USING COMMUTATIVE ALGEBRA TO EXAMINE A
ROGERS-RAMANUJAN IDENTITY

NATE MANKOVICH

ABSTRACT. The study of a subspace of the level 1 standard sla module by
Capparelli-Lepowsky-Milas has given rise to a modern reinterpretation the
celebrated Rogers-Ramanujan identities. This subspace can be realized using
commutative algebra of graded infinite dimensional complex polynomial ring
modules. This project studies a certain finitization of this space from two
points of view: a short exact sequence of quotients of polynomial rings and a
free resolution of ideals. Then it investigates the connection between a Rogers-
Ramanujan identity and the graded dimension of these quotients.

1. INTRODUCTION

This paper investigates a finite commutative algebra realization of the level 1
standard sls module studied by Capparelli-Lepowsky-Milas. We the space studied
by Capparelli-Lepowsky-Milas as

W = (1:[.731,332, ]/I

W is a quotient, that uses

R(t) = Z Loy Tomy

0<m1 ,O<m2
mi1+meo=t

Then we consider the finite subspaces of W defined as
W(n) = C[l‘l, X9, ]/(I + <.Z‘n+1>5)

This commutative algebra approach simplifies dimension calculations and mod-
ule structure to make them accessible to the undergraduate mathematician. The
graded dimension of W (n) provides an interesting approach to proving a Rogers-
Ramanujan identity. The paper begins with a review of modules, morphism dia-
grams and free resolutions. Then we use these tools to prove the graded dimension
of W(n) via short exact sequences. This approach encounters the Fibonacci Se-
quence and involves some simple abstract algebra methods of proof. Next, we look
at an outline for a proof of the graded dimension of W(n) that uses free resolutions.
This approach has not been used in previous studies of W (n). We will look at some
examples for small values of n then provide a short explanation of how the proof
would follow.

2. BACKGROUND

This section covers the basic machinery necessary to understand the meat of the
paper. As usual, each important definition will be enriched with an example.

2.1. Modules over a Ring.
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We will begin the paper by introducing an algebraic structure that functions as a
generalized vector space. We call these structures modules.

Definition 2.1. Let R be a commutative ring with unity where 1g is the mul-
tiplicative identity in R. An abelian group under addition M is called a module
over R (R-Module) if it has an action R X M — M such that for any a,b € R and
r,s € M:

e a(r+s)=ar+as

e (a+b)s=as+bs

e a(sb) = (ab)s

e lgs=sforall se M

Example 2.1. The following are three examples of modules:

e R =k is any field and M =V is a vector space over k.

e R=Zand M =777

e R is a commutative ring with unity and I < R is an ideal of R. I and R/I
are both R-modules.

Like vector spaces, we are interested in the building blocks of modules.

Definition 2.2. An ordered set {my, ma,...} € M is a generating set (aka spanning
set) of M if any m € M can be written as rymq +7reomg + ... = m where each r; € R.
This set is a basis of M if rymq + roms + ... = 0 only when each r; = 0 € R. We
say M is a free module if it has a basis.

Definition 2.3. The dimension of a module is the size of its basis.

Example 2.2. Let R be a ring and M be a free R-module with the basis B =
{mqy,ma,...,m,}. We can write

n
M =@ Rm;
i=1
where Rm; is the free module generated by m;. Take v € Rm; ) Rm; for m;,m; €
B. So for some 71,79 € R, v = rim; = rom; so rym; — rom; = 0. This means
r1,72 = 0 so v = 0. Thus

() Rmi = {0}
i=1

Example 2.3. A module without a basis is the group of integers modulo two, Z /27
(aka Z5) is a Z module. It is not a free module because for 1 € Z/2Z and 2 € Z we
have 21 = 0 which is a non-trivial linear combination of elements in Z/2Z that is
Zero.

Example 2.4. Consider the free module R? = R®R. Its basis is {(1,0), (0,1)}. The
dimension of a module as the number of basis elements. So we say dim(R?) = 2.

Definition 2.4. Let A be an abelian semigroup under addition and R be a ring.
The ring R is A-graded if it decomposes as
R= @ R,
acA

where are all R, are subgroups of the group (R,+). For r € R, and s € Ry,
r$ € Ryip. If 7 € R, then we say gr(r) = a.
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Example 2.5. Let R = C[z,y]. Let A = Z5(. Each
R, = {p is a polynomial of homogeneous degree n} = {p € R : deg(p) = n}
We can write R = @,; R:.

If we choose to define deg(p) to be the highest degree of each monomial in
any given polynomial p € C[x,y]. The problem deg(x? + 2y) = deg(z? — 5x) so
2242y, 22— 5z € Ry. But 22+ 2y—2?—5x = 2y—5x € Ry so Ry is not closed under
addition and therefore cannot be a subgroup of (R, +). Therefore it is important
to grade by homogenious degree.

Definition 2.5. Let A be an abelian semigroup under addition. Let R be a graded
ring and M be an R-module. We call M a graded module if M = @®yc 4 M, and for
a,be A we have Ry My, © M,y

Example 2.6. Take R = C[z,y] and A = Z5,. Take the M = R/{x?,4*). The ba-
sis of M is {1, z, xy, xy?,y, y*}. Define M, to be the set of polynomials in R/{z?, y>)
of homogeneous degree n. Notice
3
C[xv y]/<$27 y3> = (_D M;
i=0

We can write out each basis:

e basis(My) = {1}

e basis(M;) = {x,y}

e basis(Ms) = {zy, y?}

e basis(M3) = {zy?}
Also for any p € M, and q € Mj, we have pq € M, ;. For example, take y?+zy € M;
and take 2x € M;. Notice (y* + zy)2x = 2zy? + 22%y = 22y € M3.

Definition 2.6. Let R be a ring. A derivation, 0, is a linear operator that dis-
tributes across addition and follows Leibniz’s law:

o(rs) = d(r)s + rd(s)

Example 2.7. For our example we let R be the ring of (n x n) matrices with real
coefficients. We represent R as R = Mat,x,R. Fix A € R and define 04(B) =
AB — BA for any B € R. We will show d4 is a derivation. Take any B,C € R
0A(BC) = A(BC) — (BC)A = (AB — BA)C + B(AC — CA) = 04(B)C + Bda(C)
also notice 04 is additive

0Aa(B+C)=AB+C)—(B+C)A=AB—-BA+ AC —CA =04(B) + 04(C)

Definition 2.7. Let R be a ring and N, M be two R-modules. ¢ : N — M is
a module homomorphism if ¢(n +n') = ¢(n) + ¢(n') and ¢(rn) = r¢é(n) for all
n,n’ € N and r € R. The kernel of ¢ is a subset of N and is a module. We define
ker(¢) = {p € N : ¢(p) = 0}. The image of ¢ is a submodule of M. We define
im(¢) = {¢(p) : p€ N}

Example 2.8. In vector spaces, module homomorphisms are linear transforma-
tions. Let R = R, N = R and M = R%2. We will define ¢ as multiplication by the

matrix
1 0 O
X = [O -1 O]
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¢ is a module homomorphism because matrix multiplication distributes over ad-
dition and multiplication by a real scalar. It is fun to notice that this matrix is
a projection from three dimensions to two dimensions including a reflection across
the second dimension axis. We find the kernel is

0
ker(¢) ={| 0] : re R}

| 7

Take _
2
n=|3
_—1

in N. So

We can string homomorphisms together to create sequences of maps between
R-modules for some ring R.

2.2. Diagrams of Morphisms in Algebraic Structures. We will discuss exact
sequences and commutative diagrams in general for any algebraic structure and
its associated morphisms. This allows us to provide examples of the following
definitions with homomorphisms between groups, rings and modules.

Definition 2.8. A sequence of morphisms between the algebraic structures My, My, ...
My 25 My 25 M, 22
is ezxact if for every i € N ¢; 0 ¢;_1(m) = 0 for any m € M; and ker(¢;) = im(¢;—1).
We are particularly interested in short exact sequences.

Definition 2.9. Let A, B,C be algebraic structures. Consider the sequence of
homomorphisms

0-ALBSCS0

This is a short exact sequence if im(f) = ker(g), f is an injection and g is a
surjection. If a sequence is exact then dim(B) = dim(A4) + dim(C).

Example 2.9. Again, we will use some linear algebra for an example. Consider
this sequence of maps between R modules

0->R LR L R2S0
f is defined by matrix multiplication by
[ 55/3 —18 —18]

—54 54 54

—55/2 55/2 27
—18 18 18
18 —18 -—18

We define g by matrix multiplication by
0 0 0
0 -1 2

3 3
0 1/18]
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which is a projection of R® onto R?. If we take any three dimensional real vector x,
we have g o f(x) = 0. Also ker(g) = R® = im(f). Since all these are R-modules we
have dim(R%) = dim(R?) + dim(R3) =2 + 3 = 5.

Example 2.10. The rank nullity theorem states that if 7' : V' — W is a linear
transformation between two vector spaces then
rank(7) + null(7T") = dim(V)
We define the short exact sequence
0 - ker(T) 5 V 5 im(T) — 0
where ¢ is an inclusion map. So dim(V) = dim(ker(7)) + dim(im(T")). Notice
dim(ker(7)) = null(T") and dim(im(7")) = rank(T).

Example 2.11. Exact sequences can also be used with groups. However, the
concept of dimensions does not apply. Suppose there is an exact sequence

O—»NLG&H—)O

So f must be an injection and g must be a surjection and im(f) = ker(g) = N. Now
recall the first isomorphism theorem for groups which says H =~ G/ker(g) = G/N.

Example 2.12. For example consider the sequence of maps
0_)S3E>D6£)ZQ_)0

For some n € N, D,, is generated by rotations (r) and reflections (s). .S,, is generated
by (1,2) and (1,2, ...,n). To define a homomorphism we just need to know what it
does to the generators. So we define 1((1,2)) = s, ¥((1,2,3)) = 72 and ¢(r) = 1,
#(s) = 0. Notice ker(r) = {e,r?,7%,s,5r% sr} = im(w) = D3. % is an injection
and ¢ is a surjection. Using the first isomorphism theorem for groups Dg/S3 = Z5.

Now we will introduce commutative diagrams and eventually link these diagrams
with exact sequences via a group theory example.

Definition 2.10. Let A, B,C,D be algebraic structures and f,g,$,1 be mor-
phisms between them.

AL)B

q [

c —2->D
We say the diagram above commutes if for all a € A, 1 o f(a) = g o ¢(a).

Example 2.13. Consider this diagram:

D, _f, Dy

| [

Z, x 2y —2— 74
Below are the definitions of each map where r, s are the generators for D,, n € N
yr) =1
f(s)=s
¢(r) = (1,0)
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e ¢(s) = (0,1)

* 9((1,0)) = 9((0,1)) = 2
o Y(r) =1

e P(s) =2

This is a commutative diagram. For example ¢ o f(sr) = 1(s1?) =2+2=4 =0
and go ¢(sr) =¢g(1,1) = ¢g(0,1) + g(1,0) =2+ 2 =4 = 0.
Now let’s look at the kernel of each of these maps.

ker(f) = {e}

ker(¢) = {e,r?}

ker(g) = {(1,1),(0,0)}

ker(v) = {e,r*, sr%, sr%}

Using a generic injective identity maps ¢f, ¢, tg, Ly We can make a larger diagram
with 4 exact sequences and a commutative center.

0 0
ker(¢) ——— ker(z))
2 Lajp
0 —— ker(f) —— 4 -, g — 0
l ¢ P
0 — ker(g) —2— Zyx2Zy —2— 74, —— 0
0 0

Note: In order to simplify the diagram the symbol 0 has been chosen to represent
the trivial group of the identity of multiplicative and additive groups. For example:
the 0 to the right of Dg represents {1}.

2.3. Free Resolutions of R-Modules.

Now we will consider a sequence of module homomorphisms which is another way
to calculate the graded dimension of ideals and quotients of modules. First we need
to understand some basic notation:

Let A be an abelian monoid under addition and R be a graded module with
gr(r) = a € A for r € R. We use the notation R(—b) (b € A) to define a graded
module that has all the same elements as R but the grading has changed to gr(r’) =
a+b for any 7’ € R(—b). For the rest of the paper all our modules will be N graded.

Example 2.14. Consider the module R,, = C[z1, 2, ..., ] with the grading called
weight which is the sum of the subscripts of a monomial in a given homogeneously
weighted polynomial. For example, wt(z3 + z571) = 6. If we view x3 + z571 €
R, (—=3) then wt(x3 + r521) = 9.

Definition 2.11. If we have an ideal I of a module R we define a free resolution
of I as a sequence of maps between free modules R™

0— .. L gre 22, g 11
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We call each f; is defined by a n;—1 x n; syzygy matrix with entries sj; for the
kth row and Ith column. Each R" = @, R(—a; ;) where each a;; € Z. We can
calculate each a; ; = a;—1; + 55;.

It is well known that Z-modules are finitely generated abelian groups.
Example 2.15. Consider the Z-module Z/8Z We will find a free resolution of this
module.

where f is defined by multiplication and g is a projection map. Specifically, f(a) =
8a and g(b) = b+ 8Z for a,b € Z. im(f) = ker(g) = 8Z and f is defined on all Z
and all of Z/8Z is mapped to by g.

Definition 2.12. A Hilbert Series for a singly graded R-Module called M is a
function F(M, q) of a single variable where the coefficient of the term ¢* in F (M, q)
(k € Z>0) is the dimension of the submodule of M with only elements of grading k.

Note: W(n) we will use x,(g,x) to represent the Hilbert series for the doubly
graded W (n).

Example 2.16. Let R = C[z1, x2] with the weight grading from earlier. Take the
ideal I = (x%). We use the res command from Macauly 2 to calculate the free
resolution
0-R' L1150
where f is the one by one matrix #3. So R = R(—(2 + 0) = R(-2)).
We can use these resolutions to compute Hilbert series for I and for C[z1, z2]/1.
To do this we must know the Hilbert series

-
[T=(1—q)

The Hilbert series for an arbitrary free C[x1, xa, ..., €, ] - module
M = @i>1C[x1,x2, 7l‘n](—rnl)

for m; € Z>o can be written as

F(Clz1, 22, ... 2a], ) =

2z 4™
H;L:1(1 -q")
Definition 2.13. Consider the following free resolution where I is an ideal of the
module R

F(M,q) =

0—..> Ry >R >T-0
where k,i; € N. The Hilbert series
F(I7 q) = Z (_1)k+1F(RZkaq)
k=1
and
Also if some

I = (—BRl(—mz)
1eN
for m; € N then
ieN
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Example 2.17. Continuing the example above
2

(1-g)(1—g?
1—¢? 1
(1-q)(1—-¢%) 1—g¢

F(I,q) =

F(Clz1,22]/1,q) =

3. CONSTRUCTING W (N)

Now we will provide more holistic definitions of W and W(n) from the intro-
duction. Given z; € C[z1, z2, ...] define the derivation, ¢ as 0(x;) = ix;41 for i € N.
Define n € N compositions of 0 as 0" (p) = 9(d(...(d(p)...)) where 0°(p) = p. For a
complex polynomial ring ideal generated by the polynomials p1, po, ..., p, we define

<P17p27~~7pn>(“ = <0l(pj) 1€ Z>0u 1 <.7 >

To begin our first construction of W (n) we will define the t'h relation as 0°~2(x?)
for te N and ¢t > 2.

Now we can produce the first definition of W and W (n) using the relation defi-
nition above as

W = C[xl,.’L‘g, ]/<l‘%>@
A finitization of W is W(n) which we define as

W(n) = Clxy, za,...] /{22, 2pi1de

Another construction of W (n) uses the relation definition

R(t) = Z Ty Ty

mi,ma>0
mi1+mo=t

for my, mo € N. Then we can use

IT=(R(t):t=2)
to define
C[xl,x27...]/l
and

Clz1, x2, ...}/ (I + {&n+1)0)

Proposition 3.1. The two ideals I and {x?)z of C[x1,x2,...] are equal. Thus
W = Clxy, za,...]/1

W(TL) = C[Il,fﬂg, ]/(I + <In+1>5)

Proof. To do this we will show each (x%), is a scalar multiple of R(t) which implies
that (0°(2?), 0* (21), 52(11) ) =<R(2),R(3),..)=1I.

We claim R(t) = 570" 2(23).

We will proceed by 1nduct10n on t for the usual assumptions t > 2 and ¢t € N.
For the base case t = 2 50 575y;0° *(2%) = z121. Suppose for some ¢ > 2 € N we

have R(t) = = 2),0t 2(zd). Now we will show R(t +1) = 5= 1)‘6t L(x?).
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1 1 1 t—2¢,.2
o 0R0 = t—la<(t —o° W)

1
t_16< Z mmlxm2>

777,1,7TL2>0
mi+meo=t

1
T i_1 Z Tm, T,
mi,ma>0
mi+mo=t
1
= tf Z (mlxm1+1z7n2 + mZImlxm2+l)
mi,ma>0
mi1+mo=t
1
=71 (t =Dz + (t — iy
+ Z mlxm1+lxm2 + Z mmelme-&-l)
m1>0,ma>1 mi1>1mo>0
mi+mo=t mi1+mo=t
1
=1 (t =Dz + (t — )iy
+ 2 ((ml - 1)1’m1.’bm2 + (m2 - 1)xm1xm2+1)>
mi,mo>1
mi+mo=t+1
1
=1 (t — Dapxey + (6 — Dy
+(t—1) Z xmlxm2>
m1,m2>1
mi+mo=t+1
= Z Tonq Tmg
my,m2>0
mi+mao=t+1
=R(t+1)
By way of mathematical induction, the two ideals I and (x%)s of C[z1,z2,...] are
equal. O
Define

Ru(t) = >, T, Zm,

0<mi,ma<n
mi+mo=t

for my, mo € N. We use this to build
I, =(R,(t): t = 2)

Using this we can realize W (n) as a quotient of C[z1, 2, ..., 2, ] without any deriva-
tion structure using the following result:
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Theorem 3.1.

Clz1,z2, ... xn)/In = W(n)
Proof. Define

¢ : Clxy, 2o, ...,20] = W(n)

o(p(x1.22, s Tn)) = P(X1.22, ooy Tp) + T +{Tpy1)e
for p(z1.x2, ..., x,) € Clz1, T2, ..., Tp].
¢ is a well defined homomorphism because is is the composition of an inclusion
map
Clz1,x2,y ..oy zn] = Clz1, 22, ...]

and a projection map

Clx1, z2,...] = Clz1,x2,...]/(I + {&nt1)e)

We want to show ¢ is a surjection with ker(¢) = I,. Then using the first
isomorphism theorem Clz1, za, ..., 2, ]/In = W(n).

ker(¢) = {p(x1,xa,...,z,) € Clx1, X2, ... TK] : P(p(21,22,...,2s)) = 0}
= {p(zn, z2,...,2pn) € Clan, T2, .., xn] : ¢(p(x1, T2, ... xy)) € I + {&pi1)0}
because 0 € W(n) is a q(x1,xo, ..., xy) € I + {xpni1)e.
First we will show ¢ is a surjection. If we take any p(z1,z2,...) + I + {Tnt+1s €
W (n) then we can separate
p(x1,22,...) + I +{py1de = p' (21,22, s Tn) + ¢(Tpa1, Tngo, ) + I +{ny1)e
=p' (21, T2y ey Tn) + T +{Tpi1)e
Then ¢(p'(z1, T2y ...y ) = p(x1,22,...) + I + {&pi1)0 € W(n) therefore ¢ is a
surjection.
Now we will show ker(¢)

can write p(z1, 22, ..., Tn)
We say

D [,,. Take an arbitrary p(z1, 22, ..., ) € I,. Then we
paRy(2) + psRy(3) + ... + pn R, (N) for some N € N.

R, (t) = R(t) — Z Ty Tmy € I +{Tpst1)0
mi,mao=n+1
mi1+mo=t

Since each term in p(x1, x2, ..., £, ) has some R, (t) as a factor, all of p(x1, x2, ..., x,) €
I +<{xpt1)e. Then p(z1, 22, ..., n) € ker(¢).

Now to prove ker(¢) € I,,. Take some p(x1,x2,...) € ker(¢). Then we can write
p(x1,@2,...) = paR(2) + psR(3) + ... + pM R(M) + Tn1q1 + Tn+2G2 + oo + Tnyrqr
where M, T € N and p;, g; are polynomials. Now separate every p; = p? +p! where
Y € Clzy1, 72, ..., x,] and p} € (x4 1)a. So we say

p(a1,22,...) = (P2 + P2) R(2) + (b5 + p3)R(3) + ... + (P +poar) R(M)
+ Tny1G1 + Tny2q2 + oo + TugerqT

Recall we can take

R(t) = R,(t) — Z Ty Ty
mi,mo=2n+1
mi1+mo=t

Now all terms that are multiples of x; where k > n + 1 are 0 so

p(x1,22,...) = PIRA(2) + PR (3) + ... + Py Ru(M) € I,
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Thus ker(¢) < I, so ker(¢) = I,,. Since ¢ is a surjection and ker(¢) = I,, the first
isomorhpism theorem tells us Clx1, z2, ..., xn|/In = W(n). O

4. THE GRADED DIMENSION OF W(N)

4.1. Using Short Exact Sequences. We can use short a exact sequences to find
the dimension of W (n) as a recursion.
First we will need to define six maps.

Definition 4.1.

Clz1, ..., Tn—2a] T AN Clz1y .y Tn] -7, Clz1, ..y Tn—1]

7Fn72l lﬂ'n lﬂ'nfl

Whn-2 —I— n) —2» Wh-1)

Take and p(z1,...,2n—2) € Clr1,....,2¢n—2], s(x1,...;2n—1) € C[z1,...,2p_1] and
q(x1,...;xy) € Clx1, ..., p]. We define

fp(x1,...xn_2)) = z1p(x3, ...TH)

9(q(x1,..zp)) = q(0, 21, ..x0—1)

(p( ) =p(@1, - n2) + In2
Tn-1(q(x1, ...tp_1)) = q(z1, ... Tp1) + In_1

1
(q(z1,..wn)) = q(21, .. 20) + In
(n —2) and q(z1,x2,...x,) € W(n). We define

Tn—2(D(X1, .- Tp_2
T,
Take p(z1,z2,..xn_2) €W
f(p(z1, 22, .20 2)) = z1p(23, T4, ..., 1)
glq(x1, 29, ...2p)) = p(0, 1, T2, ..., Tp_1)
The following lemma is the key to proving the dimension of W(n).
Lemma 4.1.
9L, + z1Clz1, ..., xp]) = In—1

Proof. First take any p(z1, ..., xpn—1) € In—1 and p(0, za, ..., xy,) € I, € I, +x1Clx1, ..., 4]
Notice that

g(p(0, 22, ... xy)) = p(x1, oo, 1) € (1) S g(I, + 21Cl21, ..., 25])
Thus I,—1 € g(I, + ©1C[z1, ..., x,]). Now take any
p(T1, .oy Tn_1) € g(In + 1C[z1, ..., 1))

Then p € g(x1Clx1,...,z,]) or p € g(I,). So if p € 1C[zy, ..., x,] then g(p) = 0
because g(x1) = 0. If p € I,, then g(p) € I,,_1 because

9:Clz1,...,xn] = Cla1, ooy n_1]
Thus g(I, + 1Clz1, ..., xpn]) S In—1. O
Theorem 4.1. .
05 Wrn-2)5Wn)SWwWn-1)-0

is a short exact sequence.
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Proof. Recall that an exact map has im(f) = ker(g), f is an injection and g is a
surjection.

If we can show ker(f) = {0} then f is an injection. Suppose by way of contradic-
tion 0 # p(x1, T2, ..., Tn_2) € ker(f). So x1p(x3, T4, ...,2,) € I,,. This means there
exists at least one R, (t) and a polynomials ¢; € C[z1, 22, .., ¥, ] Where

2n
21p(23, 24, o ) = Y, Gi R (0)
1=1

Notice that at least one R,,(t) must have an x5 and x1p(z3, 24, ..., ) does not have
an x5. Thus we have reached a contradiction so f is an injection.

Take any g(x1,x2,...,2n—1) € W(n — 1). If we take ¢'(z2,z3,...,2,) € W(n)
notice g(¢'(z2, x3, ..., zn)) = q¢(x1,Z2, ..., n—1), So g is indeed a surjection.

Now we will show for p(x1, ..., 2,) € C[x1, ..., 2] that m,_1 0 g(p) = G o m(p).

Tn—1 OQ(P) = 7Tn—l(p(o7xla "'71771—1)) = p(07x17 "'71771—1) + In—l € W(TL - 1)

gomn(p) =gp(x1,...;xn) +In) = p(0, 21, ey @p1) + I,_1 € W(n —1)
Therefore the diagram bellow commutes.

Clx1, .o, Tn—2] _f Clzy, .., xn] —2— Clzy, ...,z 1]

7Tn72l lﬂ'n lﬂ-”*l

Win-2 — W wm) —s Wmh-1)

Now we will use the lemma to show ker(g) = I, + z1C[x1, ..., ] = im(f).
The first half of the equality is proved by showing p € ker(g) if and only if
p € I, + 1C[z1, ..., z,]. Take and arbitrary p(zy, ..., ) € ker(g). Notice

g(p(xh 7xn)) = g(p(xlv "'7'T’7L)) = p(Oaxlv "'7'T’7L—1) = O
This only happens when p(21, ..., z,) = 219 (22, ..., Ts). Sop(21, ..., xp) € 21C[21, ..., T4 ]
which implies p(z1,...,2,) € I, + 21C[z1,...,xz,]. If p € ker(g) then p € I, +
21C[x1, ..., zn]. Now take some p(z1,...,zy,) € I, + ©1C[z1, .., 2, ]. Tt is true that

Tn—1 0 g(p(x1, ..., Tn)) = gom(p(x1, ..., Tn))

Also notice
I, + 21Clz1,...,xn] € I, + Clz1, ...y ] = W(n)
Then
gomn(p(x1,...,xn)) = gp(x1, .oy Tpn) + 1)
By the fact that
9L, + z1Clz1, ..., zp]) = In—1

for g(p(x1,...,2n)) € In—_1. So

d(p(z1, .y 2n)) = gomu(p(x1, .y Tn)) = Tt 0 g(p(x1, ..y ) =0

which means p(z1, ..., z,) € ker(g). B
The second half of the equality is proved by showing p € im(f) if and only if p €

L, + 1Clzy, ..., z,]. Now suppose p(z1, ..., Z,) € im(f). This means p(z1, ..., zy,)
f@ (@1, s xn_2)) = 19 (x3,...,2s) € 1C[21, ..., xn]. So p(x1,...,2n) € I,
21C[x1, ..., 7,]. Now take some p(x1,...,x,) € I, + 21C[x1,...,2,]. Notice z?

z129 = 0 in I, + 1C[xq,...,x,] for all n = 3. Then we can write p(x1, ..., 2,)

I+
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1P (1, oy ) = 219'(0,0, 3, ..., xp) = 1P (23, ..., Tpn) € IM(f).
Thus this is an exact sequence of maps. ([

Theorem 4.2. The dimension of W(n) is
dim(W(n)) = dim(W(n — 1)) + dim(W(n — 2))

Where dim(W(0)) = 1 and dim(W (1)) = 2
Proof. We will begin by finding then dimensions of W(1) and W(2). W(0) =
C/I, = C/0) =C.

So dim(W(0)) = dim(C) = 1. W(1) = Clz1]/I1 = Clz1]/{(R1(t) : 2 < &) =
C[x1]/{z%) = C ®C[z1]. So we can say dim(W (1)) = dim(C @ C[z,]) = 2

Then we have our seeds dim(W(0)) = 1 and dim(W (1)) = 2

0->Whn—2)LWn) L Whn-1)—0
is an exact map so dim(W(n)) = dim(W(n — 1)) + dim(W(n — 2)). O
4.2. Grading W(n). W (n) is doubly graded by weight and charge

e Charge is the degree
e Weight is the sum of the indices

W (n) with the above grading is represented as
W(n) (k) = {p € W(n) : ch(p) = k, wt(p) = m}

Example 4.1. Let us look at some examples of monomials to give us insight as to
how f and g effect grading. In order to simplify things we will use f and g in place
of f and g so we don’t have to worry about certain factors of a monomial making
the monomial zero.

f(z123) = m12302
glz1z3) =0
f(zaz325) = T17476
g(rax375) = T 17274
Using the definition of f we can see that the charge and weight are both increased

by one from the multiplication by x;. The addition of two to all the indexes by f
is responsible for the 42k for the weight.

FW(n—=2)n_2k—1k-1) = W(n) (k)
Since the indexes are all decreased by 1 the weight is decreased by one while the
charge remains the same.

G: W) mry = W —1) ik
This induces a short exact sequence of graded components.
0— W(n—2)m-zk-1k—-1) = W(n)mx) = Wn—1)m-pr — 0
Since this is exact
dAmW(n) (k) = dimW (n — 1) (n—2p—1,5—1) + dAmW(n = 2) (1)
Definition 4.2.

D1 dim(W(n) i) g™ 2"

o<m,k

Where z is the charge and ¢ is the weight.
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Once we have a better understanding of x,, (¢, z), we can use it to determine the
graded dimension of a W (n) i) as the coefficient of gk
Using the exact sequence result

Xn(q,7) = Z dimW (n — 1)(m—k,k)qm33k + Z dimW (n — 2)(m72k71,k71)qm$k

0osm,k 0<m,k

= Z dimW (n — 1)(m’k)qm+kxk + Z dimW (n — 2)(m7k)qm+2k+1xk+1

0<m,k o<m,k

= > dimW(n = 1)numg™(q)" +pz D) dimW(n —2) g ne™ (¢ 2)"

o<m,k o<m,k
Xn (4, 7) = Xn—-1(¢, q2) + 2qXn-2(q, ¢°x)

For notational convenience recall the g-analauge to the classic binomial coefficient
and the g-Pocchamer symbol. The ¢ binomial coefficient

(n) (=g =gl g
"/ 1-q)(1—¢)..(1—q")

When r = n, (:)q =0
Another useful piece of notation is.
(@m=01-q..1-@™"

If we solve the recursion x,(q,7) = Xn_1(¢,¢r) + £qxn_2(q,¢*x) we find the
following result.

Theorem 4.3. We have

[“5+]
mom2(m+1l—m mom2fn+1l—m
Xn(g,x) = D 2™g ( >=qu ( )
q m=0 q

0<m
Proof. Suppose
[

2fn+1—m
Xolg,2) = D) a™q" ( )
q

m=0 m

Then this would have to satisfy
Xn (45 2) = Xn—1(g:42) + qzXn—2(q, ¢*)

3] 252
2N —m 2(N—MM
— Z (qx)mqm ( ) +qz Z (q2x)mqm ( )
m q q

m=0 m=0 m

L3

! 2/mn—m L 2fn—m
=1+ ) (q2)"q" ( ) +qr Y, (e lgtm Y ( B 1)
m=1 m q m=1 m q
Now define
5ps = {1 r=3s
0 r#s
Let

n=1) n—1y(m+1— i
L= 6nm0d(2),1(q2x) 2 JqL 2 J( lnllJ ’ J)
2
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Then
5] Y /1 — 5] —m
Xn(g:2) =1+ L+ ) (qz) q’"( ) gz qmmlm”( 1)
m=1 m=1 -
_1+L+I§ZJ (qz)™ m2 (T —Mm + (Q)mfl (m—1)2 (M — MM
= o qr) g m , qr\q x q m—1
5] 2| fm—m n—m
=14+L+ ) a™q" ( )qm—l—( )
m=1 m /g m—1 q
5]
2 1—
=1+L+ x™mg™ <n+ m)
m=1 m q

O
Example 4.2. Now we have an easy way to find the dimension of W (4) (s 1). Using
the theorem above we find

5 —
Z ™ ( m) =1+2q(1 +2¢* + ¢*) + 2%¢*(1 + ¢ + ¢%)
m=0 q

Since the coefficient of x¢? is 2 then

dim(W(4)(3,1)) = 2
By setting x = 1 we create a singly graded structure

["3+]

Xn(g,1) = 22] ¢ (n+ ! _m>q

m=0 m

To determine the normal dimension of W(n) take the combinatorial limit as
q— 1.

12£]
1 —
lim X (g,1) = D) (" * m) = F(n+2)
q—1 q

m=0 m
Consider ("+71n_m)q as n — oo which is

1
(1-q)(1—¢?...(1—qm™)

(@Dm

because 0 < ¢ < 1.
So we have

Tim xa(g,1) = xen (g, 1 Z

o<m m

osm
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5. FREE RESOLUTIONS OF W(N)

Now we explore W (n) using free resolutions as a tool to determine graded di-
mension. We will show a couple of basic examples for low values of n then make a
skeleton of a second proof that would show the dimension of W (n).

Let n =2

W(2) = Clz1, z2]/(af, z122, 23)
The basis of this C[x1,z2] -modules is {1,x1,22}. Using this basis we know the
Hilbert polynomial for W (2) should be F(W(2),q) = 1 + q + ¢°>. In Macaulay 2
when we define Cy = C[z1, z2] we have

002 —-C3—-1,—-0

We can use the free resolution definition from the background section we can calcu-
late the change in weight and charge between the modules using the syzygy matrices
provided by Macauly 2.

[m% T1X9 .’E%]

and
—X9 0
T —T2
0 I

Using these matrices we can see the weight and change changes as follows

0— CQ(—4, —3) (—BOQ(—5, —3) i 02(—2, —2) (—BCQ(—3, —2) (—BCQ(—4, —2) i Ig -0
The change in charge is not that interesting since each syzygy matrix is of uniform
charge. So we will only use the weight to create the Hilbert series.

_1_q2_q3+q5

F(W(2),q) = 00— ~ l+q+¢

Now let n =3
W(3) = C[$1,$27$3]/<$%,$(11$2, 2r1w3 + x%, x2x3,$g>
The basis of this C[z1,ze,z3] -modules is {1,z1,z2,23,x123}. So we know the
Hilbert polynomial for W (3) should be F(W(3),q) = 1 +q+ ¢*> + ¢ +¢*. In
Macaulay 2 we define C5 = C[z1, 22, 23] and use the res command to find the free
resolution to be:
0-5C3 >C5—>C3 >13—0

The syzygy matrices from right to left are:

[x% T1To 2x1x3+x% Tols3 xg]

—T9 —2x3 0 0 0
T —Ty —I3 0 0
I 0 —XI3 0
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Again we use these matrices from right to left to find the details of this resolution.
0 — C3(—10,—-5) — C5(—4,—3) ® C3(—5,—3) @ C3(—6,—3) ® C5(—7,—3) ® C3(—8, —3)
— C3(~2,-2) ® C3(~3, ~2) ® C3(—4, =2) @ C3(~5, —2) @ C3(=6,~2) — I; — 0
So we find | 4 g g — gl
PTG = =0 50— - )
_1+¢°(1-¢%)
l—q
=1+q+¢*+¢ +4'

The syzygy matrices for W(4) are in the appendix. The use the Macaulay 2

output to calculate the free resolution:

0 — Cu(—14,—6) ® C4(—15,—6) ® C4(—~16, —6) —
Ca(=10,-5) ® Ca(—11,—5) ® Cs(~12, —5) ® Ca(—12, —5) ® Ca(—13, —5)®
Ca(—13,—5) @ Cy(—14, —5) @ C4(—15, —5) —
Cy(—4,-3)®C4(=5,-3) ®C4(—6,—=3) ®C4(=7,-3) @ Cs(—8,=3) ®Cs(—9, —3)®
Cy(—10,=-3) ®C(—11,-3) D C4(—9, —4) ® C4(—10,—4) ® Cy(—11,—4) —
Cy(—2,-2)@C4(—3, —2)DCs(—4, —2)DC4 (=5, —2)DC4(—6, —2)BC4 (-7, —2)BC4 (-8, —2) —
Iy — 0

So the Hilbert series is

1—q2—¢®+2¢° + q'0 + ¢'! — 2¢"2 — 2¢'3 4 '
F(W(4),q) = 5 3 I

(1= -¢*)1-¢’)1-q")
14+ +d' —¢" -’ —q)
(1-q)1—q*)

Now we can consider n = 5. Using Macaulay 2 we can see the free resolution for

15 is

0> R:>R° >R >R'>R—>1;-0
We will not calculate the changes in grading for the free resolution. We will just
use Macaulay 2 to compute the Hilbert series.

B 1—q? — P +q° +2¢" +¢'2 — g™ — 215 — 2¢'6 — 17 4 ¢'® 4 ¢19 +¢20 4 ¢22 — ¢
- (1-a)(1—¢*)(1-¢*)(1—g¢")(1—¢)
144 (" + ¢ - —q—1)
- 1—a)(1—q")
In the previous section we proved that the y function as n — oo evaluated at
r=1Iis

F(W(5),q)

1
g (1 — gPF+1)(1 — goF+4)

This graded free resolution method of calculating Hilbert functions should converge
to the same product. We still must prove this. So far we have noticed the pattern
that we can factor the Hilbert series for a given n into

1—¢*p(q)

A v (e
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Where i = 1,4 mod (5), 0 < i < n and as n — o0, ¢* — 0. k is increasing so
that £k — o0 as n — o0. To prove this factorization for every n would most likely
involve a looking carefully at the syzygy matrices used to compute the graded free
resolutions. Sadly, these matrices significantly increase in size and complexity as n
increases and do not follow an obvious pattern.

Assuming we can tie up the loose ends of this proof we are left with two rep-
resentaions for the graded dimension of W(n) as n goes to co which gives us the
Rogers-Ramanujan Identity:

m 1
Z = 1_[ (1 — PR +1)(1 — goh+a)

0<m (Q)m o<k

6. APPENDIX

7 11
1 R <--------->----------------""--""\"-" """ R 2
{2} | -x2 -2x3 -x4 0 0 0 0 0 -x3x4 -x472 0 |
{2} | x1 -x2 -x3 -5x4 0 0O 0 0 ©° 0 -x472 |
{23 1 0 x1 0 -x3 -2x4 0 0 0 0 0 0 |
{210 o0 x1 x2 -x3 -x40 0 0 0 0 I
{210 o0 0 2x1 x2 0 -x40 O 0 0 |
{210 0 0 © 5x1 x2 x3 -x4 x1°2 0 0 |
{210 0 0 © 0 xl 2x2 x3 0 x172 x1x2 |
11
2:R <—7"o—r————H--------—-------"-————\——\—(—
{3} | —x372+.5x2x4 -x3x4 -2.5x4"2 x4°2 0 0 0 0
{3} | .5x2x3-2x1x4 0 -.56x3x4 O X472 0 0 0
{3} | -.5x272-x1x3 -x1x4 .5x2x4 O 0 0 -x4°2 0
{3} | .5x1x2 0 -.5x1x4 O 0 0 0 -x472
{3} | -x172 0 0 0 .5x1x4 0 0 .5x3x4
{3 1 0 -x1"2 0 0 -.5x1x3 0 -x1x4 -.5x372-x2x4
{3 1 0 0 -x172 0 .bx1x2 O 0 .5x2x3-2x1x4
{3 10 0 0 0 0 -x172 -x1x2 -x272+.5x1x3
{4} | 5x1 x2 x3 0 -2.5x4 -x4 0 0
{4 | 0 x1 2x2 -x2 .5x3 x3 x4 0
{4r 1 0 0 0 x1  -x2 0 x3 5x4
8 3
3 R <~————rm————————————— R 4
{5} | x4 0 0 |
{6} | -=x3 -x4 0 |
{6} | x2 0 -2x4 |
{5} | 2x2 -x3 -5x4 |
{6} | 2x1 0 -x3 |
{5} 1 0 -x2 .5x3 |
{510 =x1 -x2 |
{510 0 x1 |
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