hole.

Install slotted washer, spacer, faucet washer, and nut onto faucet nipple below sink and snug them up (Items 4, 5, 6, 7 and 8). Be sure to properly align faucet before tightening. Do not over tighten. Install faucet connector (Item 9), packaged with faucet, onto faucet nipple.

The spacer is typically necessary on stainless steel sinks and thin counter tops. If counter top or sink is too think (5/8" or thicker) remove the spacer from the installation.


CAUTION! Plastic Parts will break if screws are over tightened!


Tubing Connections

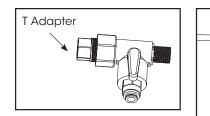
- At the bottom of the faucet assembly you will find three tubing connections;
 2 are barbed and one is a push in type fitting.
- For the Air gap you will use the 2 barb fittings, the smaller fitting is for the 1/4" tubing and will be connected to the RO system. The larger barb fitting will use the 3/8" tubing and will be connected to the drain.

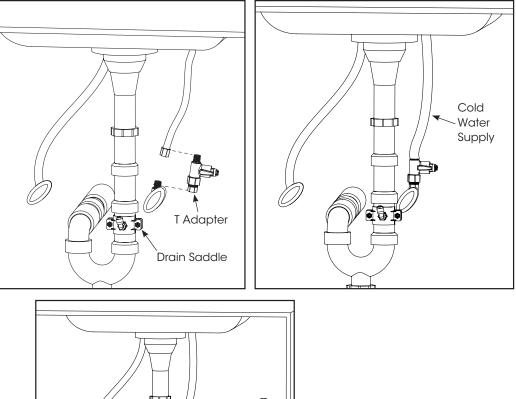
NOTE: If you have difficulty fitting the tubing onto the barbed fittings, try running hot water over the end of the tubes.

NOTE: Cut the tubing to be longer than what you will need because you will be able to trim it after you install the faucet assembly. Prepare the tubing with a fresh cut and make sure that it is free of dirt and any foreign materials.

3. Take another length of 3/8" tubing and make sure it is has a fresh cut and is free of foreign materials and any scratches on the outside surface. Install the tubing into the push in type fitting at the base of the faucet. Make certain that it is inserted all the way in; once inserted give it a slight pull to make sure it is locked into the fitting. You have now completed the tubing connections.

NOTE: To disconnect tubing from the product water fitting, hold the collet firmly against fitting body and pull the tube from the fitting. Repeated assembly and disassembly will cause wear to the inner body. Visually inspect for excessive wear and replace the inner body as needed to protect against any leaks.

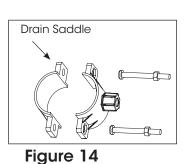

Cleaning the Faucet

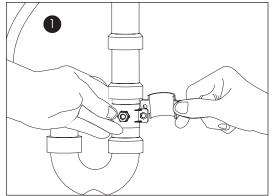

Wipe the faucet with a soft cloth, avoid abrasive cleansers.

Step 3 – Install T Adapter Valve on Water Supply

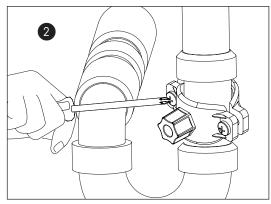
CAUTION! The Adapter valve should be connected to cold water supply only. Connection to hot water supply will damage the system and will void all warranty

Step 4 - Connect System Drain

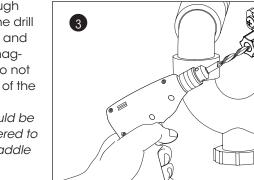

Plumbing codes require that the drain from reverse osmosis drinking water systems be discharged through an air gap siphon break. The faucet incorporates an air gap into its body. The discharge from the air gap must be connected to the plumbing system for proper drainage. This connection can usually be made beneath the sink. Incorrect installation may result in overflow of the air gap or excessive noise. If the concentrate water is discharged to an open drain, the air gap may not be necessary.


Sediment Filter

For Air Gap installations select the 3/8" saddle, for Standard installations use the 1/4" saddle.

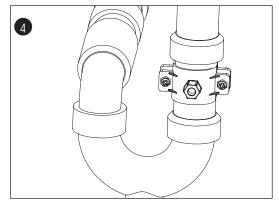

Connections to undersink plumbing can be made with a saddle clamp designed to accept the drain tubing from the faucet. Drain Saddle Kit is supplied for 1-1/2" undersink drain plumbing (Figure 14). **Be sure to check and follow local** *plumbing codes prior to installation.*

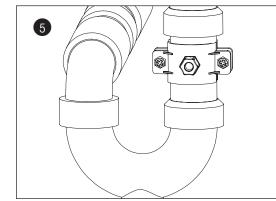
NOTE: For installation in Massachusetts, Plumbing Code 248 CMR shall be adhered to. Consult your licensed plumber for installation of this system. The use of saddle valves is not permitted in Massachusetts.

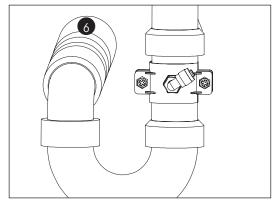


 Install the drain saddle valve on to the drain pipe. See figure 7 on page 9 for its location. For AirGap Faucet, Also install the elbow fitting provided with the drain saddle.

2. Tighten the clamps with the help of the two bolts.




WARNING! Do not


drill through both

sides of pipe!.

4. Attach 1/4" tube by slipping the tube through the black compression nut and hand tighten the nut on to the saddle valve.

In case of airgap faucet install the elbow fitting and install the 3/8" Tubing

3. Drill a 1/4" hole through one side of the pipe. The drill should be kept straight and centered to avoid damaging the saddle valve. Do not drill through both sides of the pipe!

CAUTION: The drill should be kept straight and centered to avoid damaging the saddle valve.

Many homes are equipped with disposals and dishwashers. Special care must be taken when these appliances are present to prevent improper air gap performance. Home drain plumbing must be free of any blockage since this may cause a backup of dishwasher and disposal waste into the air gap outlet tube and result in improper air gap performance.

To perform a simple drain check, fill the sink basin with several inches of water, pull the plug, and observe the drainage. If water backs up into the second sink (if present), or if drainage is slow or there is excessive gurgling, drain blockage may be present.

Undersink drain plumbing usually resembles one of the following descriptions. In all cases, the drain tubing from the air gap (RO outlet) should run downward, free of dips and loops. The air gap outlet must not be connected to the effluent side of the trap. This can vent sewer gas, which will produce foul odors.

Single basin sink without disposal

- Connect the RO outlet to the tailpiece directly beneath the sink.
- If a dishwasher drain connection is present, the RO outlet must be connected above it.

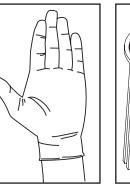
Single basin sink with disposal

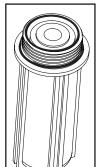
- Connect the RO outlet to the dishwasher drain port on the disposal if available.
- If the dishwasher drain port is not available, other arrangements must be made such as running the RO outlet to a basement sump.
- Do not connect the RO outlet to the plumbing below the disposal.

Double basin sink with disposal, single trap

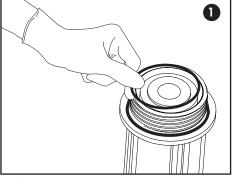
- The fitting which joins the drains from the disposal and second sink should be directional. If not, then we recommend that it be replaced.
- Connect the RO outlet to the tailpiece just below the second sink.
- If a dishwasher drain is present and cannot be relocated, the RO outlet must be connected above it.

Double basin sink with disposal, double trap

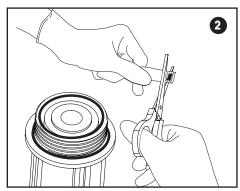

- Connect the RO outlet to the tailpiece just below the second sink.
- If a dishwasher drain is present and cannot be relocated, the RO outlet must be connected above it.

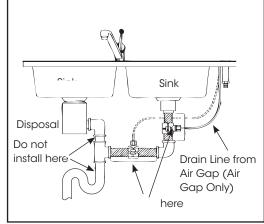

Step 5 - Install Filters and Membrane

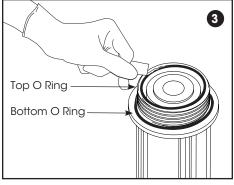
Place the reservoir tank in the location previously selected.


Install Filter Cartridges

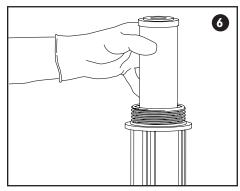
Wear Gloves



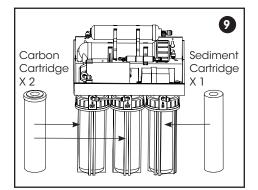

Carbon Block Filter with Sump and O Rings

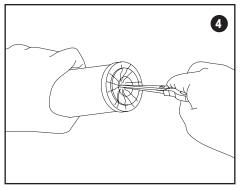


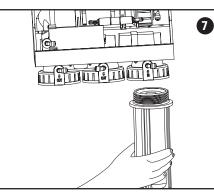
1. Check O Ring

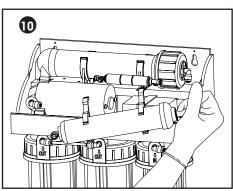


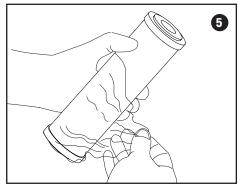
2. Cut Lube package

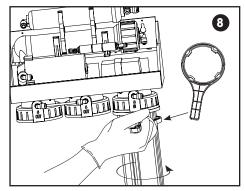


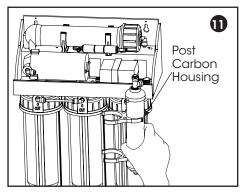

3. Apply Lube to both O Rings

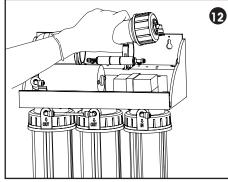

6. Insert Filter into Sump

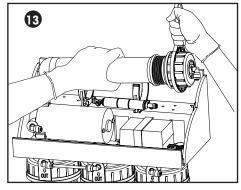

9. Attach other Cartridges

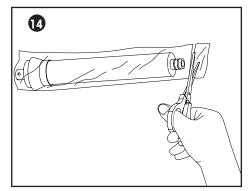

4. Pierce Plastic Wrap with scissors

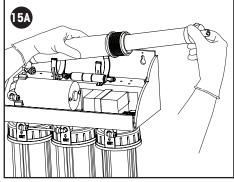

7. Attach Sump to Manifold

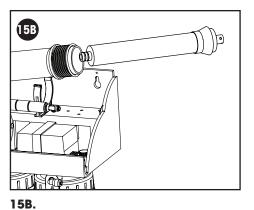

10. Remove Post Carbon Housing

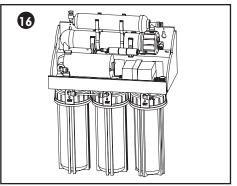

5. Remove Plastic Wrap from Filter


8. Tighten the Sump with Wrench

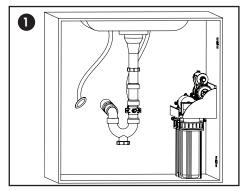

11. Remove Post Carbon Housing

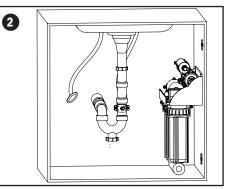

12. Unsecure the RO Membrane Housing



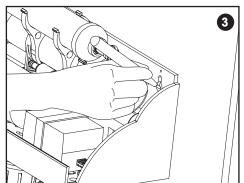

13. Remove Membrane Cap with the help of wrench

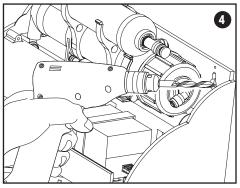
14. Remove Wrapping from Membrane

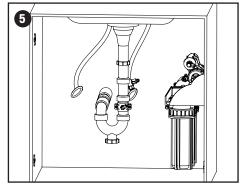



16. Your system is ready to install.

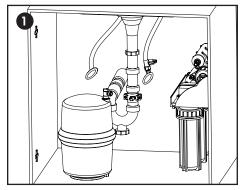
15A. Insert RO Membrane as shown in 15B


Install RO Manifold Under the Sink

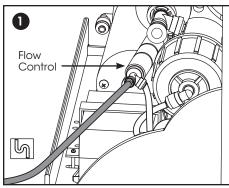

1. Find a suitable place for manifold and check to make sure it fits


2. Raise the manifold by 2 inches

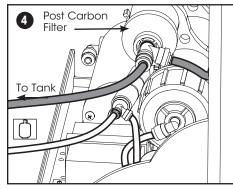
3. Mark the holes with Pencil ...



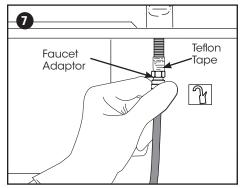
4. ... Drill holes

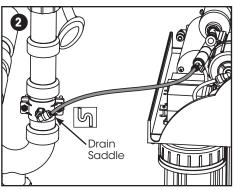

5. Hang the manifold

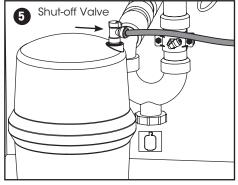
Install Tank

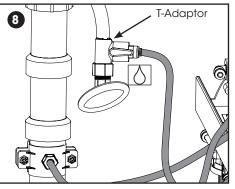


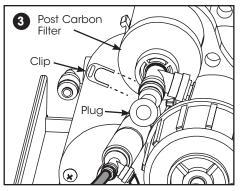
 Place Tank under the sink. The Shut off valve is already installed in the early steps

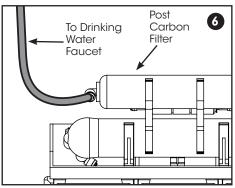

Connect the Tubing (Non AirGap Version)

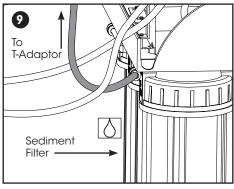

 Attach 1/4" Tubing to Flow Control

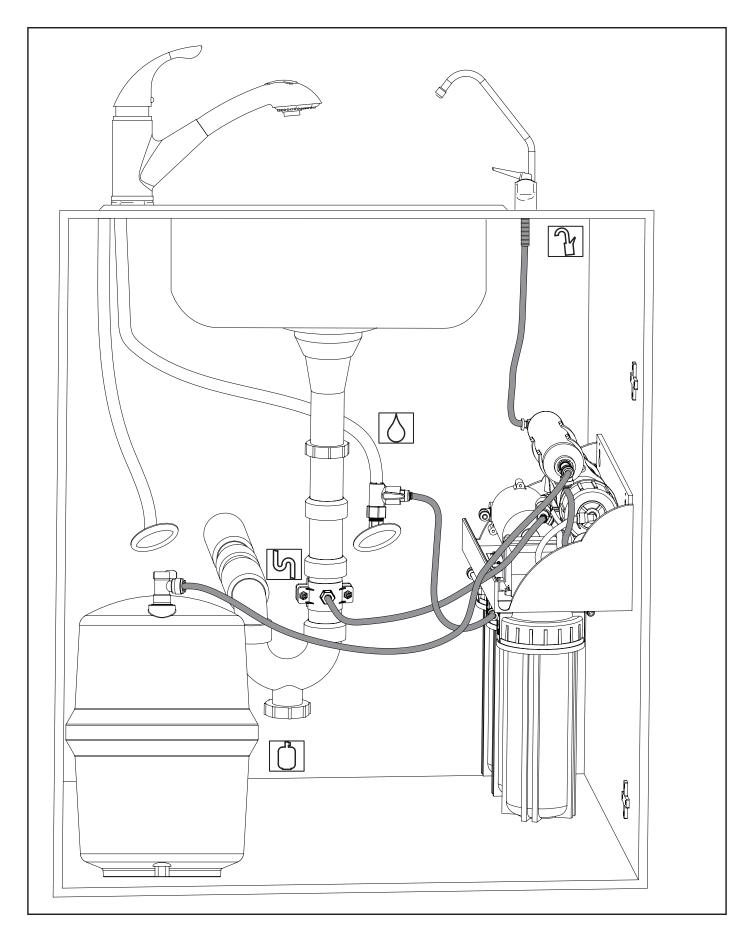

4. Attach 3/8" Tubing to Post Carbon Filter


7. Attach Tubing to Drinking Water Faucet

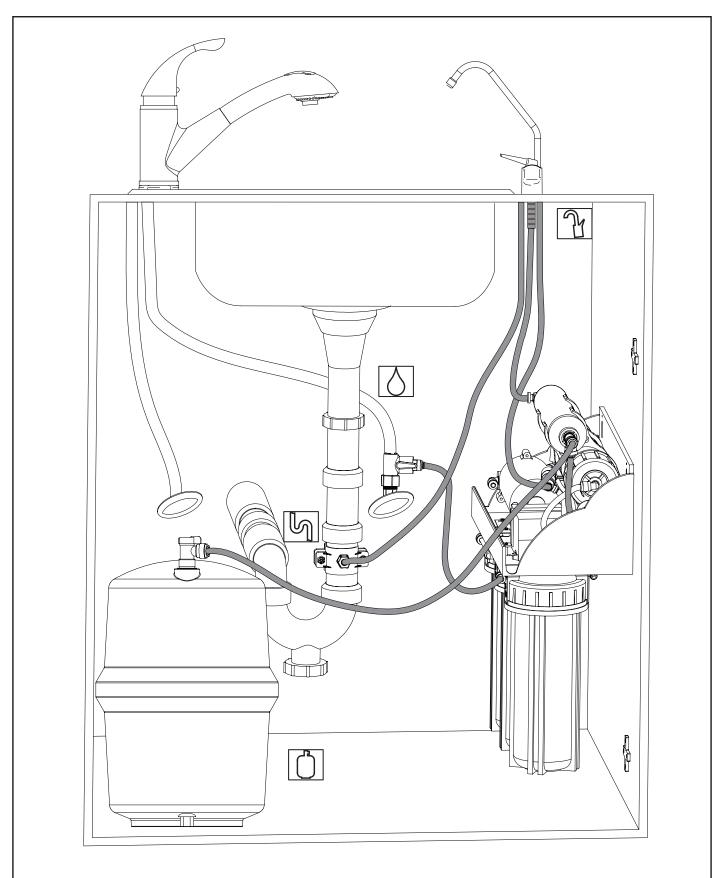

2. Attach the other end of the 1/4" tubing to the drain saddle


5. Attach Tubing to Tank Shut-off Valve


8. Connect Tubing from T-Adaptor to RO Inlet


3. Remove Blue Clip and plug from Post Carbon Filter

6. Attach Tubing to Post Carbon Filter


9. Connect Tubing from T-Adaptor to RO Inlet

Tubing Connections on Air Gap Faucet

Connections are same as on Non Air Gap Faucet, except for:

- 1. Drain Line from Faucet: Connects to Drain Saddle
- 2. Drain Line from Faucet: Connects to drain flow control in the RO manifold

Step 7 - Start-Up

- 1. Sanitize the storage tank (see page 29 for sanitization procedure).
- 2. Check system to verify all components are correctly installed
- 3. Open inlet valve and tank valve.
- 4. Check system thoroughly for leaks. If any are found, shut off both inlet and tank valves and correct the issue.
- 5. Allow system to run & fill tank for 1-2 hours. You will hear the water running to drain while the unit is running. Once the water stops running to drain the tank is full.
- 6. Open faucet to flush carbon fines & sanitization solution. Once the flow begins to slow down (around 20 minutes after opening) turn off the faucet.
- 7. Allow the tank to fill completely again.
- 8. Close faucet and allow tank to fill.
- 9. System is ready to use

NOTE: It is normal if the air gap faucet makes gurgling noises and drips small amounts of water during start-up procedure. This should subside once start-up procedure is complete.

WARNING! Do not drink water produced by the system until the start-up procedure has been followed completely!

Performance & Technical Information

The performance of the Economy RO system can be characterized and judged by the quality and quantity of the water produced by the system. By measuring the contaminant removal performance and flow rates of the system, its operating status can be easily evaluated.

Factors Which Affect Performance

Performance of the reverse osmosis membrane is affected by several factors which must be considered when judging the condition of the system. The main factors which affect system performance are pressure, temperature, total dissolved solids level, recovery and pH.

Pressure

Water pressure affects both the quantity and quality of the water produced by the RO membrane. Generally, the more water pressure, the better the performance of the system. Be careful not to go below 40 psi or exceed 100 psi, the minimum and maximum operating pressure of the system.

Temperature

The reverse osmosis process slows with decreasing temperature. To compensate, a temperature correction factor is used to adjust the actual performance of the RO membrane filter to the standard temperature of 77°F (25°C). This allows the performance of the unit to be accurately gauged against published standards. Temperature does not affect the concentrate flow rate.

Total Dissolved Solids

The minimum driving force which is necessary to stop or reverse the natural osmosis process is termed osmotic pressure. As the total dissolved solids level of the feed water increases, the amount of osmotic pressure increases and acts as back pressure against the reverse osmosis process. Osmotic pressure becomes significant at TDS levels above 500 mg/L (ppm).

Hardness

Hardness is the most common membrane foulant. If ignored, this relatively harmless component of feed water will scale a membrane over time. Use of a softener will reduce the fouling effect on a membrane. One way to detect too much hardness in the feed water is the weight of a membrane installed for a period of time. A fouled membrane (dried) will weigh significantly more than a new membrane. The increase in weight is a result of precipitated hardness inside the membrane.

Iron

Iron is another common membrane foulant. There are a variety of types of iron, some of which cannot be removed by

an iron filter. Clear water iron can be removed more effectively by a softener. Particulate iron can be removed more effectively by a 1 micron filter. Organic-bound iron can be removed only by activated carbon or macroporous anion resin. If there is enough iron to exceed the EPA secondary drinking water standard and softening the water is not an option and the iron is soluble, then an iron filter is appropriate. If none of these are an option then regular replacement of membranes will have to be accepted.

NOTE: Increased weight of the RO cartridge may be a foulant other than hardness.

Product Water Recovery

Product water recovery plays an important role in determining membrane and system performance. Recovery refers to the amount of water produced in relation to the amount of water sent to drain. The standard calculation is:

% Recovery = Product Water ÷ (Product Water + Waste Water) x 100

The system uses a flow control assembly to restrict the flow of waste water to the drain. This restriction helps maintain pressure against the membrane. The sizing of the flow control assembly determines the recovery rating of the system. The system is manufactured with a recovery rating designed to be around 25%. Depending on temperature, pressure and tolerances the actual recovery value may be slightly different for each system.

Performance Measurements

When collecting water samples from the manifold, insert a short $2^{"}-3^{"}$ length of tubing into the fitting on the manifold to catch the water sample.

TDS can be measured with an electronic TDS meter. PN 66760

Service and Maintenance

Service Schedule

To keep the Economy RO system operating properly, it is necessary to change the filters and sanitize the system periodically. Typically, this should be done on an annual basis. Service frequency may vary depending on local water conditions. High sediment, chlorine, turbidity, or hardness levels may require more frequent service. Use the following as a guide.

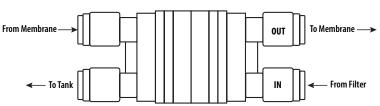
As needed

Clean the faucet with a soft cloth, avoid abrasive cleaners.

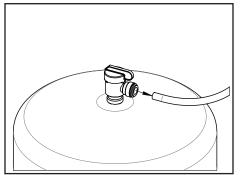
At least once in 6 months

Replace

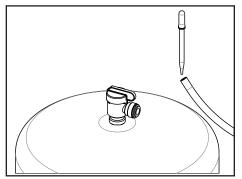
- Stage 1 Sediment Filter
- Stage 2 & 3 Carbon Block Pre-Filter


At least once in 12 months					
Replace • Stage 5 Carbon Block Post Filter	Check TDS of incoming and product water 	Sanitize the system			
Tank Pressure					

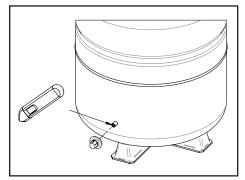
At least once in 36 months


Replace • Reverse Osmosis Membrane (Stage 4) Part is recommended to be changed once every 36 months or as needed.

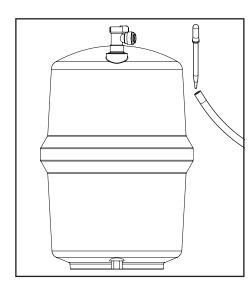
NOTE: If Auto Shut Off Valve is disconnected, make sure it's reconnected correctly:


Auto Shut Off Valve

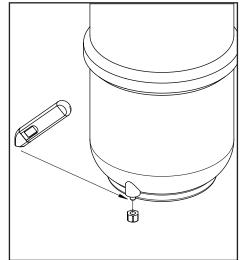
Metal Tank Sanitization Procedure



- Turn off water supply to your RO system by turning off the adapter valve. Open the faucet to drain the storage tank.
- 2. Once the tank has emptied. Disconnect the tube from the ball valve on the storage tank.


- 3. Using a clean eye dropper insert 1/2 teaspoon of hydrogen peroxide or common household bleach into the tube.
- 4. Reconnect the tube to the ball valve. Follow the start up procedure and drain the first two full tanks of water.

Tank Pressure Check

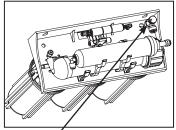


- 1. Turn off incoming water supply to RO.
- 2. Open RO Faucet and allow water to drain from the tank until it is completely empty.
- Check that air pressure is between
 5-7 psi using an air pressure gauge.
- 4. If the pressure is low use a bicycle pump to increase pressure to 5-7 psi.
- 5. Follow startup procedure.

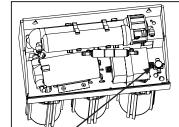
Plastic Tank Sanitization Procedure Tank Pressure Check

- 1. Turn off water supply to your RO system by turning off the adapter valve. Open the faucet to drain the storage tank.
- 2. Once the tank has emptied. Disconnect the tube from the ball valve on the storage tank.

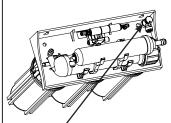
- 3. Using a clean eye dropper insert 1/2 teaspoon of hydrogen peroxide or common household bleach into the tube.
- Reconnect the tube to the ball valve. Follow the start up procedure and drain the first two full tanks of water.

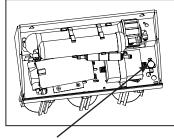

- 1. Turn off incoming water supply to RO.
- 2. Open RO Faucet and allow water to drain from the tank until it is completely empty.
- Check that air pressure is between
 5-7 psi using an air pressure gauge.
- 4. If the pressure is low use a bicycle pump to increase pressure to 5-7 psi.
- 5. Follow startup procedure.

Sanitization of RO Turn off the water supply of the RO and shut the valve on the tank. Then open the faucet to depress the system.


- 1. Depressurize the first sump
- 2. Add Sani System RO Pack (Part # 50035) to the first sump and screw the sump back
- 3. Turn on the water and open the tank valve and close the faucet. When tank is full, open the faucet to flush the system

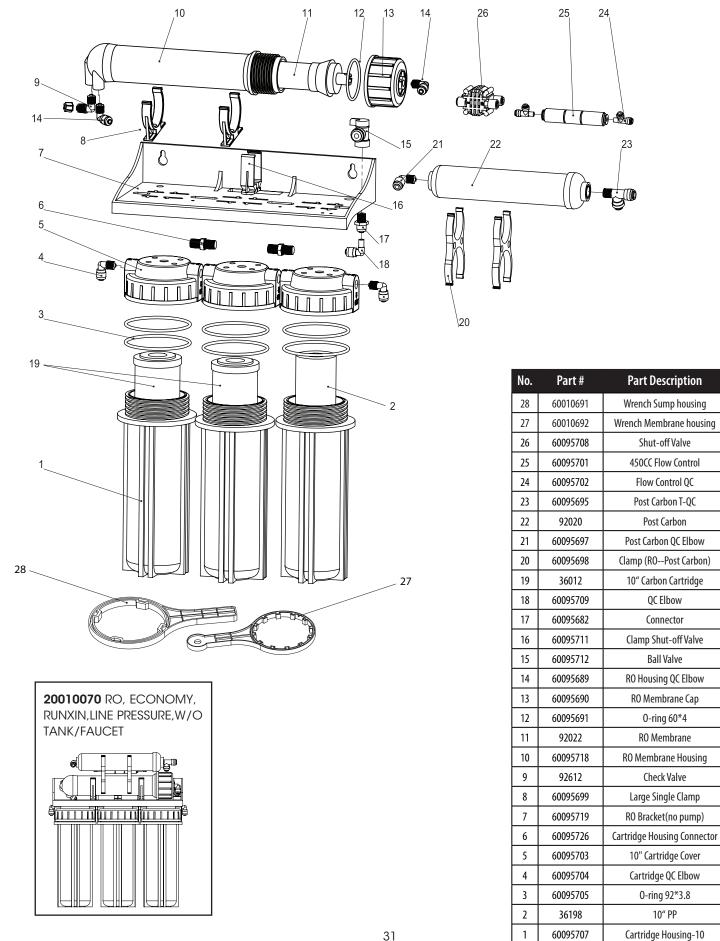
Flush Valve


The flush valve can be used periodically to flush the reverse osmosis membrane. All need to be done is to turn on the shut off valve shown and close it after 10 minutes.

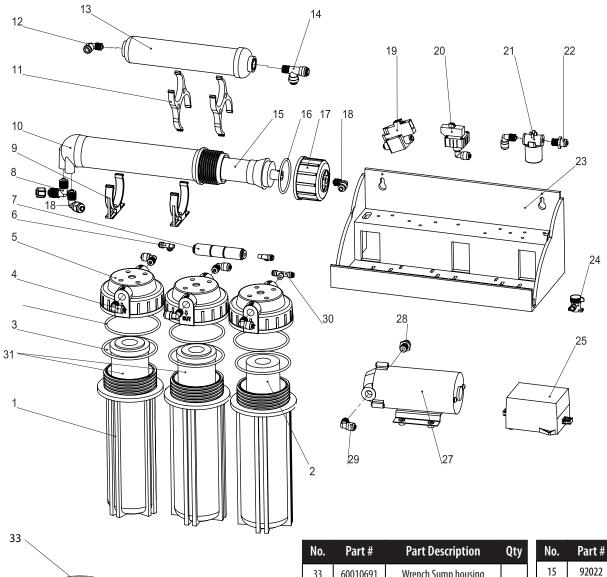


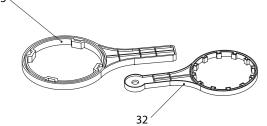
Flush Valve

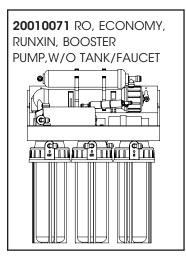
Flush Valve



Flush Valve


Flush Valve


Parts Breakdown: Line Pressure



Qty

Parts Breakdown: Booster Pump

No.	Part #	Part Description	Qty
33	60010691	Wrench Sump housing	
32	60010692	Wrench Membrane housing	
31	36012	10" Carbon Cartridge	1
30	60095674	Cartridge T-QC	1
29	60095675	Pump QC Elbow	1
28	60095676	Pump QC	1
27	60095677	Pressure Pump	1
25	60095678	1.5A Transformer	1
24	60095680	QC Ball Vavle	1
23	60095681	RO Bracket	1
22	60095682	Solenoid Valve QC	1
21	60095685	Inlet Solenoid Valve	1
20	60095687	QC Low Pressure Switch	1
19	60095688	QC High Pressure Switch	1
18	60095689	RO Housing QC Elbow	1
17	60095690	RO Membrane Cap	1
16	60095691	0-ring 60*4	

No.	Part #	Part # Part Description	
15	92022	R0 Membrane	1
14	60095695	Post Carbon T-QC	1
13	92020	Post Carbon	1
12	60095697	Post Carbon QC Elbow	1
11	60095698	Clamp (ROPost Carbon)	2
10	60095718	RO Membrane Housing	1
9	60095699	Large Single Clamp	2
8	92612	Check Valve	1
7	60095701	450CC Flow Control	1
6	60095702	Flow Control QC	2
5	60095703	10" Cartridge Cover	3
4	60095704	Cartridge QC Elbow	10
3	60095705	0-ring 92*3.8	6
2	36198	10" PP	1
1	60095707	Cartridge Housing-10	3

Troubleshooting Guide

If a problem cannot be corrected through the use of this troubleshooting guide please have the following information ready prior to calling the 1-800 number on the back of this manual:

- Serial #
- Model #

Problem	Possible Cause	Remedy		
1. Insufficient quantity of	a. Service greater than unit's specified output.	a. Use optional large tank for more storage capacity.		
product water available to service.	b. Insufficient feed water flow.	 b. 1. Clogged shut-off valve or feed tubing; clean out or replace. 2. Clogged prefilter; replace. 3. Clogged manifold; clean or replace. 		
	c. Insufficient feed water pressure	c. 1. Same as (b) above.2. Change in line pressure; install booster pump.		
	d. Increase in feed water TDS.	d. 1. Same as (a) above.2. Install booster pump.		
	e. Reduced feed water temperature.	e. Same as above.		
	f. Plugged prefilter.	f. Replace filter element.		
	g. Plugged polishing filter.	g. Replace polishing filter.		
	h. RO membrane fouled with sediment.	h. Replace RO membrane and prefilter elements.		
	i. Shutoff malfunction.	i. Clean or replace shutoff.		
2. Poor product	a. All of (1) above except (a) and (e).	a. All of (1) above except (a), (e), and (g).		
water quality.	b. RO membrane filter worn out.	b. Replace RO membrane.		
	d. Shutoff malfunction.	d. Replace shutoff.		
3. Bad tasting produce water.	ct a. Decrease in product quality; see (2) above.	a. Same as (2) above.		
	b. Foreign matter in storage tank.	b. Clean, sanitize, and flush storage tank.		
	c. Polishing filter exhausted.	c. Replace polishing filter		
	d. Plugged capillary tube.	d. Replace capillary tube; replace prefilter, if necessary.		
	e. Storage tank bladder is ruptured.	e. Replace storage tank and check precharge pressure.		

Problem		Possible Cause	Remedy		
4. External leakage		a. Tubing not fully seated in fitting	a.	Check all fittings for tightness.	
		b. Tubing abraded in seal area.	b.	Recut tubing and redo connection.	
5.	Overflow at	a. Concentrate tubing plugged.	a.	Clean concentrate tubing of debris.	
	faucet air gap	b. Air gap plugged.	b.	Clean with vinegar and/or soap.	
	(gurgling sounds).	c. Concentrate tubing not in continuous downward slope.	C.	Eliminate loops or low spots in tubing.	
		d. Obstructed home drain pipe.	d.	Free obstruction.	
6.	Foaming at faucet tip.	 a. Storage tank is positioned on side (Dissolved air cannot escape.) 	a.	Place tank in vertical position.	
7.	Foaming at air- gap	a. Concentrate tubing connected to same drain line as dishwasher, etc.	a.	Find different drain for system.	
		b. When sink is full of soapy water and plug is pulled, can back up at air-gap.	b.	Obstructed home drain, free obstruction.	
		c. Obstructed home drain.	C.	Free obstruction.	
8.	Bad smell from	a. Polishing filter exhausted.	a.	Replace polishing filter.	
	product water.	b. Prefilter element.	b.	Replace filter element.	
		c. Unit needs disinfection.	C.	Sanitize unit.	
9.	Fast flow to drain.	a. Defective flow control assembly.	a.	Replace flow control assembly.	
10.	Black specks in product water.	a. Carbon fines.	а.	Flush polishing filter.	
11.	Low faucet pressure.	 Inadequate pre-charge pressure in storage tank. 	a.	Determine the minimum pressure using the 70% guideline.	
		b. Polishing filter plugged.	b.	Replace polishing filter.	
12.	. Flow control plugging.	a. Excessive turbidity.	a.	Install another 5 micron filter in series with existing one or substitute carbon block filter for granular activated carbon filter.	
		b. Iron fouled.	b.	Pretreat for iron removal.	
		c. Iron-bacteria fouled.	C.	Sanitize plumbing.	

Canature Watergroup Guarantee

Subject to the conditions and limitations described below, Canature WaterGroup warrants its Economy Reverse Osmosis Drinking Water Treatment Systems (excluding membrane and cartridge filters), when installed in accordance with the specifications, to be free from defects in materials and workmanship under normal use within the operating specifications for a period of One (1) year from the date of purchase (with bill of sale). This warranty shall apply to the original end-user of the system only.

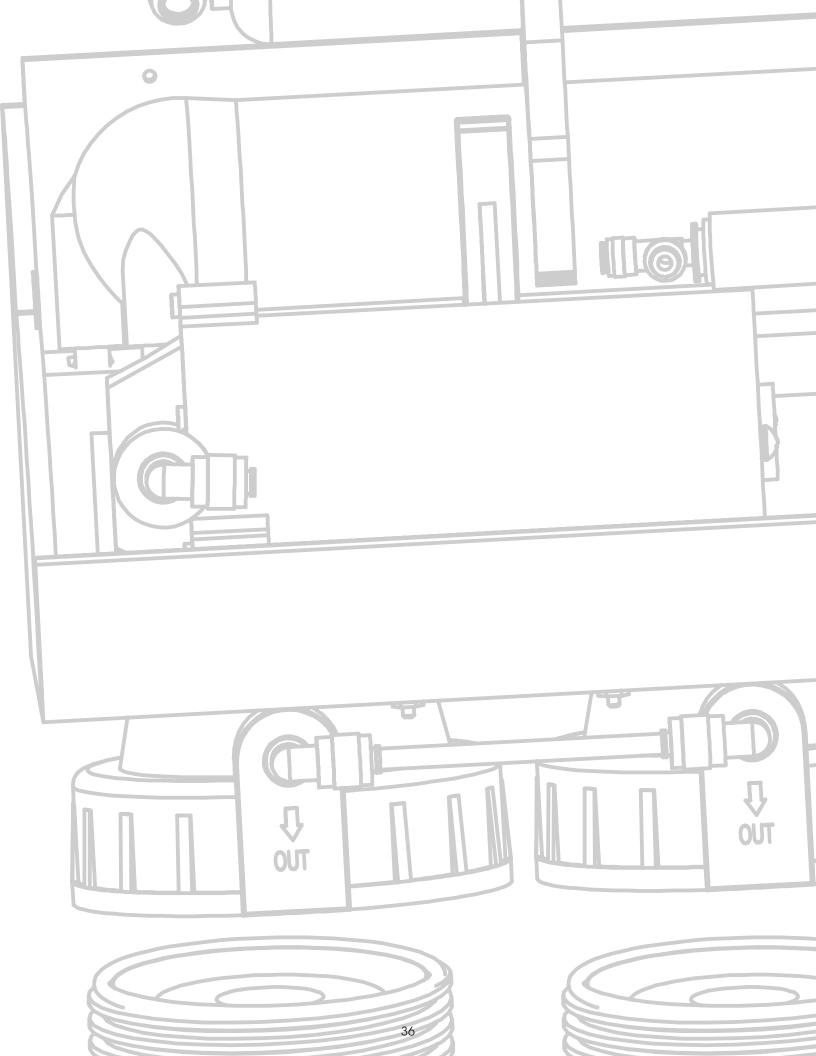
Other than the membrane and cartridge filters, any part found defective within the terms of this warranty will be repaired or replaced by Canature WaterGroup. If any part is found defective, Canature WaterGroup also reserves the right to replace the drinking water appliance with a comparable Canature WaterGroup drinking water system of equal or greater quality. You pay only freight for repaired or replaced parts from our factory.

This warranty shall not apply to any part damaged by accident, fire, flood, freezing, Act of God, bacterial attack, membrane fouling and/or scaling, sediment, misuse, misapplication, neglect, alteration, installation, or operation contrary to our printed instructions, or by the use of accessories or components which do not meet Canature WaterGroup specifications. If the drinking water system is altered by anyone other than Canature WaterGroup the warranty shall be void.

ALL IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, ARE LIMITED TO THE DURATION OF THE PERIOD SPECIFIED ABOVE FOR THE PARTS DESCRIBED IN THIS LIMITED WARRANTY.

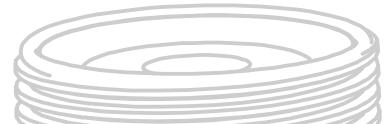
As a manufacturer, we do not know the characteristics of your water supply. The quality of water supplies may vary seasonably or over a period of time. Your water usage may vary as well. Water characteristics can also change if the drinking water appliance is moved to a new location. For these reasons, we assume no liability for the determination of the proper equipment necessary to meet your requirements, and we do not authorize others to assume such obligation for us. Further, we assume no liability and extend no warranties, express or implied, for the use of this product with a non-potable water source or a water source which does not meet the conditions for use as described in this Owners Guide.

CANATURE WATERGROUP'S OBLIGATIONS UNDER THIS WARRANTY ARE LIMITED TO THE REPAIR OR REPLACEMENT OF THE FAILED PARTS OF THE DRINKING WATER SYSTEM, AND WE ASSUME NO LIABILITY WHATSOEVER FOR DIRECT, INDIRECT, INCIDENTAL, CONSEQUENTIAL, SPECIAL, GENERAL OR OTHER DAMAGES, WHETHER FROM CORROSION OR OTHER CAUSES.


Some states do not allow limitations on how long an implied warranty lasts, so the above limitations may not apply to you. Similarly, some states do not allow the exclusion of incidental or consequential damage, so the above limitation or exclusion may not apply to you. This warranty gives you specific legal rights, and you may have other rights that vary from state to state.

INSTALLATION INFORMATION

Serial Number:


Installation Date:

Installed By:

Canature WaterGroup™

855 Park Street, Unit 1 Regina, SK. S4N 6M1 Canada Toll Free: (877) 288-9888

USA Office:

9760 Mayflower Park Drive, Suite 110 Carmel, IN. 46032 USA Toll Free: (877) 288-9888

55243. REV 2 2024-04 30

