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Abstract. The study of a subspace of the level 1 standard ŝl2 module by

Capparelli-Lepowsky-Milas has given rise to a modern reinterpretation the

celebrated Rogers-Ramanujan identities. This subspace can be realized using
commutative algebra of graded infinite dimensional complex polynomial ring

modules. This project studies a certain finitization of this space from two
points of view: a short exact sequence of quotients of polynomial rings and a

free resolution of ideals. Then it investigates the connection between a Rogers-

Ramanujan identity and the graded dimension of these quotients.

1. Introduction

This paper investigates a finite commutative algebra realization of the level 1

standard ŝl2 module studied by Capparelli-Lepowsky-Milas. We the space studied
by Capparelli-Lepowsky-Milas as

W � Crx1, x2, ...s{I

W is a quotient, that uses

Rptq �
¸

0 m1,0 m2
m1�m2�t

xm1
xm2

Then we consider the finite subspaces of W defined as

W pnq � Crx1, x2, ...s{pI � xxn�1yBq

This commutative algebra approach simplifies dimension calculations and mod-
ule structure to make them accessible to the undergraduate mathematician. The
graded dimension of W pnq provides an interesting approach to proving a Rogers-
Ramanujan identity. The paper begins with a review of modules, morphism dia-
grams and free resolutions. Then we use these tools to prove the graded dimension
of W pnq via short exact sequences. This approach encounters the Fibonacci Se-
quence and involves some simple abstract algebra methods of proof. Next, we look
at an outline for a proof of the graded dimension of W pnq that uses free resolutions.
This approach has not been used in previous studies of W pnq. We will look at some
examples for small values of n then provide a short explanation of how the proof
would follow.

2. Background

This section covers the basic machinery necessary to understand the meat of the
paper. As usual, each important definition will be enriched with an example.

2.1. Modules over a Ring.
1
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We will begin the paper by introducing an algebraic structure that functions as a
generalized vector space. We call these structures modules.

Definition 2.1. Let R be a commutative ring with unity where 1R is the mul-
tiplicative identity in R. An abelian group under addition M is called a module
over R (R-Module) if it has an action R

�
M ÑM such that for any a, b P R and

r, s PM :

 apr � sq � ar � as
 pa� bqs � as� bs
 apsbq � pabqs
 1Rs � s for all s PM

Example 2.1. The following are three examples of modules:

 R � k is any field and M � V is a vector space over k.
 R � Z and M � Z` Z` Z

 R is a commutative ring with unity and I � R is an ideal of R. I and R{I
are both R-modules.

Like vector spaces, we are interested in the building blocks of modules.

Definition 2.2. An ordered set tm1,m2, ...u PM is a generating set (aka spanning
set) of M if any m PM can be written as r1m1�r2m2� ... � m where each ri P R.
This set is a basis of M if r1m1 � r2m2 � ... � 0 only when each ri � 0 P R. We
say M is a free module if it has a basis.

Definition 2.3. The dimension of a module is the size of its basis.

Example 2.2. Let R be a ring and M be a free R-module with the basis B �
tm1,m2, ...,mnu. We can write

M �
nà
i�1

Rmi

where Rmi is the free module generated by mi. Take v P Rmi

�
Rmj for mi,mj P

B. So for some r1, r2 P R, v � r1mi � r2mj so r1mi � r2mj � 0. This means
r1, r2 � 0 so v � 0. Thus

n£
i�1

Rmi � t0u

.

Example 2.3. A module without a basis is the group of integers modulo two, Z{2Z
(aka Z2) is a Z module. It is not a free module because for 1 P Z{2Z and 2 P Z we

have 2 91 � 0 which is a non-trivial linear combination of elements in Z{2Z that is
zero.

Example 2.4. Consider the free module R2 � R`R. Its basis is tp1, 0q, p0, 1qu. The
dimension of a module as the number of basis elements. So we say dimpR2q � 2.

Definition 2.4. Let A be an abelian semigroup under addition and R be a ring.
The ring R is A-graded if it decomposes as

R �
à
aPA

Ra

where are all Ra are subgroups of the group pR,�q. For r P Ra and s P Rb,
rs P Ra�b. If r P Ra then we say grprq � a.
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Example 2.5. Let R � Crx, ys. Let A � Z¥0. Each

Rn � tp is a polynomial of homogeneous degree nu � tp P R : degppq � nu

We can write R �
À

0¤iRi.

If we choose to define degppq to be the highest degree of each monomial in
any given polynomial p P Crx, ys. The problem degpx2 � 2yq � degpx2 � 5xq so
x2�2y, x2�5x P R2. But x2�2y�x2�5x � 2y�5x P R1 so R2 is not closed under
addition and therefore cannot be a subgroup of pR,�q. Therefore it is important
to grade by homogenious degree.

Definition 2.5. Let A be an abelian semigroup under addition. Let R be a graded
ring and M be an R-module. We call M a graded module if M � `aPAMa and for
a, b P A we have RaMb �Ma�b

Example 2.6. Take R � Crx, ys and A � Z¥0. Take the M � R{xx2, y3y. The ba-
sis of M is t1, x, xy, xy2, y, y2u. Define Mn to be the set of polynomials in R{xx2, y3y
of homogeneous degree n. Notice

Crx, ys{xx2, y3y �
3à
i�0

Mi

We can write out each basis:

 basispM0q � t1u
 basispM1q � tx, yu
 basispM2q � txy, y2u
 basispM3q � txy2u

Also for any p PMa and q PMb we have pq PMa�b. For example, take y2�xy PM3

and take 2x PM1. Notice py2 � xyq2x � 2xy2 � 2x2y � 2xy2 PM3.

Definition 2.6. Let R be a ring. A derivation, B, is a linear operator that dis-
tributes across addition and follows Leibniz’s law:

Bprsq � Bprqs� rBpsq

Example 2.7. For our example we let R be the ring of pn� nq matrices with real
coefficients. We represent R as R � Matn�nR. Fix A P R and define BApBq �
AB �BA for any B P R. We will show BA is a derivation. Take any B,C P R

BApBCq � ApBCq � pBCqA � pAB �BAqC �BpAC �CAq � BApBqC �BBApCq

also notice BA is additive

BApB � Cq � ApB � Cq � pB � CqA � AB �BA�AC � CA � BApBq � BApCq

Definition 2.7. Let R be a ring and N , M be two R-modules. φ : N Ñ M is
a module homomorphism if φpn � n1q � φpnq � φpn1q and φprnq � rφpnq for all
n, n1 P N and r P R. The kernel of φ is a subset of N and is a module. We define
kerpφq � tp P N : φppq � 0u. The image of φ is a submodule of M . We define
impφq � tφppq : p P Nu

Example 2.8. In vector spaces, module homomorphisms are linear transforma-
tions. Let R � R, N � R3 and M � R2. We will define φ as multiplication by the
matrix

X �

�
1 0 0
0 �1 0

�
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φ is a module homomorphism because matrix multiplication distributes over ad-
dition and multiplication by a real scalar. It is fun to notice that this matrix is
a projection from three dimensions to two dimensions including a reflection across
the second dimension axis. We find the kernel is

kerpφq � t

�
�0

0
r

�
� : r P Ru

Take

n �

�
� 2

3
�1

�
�

in N . So

φpnq �

�
2
�3

�

We can string homomorphisms together to create sequences of maps between
R-modules for some ring R.

2.2. Diagrams of Morphisms in Algebraic Structures. We will discuss exact
sequences and commutative diagrams in general for any algebraic structure and
its associated morphisms. This allows us to provide examples of the following
definitions with homomorphisms between groups, rings and modules.

Definition 2.8. A sequence of morphisms between the algebraic structuresM0,M1, ...

M0
φ1ÝÑM1

φ2ÝÑM2
φ3ÝÑ ...

is exact if for every i P N φi � φi�1pmq � 0 for any m PMi and kerpφiq � impφi�1q.

We are particularly interested in short exact sequences.

Definition 2.9. Let A,B,C be algebraic structures. Consider the sequence of
homomorphisms

0 Ñ A
f
ÝÑ B

g
ÝÑ C Ñ 0

This is a short exact sequence if impfq � kerpgq, f is an injection and g is a
surjection. If a sequence is exact then dimpBq � dimpAq � dimpCq.

Example 2.9. Again, we will use some linear algebra for an example. Consider
this sequence of maps between R modules

0 Ñ R
3 f
ÝÑ R

5 g
ÝÑ R

2 Ñ 0

f is defined by matrix multiplication by�
�����

55{3 �18 �18
�54 54 54
�55{2 55{2 27
�18 18 18
18 �18 �18

�
�����

We define g by matrix multiplication by�
0 0 0 3 3
0 �1 2 0 1{18

�
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which is a projection of R5 onto R2. If we take any three dimensional real vector x,
we have g � fpxq � 0. Also kerpgq � R3 � impfq. Since all these are R-modules we
have dimpR5q � dimpR2q � dimpR3q � 2� 3 � 5.

Example 2.10. The rank nullity theorem states that if T : V Ñ W is a linear
transformation between two vector spaces then

rankpT q � nullpT q � dimpV q

We define the short exact sequence

0 Ñ kerpT q
ι
ÝÑ V

T
ÝÑ impT q Ñ 0

where ι is an inclusion map. So dimpV q � dimpkerpT qq � dimpimpT qq. Notice
dimpkerpT qq � nullpT q and dimpimpT qq � rankpT q.

Example 2.11. Exact sequences can also be used with groups. However, the
concept of dimensions does not apply. Suppose there is an exact sequence

0 Ñ N
f
ÝÑ G

g
ÝÑ H Ñ 0

So f must be an injection and g must be a surjection and impfq � kerpgq � N . Now
recall the first isomorphism theorem for groups which says H � G{ kerpgq � G{N .

Example 2.12. For example consider the sequence of maps

0 Ñ S3
ψ
ÝÑ D6

φ
ÝÑ Z2 Ñ 0

For some n P N, Dn is generated by rotations (r) and reflections (s). Sn is generated
by p1, 2q and p1, 2, ..., nq. To define a homomorphism we just need to know what it
does to the generators. So we define ψpp1, 2qq � s, ψpp1, 2, 3qq � r2 and φprq � 1,
φpsq � 0. Notice kerpιq � te, r2, r4, s, sr2, sr4u � impπq � D3. ψ is an injection
and φ is a surjection. Using the first isomorphism theorem for groups D6{S3 � Z2.

Now we will introduce commutative diagrams and eventually link these diagrams
with exact sequences via a group theory example.

Definition 2.10. Let A,B,C,D be algebraic structures and f, g, φ, ψ be mor-
phisms between them.

A
f

ÝÝÝÝÑ B

φ

��� ���ψ
C

g
ÝÝÝÝÑ D

We say the diagram above commutes if for all a P A, ψ � fpaq � g � φpaq.

Example 2.13. Consider this diagram:

D4
f

ÝÝÝÝÑ D8

φ

��� ���ψ
Z2 � Z2

g
ÝÝÝÝÑ Z4

Below are the definitions of each map where r, s are the generators for Dn, n P N

 fprq � r2

 fpsq � s
 φprq � p1, 0q
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 φpsq � p0, 1q
 gpp1, 0qq � gpp0, 1qq � 2
 ψprq � 1
 ψpsq � 2

This is a commutative diagram. For example ψ � fpsrq � ψpsr2q � 2 � 2 � 4 � 0
and g � φpsrq � gp1, 1q � gp0, 1q � gp1, 0q � 2� 2 � 4 � 0.

Now let’s look at the kernel of each of these maps.

 kerpfq � teu
 kerpφq � te, r2u
 kerpgq � tp1, 1q, p0, 0qu
 kerpψq � te, r4, sr2, sr6u

Using a generic injective identity maps ιf , ιφ, ιg, ιψ we can make a larger diagram
with 4 exact sequences and a commutative center.

0 0��� ���
kerpφq ÝÝÝÝÑ kerpψq

ιφ

��� ���ιψ
0 ÝÝÝÝÑ kerpfq

ιf
ÝÝÝÝÑ D4

f
ÝÝÝÝÑ D8 ÝÝÝÝÑ 0��� φ

��� ���ψ
0 ÝÝÝÝÑ kerpgq

ιg
ÝÝÝÝÑ Z2 � Z2

g
ÝÝÝÝÑ Z4 ÝÝÝÝÑ 0��� ���

0 0

Note: In order to simplify the diagram the symbol 0 has been chosen to represent
the trivial group of the identity of multiplicative and additive groups. For example:
the 0 to the right of D8 represents t1u.

2.3. Free Resolutions of R-Modules.
Now we will consider a sequence of module homomorphisms which is another way

to calculate the graded dimension of ideals and quotients of modules. First we need
to understand some basic notation:

Let A be an abelian monoid under addition and R be a graded module with
grprq � a P A for r P R. We use the notation Rp�bq (b P A) to define a graded
module that has all the same elements as R but the grading has changed to grpr1q �
a�b for any r1 P Rp�bq. For the rest of the paper all our modules will be N graded.

Example 2.14. Consider the module Rn � Crx1, x2, ..., xns with the grading called
weight which is the sum of the subscripts of a monomial in a given homogeneously
weighted polynomial. For example, wtpx3

2 � x5x1q � 6. If we view x3
2 � x5x1 P

Rnp�3q then wtpx3
2 � x5x1q � 9.

Definition 2.11. If we have an ideal I of a module R we define a free resolution
of I as a sequence of maps between free modules Rni

0 Ñ ...
f3ÝÑ Rn2

f2ÝÑ Rn1
f1ÝÑ I Ñ 0



USING COMMUTATIVE ALGEBRA TO EXAMINE A ROGERS-RAMANUJAN IDENTITY 7

We call each fi is defined by a ni�1 � ni syzygy matrix with entries sk,l for the
kth row and lth column. Each Rni � `nij�1Rp�ai,jq where each ai,j P Z. We can
calculate each ai,j � ai�1,j � sj,j .

It is well known that Z-modules are finitely generated abelian groups.

Example 2.15. Consider the Z-module Z{8Z We will find a free resolution of this
module.

0 Ñ Z
f
ÝÑ Z

g
ÝÑ Z{8ZÑ 0

where f is defined by multiplication and g is a projection map. Specifically, fpaq �
8a and gpbq � b � 8Z for a, b P Z. impfq � kerpgq � 8Z and f is defined on all Z
and all of Z{8Z is mapped to by g.

Definition 2.12. A Hilbert Series for a singly graded R-Module called M is a
function F pM, qq of a single variable where the coefficient of the term qk in F pM, qq
(k P Z¥0) is the dimension of the submodule of M with only elements of grading k.

Note: W pnq we will use χnpq, xq to represent the Hilbert series for the doubly
graded W pnq.

Example 2.16. Let R � Crx1, x2s with the weight grading from earlier. Take the
ideal I � xx2

1y. We use the res command from Macauly 2 to calculate the free
resolution

0 Ñ R1 f
ÝÑ I Ñ 0

where f is the one by one matrix x2
1. So R1 � Rp�p2� 0q � Rp�2qq.

We can use these resolutions to compute Hilbert series for I and for Crx1, x2s{I.
To do this we must know the Hilbert series

F pCrx1, x2, ..., xns, qq �
1±n

i�1p1� qiq

The Hilbert series for an arbitrary free Crx1, x2, ..., xns - module

M � `i¥1Crx1, x2, ..., xnsp�miq

for mi P Z¥0 can be written as

F pM, qq �

°
i¥1 q

mi±n
i�1p1� qiq

Definition 2.13. Consider the following free resolution where I is an ideal of the
module R

0 Ñ ...Ñ Ri22 Ñ Ri11 Ñ I Ñ 0

where k, ik P N. The Hilbert series

F pI, qq �
¸
k¥1

p�1qk�1F pRikk , qq

and
F pR{I, qq � F pR, qq � F pI, qq

Also if some
I �

à
iPN

Rip�miq

for mi P N then

F pI, qq �
¸
iPN

F pRip�miq, qq
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Example 2.17. Continuing the example above

F pI, qq �
q2

p1� qqp1� q2q

F pCrx1, x2s{I, qq �
1� q2

p1� qqp1� q2q
�

1

1� q

3. Constructing W(n)

Now we will provide more holistic definitions of W and W pnq from the intro-
duction. Given xi P Crx1, x2, ...s define the derivation, B as Bpxiq � ixi�1 for i P N.
Define n P N compositions of B as Bnppq � BpBp...pBppq...qq where B0ppq � p. For a
complex polynomial ring ideal generated by the polynomials p1, p2, ..., pn we define

xp1, p2, ..., pnyB � xBippjq : i P Z¥0, 1 ¤ j ¤ ny

To begin our first construction of W pnq we will define the tth relation as Bt�2px2
1q

for t P N and t ¥ 2.
Now we can produce the first definition of W and W pnq using the relation defi-

nition above as

W � Crx1, x2, ...s{xx
2
1yB

A finitization of W is W pnq which we define as

W pnq � Crx1, x2, ...s{xx
2
1, xn�1yB

Another construction of W pnq uses the relation definition

Rptq �
¸

m1,m2¡0
m1�m2�t

xm1xm2

for m1,m2 P N. Then we can use

I � xRptq : t ¥ 2y

to define

Crx1, x2, ...s{I

and

Crx1, x2, ...s{pI � xxn�1yBq

Proposition 3.1. The two ideals I and xx2
1yB of Crx1, x2, ...s are equal. Thus

W � Crx1, x2, ...s{I

W pnq � Crx1, x2, ...s{pI � xxn�1yBq

Proof. To do this we will show each xx2
1yB is a scalar multiple of Rptq which implies

that xB0px2
1q, B

1px2
1q, B

2px2
1q...y � xRp2q, Rp3q, ...y � I.

We claim Rptq � 1
pt�2q!B

t�2px2
1q.

We will proceed by induction on t for the usual assumptions t ¥ 2 and t P N.
For the base case t � 2 so 1

p2�2q!B
2�2px2

1q � x1x1. Suppose for some t ¡ 2 P N we

have Rptq � 1
pt�2q!B

t�2px2
1q. Now we will show Rpt� 1q � 1

pt�1q!B
t�1px2

1q.
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1

t� 1
BRptq �

1

t� 1
B

�
1

pt� 2q!
Bt�2px2

1q

�

�
1

t� 1
B

� ¸
m1,m2¡0
m1�m2�t

xm1
xm2

�

�
1

t� 1

¸
m1,m2¡0
m1�m2�t

Bpxm1xm2q

�
1

t� 1

¸
m1,m2¡0
m1�m2�t

pm1xm1�1xm2
�m2xm1

xm2�1q

�
1

t� 1

�
pt� 1qxtx1 � pt� 1qx1xt

�
¸

m1¡0,m2¡1
m1�m2�t

m1xm1�1xm2
�

¸
m1¡1,m2¡0
m1�m2�t

m2xm1
xm2�1

�

�
1

t� 1

�
pt� 1qxtx1 � pt� 1qx1xt

�
¸

m1,m2¡1
m1�m2�t�1

ppm1 � 1qxm1xm2 � pm2 � 1qxm1xm2�1q

�

�
1

t� 1

�
pt� 1qxtx1 � pt� 1qx1xt

� pt� 1q
¸

m1,m2¡1
m1�m2�t�1

xm1xm2

�

�
¸

m1,m2¡0
m1�m2�t�1

xm1
xm2

� Rpt� 1q

By way of mathematical induction, the two ideals I and xx2
1yB of Crx1, x2, ...s are

equal. �

Define

Rnptq �
¸

0 m1,m2¤n
m1�m2�t

xm1
xm2

for m1,m2 P N. We use this to build

In � xRnptq : t ¥ 2y

Using this we can realize W pnq as a quotient of Crx1, x2, ..., xns without any deriva-
tion structure using the following result:
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Theorem 3.1.
Crx1, x2, ..., xns{In �W pnq

Proof. Define
φ : Crx1, x2, ..., xns ÑW pnq

φpppx1.x2, ..., xnqq � ppx1.x2, ..., xnq � I � xxn�1yB

for ppx1.x2, ..., xnq P Crx1, x2, ..., xns.
φ is a well defined homomorphism because is is the composition of an inclusion

map
Crx1, x2, ..., xns Ñ Crx1, x2, ...s

and a projection map

Crx1, x2, ...s Ñ Crx1, x2, ...s{pI � xxn�1yBq

We want to show φ is a surjection with kerpφq � In. Then using the first
isomorphism theorem Crx1, x2, ..., xns{In �W pnq.

kerpφq � tppx1, x2, ..., xnq P Crx1, x2, ..., xns : φpppx1, x2, ..., xnqq � 0u

� tppxn, x2, ..., xnq P Crxn, x2, ..., xns : φpppx1, x2, ..., xnqq P I � xxn�1yBu

because 0 PW pnq is a qpx1, x2, ..., xnq P I � xxn�1yB.
First we will show φ is a surjection. If we take any ppx1, x2, ...q � I � xxn�1yB P

W pnq then we can separate

ppx1, x2, ...q � I � xxn�1yB � p1px1, x2, ..., xnq � qpxn�1, xn�2, ...q � I � xxn�1yB

� p1px1, x2, ..., xnq � I � xxn�1yB

Then φpp1px1, x2, ..., xnqq � ppx1, x2, ...q � I � xxn�1yB P W pnq therefore φ is a
surjection.

Now we will show kerpφq � In. Take an arbitrary ppx1, x2, ..., xnq P In. Then we
can write ppx1, x2, ..., xnq � p2Rnp2q � p3Rnp3q � ... � pNRnpNq for some N P N.
We say

Rnptq � Rptq �
¸

m1,m2¥n�1
m1�m2�t

xm1
xm2

P I � xxn�1yB

Since each term in ppx1, x2, ..., xnq has someRnptq as a factor, all of ppx1, x2, ..., xnq P
I � xxn�1yB. Then ppx1, x2, ..., xnq P kerpφq.

Now to prove kerpφq � In. Take some ppx1, x2, ...q P kerpφq. Then we can write

ppx1, x2, ...q � p2Rp2q � p3Rp3q � ...� pMRpMq � xn�1q1 � xn�2q2 � ...� xn�T qT

where M,T P N and pi, qj are polynomials. Now separate every pi � p0
i � p

1
i where

p0
i P Crx1, x2, ..., xns and p1

i P xxn�1yB. So we say

ppx1, x2, ...q � pp0
2 � p1

2qRp2q � pp0
3 � p1

3qRp3q � ...� pp0
M � p1

M qRpMq

� xn�1q1 � xn�2q2 � ...� xn�T qT

Recall we can take
Rptq � Rnptq �

¸
m1,m2¥n�1
m1�m2�t

xm1
xm2

Now all terms that are multiples of xk where k ¥ n� 1 are 0 so

ppx1, x2, ...q � p0
2Rnp2q � p0

3Rnp3q � ...� p0
MRnpMq P In
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Thus kerpφq � In so kerpφq � In. Since φ is a surjection and kerpφq � In the first
isomorhpism theorem tells us Crx1, x2, ..., xns{In �W pnq. �

4. The Graded Dimension of W(n)

4.1. Using Short Exact Sequences. We can use short a exact sequences to find
the dimension of W pnq as a recursion.

First we will need to define six maps.

Definition 4.1.

Crx1, ..., xn�2s
f

ÝÝÝÝÑ Crx1, ..., xns
g

ÝÝÝÝÑ Crx1, ..., xn�1s

πn�2

��� ���πn ���πn�1

W pn� 2q
f̄

ÝÝÝÝÑ W pnq
ḡ

ÝÝÝÝÑ W pn� 1q

Take and ppx1, ..., xn�2q P Crx1, ..., xn�2s, spx1, ..., xn�1q P Crx1, ..., xn�1s and
qpx1, ..., xnq P Crx1, ..., xns. We define

fpppx1, ...xn�2qq � x1ppx3, ...xnq

gpqpx1, ...xnqq � qp0, x1, ...xn�1q

πn�2pppx1, ...xn�2qq � ppx1, ...xn�2q � In�2

πn�1pqpx1, ...xn�1qq � qpx1, ...xn�1q � In�1

πnpqpx1, ...xnqq � qpx1, ...xnq � In

Take ppx1, x2, ...xn�2q PW pn� 2q and qpx1, x2, ...xnq PW pnq. We define

f̄pppx1, x2, ...xn�2qq � x1ppx3, x4, ..., xnq

ḡpqpx1, x2, ...xnqq � pp0, x1, x2, ..., xn�1q

The following lemma is the key to proving the dimension of W pnq.

Lemma 4.1.

gpIn � x1Crx1, ..., xnsq � In�1

Proof. First take any ppx1, ..., xn�1q P In�1 and pp0, x2, ..., xnq P In � In�x1Crx1, ..., xns.
Notice that

gppp0, x2, ..., xnqq � ppx1, ..., xn�1q P gpInq � gpIn � x1Crx1, ..., xnsq

Thus In�1 � gpIn � x1Crx1, ..., xnsq. Now take any

ppx1, ..., xn�1q P gpIn � x1Crx1, ..., xnsq

Then p P gpx1Crx1, ..., xnsq or p P gpInq. So if p P x1Crx1, ..., xns then gppq � 0
because gpx1q � 0. If p P In then gppq P In�1 because

g : Crx1, ..., xns Ñ Crx1, ..., xn�1s

Thus gpIn � x1Crx1, ..., xnsq � In�1. �

Theorem 4.1.

0 ÑW pn� 2q
f̄
ÝÑW pnq

ḡ
ÝÑW pn� 1q Ñ 0

is a short exact sequence.
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Proof. Recall that an exact map has impf̄q � kerpḡq, f̄ is an injection and ḡ is a
surjection.

If we can show kerpf̄q � t0u then f̄ is an injection. Suppose by way of contradic-
tion 0 � ppx1, x2, ..., xn�2q P kerpf̄q. So x1ppx3, x4, ..., xnq P In. This means there
exists at least one Rnptq and a polynomials qi P Crx1, x2, .., xns where

x1ppx3, x4, ..., xnq �
2ņ

i�1

qiRnpiq

Notice that at least one Rnptq must have an x2 and x1ppx3, x4, ..., xnq does not have
an x2. Thus we have reached a contradiction so f̄ is an injection.

Take any qpx1, x2, ..., xn�1q P W pn � 1q. If we take q1px2, x3, ..., xnq P W pnq
notice ḡpq1px2, x3, ..., xnqq � qpx1, x2, ..., xn�1q, So ḡ is indeed a surjection.

Now we will show for ppx1, ..., xnq P Crx1, ..., xns that πn�1 � gppq � ḡ � πnppq.

πn�1 � gppq � πn�1ppp0, x1, ..., xn�1qq � pp0, x1, ..., xn�1q � In�1 PW pn� 1q

ḡ � πnppq � ḡpppx1, ..., xnq � Inq � pp0, x1, ..., xn�1q � In�1 PW pn� 1q

Therefore the diagram bellow commutes.

Crx1, ..., xn�2s
f

ÝÝÝÝÑ Crx1, ..., xns
g

ÝÝÝÝÑ Crx1, ..., xn�1s

πn�2

��� ���πn ���πn�1

W pn� 2q
f̄

ÝÝÝÝÑ W pnq
ḡ

ÝÝÝÝÑ W pn� 1q

Now we will use the lemma to show kerpḡq � In � x1Crx1, ..., xns � impf̄q.
The first half of the equality is proved by showing p P kerpḡq if and only if

p P In � x1Crx1, ..., xns. Take and arbitrary ppx1, ..., xnq P kerpḡq. Notice

ḡpppx1, ..., xnqq � gpppx1, ..., xnqq � pp0, x1, ..., xn�1q � 0

This only happens when ppx1, ..., xnq � x1p
1px2, ..., xnq. So ppx1, ..., xnq P x1Crx1, ..., xns

which implies ppx1, ..., xnq P In � x1Crx1, ..., xns. If p P kerpḡq then p P In �
x1Crx1, ..., xns. Now take some ppx1, ..., xnq P In � x1Crx1, .., xns. It is true that

πn�1 � gpppx1, ..., xnqq � ḡ � πnpppx1, ..., xnqq

Also notice

In � x1Crx1, ..., xns � In � Crx1, ..., xns �W pnq

Then

ḡ � πnpppx1, ..., xnqq � ḡpppx1, ..., xnq � Inq

By the fact that

gpIn � x1Crx1, ..., xnsq � In�1

for gpppx1, ..., xnqq P In�1. So

ḡpppx1, ..., xnqq � ḡ � πnpppx1, ..., xnqq � πn�1 � gpppx1, ..., xnqq � 0

which means ppx1, ..., xnq P kerpḡq.
The second half of the equality is proved by showing p P impf̄q if and only if p P

In� x1Crx1, ..., xns. Now suppose ppx1, ..., xnq P impf̄q. This means ppx1, ..., xnq �
f̄pp1px1, ..., xn�2qq � x1p

1px3, ..., xnq P x1Crx1, ..., xns. So ppx1, ..., xnq P In �
x1Crx1, ..., xns. Now take some ppx1, ..., xnq P In � x1Crx1, ..., xns. Notice x2

1 �
x1x2 � 0 in In � x1Crx1, ..., xns for all n ¥ 3. Then we can write ppx1, ..., xnq �
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x1p
1px1, ..., xnq � x1p

1p0, 0, x3, ..., xnq � x1p
1px3, ..., xnq P impf̄q.

Thus this is an exact sequence of maps. �

Theorem 4.2. The dimension of W pnq is

dimpW pnqq � dimpW pn� 1qq � dimpW pn� 2qq

Where dimpW p0qq � 1 and dimpW p1qq � 2

Proof. We will begin by finding then dimensions of W p1q and W p2q. W p0q �
C{I0 � C{x0y � C.

So dimpW p0qq � dimpCq � 1. W p1q � Crx1s{I1 � Crx1s{xR1ptq : 2 ¤ ty �
Crx1s{xx

2
1y � C` Crx1s. So we can say dimpW p1qq � dimpC` Crx1sq � 2.

Then we have our seeds dimpW p0qq � 1 and dimpW p1qq � 2

0 ÑW pn� 2q
f
ÝÑW pnq

g
ÝÑW pn� 1q Ñ 0

is an exact map so dimpW pnqq � dimpW pn� 1qq � dimpW pn� 2qq. �

4.2. Grading W(n). W pnq is doubly graded by weight and charge

 Charge is the degree
 Weight is the sum of the indices

W pnq with the above grading is represented as

W pnqpm,kq � tp PW pnq : chppq � k,wtppq � mu

Example 4.1. Let us look at some examples of monomials to give us insight as to
how f̄ and ḡ effect grading. In order to simplify things we will use f and g in place
of f̄ and ḡ so we don’t have to worry about certain factors of a monomial making
the monomial zero.

fpx1x
2
4q � x1x3x

2
6

gpx1x
2
4q � 0

fpx2x3x5q � x1x4x6

gpx2x3x5q � x1x2x4

Using the definition of f̄ we can see that the charge and weight are both increased
by one from the multiplication by x1. The addition of two to all the indexes by f
is responsible for the �2k for the weight.

f̄ : W pn� 2qpm�2k�1,k�1q ÑW pnqpm,kq

Since the indexes are all decreased by 1 the weight is decreased by one while the
charge remains the same.

ḡ : W pnqpm,kq ÑW pn� 1qpm�k,kq

This induces a short exact sequence of graded components.

0 ÑW pn� 2qpm�2k�1,k�1q ÑW pnqpm,kq ÑW pn� 1qpm�k,kq Ñ 0

Since this is exact

dimW pnqpm,kq � dimW pn� 1qpm�2k�1,k�1q � dimW pn� 2qpm�k,kq

Definition 4.2.
χnpq, xq �

¸
0¤m,k

dimpW pnqpm,kqqq
mxk

Where x is the charge and q is the weight.
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Once we have a better understanding of χnpq, xq, we can use it to determine the
graded dimension of a W pnqpm,kq as the coefficient of qmxk.

Using the exact sequence result

χnpq, xq �
¸

0¤m,k

dimW pn� 1qpm�k,kqq
mxk �

¸
0¤m,k

dimW pn� 2qpm�2k�1,k�1qq
mxk

�
¸

0¤m,k

dimW pn� 1qpm,kqq
m�kxk �

¸
0¤m,k

dimW pn� 2qpm,kqq
m�2k�1xk�1

�
¸

0¤m,k

dimW pn� 1qpm,kqq
mpqxqk � px

¸
0¤m,k

dimW pn� 2qpm,kqq
mpq2xqk

χnpq, xq � χn�1pq, qxq � xqχn�2pq, q
2xq

For notational convenience recall the q-analauge to the classic binomial coefficient
and the q-Pocchamer symbol. The q binomial coefficient�

n

r



q

�
p1� qnqp1� qn�1q...p1� qn�r�1q

p1� qqp1� q2q...p1� qrq

When r ¥ n,
�
n
r

�
q
� 0

Another useful piece of notation is.

pqqm � p1� qq...p1� qqm

If we solve the recursion χnpq, xq � χn�1pq, qxq � xqχn�2pq, q
2xq we find the

following result.

Theorem 4.3. We have

χnpq, xq �
¸

0¤m

xmqm
2

�
n� 1�m

m



q

�

tn�1
2 u¸

m�0

xmqm
2

�
n� 1�m

m



q

Proof. Suppose

χnpq, xq �

tn�1
2 u¸

m�0

xmqm
2

�
n� 1�m

m



q

Then this would have to satisfy

χnpq, xq � χn�1pq, qxq � qxχn�2pq, q
2xq

�

tn2 u¸
m�0

pqxqmqm
2

�
n�m

m



q

� qx

tn�1
2 u¸

m�0

pq2xqmqm
2

�
n�m

m



q

� 1�

tn2 u¸
m�1

pqxqmqm
2

�
n�m

m



q

� qx

tn�1
2 u�1¸
m�1

pq2xqm�1qpm�1q2
�
n�m

m� 1



q

Now define

δr,s �

#
1 r � s

0 r � s

Let

L � δnmodp2q,1pq
2xqt

n�1
2 uqt

n�1
2 u

�
n� 1� tn�1

2 u

tn�1
2 u
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Then

χnpq, xq � 1� L�

tn2 u¸
m�1

pqxqmqm
2

�
n�m

m



q

� qx

tn2 u¸
m�1

pq2xqm�1qpm�1q2
�
n�m

m� 1



q

� 1� L�

tn2 u¸
m�1

�
pqxqmqm

2

�
n�m

m



q

� qxpq2xqm�1qpm�1q2
�
n�m

m� 1



q

�

� 1� L�

tn2 u¸
m�1

xmqm
2

��
n�m

m



q

qm �

�
n�m

m� 1



q

�

� 1� L�

tn2 u¸
m�1

xmqm
2

�
n� 1�m

m



q

� L�

tn2 u¸
m�0

xmqm
2

�
n� 1�m

m



q

�

tn�1
2 u¸

m�0

xmqm
2

�
n� 1�m

m



q

�

Example 4.2. Now we have an easy way to find the dimension of W p4qp3,1q. Using
the theorem above we find

χ4p6, 3q �
2̧

m�0

xmqm
2

�
5�m

m



q

� 1� xqp1� 2q2 � q3q � x2q4p1� q � q2q

Since the coefficient of xq3 is 2 then

dimpW p4qp3,1qq � 2

By setting x � 1 we create a singly graded structure.

χnpq, 1q �

tn�1
2 u¸

m�0

qm
2

�
n� 1�m

m



q

To determine the normal dimension of W pnq take the combinatorial limit as
q Ñ 1.

lim
qÑ1

χnpq, 1q �

tn�1
2 u¸

m�0

�
n� 1�m

m



q

� F pn� 2q

Consider
�
n�1�m

m

�
q

as nÑ8 which is

1

p1� qqp1� q2q...p1� qmq
�

1

pqqm

because 0 ¤ q ¤ 1.
So we have

lim
nÑ8

χnpq, 1q � χ8pq, 1q �
¸

0¤m

qm
2

pqqm
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5. Free Resolutions of W(n)

Now we explore W pnq using free resolutions as a tool to determine graded di-
mension. We will show a couple of basic examples for low values of n then make a
skeleton of a second proof that would show the dimension of W pnq.

Let n � 2
W p2q � Crx1, x2s{xx

2
1, x1x2, x

2
2y

The basis of this Crx1, x2s -modules is t1, x1, x2u. Using this basis we know the
Hilbert polynomial for W p2q should be F pW p2q, qq � 1 � q � q2. In Macaulay 2
when we define C2 � Crx1, x2s we have

0 Ñ C2
2 Ñ C3

2 Ñ I2 Ñ 0

We can use the free resolution definition from the background section we can calcu-
late the change in weight and charge between the modules using the syzygy matrices
provided by Macauly 2. �

x2
1 x1x2 x2

2

�
and �

��x2 0
x1 �x2

0 x1

�
�

Using these matrices we can see the weight and change changes as follows

0 Ñ C2p�4,�3q`C2p�5,�3q Ñ C2p�2,�2q`C2p�3,�2q`C2p�4,�2q Ñ I2 Ñ 0

The change in charge is not that interesting since each syzygy matrix is of uniform
charge. So we will only use the weight to create the Hilbert series.

F pW p2q, qq �
1� q2 � q3 � q5

p1� qqp1� q2q
� 1� q � q2

Now let n � 3

W p3q � Crx1, x2, x3s{xx
2
1, x1x2, 2x1x3 � x2

2, x2x3, x
3
3y

The basis of this Crx1, x2, x3s -modules is t1, x1, x2, x3, x1x3u. So we know the
Hilbert polynomial for W p3q should be F pW p3q, qq � 1 � q � q2 � q3 � q4. In
Macaulay 2 we define C3 � Crx1, x2, x3s and use the res command to find the free
resolution to be:

0 Ñ C1
3 Ñ C5

3 Ñ C5
3 Ñ I3 Ñ 0

The syzygy matrices from right to left are:�
x2

1 x1x2 2x1x3 � x2
2 x2x3 x2

3

�
�
�����
�x2 �2x3 0 0 0
x1 �x2 �x3 0 0
0 x1 0 �x3 0
0 0 x1 x2 �x3

0 0 0 2x1 x2

�
�����

�
�����

�x2
3

1
2x2x3

� 1
2x

2
2 � x1x3

1
2x1x2

�x2
1

�
�����
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Again we use these matrices from right to left to find the details of this resolution.

0 Ñ C3p�10,�5q Ñ C3p�4,�3q ` C3p�5,�3q ` C3p�6,�3q ` C3p�7,�3q ` C3p�8,�3q

Ñ C3p�2,�2q ` C3p�3,�2q ` C3p�4,�2q ` C3p�5,�2q ` C3p�6,�2q Ñ I3 Ñ 0

So we find

F pW p3q, qq �
1� q2 � q3 � q7 � q8 � q10

p1� qqp1� q2qp1� q3q

�
1� q2p1� q3q

1� q

� 1� q � q2 � q3 � q4

The syzygy matrices for W p4q are in the appendix. The use the Macaulay 2
output to calculate the free resolution:

0 Ñ C4p�14,�6q ` C4p�15,�6q ` C4p�16,�6q Ñ

C4p�10,�5q ` C4p�11,�5q ` C4p�12,�5q ` C4p�12,�5q ` C4p�13,�5q`

C4p�13,�5q ` C4p�14,�5q ` C4p�15,�5q Ñ

C4p�4,�3q`C4p�5,�3q`C4p�6,�3q`C4p�7,�3q`C4p�8,�3q`C4p�9,�3q`

C4p�10,�3q ` Cp�11,�3q ` C4p�9,�4q ` C4p�10,�4q ` C4p�11,�4q Ñ

C4p�2,�2q`C4p�3,�2q`C4p�4,�2q`C4p�5,�2q`C4p�6,�2q`C4p�7,�2q`C4p�8,�2q Ñ

I4 Ñ 0

So the Hilbert series is

F pW p4q, qq �
1� q2 � q3 � 2q9 � q10 � q11 � 2q12 � 2q13 � q16

p1� qqp1� q2qp1� q3qp1� q4q

�
1� q5pq6 � q4 � q4 � q3 � qq

p1� qqp1� q4q

Now we can consider n � 5. Using Macaulay 2 we can see the free resolution for
I5 is

0 Ñ R2
5 Ñ R15

5 Ñ R26
5 Ñ R21

5 Ñ R9
5 Ñ I5 Ñ 0

We will not calculate the changes in grading for the free resolution. We will just
use Macaulay 2 to compute the Hilbert series.

F pW p5q, qq �
1� q2 � q3 � q9 � 2q11 � q12 � q14 � 2q15 � 2q16 � q17 � q18 � q19 � q20 � q22 � q24

p1� qqp1� q2qp1� q3qp1� q4qp1� q5q

�
1� q7pq7 � q4 � q3 � q � 1q

p1� qqp1� q4q

In the previous section we proved that the χ function as n Ñ 8 evaluated at
x � 1 is ¹

0¤k

1

p1� q5k�1qp1� q5k�4q

This graded free resolution method of calculating Hilbert functions should converge
to the same product. We still must prove this. So far we have noticed the pattern
that we can factor the Hilbert series for a given n into

F pn, qq �
1� qkppqq±
p1� qiq
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Where i � 1, 4 mod p5q, 0   i ¤ n and as n Ñ 8, qk Ñ 0. k is increasing so
that k Ñ 8 as n Ñ 8. To prove this factorization for every n would most likely
involve a looking carefully at the syzygy matrices used to compute the graded free
resolutions. Sadly, these matrices significantly increase in size and complexity as n
increases and do not follow an obvious pattern.

Assuming we can tie up the loose ends of this proof we are left with two rep-
resentaions for the graded dimension of W pnq as n goes to 8 which gives us the
Rogers-Ramanujan Identity:

¸
0¤m

qm
2

pqqm
�
¹
0¤k

1

p1� q5k�1qp1� q5k�4q

6. Appendix

7 11

1 : R <---------------------------------------------------------------- R : 2

{2} | -x2 -2x3 -x4 0 0 0 0 0 -x3x4 -x4^2 0 |

{2} | x1 -x2 -x3 -5x4 0 0 0 0 0 0 -x4^2 |

{2} | 0 x1 0 -x3 -2x4 0 0 0 0 0 0 |

{2} | 0 0 x1 x2 -x3 -x4 0 0 0 0 0 |

{2} | 0 0 0 2x1 x2 0 -x4 0 0 0 0 |

{2} | 0 0 0 0 5x1 x2 x3 -x4 x1^2 0 0 |

{2} | 0 0 0 0 0 x1 2x2 x3 0 x1^2 x1x2 |

11 8

2 : R <------------------------------------------------------------------------- R : 3

{3} | -x3^2+.5x2x4 -x3x4 -2.5x4^2 x4^2 0 0 0 0 |

{3} | .5x2x3-2x1x4 0 -.5x3x4 0 x4^2 0 0 0 |

{3} | -.5x2^2-x1x3 -x1x4 .5x2x4 0 0 0 -x4^2 0 |

{3} | .5x1x2 0 -.5x1x4 0 0 0 0 -x4^2 |

{3} | -x1^2 0 0 0 .5x1x4 0 0 .5x3x4 |

{3} | 0 -x1^2 0 0 -.5x1x3 0 -x1x4 -.5x3^2-x2x4 |

{3} | 0 0 -x1^2 0 .5x1x2 0 0 .5x2x3-2x1x4 |

{3} | 0 0 0 0 0 -x1^2 -x1x2 -x2^2+.5x1x3 |

{4} | 5x1 x2 x3 0 -2.5x4 -x4 0 0 |

{4} | 0 x1 2x2 -x2 .5x3 x3 x4 0 |

{4} | 0 0 0 x1 -x2 0 x3 5x4 |

8 3

3 : R <------------------------ R : 4

{5} | x4 0 0 |

{5} | -x3 -x4 0 |

{5} | x2 0 -2x4 |

{5} | 2x2 -x3 -5x4 |

{5} | 2x1 0 -x3 |

{5} | 0 -x2 .5x3 |

{5} | 0 x1 -x2 |

{5} | 0 0 x1 |
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3

4 : R <----- 0 : 5
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