Segmentation and Beliefs:
A Theory of Self-Fulfilling Idiosyncratic Risk*

Paymon Khorrami† Alexander K. Zentefis‡

January 16, 2024

Abstract

We study a multi-location general equilibrium model with financial market segmentation that permits self-fulfilling fluctuations. In a precise sense, such fluctuations are most often redistributive, but their volatility varies systematically with an aggregate latent factor. We thus provide a coordination-based microfoundation for time-varying idiosyncratic risk. A key assumption of our analysis is that cash flow growth rates (e.g., firm profit growth, asset dividend growth, or country output growth) rise with valuations. We consider two applications: (i) firm dynamics and their risk factor structure; and (ii) exchange rate disconnect in international macroeconomics.

JEL Codes: D84, G11, G12

Keywords: idiosyncratic risk, segmented markets, volatility, asset pricing, multiple equilibria

*We are grateful to Nick Barberis, Jess Benhabib, Harjoat Bhamra, Wenxin Du, Stefano Giglio, Daniel Grosshans, Zhengyang Jiang, Stefan Nagel, Stavros Panageas, Jung Sakong, Andre Veiga, Dimitri Vayanos, Pietro Veronesi, Raman Uppal, Tony Zhang for extremely helpful comments. We would also like to thank conference and seminar participants for valuable feedback.

†Corresponding Author. Duke University Fuqua School of Business, Durham, NC 27708, USA. paymon.khorrami@duke.edu

‡Yale School of Management, 165 Whitney Ave, New Haven, CT 06511. alexander.zentefis@yale.edu
This paper presents a theory of self-fulfilling volatility. Broadly speaking, we shed light on the following questions. Why are asset prices so volatile, in excess of cash flows and other “fundamentals”? Excess volatility puzzles have received attention in many contexts, still without definitive answers. More specific to our particular framework, what is the source of idiosyncratic uncertainty? And why does idiosyncratic uncertainty vary over time systematically?

We explore a general equilibrium model with two key features—the presence of multiple markets along with a feedback effect between financial markets and the real economy. Our model has N abstract “locations” each of which receives its own endowment. Depending on the application, think of locations as firms, industries, or countries. Each location has an equity market, which trades claims on its local endowment stream. It is this equity valuation that will be subject to multiple self-confirming equilibria. The multiplicity comes about because of an assumption connecting fundamentals to prices: the growth rate of a location’s endowment is assumed to be positively related to its endogenous valuation (growth-valuation link).

The contributions of the paper are (i) to characterize conditions under which multiple equilibria emerge; (ii) to establish common properties of these equilibria; and (iii) to argue that these properties can speak to various empirical patterns.

Growth-valuation link. A key assumption in our analysis is some dependence of growth on asset valuations. A sufficiently strong dependence allows for self-fulfilling expectations of future price changes to take hold. For instance, if investors anticipate high prices, their expectations for cash flow growth rates rise, which justifies the high prices and confirms the initial expectations. Conversely, if investors anticipate low prices, expected growth rates drop as well, fulfilling the starting beliefs about low prices.

How should one understand our critical growth-valuation link? Our baseline interpretation comes from the expansive literature on feedback effects between asset prices and corporate decisions (see the survey in Bond et al., 2012). When managers can learn information from stock or bond prices, they incorporate this data into their capital expenditure decisions. The feedback between prices and investment creates a link between publicly available prices and the cash flows underlying those prices. This is just one interpretation for our reduced-form growth assumption. As we discuss in the paper, all we need is some endogenous force that keeps valuations stationary when they deviate from steady state—this stability property is key to supporting self-fulfilling fluctuations. For this reason, our Internet Appendix provides three alternatives to the growth-valuation link, each of which also supports self-fulfilling fluctuations.
Redistributive fluctuations. A core message of our analysis is that indeterminacy is most often redistributive. That is, the conditions for indeterminacy in the aggregate valuation Q_t are significantly stronger than the conditions for indeterminacy in the cross-section of valuations $(q_{n,t})^N_{n=1}$. For instance, we prove that, if the EIS is less than one, the aggregate valuation is pinned down uniquely in our setup, while the valuation distribution is not. Even if the EIS is below one, but the growth-valuation link is not too powerful, the only possible indeterminacy is redistributive. These results are what justify the title of our paper referring to “idiosyncratic risk.”

A novel prediction is that asset booms are less likely to be synchronized global phenomena and more likely to be found in individual sectors and geographic locations (Brunnermeier and Schnabel, 2015). Instead of being in sync, asset boom-bust cycles should co-move negatively: a crash in one asset market necessarily coincides with a boom in another.

Despite fluctuations being redistributive, the self-fulfilling volatility of our model maintains, under some natural conditions, a systematic factor structure. In particular, we prove that, if sunspot valuation shocks maintain a stable cross-sectional correlation, then there is necessarily a single-factor structure to our idiosyncratic volatility. The existence of this common component to redistributive risk is one of the most important implications of our model, since it provides a plausible microfoundation to researchers that have modeled exogenously time-varying idiosyncratic volatility and its macroeconomic effects (Di Tella, 2017, 2020; Di Tella and Hall, 2022; Iachan et al., 2022).

Market segmentation. We are particularly interested in the effects of cross-sectional market segmentation. First of all, financial market segmentation is reasonable in many real-world contexts, especially our applications that follow.1 Second, segmentation enriches our baseline theoretical predictions in several intriguing dimensions.

While the theoretical results above on equilibrium multiplicity and volatility hold even under complete financial markets, layering on some market segmentation introduces real effects. Agents in location n must hold a concentrated portfolio of their local equity, and so their consumption responds to self-fulfilling shocks. Again, because our fluctuations are primarily redistributive in nature, the cross-sectional wealth and consumption distributions become central objects. For instance, capital flows become intertwined with boom-bust cycles (Caballero et al., 2008): when one location’s valua-

1For example, there is the well known “home bias” among international asset holdings (French and Poterba, 1991). In the firm context, there is also pervasive evidence that corporate insiders hold concentrated exposures to their own firms, perhaps for incentive reasons (May, 1995; Guay, 1999; Himmelberg et al., 2002; Panousi and Papanikolaou, 2012).
tion features a boom that coincides with a fall in another location’s valuation, the rising market simultaneously borrows from the falling market.

In the presence of uninsurable consumption fluctuations, agents naturally command risk premia on their local equity, which is exposed to these same shocks. As with the level of self-fulfilling volatility, the associated risk premia also contain a single-factor structure. Thus, our theory sheds light on time-varying compensation for idiosyncratic risk exposure.

Applications. We consider two applications of our framework. First, we interpret our locations as firms, and we interpret the agents in the model as corporate insiders that hold concentrated positions in the firm. With this interpretation, our model produces firm-level idiosyncratic stock returns whose volatility has a factor structure. Because corporate insiders hold undiversified exposures to their own stocks, firm-specific shocks command a risk premium, whose magnitude is a function of the aggregate idiosyncratic volatility factor. These patterns are supported by the empirical finance literature on firm dynamics (Hopenhayn, 1992; Sutton, 1997; Luttmer, 2007; Gabaix, 2009) and firm-specific stock returns (Campbell et al., 2001; Herskovic et al., 2016).

Second, we extend the model to include “non-tradable” consumption goods and interpret our locations as countries. Self-fulfilling volatility in asset prices now spills over into real exchange rates. This volatility is in excess of fundamentals, it creates unshared risks, and it garners a risk premium, all of which help resolve various exchange rate puzzles (e.g., the PPP, Backus-Smith, and UIP puzzles). The paper discusses these puzzles in more detail, along with a growing international macro literature that embraces market incompleteness in pursuit of resolutions (Gabaix and Maggiori, 2015; Lustig and Verdelhan, 2019; Itskhoki and Mukhin, 2021).

Contributions to the multiplicity literature. Our construction of self-fulfilling equilibria shares a similar flavor to seminal studies that build sunspot shocks around a stable steady state. We differ from this literature in some of the assumptions we adopt—we require neither overlapping generations (Azariadis, 1981; Cass and Shell, 1983; Farmer and Woodford, 1997) nor aggregate increasing returns (Farmer and Benhabib, 1994) to induce stability. Instead, we provide several new examples of “stabilizing forces.” Our equilibrium construction is also more general in permitting an arbitrary numbers of markets, arbitrary fundamental shocks, and a broad class of self-fulfilling shocks.

A key feature of our analysis is that self-fulfilling fluctuations are less likely to be aggregate phenomena. This result echoes Loewenstein and Willard (2006), who show that noise-trader volatility in De Long et al. (1990) cannot survive the endogeneity of the
interest rate in general equilibrium. This result also distinguishes our mechanism from several other studies that build multiplicity through collateral constraints or other financing frictions (Krishnamurthy, 2003; Benhabib and Wang, 2013; Miao and Wang, 2018; Schmitt-Grohé and Uribe, 2021), which continue to operate in single-location, closed-economy settings.

Our results are closer to the OLG model of Gârleanu and Panageas (2020) and the limited enforcement model of Zentefis (2022). Like those models, our multiplicity arises when there are multiple traded assets and a link between valuations and some fundamental. Our contribution is to provide a much more general analysis, explore the consequences of market segmentation, and apply our model to a few applications connecting volatility to puzzles in the literature.

Outline. The remainder of the paper proceeds as follows. Section 1 describes the model. Section 2 analyzes the deterministic equilibria of the model. Section 3 analyzes stochastic complete-markets equilibria. Section 4 layers on some financial market segmentation. Section 5 studies some applications of the model. That section also contains lengthy discussions of the existing literature in the context of each application.

1 Model

An endowment economy is set in continuous time that is indexed by \(t \geq 0 \).

Endowments. There are \(N \) “locations” in the economy. Each location can represent a firm, a sector, an industry, a country, or a distinct financial market. Each location \(n \) receives an endowment stream \(y_{n,t} \), with the aggregate endowment denoted by \(Y_t := \sum_{n=1}^{N} y_{n,t} \). The endowment of location \(n \) follows

\[
dy_{n,t} = y_{n,t} \left[g_{n,t} dt + \nu dB_t + \hat{\nu} d\hat{B}_{n,t} - \hat{\nu} \sum_{i=1}^{N} \frac{y_{i,t}}{Y_t} d\hat{B}_{i,t} \right],
\]

where \((B, \hat{B}_1, \ldots, \hat{B}_N)\) is an \((N+1)\)-dimensional standard Brownian motion. We think of \(B \) as the aggregate fundamental shock and \(\hat{B} := (\hat{B}_n)_{n=1}^{N} \) as location-specific fundamental shocks. For simplicity, each location has symmetric shock exposures \(\nu \) and \(\hat{\nu} \). Our results do not rely on the presence of fundamental shocks, and we could very well set \(\nu = \hat{\nu} = 0 \). In fact, in most of the derivations presented in the body of the paper, we will shut down these fundamental shocks for clarity. We leave the local expected growth rate \(g_n \) arbitrary for now and discuss this growth rate in more detail below. Summing across \(n \) in Eq. (1),
the aggregate endowment follows

\[dY_t = Y_t [g_t dt + \nu dB_t]. \quad (2) \]

We have purposefully specified location-specific shock exposures in Eq. (1) in order that the aggregate volatility is the constant \(\nu \) in Eq. (2).

Financial Markets. Each location offers a single asset in positive net supply that is a claim to its local endowment \(y_{n,t} \)—we refer to this as the local equity market. The equilibrium equity price in location \(n \) is \(q_{n,t} y_{n,t} \), where \(q_{n,t} \) is the price-dividend ratio. In addition to these \(N \) distinct equity markets, there is a risk-free bond in zero net supply that offers equilibrium interest rate \(r_t \). Finally, there is an integrated futures market for trading claims on the fundamental shocks \((B, \hat{B}_1, \ldots, \hat{B}_N) \), with each future in zero net supply. Allowing these futures markets is not critical but affords theoretical clarity to our results on multiplicity, in the sense that we isolate the minimal needed deviation from perfect markets.

A different representative agent lives in each location. In the first part of the paper (Sections 2-3), we will assume markets are *complete*, in the sense that these agents can invest in all local equity markets, the short-term bond market, and the futures markets. This complete-markets case transparently conveys the construction of our equilibrium multiplicity. In the second part of the paper (Sections 4-5), we will assume markets are *segmented*, in the sense that representative agent \(n \) can only invest in local equity market \(n \), in addition to the bond and futures markets. (Hence, the bond and futures markets will be integrated throughout the paper.)

In the complete-markets case, there will be a unique stochastic discount factor (state-price density) \(\xi_t \). In the segmented-markets case, each location will have a potentially different state-price density \(\xi_{n,t} \) (in fact, because this case features incomplete markets, each location could potentially have many state-price densities, but we will focus on the one which corresponds to the marginal utility of agent \(n \)). To capture both cases at once, we will often write \(\xi_{n,t} \) for the location-\(n \) state-price density.

Budgets and Constraints. Based on the assumptions so far, the financial wealth \(w_{n,t} \) of the representative agent in location \(n \) evolves as

\[
\begin{align*}
\text{Budgets and Constraints.} & \quad \text{Based on the assumptions so far, the financial wealth } w_{n,t} \text{ of the representative agent in location } n \text{ evolves as }
\end{align*}
\]

\[dw_{n,t} = (w_{n,t} r_t - c_{n,t}) dt + \theta_{n,t} (\eta_t dt + dB_t) + \hat{\theta}_{n,t} \cdot (\hat{\eta}_t dt + d\hat{B}_t) \\
+ \sum_{i=1}^{N} \theta_{n,i,t} \left(\frac{1}{q_{i,t}} dt + \frac{d(q_i y_{i,t})}{q_i y_{i,t}} dt - r_i dt \right), \quad w_{n,0} = q_{n,0} y_{n,0}.
\]

5
The terms $\vartheta_{n,t}$ and $\hat{\vartheta}_{n,t}$ represent positions in the futures markets, which have unit exposure to the shocks (B, \hat{B}) and earn those shocks’ market prices of risk $(\eta, \hat{\eta})$, to be determined in equilibrium. The term $\theta_{n,i,t}$ is agent n’s position in equity market i. In the complete market case, these positions are unrestricted. In the segmented market case, agents will face an additional constraint that says $\theta_{n,i,t} = 0$ for all $i \neq n$ (no investment in other equity markets). Note that $w_{n,t} - \sum_{i=1}^{N} \theta_{n,i,t}$ represents the amount of saving (borrowing, if negative) in the bond market. The initial condition $w_{n,0} = q_{n,0}y_{n,0}$ says that the agent’s initial endowment is a single share of the local equity, although this does not necessarily pin down their initial wealth, as the price $q_{n,0}$ is endogenous. In addition to Eq. (3), the agent must obey the solvency constraint $w_{n,t} \geq 0$ (this is the natural borrowing limit) and the No-Ponzi condition

$$\lim_{T \to \infty} \frac{1}{\delta} \left(w_{n,T} - \sum_{i=1}^{N} \theta_{n,i,T} \right) = 0. \tag{4}$$

The No-Ponzi condition prohibits asymptotic indebtedness.

Preferences. Agents have infinite lives, CRRA utility with elasticity of intertemporal substitution ρ^{-1}, time discount rate $\delta > 0$, and rational expectations. Mathematically, preferences are represented by

$$E_0 \left[\int_0^\infty e^{-\delta t} \frac{c_{n,t}^{1-\rho} - 1}{1-\rho} dt \right]. \tag{5}$$

The limiting case $\rho = 1$ corresponds to logarithmic utility, which we will use to illustrate many results.

Market Clearing. Clearing of the goods and bond markets is standard: $\sum_{n=1}^{N} c_{n,t} = Y_t$ and $\sum_{n=1}^{N} (w_{n,t} - \sum_{i=1}^{N} \theta_{n,i,t}) = 0$. In addition, all the futures markets need to clear, so $\sum_{n=1}^{N} \vartheta_{n,t} = 0$ and $\sum_{n=1}^{N} \hat{\vartheta}_{n,t} = 0$. Local equity market clearing is $\sum_{i=1}^{N} \theta_{i,n,t} = q_{n,t}y_{n,t}$ for each n. Finally, combining the bond and equity market clearing conditions leads to the convenient aggregate wealth constraint $\sum_{n=1}^{N} w_{n,t} = \sum_{n=1}^{N} q_{n,t}y_{n,t} = Q_tY_t$, where Q_t is the aggregate price-dividend ratio.

Growth Rates. To obtain our interesting multiplicity results, we will model a type of endogeneity in fundamental growth rates. We assume local growth rates take the form

$$g_{n,t} = g + \lambda(q_{n,t} - q^*), \quad \lambda \geq 0. \tag{6}$$
for some common parameters g, λ, and q^*. We will usually take q^* to be the “steady state” valuation ratio. The assumption of a linear growth-valuation link is convenient analytically, and in many cases it is without much loss of generality.\footnote{Indeed, much of the analysis is confined local to steady state, so any nonlinear growth-valuation link would effectively be linearized anyway. In a previous working paper version, we allowed in many theoretical results an arbitrary nonlinear link $g_{n,t} = \Gamma(q_{n,t})$, for some increasing function $\Gamma(\cdot)$.}

Eq. (6) is a reduced-form representation of a microfounded link between dividend growth and asset prices. One microfoundation of this link is that asset prices carry payoff-relevant information. Corporate managers filter this information from stock prices and update their investment decisions accordingly (Chen et al., 2007; Bakke and Whited, 2010; Goldstein and Yang, 2017; Bond et al., 2012). Under this interpretation, $\lambda > 0$ is sensible: when valuations are above their typical level, managers will infer positive information and invest more. Internet Appendix C provides three alternatives to the endogenous growth in Eq. (6) that also generate the possibility of non-fundamental volatility—we discuss these alternatives in Section 3.4 in more detail.

Under the linear growth-valuation link (6), the aggregate growth rate is given by

$$ g_t := \sum_{n=1}^{N} \frac{y_{n,t}}{Y_t} g_{n,t} = g + \lambda (Q_t - q^*), \quad (7) $$

where recall the aggregate valuation ratio is Q_t. Eq. (7) illustrates the convenience of the linear functional form: aggregate growth only depends on the aggregate valuation, rather than the entire cross-sectional distribution of valuations.

Extrinsic Shocks. To introduce and allow the possibility of non-fundamental volatility, conjecture that the price-dividend ratio of each location’s asset follows a stochastic process of the form

$$ dq_{n,t} = q_{n,t} \left[\mu_{n,t} dt + \zeta_{n,t}^q dB_t + \xi_{n,t}^q \cdot d\hat{B}_t + \sigma_{n,t}^q \cdot dZ_t \right], \quad (8) $$

where Z is an N-dimensional Brownian motion, independent from B and \hat{B}. The shock Z_t is *extrinsic*, and it is the source of self-fulfilling fluctuations, if any exist.

We refer to $\sigma_{n,t}^q$ as the *self-fulfilling volatility* of location n. If $\sigma_{n,t}^q > 0$ for some n, we will say that the economy exhibits self-fulfilling volatility; if $\sigma_{n,t}^q = 0$ for all n, we will say self-fulfilling volatility does not exist.

Economically, the extrinsic Z shocks arise from sources that we do not explicitly model—they are sunspot shocks. In all papers with sunspot shocks, a common question is “what is the sunspot?” We do not take any stand on this, but there are several
possibilities explored in the literature. One popular candidate is investor sentiment or signals that coordinate beliefs (Benhabib et al., 2015); other candidates highlighted by the literature are shocks with vanishingly small impacts on fundamentals so that they are effectively extrinsic but still retain a coordination role (Manuelli and Peck, 1992).

No-Bubble Assumption. As a consequence of the No-Ponzi conditions (4) and individual agents’ transversality condition \(\lim_{T \to \infty} E_t[\xi_{n,T}w_{n,T}] = 0 \), it is possible to show that \(\lim_{T \to \infty} \xi_{n,T}q_{n,T}y_{n,T} = 0 \) holds in any equilibrium. This is enough for our purposes, but we impose the following slightly stronger “no-bubble” condition for theoretical clarity.

Condition 1. For each \(n \), it holds that \(\lim_{T \to \infty} E_t[\xi_{n,T}q_{n,T}y_{n,T}] = 0 \).

Because of Condition 1, equity prices equal present values of future dividends. Self-fulfilling volatility in our model is thus consistent with classical no-bubble theorems (e.g., Santos and Woodford, 1997; Loewenstein and Willard, 2000) that give conditions under which bubbles are not possible.

Equilibrium. This completes the description of the model. An equilibrium is a set of adapted processes \((y_{n,t}, c_{n,t}, w_{n,t}, q_{n,t}, \xi_{n,t}, (\theta_{n,t})_{i=1}^N, \vartheta_{n,t}, \hat{\vartheta}_{n,t})_{t \geq 0} \) for \(1 \leq n \leq N \) and \((r_t, \eta_t, \hat{\eta}_t)_{t \geq 0} \), adapted to the augmented filtration generated by \((B, \hat{B}, Z) \), such that: agents maximize (5) subject to their budget constraint (3), their No-Ponzi condition (4), and their solvency constraint \(w_{n,t} \geq 0 \); Eqs. (1), (6), and (8) all hold; all markets clear; and Condition 1 holds. In Appendix A, we derive the complete set of conditions characterizing equilibrium that we will use going forward. In expositing our results below, we will bring forth and explain any critical equations, so it will not be necessary for the reader to consult Appendix A unless a detailed derivation is desired.

Endowment and consumption shares. Because of the scalability properties of our model, we will repeatedly make use of the endowment and consumption shares to characterize equilibrium:

\[
\alpha_{n,t} := \frac{y_{n,t}}{Y_t} \quad \text{and} \quad x_{n,t} := \frac{c_{n,t}}{Y_t}.
\]

The dynamics of all stationary variables can be described without reference to \(Y_t \), once we know \((\alpha_{n,t}, x_{n,t})_{n=1}^N \). In Sections 2-3, markets will be complete so that \(x_{n,t} \) will play no role; but when market segmentation is introduced in Sections 4-5, the consumption distribution will become important.
2 Multiplicity of deterministic equilibria

To get to the core forces quickly, we start with the deterministic equilibria of our model. Let us shut down all fundamental shocks (\(\nu = \hat{\nu} = 0 \)), and let us examine equilibria with \(\zeta_{n,t}^q = 0, \varphi_{n,t}^q = 0, \) and \(\sigma_{n,t}^q = 0 \). These equilibria will highlight most of the intuition that will also be present in the more complex stochastic equilibria to come.

2.1 Derivation of equilibrium

In a deterministic equilibrium, each location’s equity is priced according to the following Euler equation:

\[
\frac{\dot{q}_{n,t}}{q_{n,t}} + g_{n,t} + \frac{1}{q_{n,t}} = r_t. \tag{10}
\]

At the same time, aggregating optimal consumption dynamics \(\dot{c}_{n,t}/c_{n,t} = \rho^{-1}(r_t - \delta) \) across locations, we obtain the equilibrium interest rate

\[
\dot{c}_{n,t} = r_t = \delta + \rho \sigma_t. \tag{11}
\]

Substituting (11) into (10) and using the expressions for the growth rates \(g_{n,t} \) and \(g_t \), we obtain

\[
\frac{\dot{q}_{n,t}}{q_{n,t}} + \frac{1}{q_{n,t}} = \delta + (\rho - 1) \left(g - \lambda q^* + \lambda Q_t \right) - \lambda \left(q_{n,t} - Q_t \right). \tag{12}
\]

From Eq. (12), we see that the steady state of this economy features \(q^* = \frac{1}{\delta + (\rho - 1)g} \) and hence \(g_{n,t} = g \) for all \(n \). (Consequently, we will always implicitly assume \(\delta + (\rho - 1)g > 0 \) so that a steady-state equilibrium exists.)

Eq. (12) suggests both the mathematics and the intuition for how the growth-valuation link matters for determinacy. Consider the log case (\(\rho = 1 \)), and imagine \(Q_t \) is fixed at steady state \(q^* = \delta^{-1} \). Then, the dynamical system for \(q_{n,t} \) becomes

\[
\dot{q}_{n,t} = -1 + q_{n,t} (\delta + \lambda q^*) - \lambda q_{n,t}^2.
\]

This dynamical system has two steady states, but only the one with \(q_n = q^* \) is relevant (because that one coincides with the aggregate valuation). As long as \(\lambda > \delta/q^* = \delta^2 \), this larger steady state is locally stable, in the sense that \(\frac{\partial q_{n,t}}{\partial q_n} \bigg|_{q_n=q^*} = \delta - \lambda q^* < 0 \). The left panel of Figure 1 plots the dynamical system for various values of \(\lambda \). When the
economy has this stability property, equilibrium is indeterminate: one may start with any $q_{n,0}$ close enough to q^*, and the valuation will drift towards q^*.

![Figure 1: Valuation dynamics.](image)

Notes. The left panel plots the dynamics of a single location’s valuation with $\rho = 1$ and various levels of λ. The right panel plots the aggregate valuation dynamics with $\lambda = 2\delta^2$ and various levels of ρ. Both panels assume $\delta = 0.05$ and $g = 0$.

Why is the arbitrary initial valuation $q_{n,0}$ self-fulfilled? Intuitively, if the asset valuation is low, then the growth-valuation link induces growth to be low as well. Low growth is disappointing for investors, whose required return of r_t must instead be met by capital gains. In other words, $q_{n,t}/q_{n,t}$ must rise to satisfy investors—this force brings valuations back up towards steady state. An analogous argument holds if $q_{n,0}$ takes any value slightly above steady state.

The point of the ensuing analysis in this section is to generalize these arguments. We would like to consider how the EIS ρ^{-1} matters and to understand the consequences of local indeterminacy on the aggregate valuation ratio Q_t. We will provide a complete answer to these questions.

Let us now compute the dynamics of the aggregate valuation ratio Q_t. From its definition, we have

$$Q_t = \sum_{n=1}^{N} (\dot{q}_{n,t}q_{n,t} + \alpha_{n,t}q_{n,t})$$
The dynamics of endowment shares are given by

\[\dot{\alpha}_{n,t} = \alpha_{n,t}(g_{n,t} - g_t). \] \hspace{1cm} (13)

Then, using Eqs. (10), (11), and (13), we obtain

\[\dot{Q}_t = -1 + \left[\delta + (\rho - 1)(g - \lambda q^*) \right]Q_t + \lambda(\rho - 1)Q_t^2. \] \hspace{1cm} (14)

Similar to the location-specific valuations, we may compute the local stability of the aggregate valuation. Notice that \(\frac{\partial \dot{Q}}{\partial Q} \bigg|_{Q=q^*} = \delta + (\rho - 1)g + \lambda(\rho - 1)q^*. \) If \(\rho \geq 1, \) then the steady state is unstable, in the sense that \(\frac{\partial \dot{Q}}{\partial Q} \bigg|_{Q=q^*} > 0. \) This instability suggests there can be no indeterminacy in \(Q_t, \) which must always equal its steady-state value \(q^*. \) Conversely, if \(\rho < 1, \) then the dynamics of \(Q_t \) are stable if \(\lambda \) is large enough. The right panel of Figure 1 plots the aggregate valuation dynamics for various levels of \(\rho. \) Thus, it seems that the EIS is critical for whether there can be aggregate indeterminacy.

The intuition for why the EIS affects the nature of indeterminacy—i.e., whether valuations in aggregate can be indeterminate or not—is as follows. A higher conjectured aggregate valuation \(Q_t \) leads to a higher aggregate growth rate \(g_t, \) through Eq. (7). Higher aggregate growth increases the demand for borrowing and consumption today, which raises the interest rate \(r_t \) because current aggregate output is pre-determined at \(Y_t. \) Whereas higher aggregate growth \(g_t \) tends to raise \(Q_t, \) the rise in \(r_t \) tends to offset this and lower \(Q_t; \) the balance of these effects controls whether or not aggregate indeterminacy can arise. If the EIS is high, a small rise in \(r_t \) is enough to induce savings, and so \(Q_t \) can rise in a self-fulfilled way. If the EIS is low, however, the rise in \(r_t \) must be more significant, and so the conjectured boom in \(Q_t \) cannot be self-justified. This feedback through the interest rate is what starkly distinguishes the questions of aggregate indeterminacy from that in the local economies.

2.2 General classification of equilibria

Let us now provide a general result. Staring at Eqs. (12) and (14), we see that this constitutes an autonomous dynamical system for \((q_{n,t})_{n=1}^N \) and \(Q_t. \) This dynamical system is nonlinear, but we may linearize it near steady state to evaluate its stability properties, which is the key criterion for whether or not equilibrium indeterminacy exists.

The equilibrium vector is \(\mathbf{q}_t := (q_{1,t}, \ldots, q_{N,t}, Q_t)' \), and so local stability properties
are determined via the eigenvalues of the \((N + 1) \times (N + 1)\) Jacobian matrix

\[
J := \left[\frac{\partial \dot{q}_t}{\partial q'_t} \right]_{ss}.
\]

In the appendix, we solve \(Jv = \eta v\) to compute the eigenvalues and eigenvectors of \(J\). It turns out that \(J\) has two eigenvalues,

\[
\eta_- = \delta + (\rho - 1)g - \lambda q^*\]
\[
\eta_+ = \delta + (\rho - 1)g + (\rho - 1)\lambda q^*,
\]

with the corresponding eigenvectors

\[
v(\eta_+) = 1_{N+1}
v(\eta_-) \in \{e_1, \ldots, e_N\},
\]

where \(e_n\) is the \(n\)th elementary vector. In other words, the eigenvalue \(\eta_-\) has multiplicity \(N\). Using this result, the appendix shows that the various asset prices can be written, close to steady state, as

\[
q_{n,t} \approx q^* + (q_{n,0} - Q_0) e^{\eta_- t} + (Q_0 - q^*) e^{\eta_+ t}, \quad n = 1, \ldots, N;
\]
\[
Q_t \approx q^* + (Q_0 - q^*) e^{\eta_+ t}.
\]

From these standard results, we simply examine how the various parameters influence the signs of \(\eta_-\) and \(\eta_+\) to prove the following theorem. (All proofs are in Appendix B.)

Theorem 1. Consider deterministic equilibria. Then,

(i) Suppose \(\lambda > [\delta + (\rho - 1)g]^2 > (1 - \rho)\lambda\), so that \(\eta_- < 0 < \eta_+\). Then, any equilibrium local to steady state must have \(Q_0 = q^*\), but \((q_{n,0})_{n=1}^N\) can deviate locally from steady state in arbitrary directions that satisfy \(q^* = \sum_{n=1}^N \alpha_{n,0} q_{n,0}\).

(ii) Suppose \((1 - \rho)\lambda > [\delta + (\rho - 1)g]^2\), so that \(\eta_- < \eta_+ < 0\). Then, \(Q_0\) and \((q_{n,0})_{n=1}^N\) can all deviate locally from steady state in arbitrary directions that satisfy \(Q_0 = \sum_{n=1}^N \alpha_{n,0} q_{n,0}\).

Theorem 1 allows us to make three central points that we have already hinted at. First, if the growth-valuation link is strong enough, \(\lambda > [\delta + (\rho - 1)g]^2\), then the steady state is locally stable, which permits some amount of indeterminacy. Quantitatively, the required connection between growth rates and valuations is not too extreme: if the steady-state valuation ratio is \(q^* = 25\), then growth rates must be at least 0.4% above
average when valuations are 10% above average.\(^3\) Second, if the EIS is smaller than or equal to one, \(\rho \geq 1\), then any indeterminacy is purely \textit{redistributive indeterminacy} in the sense that the aggregate valuation ratio cannot deviate from steady state. Redistributive indeterminacy means that if some locations’ valuations are high, then other locations’ valuations must be low. Third, if the EIS is larger than one, \(\rho < 1\), and the strength of growth-valuation link is sufficiently high, \(\lambda > \frac{[\delta + (\rho - 1)g]^2}{1 - \rho}\), then even the aggregate valuation ratio can be indeterminate.

![Figure 2: Indeterminacy Regions.](image)

Notes. When \((1 - \rho)\lambda > (q^*)^{-2}\), “Aggregate Indeterminacy” is possible, in the sense that \(Q\) is not pinned down. When \((1 - \rho)\lambda < (q^*)^{-2} < \lambda\), only “Redistributive Indeterminacy” is possible, in the sense that \(Q\) is pinned down, but \((q_n)_{n=1}^N\) are not. When \(\lambda < (q^*)^{-2}\), a “Unique Equilibrium” results. The plot uses \(q^* = 25\).

Figure 2 displays the indeterminacy regions implied by Theorem 1. In making the plot, \(\lambda\) and \(\rho\) are allowed to take various values, but \(q^*\) is held fixed. (Note that, unless \(g = 0\), \(q^*\) changes with \(\rho\). So implicitly we are varying \(\delta\) along with \(\rho\) in order to keep \(q^*\) fixed. One can think of this as “recalibrating” the primitive model parameters to match a given observed valuation ratio.)

In this paper, we are particularly interested in the redistributive indeterminacy, for a few reasons. First of all, only redistributive indeterminacy can exist if the EIS is below

\[^3\text{For a (100 \times p)\% higher valuation, the growth rate is higher by } \lambda((1 + p)q^*) - \lambda(q^*) = p\lambda q^* > p/q^*, \text{ where the last inequality uses the requirement } \lambda > (q^*)^{-2}. \text{ For a 10\% higher valuation (}p = 0.1\text{) with } q^* = 25, \text{ we have } p/q^* = 0.004 = 0.4\%. \text{ More generally, the semi-elasticity } \frac{d\delta_{\text{tr}}}{d\log q_{\text{tr}}} \text{ must at least be } 1/q^*\text{.}\]
one. While there is significant debate on the magnitude of the EIS, we view EIS below one as plausible.\footnote{For instance, micro evidence such as Campbell and Mankiw (1989) suggests an EIS significantly below one, whereas some macro-finance evidence stemming from the literature on “long-run risks” beginning with Bansal and Yaron (2004) point to an EIS above one. Still other studies that consider heterogeneity, such as Guvenen (2009) and Gârleanu and Panageas (2015), suggest significant heterogeneity in EIS but do not require calibrations of the EIS above one to match aggregate asset-price data.} Second, even if the EIS is above one, aggregate indeterminacy requires a significantly stronger growth-valuation link than is required to produce redistributive indeterminacy (e.g., with $\rho = 0.5$, the growth-valuation link must be twice as strong to induce aggregate indeterminacy). While no evidence exists directly measuring the magnitude of the growth-valuation link, we think too large of a link is less plausible. In sum, redistributive indeterminacy exists under much broader conditions than aggregate indeterminacy, and so we view it as more likely (see also Figure 2).

Finally, it is very clear from this deterministic environment (which necessarily has complete financial markets) that market segmentation is not critical to asset-price indeterminacy. Here, all agents consume multiples of each other and yet asset prices are indeterminate. The same will be true in the next section, where we introduce volatility but maintain complete markets.\footnote{The reader may expect the First Welfare Theorem to hold with complete markets, so how could indeterminacy emerge? Intuitively, one can understand our growth-valuation link as a pecuniary externality. Such externalities cause deviations from the First Welfare Theorem and allow equilibrium non-uniqueness.}

3 Stochastic equilibria under complete markets

In this section, we want to generalize the indeterminacy results of Section 2 by allowing for self-fulfilling stochastic fluctuations. First, we will generalize the claim that redistributive multiplicity is, in many cases, the only type of multiplicity (i.e., when the EIS is below one or when the EIS is above one but the growth-valuation link is insufficiently strong). Second, we will provide a general construction of redistributive stochastic fluctuations to highlight the factor structure in volatility. And finally, we will provide conditions under which such a construction constitutes an equilibrium.

3.1 Prevalence of redistribution

Let us first generalize the claim that redistributive indeterminacy is the “more common” type of indeterminacy in this model. In particular, any indeterminacy is necessarily redistributive when $\rho \geq 1$, and a local version of this result also holds when $\rho < 1$ if additionally the growth-valuation link is insufficiently strong. To provide a transpar-
rent derivation, assume the absence of fundamental shocks \(\nu = \hat{\nu} = 0 \)—this will be generalized in the formal results below.

With complete markets, there is perfect consumption risk-sharing, so no agent retains exposure to extrinsic shocks. In particular, the Euler equation \(\frac{c_{n,t}}{c_{n,t}} = \rho^{-1}(r_t - \delta) \) still holds here. A first implication of this perfect risk sharing is the absence of non-fundamental risk premia: the pricing equation for local equity is now the analogous expression (recall \(\mu_{n,t}^q \) is the geometric drift of \(q_{n,t} \))

\[
\mu_{n,t}^q + s_{n,t} + \frac{1}{q_{n,t}} = r_t. \tag{15}
\]

A second implication of perfect risk sharing is the lack of any precautionary savings due to extrinsic shocks, and so the equilibrium interest rate is

\[
r_t = \delta + \rho g_t, \tag{16}
\]

exactly as in a deterministic equilibrium. For these reasons, much of the analysis of Section 2 will carry over to this section.

In particular, the valuation drifts will remain identical to the deterministic case. Substituting the expressions for \(r_t \) in (16) and growth rates \(g_{n,t} \) and \(g_t \) in (6) and (7) into the pricing equation (15), we have

\[
\mu_{n,t}^q + s_{n,t} + \frac{1}{q_{n,t}} = \delta + (\rho - 1) \left(g - \lambda q^* + \lambda Q_t \right) - \lambda \left(q_{n,t} - Q_t \right). \tag{17}
\]

Using (13), (17), and the definition of \(Q_t \), the aggregate valuation ratio satisfies

\[
dQ_t = \left[-1 + \left(\delta + (\rho - 1)(g - \lambda q^*) \right) Q_t + \lambda(\rho - 1)Q_t^2 \right] dt + \sigma_t^Q \cdot dZ_t, \tag{18}
\]

where \(\sigma_t^Q := \sum_{n=1}^N \alpha_{n,t} q_{n,t} \sigma_{n,t}^q \). As before, \(Q_t \) still has unstable dynamics when \(\rho \geq 1 \), and so all indeterminacy is redistributive. The following lemma provides a general result that also allows for fundamental shocks.\(^6\)

\(^6\)Eq. (18) is a one-dimensional backward stochastic differential equation (BSDE). One solution is \(Q_t = (\delta + (\rho - 1)g)^{-1} \). Lemma 1 uses standard mathematical results on uniqueness of solutions to infinite-horizon BSDEs to prove that this is the only solution. Essentially, these BSDE tools generalize to stochastic environments the idea that unstable dynamics induce unique solutions. Note that Lemma 1 relies on a linear growth-valuation link, because otherwise the dynamics of \(Q_t \) would depend on the entire distribution of valuations \((q_{n,t})_{n=1}^N \). Although we see no clear reason why this would modify the result that redistribution is necessary, the analysis of a multi-dimensional BSDE system is substantially more complex than the one-dimensional case (especially when, as we expect to be the case for our model, the distribution of valuations is indeterminate even when the aggregate valuation is pinned down uniquely).
Lemma 1. Suppose financial markets are complete. Suppose $\rho \geq 1$. Then, the only bounded solution for the aggregate valuation is $Q_t = q^*$ forever.

Using a very similar methodology, but also restricting attention to all possible equilibria where Q_t does not exceed steady state by too much, we may also provide a counterpart to Lemma 1 for $\rho < 1$ and for a sufficiently tame growth-valuation link.

Lemma 2. Suppose financial markets are complete. Suppose $\rho < 1$, and $\lambda < \left(\frac{1}{1+\varepsilon}\right)^2\left(\frac{1}{1-\rho}\right)\left(\frac{1}{q^*}\right)^2$, for some $\varepsilon > 0$. Then, among equilibria where $Q_t \leq q^*(1+\varepsilon)$ forever, the only solution for the aggregate valuation is $Q_t = q^*$ forever.

3.2 General construction of redistributive fluctuations

If Q_t is constant, any indeterminacy is purely redistributive. Here, we flesh out the implications of redistributive fluctuations—the analysis of this section applies even beyond complete financial markets, and will be used later when markets are segmented.

In particular, constant aggregate valuations require, from Eq. (18),

$$\sum_{n=1}^{N} \alpha_{n,t}q_{n,t}\sigma_{n,t}^q = 0. \quad (19)$$

In other words, extrinsic shocks must offset across local prices. There are infinite number of choices for $(\sigma_{n,t}^q)_{n=1}^{N}$ that satisfy (19). The general solution is as follows. Let M_t be any $N \times N$ matrix-valued process with unit length columns and rank(M_t) < N. Then, for an arbitrary vector v_t in the null-space of M_t, set

$$\begin{bmatrix} \alpha_{1,t}q_{1,t}\sigma_{1,t}^q & \alpha_{2,t}q_{2,t}\sigma_{2,t}^q & \cdots & \alpha_{N,t}q_{N,t}\sigma_{N,t}^q \end{bmatrix} = M_t\text{diag}(v_t). \quad (20)$$

Every collection of diffusions $(\sigma_{n,t}^q)_{n=1}^{N}$ that solve Eq. (19) must take the form (20) for some M_t and v_t. However, this solution is a bit too general to be useful. By appealing to a few sensible properties, that in particular restrict M_t, we aim to characterize a “broad class” of redistributive equilibrium volatilities.

Assumption 1. In equilibria satisfying Eq. (19), equivalently Eq. (20), we assume that $M_t \equiv M$ is constant over time and satisfies rank(M) = $N - 1$.

Assumption 1 restricts M_t in two ways. First, setting $M_t \equiv M$ to be a constant matrix equivalently restricts the cross-sectional price correlations to be constant (it will be clear soon that $\text{corr}_t[d \log q_{i,t}, d \log q_{j,t}] = (M_t e_i)' M_t e_j$). The idea here is that coordination
determines these cross-sectional correlations, and it seems sensible and more sustainable for such coordination to be relatively anchored over time. As the simplest way to capture such anchored correlation, we restrict $M_t \equiv M$ to be a constant matrix.

Second, we only consider matrices with one degree of degeneracy. This restriction is justified by the following mathematical property: among all possible choices of M, those with $\text{rank}(M) = N - 1$ are of “full measure” in the sense that a random singular matrix would have a rank of $N - 1$ with probability 1. Intuitively, one can imagine agents trying to coordinate on a volatile equilibrium; almost-surely they will coordinate on one where $\text{rank}(M) = N - 1$. For this reason, assuming $\text{rank}(M) = N - 1$ is really a generic property of our volatile equilibria.

Let us now explain how to construct all possible volatile and redistributive equilibria. More specifically, the following procedure can be used to construct every possible solution to Eqs. (19)-(20) that satisfies Assumption 1.

Lemma 3. Consider the following procedure:

1. Pick any non-negative, non-zero $N \times 1$ vector v^* with unit length. Set the matrix M to any $N \times N$ matrix with $\text{null}(M) = \text{span}(v^*)$.

2. Let $(\psi_t)_{t \geq 0}$ be any non-negative scalar process.

3. Set

$$\sigma_{n,t}^q = \psi_t \frac{v^*_n}{\alpha_{n,t} q_{n,t}} M e_n, \quad (21)$$

where v^*_n is the nth element of v^*, and e_n is the nth elementary vector.

Then, $(\sigma_{n,t}^q)_{n=1}^N$ solves Eq. (19) for each t. Furthermore, every solution to Eq. (19) that also satisfies Assumption 1 can be constructed by the above procedure.

The key implication of Lemma 3 is a single-factor structure in volatilities. Indeed, note that the level of volatility in each location is given by

$$\|\sigma_{n,t}^q\| = \psi_t \frac{v^*_n}{\alpha_{n,t} q_{n,t}}. \quad (22)$$

These volatilities feature a scalar process ψ_t that moves all volatilities up and down together. As explained by the lemma, this is a necessary outcome: every set of redistributive volatilities satisfying Assumption 1 has such a structure. Whereas it is often difficult to pinpoint generic predictions in models of multiple equilibria, this single-factor
3.3 Constructing a volatile equilibrium with redistribution

Consider redistributive fluctuations constructed via the procedure in Lemma 3. The remaining question is which choices of ψ_t and v^* constitute an equilibrium? Can we have $\psi_t > 0$ at some times, so that there exists self-fulfilling volatility?

To answer this question, we will appeal to stability considerations: as long as we construct volatilities in a way that keeps valuations non-explosive, we will have an equilibrium. How can one ensure non-explosion? Start from Eq. (17), and substitute $Q_t = q^*$ and the diffusion (21), to get the following dynamic equation for local valuations:

$$
 dq_{n,t} = \left[-1 + q_{n,t} \left(\delta + (\rho - 1)g - \lambda (q_{n,t} - q^*) \right) \right] dt + \psi_t \frac{q_{n,t}^*}{\alpha_{n,t}} (Me_n) \cdot dZ_t, \quad (23)
$$

The key issue for equilibrium is whether the dynamics in (23) keep $q_{n,t}$ from hitting zero or from exploding towards infinity (and thereby violating some Ponzi condition). Luckily, the drift of $q_{n,t}$ in (23) is identical to the deterministic equilibrium case, so we expect the stability properties to carry over here. The following proposition settles how ψ_t can be chosen to ensure equilibrium (generalized to allow fundamental shocks).

Proposition 1. Suppose financial markets are complete. Suppose $\lambda > (q^*)^{-2}$. Assume either $N \geq 3$ or $\hat{v} = 0$. Then, an equilibrium exists with redistributive self-fulfilling volatility, which can be constructed as follows. Set v^* and M according to Step 1 of Lemma 3. Let $(\psi_t)_{t \geq 0}$ be any non-negative process satisfying the following two properties:

(P1) $\psi_t / \min_n \alpha_{n,t}$ is bounded;

(P2) ψ_t vanishes as $\min_n q_{n,t}$ approaches $1/q^*(\epsilon + \lambda^{-1})$ from above, for $0 < \epsilon < (q^*)^2 - \lambda^{-1}$, or as $\max_n q_{n,t}$ approaches Kq^* from below, for some $K > 1$.

In this construction, we have $\frac{1}{q^*} < q_{n,t} < Kq^*$ for all t, almost-surely.

Proposition 1 proves the existence of a large class of equilibria with self-fulfilling volatility, indexed by the scalar process ψ_t. The amount of volatility is only restricted by the requirements (P1) and (P2), which say that volatility vanishes “far from steady state” (P2) and that all volatilities stay bounded (P1). If so, then volatility never pushes valuations outside of their “stable region” which ensures that no explosion or free disposal condition is violated. While conditions (P1)-(P2) involve the endogenous objects.
Remark 1. The remainder of the paper is primarily focused on redistributive volatility, where \(Q_t \) is not subject to sunspot shocks. That said, it is possible to construct an example where \(Q_t \) also has sunspot volatility, as long as the EIS is larger than one (\(\rho < 1 \)) and the growth-valuation link is sufficiently strong (\(\lambda > \frac{1}{(1-\rho)(q^*)^2} \)). Internet Appendix D contains a formal result and example construction.

Remark 2. This section and main results have been presented focusing on indeterminacy of the sunspot volatilities \((\sigma^q_{n,t})_{n=1}^N \). However, by following the logic closely, the reader will rightly guess that there is also an indeterminacy on how the local valuations \(q_{n,t} \) load on the fundamental shocks; that is, \((\mathcal{V}^q_{n,t})_{n=1}^N \) and \((\tilde{\Psi}^q_{n,t})_{n=1}^N \) are also indeterminate. For example, suppose we consider redistributive indeterminacy. Then, the fundamental exposures would be subject to redistribution conditions analogous to Eq. (19), e.g.,

\[
\sum_{n=1}^{N} \alpha_{n,t} q_{n,t} \mathcal{V}^q_{n,t} = 0
\]

for the exposures to the aggregate shock \(dB_t \). Besides satisfying this redistribution condition, the exposures could take nearly arbitrary values cross-sectionally. If we further impose a constant-correlation assumption (as in Assumption 1), redistributive aggregate exposures would necessarily take the form \(\mathcal{V}^q_{n,t} = \psi_t \frac{v^*_{n,t}}{\alpha_{n,t} q_{n,t}} \) for some scalar process \(\psi_t \) and some vector \(v^* \). This paper does not explore these possibilities in more detail for two reasons: (i) we view it as simpler and theoretically clearer to study indeterminacies via an extrinsic shock; and (ii) redistribution of fundamental exposures is required under identical conditions as redistribution of sunspot exposures.

3.4 Alternative sources of endogeneity and stability

By now, it should be clear that endogenous growth rates are essential. Having understood that the role of endogenous growth is to induce stable dynamical systems, a natural question is whether alternative sources of endogeneity might work similarly. Internet Appendix C provides three additional examples of endogeneity that also work as “stabilizing forces.”

In Internet Appendix C.1, we show that valuation-dependent beliefs can create a stable dynamical system and hence support self-fulfilling volatility. In particular, we suppose that, while true growth rates remain constant, investors become more optimistic

\[
\forall t \in \mathbb{N}, \quad \psi_t := \min_n \alpha_{n,t} \wedge (Kq^t - \max_n q_{n,t}) \wedge (\min_n q_{n,t} - \frac{\epsilon + \lambda - 1}{q^t}).
\]

Then, \(\psi_t = \tilde{\psi}_t \land L\psi_t \) satisfies (P1)-(P2).
about growth when valuations rise. Perhaps agents use asset prices to construct their beliefs about growth to simplify a complex underlying filtering problem, or perhaps rising asset prices just create euphoria amongst investors. Either way, such optimism about growth encourages asset demand which fulfils the initial conjecture of a higher valuation. This specification mirrors our baseline model’s growth-valuation link, but only in investors’ heads. An interesting outcome is that beliefs are endogenously extrapolative (Barberis et al., 2015).

In Internet Appendix C.2, we show that under-investment, of the type induced by “debt overhang” (e.g., Hennessy, 2004; DeMarzo et al., 2012), creates the needed stability. The main idea is that potential gains from investment are high relative to actual investment, which leaves some surplus on the table. As prices rise and boost investment, debt overhang problems shrink, and some of this surplus is captured by local investors. The extra returns gained this way compensate investors for lower dividend yields and ensure stable price-dividend ratios. An intriguing implication is that under-investment can be a self-fulfilling phenomenon for reasons other than those previously identified (e.g., non-convex technologies or borrowing constraints).

In Internet Appendix C.3, we show that an overlapping generations economy with “creative destruction” (e.g., Aghion and Howitt, 1992; Gârleanu and Panageas, 2020) also produces the required stability. Creative destruction here is represented as new firms entering and displacing incumbents. If the amount of creative destruction is itself a function of asset prices, high asset prices can be self-fulfilled by a reduction in new firm entry, and vice versa. High valuations reduce dividend yields to investors, but living cohorts are compensated with the preservation of their firms, which removes the need for valuations to continue growing and thus creates stability.

Economically, Eq. (6) and the examples in Internet Appendix C share a common property: when valuations rise so that dividend yields fall, investors are compensated somehow. This compensation can take the form of higher dividend growth rates, higher perceived growth rates, a drop in under-investment wedges, or less creative destruction. It is likely that many other examples of stabilizing forces also exist. By identifying several, we stress that a wide range of plausible environments all generate a similar type of stability that can support self-fulfilling volatility.

4 Segmented markets

While the previous sections with complete markets demonstrated transparently how to detect indeterminacies and construct self-fulfilling volatility, we are particularly inter-
ested in a situation where markets are segmented. We begin with an example construction of an equilibrium with self-fulfilling volatility. Then, we explore some key properties, including the effects of price volatility on consumption, risk premia, and the bond market.

4.1 Construction: log utility and self-fulfilling volatility

Let us first generalize the construction of self-fulfilling fluctuations to an environment with market segmentation. Because the analysis becomes substantially more complex with segmentation, we assume from here on that $\rho = 1$ (i.e., log utility).

The first property that carries over to this environment is redistribution. Investors with log utility consume a fraction δ of their wealth, so the aggregate wealth-consumption (price-dividend) ratio is $Q_t = \delta^{-1}$. Therefore, any self-fulfilling volatility is necessarily redistributive across locations, and the volatility construction of Lemma 3 continues to hold. Due to analytical complexity, we do not prove the necessity of redistribution for the non-log case, but we would expect this to be true (i.e., we expect versions of Lemmas 1-2 to carry over to the segmented-markets setting).

The next proposition provides a segmented-markets counterpart to the complete-markets existence and characterization result from Proposition 1. The upshot is that, as before, a large class of equilibria exists with self-fulfilling volatility, indexed by the single volatility factor ψ_t.

Proposition 2. Suppose $\rho = 1$ and $\lambda > \delta^2$. Assume either $N \geq 3$ or $\hat{\nu} = 0$. Then, an equilibrium exists with redistributive self-fulfilling volatility, which can be constructed as follows. Set v^* and M according to Step 1 of Lemma 3. Let $(\psi_t)_{t \geq 0}$ be any non-negative process satisfying the following two properties:

(P1) $\psi_t / \min_n a_{n,t}$ and $\psi_t / \min_n x_{n,t}$ are bounded;

(P2) ψ_t vanishes as $\min_n q_{n,t}$ approaches $\delta(\epsilon + \lambda^{-1})$ from above, for $0 < \epsilon < \delta^{-2} - \lambda^{-1}$, or as $\max_n q_{n,t}$ approaches $K\delta^{-1}$ from below, for some $K > 1$.

In this construction, we have $\frac{\delta}{\lambda} < q_{n,t} < K\delta^{-1}$ for all t, almost-surely.

8Intuitively, we expect such results to hold, because the complete- and segmented-markets model dynamics coincide when endogenous volatilities “vanish far from steady state.” Ultimately, the stability or instability properties of Q_t dynamics when such volatilities vanish are what determines whether or not there can be aggregate indeterminacy or not. However, proving this formally is substantially more difficult with segmentation because the BSDE for the aggregate valuation now depends on the full cross-section of endowment shares, consumption shares, wealth-consumption ratios, and asset valuations.
Remark 3 (Bond market). While we assume local equity markets are segmented, we do require some amount of integration. In particular, the bond market must remain integrated for our multiplicity results. One obvious way to see this is to imagine a single location living in autarky (i.e., both equity and bond markets are segmented from all other locations). That would correspond to a single-location model ($N = 1$), and we already know such an economy cannot exhibit indeterminacy when $\rho = 1$.

Another way to understand the importance of the bond market is to think through the mechanics of equilibrium. If the valuation $q_{1,t}$ increases to an extrinsic shock, agent 1 will have higher future endowments via the growth-valuation link. Knowing her future endowments will be higher, it is optimal to consume now. But her local endowment $y_{1,t}$ has not changed in the short run; to consume in excess of her endowment—i.e., to consume $c_{1,t} > y_{1,t}$—she must borrow from other locations. The reverse holds for agent 2 who supplies funds to the bond market, due to a reduction in his local valuation ratio: his future endowments are lower, which incentivizes savings to smooth consumption. Without the bond market, no valuation changes could be justified.

Remark 4 (Partial equity-issuance). Our equity markets are completely segmented, but this is not essential. Indeed, imagine agent n could issue equity to outsiders, up to maximum of $\phi q_{n,t} y_{n,t}$. Then, local investors still must retain a fraction $1 - \phi$ of their local equity shocks, which is enough to create the phenomena we will discuss below—self-fulfilling consumption fluctuations, risk premia, and precautionary savings demand.

4.2 Real effects and risk premia

So far, the equilibria with segmented markets are similar to those with complete markets: self-fulfilling fluctuations exist, are characterized by a single factor, and are redistributive across markets.

The novelty under segmented markets is that each agent n is exposed to non-tradable shocks, through the extrinsic shocks hitting their local asset price. Two consequences arise: (i) self-fulfilling asset-price volatility has real effects by creating fluctuations in the cross-sectional consumption distribution; (ii) agents now command risk premia as compensation for self-fulfilling fluctuations.

The argument is as follows. In segmented markets, agent n must hold the entirety of asset n, so price shocks hit her wealth. With log utility, these wealth shocks transmit one-for-one to consumption. Therefore, redistribution in asset valuations causes consumption redistribution. Furthermore, because marginal utility fluctuates with consumption, agents necessarily demand risk compensation for their sunspot exposures.
Figure 3 plots the expected capital gains $q_n \mu_n^q$ in a “symmetric” stochastic equilibrium example with $N = 2$ locations. (In particular, we assume M and v^* are such that a single extrinsic shock redistributes across the two locations.) The different values of ψ correspond to different levels of volatility, since recall $\alpha_{n,t} q_n \sigma_{n,t}^q = \psi_t$. For $\psi = 0$ (solid line), dynamics are identical to the deterministic equilibrium. For $\psi > 0$, the presence of volatility steepens the drift, because low-valuation locations have higher return volatility and thus higher risk premia. Risk premia must be met by higher expected capital gains, so this force increases μ_n^q when $q_{n,t}$ is low, and vice versa when $q_{n,t}$ is high.

Indeed, the formula for the valuation drift without fundamental shocks and with log utility ($\rho = 1$) is

$$q_{n,t} \mu_n^q = -1 + \delta (1 + \lambda / \delta^2) q_{n,t} - \lambda q_{n,t}^2 + \delta^2 \left(\frac{v^* \psi_t}{\alpha_{n,t} x_{n,t}} \right)^2 - q_{n,t} \delta^2 \sum_{i=1}^N \left(\frac{v^* \psi_i}{x_{i,t}} \right)^2$$

(24)

where recall $x_{n,t}$ is the location-n consumption share. (The general formula for μ_n^q is
in Eq. (A.2) of Appendix A.) The term labeled “deterministic component” is the entire drift when \(\psi_t = 0 \) and is identical to \(q_{n,t} \) in Eq. (10). The term labeled “risk premium” arises because investor \(n \) demands compensation for the self-fulfilling volatility in his local equity, a risk premium which must be delivered via future capital gains. We will elaborate in detail on term labeled “precautionary savings,” which arises from the equilibrium interest rate, in Section 4.3 below. To see transparently the steepening effect that \(\psi > 0 \) has in Figure 3, simply observe that \(q_{n,t} \) scales the precautionary savings term, so that tends to dominate the risk premium term when \(q_{n,t} \) is high, and vice versa.

4.3 Precautionary savings and the bond market

How does self-fulfilling volatility feed back into the bond market? The equilibrium interest rate of our model is given by

\[
 r_t = \delta + \rho g_t - \frac{1}{2} \rho (\rho + 1) v^2 - \frac{1}{2} \rho (\rho + 1) \sum_{n=1}^{N} x_{n,t} \| \sigma_{c_{n,t}} \|^2
\]

(25)

If all locations were perfectly integrated, a representative agent would exist and the equilibrium interest rate would be \(\delta + \rho g_t - \frac{1}{2} \rho (\rho + 1) v^2 \), which reflects discounting plus growth minus the precautionary savings motive due to aggregate volatility.

If locations are segmented, and self-fulfilling volatility takes hold, then an additional precautionary savings term arises. In particular, \(\| \sigma_{c_{n,t}} \| \) is agent \(n \)’s consumption growth exposure to extrinsic shocks. Consumption growth is exposed to extrinsic shocks because local equity is exposed and agents cannot share this risk with other locations. Such risk is idiosyncratic, because it necessarily aggregates to zero across locations (i.e., \(\sum_{n=1}^{N} x_{n,t} \sigma_{c_{n,t}} = 0 \), because aggregate consumption \(Y_t \) is not exposed to extrinsic shocks). As in classical models of exogenous idiosyncratic risks, all agents want to save to self-insure against this idiosyncratic risk, which has the effect of reducing \(r_t \) (Bewley, 1986; Huggett, 1993; Aiyagari, 1994).

In our log utility (\(\rho = 1 \)) example construction from Proposition 2, the idiosyncratic precautionary savings term becomes

\[
 \sum_{n=1}^{N} x_{n,t} \| \sigma_{c_{n,t}} \|^2 = \sum_{n=1}^{N} \frac{1}{x_{n,t}} (\delta x_{n,t} q_{n,t})^2 \| \sigma_{c_{n,t}} \|^2 = (\delta \psi_t)^2 \sum_{n=1}^{N} \frac{(\sigma_{c_{n,t}})^2}{x_{n,t}}
\]

A rise in the volatility factor \(\psi_t \) increases all agents’ idiosyncratic risks, which increases
the precautionary savings motive.

The poorest agents (i.e., locations with low $x_{n,t}$) have the highest marginal utility and are thus most sensitive to a rise in volatility. In equilibrium, these poor agents will decrease their consumption to pay down existing debt balances as ψ_t rises, while richer agents will consume more today by reducing their savings. To see this dynamic, examine the expected consumption growth rate of each location in equilibrium:

$$\mu_{c,n,t} = r_t - \delta + \nu^2 + \left(\frac{\delta \psi_t v_n^*}{x_{n,t}} \right)^2$$

(This is simply agent n’s Euler equation, with extrinsic consumption volatility $\sigma_{c,n,t}$ substituted in.) If ψ_t rises, consumption growth rises in poor locations (those with small $x_{n,t}$) and falls in rich locations (high $x_{n,t}$). As suggested earlier, this happens because poor locations strongly increase their precautionary savings when idiosyncratic risk rises.

5 Applications

In this section, we discuss two applications of self-fulfilling volatility in segmented markets. The first considers “locations” to be firms and explores the growth and risk premium consequences of excess idiosyncratic volatility. The second application interprets “locations” as countries in an international macroeconomy, which features excess volatility of exchange rates and can speak to some international finance puzzles. For all results of this section, we assume consumers have log utility ($\rho = 1$).

5.1 Firm-specific risks and undiversified insiders

In this section, we interpret each “location” n as a firm, and “representative investor” n as the corporate insiders of that firm (e.g., CEOs). With the model applied to firms, many microfoundations of a growth-valuation link seem plausible. Endogenous cash flow growth rates can be thought of here as “feedback effects” between stock prices and investment (Bond et al., 2012). Alternatively, as discussed in Internet Appendix C.2, one could consider firms with debt outstanding, in which case debt-overhang problems lead to a connection between valuations and investment efficiency. Either interpretation seems appropriate for firms, and both foster self-fulfilling volatility.

Our segmentation assumptions also seem plausible in this application. In fact, firm insiders are often not fully diversified (May, 1995; Guay, 1999; Himmelberg et al., 2002; Panousi and Papanikolaou, 2012) and their individual preferences and other character-
istics seem to matter in firms’ decision processes (Bertrand and Schoar, 2003; Graham et al., 2013). Such concentrated risk exposure can arise as an optimal pay-for-performance compensation contract in the presence of moral hazard or signalling-selection issues (Holmström, 1979; Leland and Pyle, 1977; Rock, 1986). Our model partly captures this phenomenon. We say “partly” because our investors have access to a futures market that allows them to share risks from the location-specific fundamental shocks $d\hat{B}_t$. If we wanted to better capture a setting of corporate insiders, we could also eliminate this particular futures market, in which case the insiders would effectively be holding a portfolio of their firm’s equity along with outside borrowing/lending (position in riskless bonds) and trading in the aggregate stock market index (futures on dB_t).9

Self-fulfilling volatility is in many cases redistributive, in that it aggregates to zero. Yet this idiosyncratic volatility features a common component: firm-n self-fulfilling return volatility is $\|\sigma_{n,t}^q\| = \psi_t v_{n,t}/\alpha_{n,t} q_{n,t}$, which scales with the common factor ψ_t. (Recall: the single-factor structure comes from assuming a stable cross-correlation structure, and then examining the “full measure” of remaining volatile equilibria.) In the data, Campbell et al. (2001) and Herskovic et al. (2016) document a significant and highly time-varying common component in idiosyncratic return volatility.

Not only should idiosyncratic stock returns contain a common factor, fundamentals should too. Indeed, firms that are doing particularly well in the stock market should also have particularly high investment and growth rates. Firms doing poorly should be “underinvesting.” This spread between firm-level growth rates is also magnified by the common volatility factor ψ_t.

The firm dynamics literature (Hopenhayn, 1992; Sutton, 1997; Luttmer, 2007; Gabaix, 2009) has emphasized random log-normal growth (plus a “friction”) as a possible reason for the fat-tailed firm size distribution. One quantitative difficulty has been explaining the thickness of the tail with realistic levels of firm-specific volatility. Our framework can alleviate this issue, since larger firms will tend to grow faster. In general, a positive

9In such an extension, the key modification would be that fundamental idiosyncratic risk demands a risk premium from undiversified insiders. Mathematically, the absence of a futures market for $d\hat{B}_t$ implies $\hat{\theta}_{n,t} = 0$ for each n, which implies insider consumption growth has the following exposure to $d\hat{B}_t$:

$$\frac{1}{dt} \text{Cov}_t \left[\frac{d\hat{G}_n}{\hat{c}_{n,t}}, d\hat{B}_t \right] = \frac{\delta \alpha_{n,t} q_{n,t}}{x_{n,t}} (\hat{\nu}_{n,t} + \hat{\zeta}_{n,t})_t.$$

(See Eq. (A.12) in Appendix A with $\hat{\theta}_{n,t} = 0$ substituted.) Consequently, the expected capital gain in Eq. (A.2) must be augmented by the risk premium from this exposure, namely $\frac{\delta \alpha_{n,t} q_{n,t}}{x_{n,t}} \|\hat{\nu}_{n,t} + \hat{\xi}_{n,t}\|^2$. This modification would substantially complicate the type of equilibrium construction done in Proposition 2, because now the dynamics of $q_{n,t}$ become coupled with those of $\alpha_{n,t}$ and $x_{n,t}$, even when valuation volatility vanishes. However, the spirit of the analysis does not change.
correlation between size and growth rates will magnify the size dispersion in any real variable such as sales.

Although it is redistributive, self-fulfilling volatility commands a risk premium, because insiders hold concentrated, undiversified exposures to their own stocks. While the other implications above would hold even without this concentrated exposure, segmentation is required for this risk premium implication. From Eq. (24), the idiosyncratic risk premium for firm-n equity is given by

$$\text{risk premium} = \frac{\delta (\psi_t v_n^*)^2}{x_{n,t} \alpha_{n,t} q_{n,t}}.$$

When self-fulfilling volatility spikes (ψ_t rises), measured risk premia also rise. In the data, Herskovic et al. (2016) find that the common component in idiosyncratic volatility is priced, consistent with this implication.

The expression for the idiosyncratic risk premium also hints at how certain stock market anomalies may be related to our mechanisms. The risk premium is higher for firms with low valuations (so-called value firms with low $q_{n,t}$) and low market cap (so-called small firms with low $\alpha_{n,t} q_{n,t}$)—see Fama and French (1992). Given the vast amount of research on these issues, we should not overemphasize this connection, but it is interesting that it emerges naturally from our framework.

5.2 International macro and exchange rates

Our next application interprets “locations” as countries. In this context, there are several plausible justifications for our growth-valuation link, or the related endogeneity mechanisms discussed in Internet Appendix C. Many mechanisms that work at the more micro level also aggregate to the country level. For instance, an entire country can have extrapolative beliefs about their growth rate (Internet Appendix C.1) or macro-level debt overhang problems (Internet Appendix C.2). Second, to engender self-fulfilling volatility, the creative destruction version of the model (Internet Appendix C.3) only requires displacement risk within a country and as a function of the local economy valuation—this is a plausible description of how entrepreneurship works, given that the outside option is another activity within the same country.

Partial equity market segmentation is also a reasonable assumption in international finance, and several studies have argued it can potentially speak to some puzzling observations (Gabaix and Maggiori, 2015; Lustig and Verdelhan, 2019; Itskhoki and Mukhin, 2021). We will discuss how our model, simply through non-fundamental fluctuations in
asset prices, can help address excess exchange rate volatility (e.g., the PPP puzzle), international risk-sharing puzzles (e.g., Backus-Smith puzzle), and carry trade returns (e.g., UIP puzzle). Because our non-fundamental volatility has a factor structure, it also connects to an international finance literature that has discovered a latent factor governing the lion’s share of exchange rate and global financial market movements.

To tailor our model to the international setting, we introduce a non-tradable endowment \(\hat{y}_{n,t} \). For simplicity and theoretical clarity on what is new with our framework, we assume \(\hat{y}_{n,t} \) follows the same time-series growth process as the tradable \(y_{n,t} \) in Eq. (1); in particular, let \(\hat{y}_{n,t} = \kappa y_{n,t} \) for all \(n \). The representative agent of country \(n \) consumes \(\hat{c}_{n,t} \) of the non-tradable, which in equilibrium is \(\hat{c}_{n,t} = \hat{y}_{n,t} \). The tradable market still clears globally via \(\sum_{n=1}^{N} c_{n,t} = \sum_{n=1}^{N} y_{n,t} \). Agents have preferences over a Cobb-Douglas aggregate of tradables and their local non-tradable, i.e.,

\[
E_0 \left[\int_0^\infty e^{-\delta t} \left(\phi \log(c_{n,t}) + (1 - \phi) \log(\hat{c}_{n,t}) \right) dt \right].
\] (26)

We set the tradable good as the numéraire, so let \(p_{n,t} \) be the relative price of the country \(n \) non-tradable. We let \(q_{n,t} \) still be the local valuation ratio, so that the total value of the local endowment is \(q_{n,t} (y_{n,t} + p_{n,t} \hat{y}_{n,t}) \). Finally, we continue assume a growth-valuation link according to the linear functional form (6), so that the country \(n \) output growth rate is \(g_{n,t} = g + \lambda (q_{n,t} - \delta^{-1}) \).

This non-tradables setting is identical to Backus and Smith (1993) and many other studies. The solution is as follows. In this model, the consumption basket and price index of country \(n \) are given by

\[
C_{n,t} := c_{n,t}^{1-\phi} \hat{c}_{n,t}^{\phi},
\]

\[
P_{n,t} := \frac{c_{n,t} + p_{n,t} \hat{c}_{n,t}}{C_{n,t}}.
\]

The total expenditure of country \(n \) is thus \(P_{n,t} C_{n,t} \). Because of log utility, agents optimally spend \(\delta \) fraction of their wealth, so

\[
P_{n,t} C_{n,t} = \delta w_{n,t}.
\] (27)

Cobb-Douglas period utility implies the optimal expenditure shares of tradables and non-tradables are \(\phi \) and \(1 - \phi \), respectively:

\[
c_{n,t} = \phi P_{n,t} C_{n,t} \quad \text{and} \quad p_{n,t} \hat{c}_{n,t} = (1 - \phi) P_{n,t} C_{n,t}.
\] (28)
Using Eqs. (27)-(28) and non-tradable market clearing \(\hat{c}_{n,t} = \hat{y}_{n,t} \), the price index can be written

\[
P_{n,t} = \phi^{-1} \left(\frac{c_{n,t}}{\hat{y}_{n,t}} \right)^{1-\phi} = \phi^{-1} \left(\frac{\delta w_{n,t}}{\hat{y}_{n,t}} \right)^{1-\phi}.
\]

The real exchange rate \(\varepsilon_{i,j}^{n} \) between countries \(i \) and \(j \), defined as the ratio of their price indexes, is

\[
\varepsilon_{i,j}^{n} := \frac{P_{j,t}}{P_{i,t}} = \left(\frac{x_{j,t}}{x_{i,t}} \right)^{1-\phi},
\]

where \(x_{i,t} \) is the tradable consumption share of country \(i \) (because of log utility, \(x_{i,t} \) is equivalently the wealth share of country \(i \)).

The remainder of equilibrium is very similar to the baseline model without non-tradables. Most importantly, there exist non-fundamental equilibria in which the valuation ratios \((q_{n,t})_{n=1}^{N} \) are hit by sunspot fluctuations that necessarily redistribute across countries. We will continue to refer to \(\psi_{t} \) as the corresponding volatility factor. The full details of equilibrium derivation with non-tradables are in Internet Appendix E.

The sunspot equilibria of this model are helpful in resolving a surprising number of exchange rate puzzles. First, real exchange rates in Eq. (29) inherit additional sources of volatility from the wealth shares \((x_{n,t})_{n=1}^{N} \). Indeed, the dynamics of \(x_{n,t} \) are given by

\[
\frac{dx_{n,t}}{x_{n,t}} = (\delta \psi_{t})^{2} \left[\left(\frac{v_{n}^{*}}{x_{n,t}} \right)^{2} - \sum_{i=1}^{N} x_{i,t} \left(\frac{v_{i}^{*}}{x_{i,t}} \right)^{2} \right] dt + \delta \psi_{t} \left(\frac{v_{n}^{*}}{x_{n,t}} \right) Me_{n} \cdot dZ_{t}.
\]

Because wealth shares are driven by extrinsic shocks, our model features higher volatility of the real exchange rate over and above macroeconomic aggregates. This provides a partial resolution to the classic volatility puzzles of Meese and Rogoff (1983) and Mussa (1986).\(^{10}\) In terms of the direction, our model predicts a positive link between capital flows and exchange rates, as in Gabaix and Maggiori (2015): an extrinsic shock that raises \(x_{n,t} \) is necessarily accommodated by a capital flow into country \(n \) from the rest of the world (so that \(c_{n,t} \) can rise above \(y_{n,t} \)), and this causes an appreciation of country \(n \)'s real exchange rate (i.e., \(\varepsilon_{i,n}^{n} \) increases).

Second, sunspot volatility and segmented markets help break a tight positive link between exchange rates and relative aggregate consumptions across countries, provid-

\(^{10}\)Meese and Rogoff (1983) show that the nominal exchange rate is significantly more volatile than macroeconomic aggregates like consumption and output, while Mussa (1986) shows that the real and nominal exchange rate behaviors are tightly linked. See also the survey in Rogoff (1996) on the Purchasing Power Parity (PPP) puzzle.
ing some resolution to the Backus and Smith (1993) puzzle (see also Kollmann, 1995 and Corsetti et al., 2008). Different to complete-market models, sunspot shocks in our incomplete-markets model actually induce a negative comovement between exchange rates and relative consumptions. To see this, notice that the relative aggregate consumptions can be written

\[
\frac{C_{i,t}}{C_{j,t}} = \left(\frac{c_{i,t}}{c_{j,t}} \right)^{\phi} \left(\frac{\tilde{c}_{i,t}}{\tilde{c}_{j,t}} \right)^{1-\phi} = \left(\frac{x_{i,t}}{x_{j,t}} \phi \frac{\tilde{y}_{i,t}}{\tilde{y}_{j,t}} \right)^{1-\phi}.
\]

The critical observation is that \(\mathcal{E}_{i,j}^t \) and \(C_{i,t}/C_{j,t} \) move in opposite directions in response to the wealth ratio \(x_{i,t}/x_{j,t} \). Therefore, the presence of extrinsic shocks that move the wealth distribution can substantially reduce the correlation between \(\mathcal{E}_{i,j}^t \) and \(C_{i,t}/C_{j,t} \). (Note that without the wealth distribution dynamics, our model would have \(\mathcal{E}_{i,j}^t = C_{i,t}/C_{j,t} \), a particularly stark representation of the Backus and Smith (1993) puzzle.)

The “disconnect” between bilateral exchange rates and macroeconomic fundamentals also has a factor structure. In our equilibria, the volatilities of all bilateral exchange rates all rise and fall together, since there is a common factor \(\psi_t \) in sunspot volatility. The common volatility factor \(\psi_t \) could be related to the empirical factor structure in exchange rates and capital flows, documented in Lustig et al. (2011) and Rey (2015), respectively. Interestingly, both of these studies link their factors to global equity market volatility, which accords with our factor \(\psi_t \) that governs non-fundamental volatility in equity valuations.

Finally, our self-fulfilling fluctuations help explain carry trade returns and uncovered interest parity (UIP) deviations (Fama, 1984; McCallum, 1994; Engel, 1996). We compute the price of a pure discount bond that pays off one unit of the country-\(n \) consumption basket:

\[
b_{n,t \rightarrow T} := E_t \left[\frac{\xi_{n,T} P_{n,T}}{\xi_{n,t} P_{n,t}} \right].
\]

Note that, due to the normalization by \(P_{n,t} \), the price \(b_{n,t \rightarrow T} \) is denominated in units of the country-\(n \) consumption basket. One can then show that the yield-to-maturity of this bond is

\[
y_{n,t \rightarrow T} = \frac{b_{n,t \rightarrow T}}{b_{n,t \rightarrow T}} = \frac{x_{j,t}}{x_{i,t}}.
\]

\(\footnote{To compare to these papers, use Eq. (27) to write the exchange rate in terms of the aggregate consumption baskets:}

\[
\mathcal{E}_{i,j}^t = \frac{C_{i,t}}{C_{j,t}} \frac{w_{j,t}}{w_{i,t}}.
\]

Critically, the wealth ratio \(w_{j,t}/w_{i,t} = x_{j,t}/x_{i,t} \) is not constant in our incomplete-markets model. By contrast, in any complete-markets, symmetric preference model, the wealth distribution is constant.
bond, \(\text{YTM}_{n,t \to T} := -\frac{1}{T-t} \log (b_{n,t \to T}) \), is given by\(^{12}\)

\[
\text{YTM}_{n,t \to T} = \delta - \frac{1}{T-t} \log \mathbb{E}_t \left[\left(\frac{x_{n,t}}{x_{n,T}} \right)^{\phi} \left(\frac{\hat{y}_{n,t}}{\hat{y}_{n,T}} \right)^{1-\phi} \left(\frac{Y_t}{Y_T} \right)^{\phi} \right],
\]

(31)

The key observation is that poor countries with high expected wealth share growth—i.e., countries with low \(x_{n,t} \)—will have high bond yields.

It turns out that these same countries have high UIP deviations in the model. Indeed, the expected excess carry return going long the country-\(j \) bond and short the country-\(i \) bond is

\[
R^{ij}_{t \to T} := \text{YTM}_{j,t \to T} - \text{YTM}_{i,t \to T} + \frac{1}{T-t} \mathbb{E}_t [\log \mathcal{E}^{ij}_t - \log \mathcal{E}^{ij}_i].
\]

(32)

Since \(\mathcal{E}^{ij}_t \) is increasing in the wealth ratio \(x_{j,t} / x_{i,t} \), poor countries will experience an expected appreciation of their exchange rate. Such an expected appreciation further exacerbates the expected carry return \(R^{ij}_{t \to T} \) beyond what is predicted by the yield advantage of country \(j \).\(^{13}\)

So far, our discussion of various exchange rate puzzles have been based on redistributive non-fundamental volatility and segmented markets. The presence of endogenous growth adds additional testable predictions regarding the dynamic co-movement between exchange-rates and growth rates. Suppose \(\mathcal{E}^{ij}_t \) rises due to an extrinsic shock that raises country-\(n \) consumption through capital inflows. Recall that this also raises the country-\(n \) stock market valuation \(q_{n,t} \), which then feeds back into a higher growth rate \(\hat{g}_{n,t} \). Thus, inflows and exchange-rate appreciations positively forecast future growth.

Much attention has been given to the possibility that longer-term growth prospects may drive exchange-rate variation (Colacito and Croce, 2011, 2013; Colacito et al., 2018).

\(^{12}\)To derive this equation, substitute the price index \(P_{n,t} = \phi^{-1} (c_{n,t} / \hat{y}_{n,t})^{1-\phi} \) and use the optimal consumption rule \(\xi_{n,t} = e^{-\delta t} \phi c_{n,t}^{-1} \).

\(^{13}\)In this discussion, we have ignored the effects of \(\hat{g}_{i,t} \) and \(\hat{g}_{j,t} \), because their role in bond yields is offset by their role in exchange rates. To see this transparently, suppose as an approximation we take

\[
\log \mathbb{E}_t \left[\left(\frac{x_{n,t}}{x_{n,T}} \right)^{\phi} \left(\frac{\hat{y}_{n,t}}{\hat{y}_{n,T}} \right)^{1-\phi} \left(\frac{Y_t}{Y_T} \right)^{\phi} \right] \approx \mathbb{E}_t \log \left[\left(\frac{x_{n,t}}{x_{n,T}} \right)^{\phi} \left(\frac{\hat{y}_{n,t}}{\hat{y}_{n,T}} \right)^{1-\phi} \left(\frac{Y_t}{Y_T} \right)^{\phi} \right].
\]

Then, under this approximation, we have

\[
R^{ij}_{t \to T} \approx \frac{1}{T-t} \mathbb{E}_t \left[\log \left(\frac{x_{j,t}}{x_{i,t}} \right) - \log \left(\frac{x_{i,t}}{x_{i,t}} \right) \right].
\]

Thus, approximately the entire UIP deviation emerges due to wealth distribution dynamics.
A key difference in our framework is the prediction that future relative growth rates drive today’s exchange-rate variation. By contrast, the existing literature has mostly considered how a global growth factor, with international heterogeneity in exposures, could account for exchange rate dynamics and risk premia. An additional theoretical difference is that this literature requires recursive preferences with particular parameter constellations (i.e., EIS greater than one and risk aversion above the EIS), whereas our mechanisms hold for a larger class of preferences.

6 Conclusion

This paper provides a theory of self-fulfilling fluctuations that are redistributive in nature. Theoretically, the existence of such self-fulfilling volatility relies on multiple markets and an endogenous force that connects asset valuations to some aspect of the real economy—our baseline model studies a growth-valuation link, but alternatives studied in the Internet Appendix include beliefs about growth rates (as in “price extrapolation” models), underinvestment wedges (as in “debt overhang” models), and entry/exit patterns (as in “creative destruction” models). Our framework helps explain the factor structure in firm-specific volatility and various dimensions of exchange rate disconnect such as the PPP puzzle, the Backus-Smith puzzle, and the UIP puzzle.
References

Appendix

A Derivation of Equilibrium

In this appendix, we derive the complete set of equilibrium conditions that will be used throughout the entire analysis. We write these conditions generally to accommodate both segmented and integrated financial markets.

Step 1: State prices. Each location has its own state-price density \(\xi_{n,t} \), which follows
\[
d\xi_{n,t} = -\xi_{n,t} \left[r_t dt + \eta_t dB_t + \hat{\eta}_t \cdot d\hat{B}_t + \pi_{n,t} \cdot dZ_t \right].
\] (A.1)
The market prices of risk \((\eta, \hat{\eta})\) associated to \((B, \hat{B})\) are location-invariant, because markets for trading futures on these shocks are perfectly integrated. In the case of complete markets, the extrinsic shock risk prices will also be the same across locations, i.e., \(\pi_{n,t} = \pi_t\) for each \(n\). In the case of segmented equity markets, these risk prices may differ across locations.

In terms of these state prices, we have the no-arbitrage pricing relation for location-\(n\) equity:
\[
\mu_{q,t} + \xi_{q,t} = \left(r_t + \hat{\nu}_{n,t} \cdot \hat{\eta}_t \right) \frac{\xi_{n,t}}{\pi_{n,t}}\pi_t + \sigma_{q,t} \cdot \pi_{n,t}.
\] (A.2)

Where with some abuse of notation, we have defined the idiosyncratic risk exposure vector for \(y_{n,t}\):
\[
\vartheta_{n,t} := \vartheta \left[e_n - \begin{pmatrix} \alpha_{1,t} \\ \vdots \\ \alpha_{N,t} \end{pmatrix} \right] = \frac{1}{dt} \text{Cov}_t \left(\frac{dy_{n,t}}{y_{n,t}} \right) \frac{d\hat{B}_t}{y_{n,t}},
\] (A.3)

Where \(e_n\) is the \(n\)th elementary vector, and recall that \(\alpha_{n,t} := y_{n,t}/Y_t\) are the endowment shares. Eq. (A.2) suffices to ensure no arbitrage in the equity market, so long as \(q_{n,t} > 0\), which must hold in any equilibrium by free-disposal. The endowment share evolution is derived by applying Itô’s formula to the definition of \(\alpha_{n,t}\), namely
\[
\frac{d\alpha_{n,t}}{\alpha_{n,t}} = \left(g_{n,t} - g_t \right) dt + \vartheta_{n,t} \cdot d\hat{B}_t.
\] (A.4)

Step 2: Optimality. Integrating the dynamic budget constraint (3), using state-price dynamics (A.1), the pricing Eq. (A.2), and the individual transversality condition
\[
\lim_{T \to \infty} \mathbb{E}_t \left[\xi_{n,T} w_{n,T} \right] = 0,
\] (A.5)

we obtain the standard static budget constraint
\[
\mathbb{E}_t \left[\int_t^\infty \frac{\tilde{\xi}_{n,s}}{\tilde{\xi}_{n,t}} c_{n,s} ds \right] = w_{n,t}.
\] (A.6)

Note in passing that (A.6) implies \(w_{n,t} > 0\), so the solvency constraint holds automatically. Agents’ optimization problem is thus simply to maximize (5) subject to (A.6). The first-order condition of this optimization problem is
\[
e^{-\delta t} c_{n,t} = \tilde{\xi}_{n,t}.
\] (A.7)
Apply Itô’s formula to Eq. (A.7) to obtain the following optimal consumption dynamics

\[
\frac{dc_{n,t}}{c_{n,t}} = \frac{1}{\rho} \left[r_t - \delta + \frac{\rho + 1}{2\rho} \left(\eta_t^2 + ||\eta_t||^2 + ||\pi_{n,t}||^2 \right) \right] dt + \frac{1}{\rho} \left[\eta_t dB_t + \dot{\eta}_t \cdot d\tilde{B}_t + \pi_{n,t} \cdot dZ_t \right].
\] (A.8)

To solve for the initial consumption \(c_{n,t}\), given initial wealth \(w_{n,t}\) and the dynamics of state prices and beliefs, substitute (A.7) back into (A.6) to get an equation for the wealth-consumption ratio

\[
\omega_{n,t} := \frac{w_{n,t}}{c_{n,t}} = \mathbb{E}_t \left[\int_t^\infty e^{-\delta(s-t)} \left(\frac{c_{n,s}}{c_{n,t}} \right)^{1-\rho} ds \right].
\] (A.9)

In general, Eq. (A.9) is useful because the dynamics of \(c_{n,t}\) are given by Eq. (A.8) in terms of the state price density, so given all asset prices and initial wealth \(w_{n,t}\), Eq. (A.9) allows us to compute \(c_{n,t}\). (In particular, this will be useful when we study the log utility case with \(\rho = 1\), since then Eq. (A.9) collapses to \(w_{n,t}/c_{n,t} = \delta^{-1}\).) To instead represent (A.9) as a dynamic evolution equation, suppose

\[
d\omega_{n,t} = \omega_{n,t} \left[\mu_{\omega,n,t} dt + \xi_{\omega,n,t} dB_t + \xi_{\omega,n,t} \cdot d\tilde{B}_t + \sigma_{\omega,n,t} \cdot dZ_t \right]
\]

and then apply Itô’s formula to \(\xi_{\omega,n,t} c_{n,t} c_{n,t}\)

\[
\mathbb{E}_t \left[\int_t^\infty e^{-\delta(s-t)} \left(\frac{c_{n,s}}{c_{n,t}} \right)^{1-\rho} ds \right] - \int_t^\infty \xi_{\omega,n,t} c_{n,s} ds,
\]

and match drifts to obtain

\[
\mu_{\omega,n,t} = \frac{\delta}{\omega_{n,t}} - \frac{1}{2} \frac{1-\rho}{\omega_{n,t}^2} \left(\eta_t^2 + ||\eta_t||^2 + ||\pi_{n,t}||^2 \right) + \frac{\rho - 1}{\rho} \left[r_t + \eta_t \xi_{\omega,n,t} + \dot{\eta}_t \cdot \xi_{\omega,n,t} + \pi_{n,t} \cdot \sigma_{\omega,n,t} \right].
\] (A.10)

At the same time, since \(\omega_{n,t} = w_{n,t}/c_{n,t}\), the wealth-consumption ratio diffusion coefficients are

\[
\xi_{\omega,n,t} = \frac{\theta_{n,i,t}}{c_{n,t}} + \sum_{i=1}^N \frac{\theta_{n,i,t}}{w_{n,t}} (v + \xi_{n,i,t}^t) - \rho^{-1} \eta_t,
\] (A.11)

\[
\xi_{\omega,n,t} = \frac{\hat{\theta}_{n,i,t}}{w_{n,t}} + \sum_{i=1}^N \frac{\hat{\theta}_{n,i,t}}{w_{n,t}} (v + \xi_{n,i,t}^\hat{t}) - \rho^{-1} \dot{\eta}_t
\] (A.12)

\[
\sigma_{\omega,n,t}^2 = \sum_{i=1}^N \frac{\hat{\theta}_{n,i,t}}{w_{n,t}} \sigma_{n,i,t}^t - \rho^{-1} \pi_{n,t}
\] (A.13)

which identifies optimal portfolio choices \((\theta_n, \hat{\theta}_n)\), and partly identifies the equity holdings \((\theta_{n,i})\), given the wealth-consumption volatilities, asset price volatilities, and state price dynamics. With segmented equity markets, the equity holdings are also identified since \(\theta_{n,i} = 0\) for \(i \neq n\). Eqs. (A.11)-(A.13) simplify with log utility, since as mentioned earlier the wealth-consumption ratio is constant, \(\omega_{n,t} = \delta^{-1}\). For instance, with \(\rho = 1\) and segmented equity markets, Eq. (A.13) states that \(\theta_{n,i} \sigma_{n,i,t}^\hat{t} = w_{n,t} \pi_{n,t} \), so that \(\sigma_{n,i,t}^\hat{t} \cdot e_i > 0\) if and only if \(\pi_{n,t} \cdot e_i > 0\), for each \(i\).

Step 3: Aggregation. Recall the consumption shares \(x_{n,t} := c_{n,t}/Y_t\). Using (A.8), apply Itô’s formula to the goods market clearing condition \(\sum_{n=1}^N c_{n,t} = Y_t\), and match drift and diffusion coefficients to obtain an equation for the riskless rate

\[
r_t = \delta + \rho g_t - \frac{1}{2} \rho (\rho + 1)v^2 - \frac{\rho + 1}{2\rho} \sum_{n=1}^N x_{n,t} ||\pi_{n,t}||^2
\] (A.14)

expressions for the fundamental risk prices

\[
\eta_t = \rho \nu
\] (A.15)

\[
\dot{\eta}_t = 0
\] (A.16)
and finally an equation linking the extrinsic risk prices

\[0 = \sum_{n=1}^{N} x_{n,t} \pi_{n,t}. \]
(A.17)

In the case that markets are complete, \(\pi_{n,t} = \pi_t \) so Eq. (A.17) implies \(\pi_t = 0 \).

These expressions are all derived conditional on the consumption shares \((x_{n,t})_{n=1}^{N} \). Consumption share dynamics are obtained by applying Itô’s formula to the definition of \(x_{n,t} \), with the result being (after substituting several results above)

\[\frac{d x_{n,t}}{x_{n,t}} = \frac{\rho + 1}{2 \rho^2} \left(\| \pi_{t,n} \|^2 - \sum_{i=1}^{N} x_{i,t} \| \pi_{i,t} \|^2 \right) dt + \frac{\pi_{n,t}}{\rho} \cdot d Z_t. \]
(A.18)

Next, the combination of bond and equity market clearing imply the aggregate wealth constraint

\[\sum_{n=1}^{N} w_{n,t} = \sum_{n=1}^{N} q_{n,t} y_{n,t}. \]
(A.19)

Apply equity and futures market clearing conditions to Eqs. (A.11)-(A.13), also using Eq. (A.19) and the expressions for the various risk prices, to obtain

\[\sum_{n=1}^{N} \alpha_{n,t} q_{n,t} \xi_{n,t} = \sum_{n=1}^{N} x_{n,t} \omega_{n,t} \xi_{n,t}, \]
(A.20)

\[\sum_{n=1}^{N} \alpha_{n,t} q_{n,t} (\hat{v}_{n,t} + \varpi_{n,t}) = \sum_{n=1}^{N} x_{n,t} \omega_{n,t} \varpi_{n,t}, \]
(A.21)

\[\sum_{n=1}^{N} \alpha_{n,t} q_{n,t} \varpi_{n,t} = \sum_{n=1}^{N} x_{n,t} \omega_{n,t} \left[\rho^{-1} \pi_{n,t} + \sigma_{n,t}^\omega \right], \]
(A.22)

In the case of segmented equity markets, Eq. (A.23) can be replaced by the stronger location-by-location condition

\[\alpha_{n,t} q_{n,t} \sigma_{n,t} = x_{n,t} \omega_{n,t} \left[\rho^{-1} \pi_{n,t} + \sigma_{n,t}^\omega \right]. \]
(A.23)

Finally, let us also note the dynamics of the aggregate valuation ratio \(Q_t := \sum_{n=1}^{N} \alpha_{n,t} q_{n,t} \), using Eqs. (A.2), (A.4), (A.15), and (A.16):

\[d Q_t = Q_t \left[r_t - \xi_t + \rho \nu^2 - \frac{1}{Q_t} + (\rho - 1) \nu \xi_t^Q + \sum_{n=1}^{N} \frac{\alpha_{n,t} q_{n,t}}{Q_t} \sigma_{n,t}^Q \cdot \pi_{n,t} \right] dt \]

\[+ Q_t \left[\xi_t^Q dB_t + \xi_t^Q \cdot dB_t + \sigma_t^Q \cdot d Z_t \right], \]
(A.24)

where the diffusions \((\xi_t^Q, \xi_t^Q, \sigma_t^Q) \) are given by \(\xi_t^Q := \sum_{n=1}^{N} \frac{\alpha_{n,t} q_{n,t}}{Q_t} \xi_t^Q \) for the aggregate shock, \(\xi_t^Q := \sum_{n=1}^{N} \frac{\alpha_{n,t} q_{n,t}}{Q_t} (\hat{v}_{n,t} + \varpi_{n,t}) \) for the idiosyncratic shocks, and \(\sigma_t^Q := \sum_{n=1}^{N} \frac{\alpha_{n,t} q_{n,t}}{Q_t} \sigma_{n,t}^Q \) for the extrinsic.

40
B Proofs

B.1 Proof of Theorem 1

First, let us compute the Jacobian \(J \), by differentiating Eqs. (12) and (14) evaluated at the steady state \(q_n = q^* \) for all \(n \):

\[
\frac{\partial q_{n,t}}{\partial q_{m,t}}|_{ss} = \begin{cases} \delta + (\rho - 1)g - \lambda q^*, & m = n; \\ 0, & m \neq n. \end{cases}
\]

\[
\frac{\partial q_{n,t}}{\partial Q_t}|_{ss} = \rho \lambda q^*,
\]

and

\[
\frac{\partial Q_t}{\partial q_{m,t}}|_{ss} = 0, \quad \forall m
\]

\[
\frac{\partial Q_t}{\partial Q_t}|_{ss} = \delta + (\rho - 1)g + \lambda (\rho - 1)q^*
\]

With these computations, we populate the entries of \(J \).

Next, write out the equations of the eigenvalue problem \(Jv = \eta v \):

\[
(\delta + (\rho - 1)g - \lambda q^*)v_n + \rho \lambda q^*v_{N+1} = \eta v_n, \quad 1 \leq n \leq N
\]

\[
(\delta + (\rho - 1)g - \lambda q^* + \rho \lambda q^*)v_{N+1} = \eta v_{N+1}
\]

If \(v_n = v_{N+1} \) for all \(n \leq N \), then the two equations become identical for any \(\eta \). Since \(v_{N+1} \neq 0 \) in such case (otherwise the entire eigenvector would be zero), we obtain \(\eta = \delta + (\rho - 1)g + (\rho - 1)\lambda q^* \). This corresponds to the single eigenvalue \(\eta_+ \) and its unique eigenvector \(v(\eta_+) = 1_{N+1} \). If instead \(v_n \neq v_{N+1} \) for any \(n \), then we may take the difference between the two equations to obtain

\[
(\delta + (\rho - 1)g - \lambda q^*)(v_n - v_{N+1}) = \eta(v_n - v_{N+1}), \quad 1 \leq n \leq N,
\]

which implies \(\eta = \delta + (\rho - 1)g - \lambda q^* \). In this case, it is clear that unless \(\rho = 0 \) or \(\lambda = 0 \) we must have \(v_{N+1} = 0 \). This corresponds to the eigenvalue \(\eta_- \), which has multiplicity \(N \) because the set of vectors having \(v_{N+1} = 0 \) is \(N \)-dimensional. We can use the basis \((e_1, \ldots, e_N) \) for a basis of this \(N \)-dimensional space, hence our choice of the set of eigenvectors for \(v(\eta_-) \).

Given the eigenvalues-eigenvectors, we want to prove that we can write

\[
q_{n,t} \approx q^* + (q_n,0 - Q_0)e^{\eta_- t} + (Q_0 - q^*)e^{\eta_+ t}, \quad n = 1, \ldots, N;
\]

\[
Q_t \approx q^* + (Q_0 - q^*)e^{\eta_- t}.
\]

The algebra is as follows. First, note that \(J \) admits the eigen-decomposition \(J = V D V^{-1} \), where

\[
V = \begin{pmatrix} e_1 & e_2 & \cdots & e_N & 1_{N+1} \end{pmatrix} \quad \text{and} \quad D = \begin{pmatrix} \eta_- & 0 & 0 & \cdots & 0 \\ 0 & \eta_- & 0 & \cdots & 0 \\ 0 & 0 & \eta_- & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \eta_+ \end{pmatrix}
\]
Next, let \(z_t := q_t - q^* 1_{N+1} \). Then, solving the linearly approximated differential equation \(\dot{z}_t \approx J z_t \), we have

\[
\begin{align*}
 z_t & \approx V \exp(Dt) V^{-1} z_0 \\
 & = \left(e_1 \exp(\eta_- t) \ e_2 \exp(\eta_- t) \ \cdots \ e_N \exp(\eta_- t) \ (\exp(\eta_+ t) - \exp(\eta_- t)) 1_N, e^{\eta_+ t} \right) J z_0 \\
 & = \begin{pmatrix}
 (z_{1,0} - z_{N+1,0}) \exp(\eta_- t) + z_{N+1,0} \exp(\eta_+ t) \\
 \vdots \\
 (z_{N,0} - z_{N+1,0}) \exp(\eta_- t) + z_{N+1,0} \exp(\eta_+ t)
 \end{pmatrix}.
\end{align*}
\]

To complete the proof of the theorem, we map the signs of the eigenvalues into the behavior of the valuations. If \(\eta_+ > 0 \), then \(Q_t \) necessarily deviates permanently from \(q^* \). In such case, it is easy to show that the aggregate dynamics (14) feature a second steady state \(q^{**} < q^* \), which is stable, but which is inconsistent with the location-specific dynamics (12). And so any equilibrium must feature \(Q_t = q^* \) at all times.

On the other hand, if \(\eta_- < 0 \), then the dynamics of \(Q_t \) are stable near \(q^* \), meaning that any local deviation of \(Q_t \) from \(q^* \) will eventually close. In such case, there are a multiplicity of equilibria that may be indexed by \(Q_0 \), which may differ from \(q^* \).

The analysis of the local prices is similar. If \(\eta_- > 0 \), then each local price has unstable dynamics, so \(q_{n,t} = q^* \) at all times. If \(\eta_- < 0 \), then local prices have stable dynamics, so there exist a multiplicity of equilibria indexed by \((q_{n,0})_{n=1}^N \), with the restriction that \(\sum_{n=1}^N \alpha_n q_{n,0} = Q_0 \).

B.2 Existence and Uniqueness Theorem for BSDEs

Here, we cite a useful mathematical theorem from Briand and Confortola (2008) that helps us prove Lemma 1. We adapt their hypotheses and results to our situation with a finite-dimensional Brownian motion. In the results of this section, let \(B \) be a \(d \)-dimensional Brownian motion, defined on a filtered probability space \((\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P}) \), where \(\mathcal{F}_t \) is the completion of the sigma-algebra generated by \(B \).

Let \(\tau \) be an \((\mathcal{F}_t)_{t \geq 0} \) stopping time, and let \(\xi \) be a bounded \(\mathcal{F}_\tau \)-measurable random variable. Consider the following backward stochastic differential equation (BSDE):

\[
dY_t = -f(t, Y_t, Z_t)dt + Z_t dB_t, \text{ where } Y_\tau = \xi \text{ on } \{\tau < \infty\},
\]

where the generator function \(f \) is a progressively-measurable mapping,

\[
f : \Omega \times [0, \infty) \times \mathbb{R} \times \mathbb{R}^d \rightarrow \mathbb{R}
\]

and where \((y, z) \mapsto f(t, y, z) \) is continuous for all \(t \geq 0 \). A solution to the BSDE (B.1) is a pair of progressively measurable processes \((Y, Z) \) such that \(Y \) is a path-continuous process; such that on \(\{\tau < \infty\} \), we have \(Y_t = \xi \) and \(Z_t = 0 \) for \(t \geq \tau \); and such that \(f(t, Y_t, Z_t) \) belongs to \(L^1(0, T; \mathbb{R}) \) and \((Z_t)_{t \in [0, T]} \) belongs to \(L^2(0, T; \mathbb{R}^d) \) for every \(T > 0 \).

Suppose there exist two constants \(a > 0 \) and \(K > 0 \) such that \(f \) satisfies the following hypotheses:

(H.i) \(|f(t, y, z)| \leq K(1 + \|y\| + \|z\|^2) \) for all \(y, z \)

(H.ii) \(|f(t, y, z) - f(t, y, z')| \leq K(1 + \|z\| + \|z'\|)\|z - z'\| \) for all \(y \)

(H.iii) \((y - y')(f(t, y, z) - f(t, y', z)) \leq -a(y - y')^2 \) for all \(y, y', z \)

42
A solution to the BSDE is a pair \((Y_t, Z_t)_{t \geq 0}\) of progressively-measurable processes such that (B.1) holds on every interval \([t, T]\). The following result is Theorem 3.3 in Briand and Confortola (2008).

Theorem B.1. Under conditions (H.i)-(H.iii) above, there exists a unique solution \((Y, Z)\) to the BSDE (B.1) such that \(Y\) is a bounded process.

B.3 Proof of Lemma 1

Adding fundamental shocks. For the proof, we may generalize the equations listed in Section 3 to allow for aggregate and idiosyncratic fundamental shocks (i.e., \(v > 0\) and \(\tilde{v} > 0\)). The equations are the same as in Appendix A but where complete markets additionally imposes \(\pi_{n,t}\) is independent of \(n\). And so Eq. (A.17) implies \(\pi_{n,t} = 0\) for all \(n\).

Using the result \(\pi_t = 0\) in Eq. (A.24), as well as the expression for \(r_t\) in (A.14) and the expression for growth \(g_t\) in (7), the aggregate valuation ratio \(Q_t\) satisfies

\[
dQ_t = Q_t \left[\delta + (\rho - 1)(g - \lambda q^*) + (\rho - 1)\lambda Q_t - \frac{1}{2}\rho(\rho - 1)\nu^2 - \frac{1}{Q_t} + (\rho - 1)\nu \tilde{Q}_t \right] dt + Q_t \left[\xi_t dB_t + \xi_t^* \cdot d\tilde{B}_t + \sigma_t^Q \cdot dZ_t \right],
\]

where \(q^* := \left[\delta + (\rho - 1)g - \frac{1}{2}\rho(\rho - 1)\nu^2 \right]^{-1}\) is now the deterministic steady state after accounting for the presence of aggregate shocks. As usual, we implicitly make parameter assumptions such that \(q^* > 0\). (Note that there is a second value of \(Q_t\) that sets the drift above equal to zero, when \(\tilde{Q}_t = 0\), but this value is negative, which is not possible in equilibrium with free disposal.)

Corner cases \(\rho = 1\). We first handle two corner cases. If \(\rho = 1\), then the formulas of Appendix A prove that each agent consumes \(\delta\) fraction of her wealth, and so \(Q_t = \delta^{-1} = q^*\) automatically by the aggregate wealth constraint. Therefore, the remainder of the proof assumes that \(\rho > 1\).

Setting up the BSDE. The goal of the proof is to apply the existence/uniqueness Theorem B.1 in Section B.2. First, we will write the problem in a way that fits the setting of Section B.2. Applying Itô’s formula to \(U_t := \log(Q_t/q^*)\), we have

\[
dU_t = \left[\delta + (\rho - 1)(g - \lambda q^*) + (\rho - 1)\lambda q^* \exp(U_t) - \frac{1}{2}\rho(\rho - 1)\nu^2 - (q^*)^{-1} \exp(-U_t) + (\rho - 1)\nu \tilde{Q}_t \right] dt - \frac{1}{2}(\xi_t^Q)^2 - \frac{1}{2}\|\xi_t^Q\|^2 - \frac{1}{2}\|\sigma_t^Q\|^2 dt + \xi_t^Q dB_t + \xi_t^Q \cdot d\tilde{B}_t + \sigma_t^Q \cdot dZ_t.
\]

Now, let us rewrite these in a more canonical form, by collecting all shocks and exposures into the Brownian shock vector \(W := (B, \tilde{B}', Z')\) and the diffusion vector \(V_t\):

\[
dU_t = -f(U_t, V_t)dt + V_t dW_t \quad \text{(B.2)}
\]

\[
f(u, v) := \frac{1}{2}\|v\|^2 - (\rho - 1)v_1 - (\rho - 1)\lambda q^*[\exp(u) - 1] + (q^*)^{-1}[\exp(-u) - 1], \quad \text{(B.3)}
\]

where \(v_1 := e_1 \cdot v\) is the first element of \(v\). These dynamics constitute a 1-dimensional BSDE for \((U, V)\). One solution to this BSDE is clearly \((U, V) = 0\) (i.e., \(Q_t = q^*\) for all \(t\)).

Second, to be able to apply the results from Section B.2, despite the presence of the exponential function in (B.3), we need to “linearize” the generator \(f\) for extreme values of \(u\). In particular, let
$L > 0$ be an arbitrary number. Define the linearized generator f_L by

$$f_L(u, v) := \begin{cases} f(u, v), & \text{if } u \in [-L, L]; \\ f(u, v) + \Delta_L(u), & \text{if } u > L; \\ f(u, v) + \Delta_{-L}(u), & \text{if } u < -L. \end{cases}$$ \hspace{1cm} (B.4)$$

where

$$\Delta_L(u) := -f(L, v) + (u - L) \frac{\partial f}{\partial u}(L, v) = (\rho - 1)\lambda q^* \left[\exp(u) - \exp(L) - \exp(L)(u - L) \right]$$

$$- (q^*)^{-1} \left[\exp(-u) - \exp(-L) + \exp(-L)(u - L) \right]$$

$$\Delta_{-L}(u) := -f(-L, v) + (u + L) \frac{\partial f}{\partial u}(-L, v) = (\rho - 1)\lambda q^* \left[\exp(u) - \exp(-L) - \exp(-L)(u + L) \right]$$

$$- (q^*)^{-1} \left[\exp(-u) - \exp(L) + \exp(L)(u + L) \right].$$

The linearized generator $f_L(u, v)$ is continuous, as needed, and in fact is continuously differentiable.

The linearized generator defines a linearized BSDE

$$dU_t = -f_L(U_t, V_t)dt + V_tdW_t.$$ \hspace{1cm} (B.5)$$

Note that $(U, V) = 0$ is clearly a solution to the linearized BSDE (B.5), for each $L > 0$. Our goal is to show that this solution is unique. Indeed, if we are able to prove this, then since L is arbitrary and can be made arbitrarily large, we will have proved that $(U, V) = 0$ is also the unique bounded solution to the original BSDE (B.2)-(B.3).

Verify the hypotheses of the BSDE theorem. We will apply Theorem B.1 in Section B.2, with an almost-sure infinite stopping time $(\tau = +\infty)$, in which case the “terminal condition” becomes irrelevant. We verify the assumptions (H.i)-(H.iii) directly preceding the theorem, which will then prove that the solution $(U, V) = 0$ is the unique solution to (B.5).

Condition (H.i). By its linearized construction, f_L has a maximum (absolute value) slope with respect to u of $K_u := \max[(\rho - 1)\lambda q^* \exp(L), (q^*)^{-1} \exp(L)]$. Next, the (absolute value) slope of f_L with respect to $\|v\|^2$ is at most $K_v := \frac{1}{2} + |(\rho - 1)v|$, which can be seen by applying the following basic inequality: $|(\rho - 1)v| \leq |(\rho - 1)v|\|v\|^2 + |(\rho - 1)v|$. The remaining components of f_L that do not depend on (u, v) may be bounded by the constant $K_0 := |(\rho - 1)v| + (1 + \exp(L)L) + (q^*)^{-1}(1 + \exp(L)L)$. Thus, hypothesis (H.i) of Section B.2 is satisfied with $K = \max[K_0, K_u, K_v]$.

Condition (H.ii). Second, we have

$$|f_L(u, v) - f_L(u, v')| = \left| \frac{1}{2}(\|v\|^2 - \|v'\|^2) - (\rho - 1)v(v_1 - v_1') \right|$$

$$\leq \frac{1}{2}(\|v\|^2 - \|v'\|^2) + |(\rho - 1)v|\|v - v'\|$$

$$\leq \left(\frac{1}{2}(\|v\|^2 + \|v'\|^2) + |(\rho - 1)v| \right)\|v - v'\|$$

where the third line uses the triangle inequality. Hence, hypothesis (H.ii) of Section B.2 holds with $K = \max[\frac{1}{2}, |(\rho - 1)v|]$.

Condition (H.iii). Finally, to verify the strict monotonicity hypothesis, compute

$$\frac{\partial f_L(u, v)}{\partial u} = \begin{cases} -(\rho - 1)\lambda q^* \exp(u) - (q^*)^{-1} \exp(-u), & \text{if } u \in [-L, L]; \\ -(\rho - 1)\lambda q^* \exp(L) - (q^*)^{-1} \exp(-L), & \text{if } u > L; \\ -(\rho - 1)\lambda q^* \exp(-L) - (q^*)^{-1} \exp(L), & \text{if } u < -L. \end{cases}$$
Note that, for any $L > 0$, we have $\alpha := \inf_{u \in [-L, L]} \{(\rho - 1)\lambda q^* \exp(u) + (q^*)^{-1} \exp(-u)\} > 0$, because $\rho > 1$ and $\lambda \geq 0$. Consequently, we have

$$\frac{\partial f_L(u, v)}{\partial u} \leq -\alpha < 0,$$

which proves that hypothesis (H.iii) of Section B.2 holds.

Conclude. Having verified the hypotheses (H.i)-(H.iii), Theorem B.1 then implies the unique solution $(U, V) = 0$ is the unique one for the linearized BSDE (B.5), for each $L > 0$. Since L can be made arbitrarily large, we then have that $(U, V) = 0$ is the unique solution, with U bounded, to the original BSDE (B.2).

B.4 Proof of Lemma 2

This proof follows a very similar procedure to that of Lemma 1. As stated, we assume that $\lambda < \left(\frac{1}{1+\epsilon}\right)^2 \left(\frac{\frac{1}{1+\epsilon}}{\frac{1}{q}}\right)^2$, with $\epsilon > 0$ some arbitrary number.

The key modification is that we linearize the generator (B.3) at different points. For any $L > 0$, and recalling $\epsilon > 0$, define the linearized generator $f_{L, \epsilon}$ by

$$f_{L, \epsilon}(u, v) := \begin{cases} f(u, v), & \text{if } u \in [-L, \log(1 + \epsilon)]; \\ f(u, v) + \Delta_{\epsilon}(u), & \text{if } u > \log(1 + \epsilon); \\ f(u, v) + \Delta_{L}(u), & \text{if } u < -L. \end{cases} \quad (B.6)$$

where $f(u, v)$ is defined in (B.3) and

$$\Delta_{\epsilon}(u) := (\rho - 1)\lambda q^* \left[\exp(u) - (1 + \epsilon) - (1 + \epsilon)(u - \log(1 + \epsilon)) \right]$$

$$- (q^*)^{-1} \left[\exp(-u) - \frac{1}{1+\epsilon} + \frac{1}{1+\epsilon}(u - \log(1 + \epsilon)) \right]$$

$$\Delta_{L}(u) := (\rho - 1)\lambda q^* \left[\exp(u) - \exp(-L) - \exp(-L)(u + L) \right]$$

$$- (q^*)^{-1} \exp(-u) - \exp(L) + \exp(L)(u + L)$$

At this point, we can easily verify the hypotheses (H.i) and (H.ii) of Section B.2 in an identical manner to what we performed in the proof of Lemma 1. We omit this argument because it is identical. It remains to verify the monotonicity hypothesis (H.iii).

Compute

$$\frac{\partial f_{L, \epsilon}(u, v)}{\partial u} = \begin{cases} - (\rho - 1)\lambda q^* \exp(u) - (q^*)^{-1} \exp(-u), & \text{if } u \in [-L, \log(1 + \epsilon)]; \\ - (\rho - 1)\lambda q^*(1 + \epsilon) - (q^*)^{-1} \frac{1}{1+\epsilon}, & \text{if } u > \log(1 + \epsilon); \\ - (\rho - 1)\lambda q^* \exp(-L) - (q^*)^{-1} \exp(L), & \text{if } u < -L. \end{cases}$$

It is easy to show that $\frac{\partial^2 f_{L, \epsilon}(u, v)}{\partial u^2} > 0$ for $u \in [-L, \log(1 + \epsilon)]$. Therefore, the largest slope of this linearized generator is

$$\sup_u \frac{\partial f_{L, \epsilon}(u, v)}{\partial u} = - (\rho - 1)\lambda q^*(1 + \epsilon) - (q^*)^{-1} \frac{1}{1+\epsilon} < 0,$$
where the inequality uses the assumptions that $\rho < 1$ and $0 \leq \lambda < (\frac{1}{1-\rho})^2(\frac{1}{1-\frac{\rho}{4}})^2$. In other words, we can set $\alpha := \sup_u \frac{\partial f_{t,K}(u,v)}{\partial u} < 0$ in order to satisfy condition (H.iii) of Theorem B.2.

This proves that the solution $(U,V) = 0$ is the unique solution to the linearized BSDE $dU_t = -f_{t,K}(U_t,V_t)dt + V_t dW_t$. Because we can make L arbitrarily large in this argument, the same uniqueness point applies to the BSDE $dU_t = -f_{t,K}(U_t,V_t)dt + V_t dW_t$, which only linearizes for $u > \log(1+\varepsilon)$. Finally, because the lemma only requires us to consider solutions satisfying $Q_t \leq q^*(1+\varepsilon)$, i.e., $U_t \leq \log(1+\varepsilon)$, solving this latter linearized BSDE suffices.

B.5 Proof of Lemma 3

It is easy to see directly that Lemma 3 constructs a redistributive set of diffusions. To see that every collection of redistributive diffusions that satisfies Assumption 1 can be constructed this way, refer back to Eq. (20), which recall is equivalent to Eq. (19). We may rewrite this equation as

$$\alpha_n t q_n t \sigma_{n,t}^q = \psi t M e \nu_n \nu_n^*$$

where, due to Assumption 1, ν^* is the unique vector in the null-space of M. After rearranging, we obtain Eq. (21). That every possible solution can be constructed follows from Step 1 of Lemma 3, which allows us to pick every possible ν^* and corresponding matrix M. Finally, we also note that requiring $\nu^* \geq 0$ is without loss of generality, because the signs of any column of M can be flipped without changing its rank.

B.6 Proof of Proposition 1

The proposition only asks us to consider a redistributive equilibrium, so we have $Q_t = q^* = [\delta + (\rho - 1)g - \frac{1}{2}\rho(\rho - 1)v^2]^{-1}$ forever. The proof is almost identical to that of Proposition 2 below, so we provide a streamlined version.

First, using Eq. (A.8), Eq. (A.19), and $Q_t = q^*$ in Eq. (A.9), we must have constant wealth-consumption ratios $\omega_{n,t} = q^*$. Thus, we may set the loadings $e_{n,t}^q$ and $e_{n,t}^q$ on dB_t and dB_t, respectively, in an identical way to Proposition 2.

Using these results—along with $\pi_t = 0$, $\eta_t = \rho v$, $\hat{\theta}_t = 0$, $r_t = \delta p - \frac{1}{2}\rho(\rho + 1)v^2$, and $g_{n,t} = g + \lambda(q_{n,t} - q^*)$—in Eq. (A.2), we have

$$D(q) := -1 + \left(\frac{1}{q^*} + \lambda q^*\right)q - \lambda q^2$$

and where, if $\hat{\nu} \neq 0$ and $N \geq 3$, the location index n_t^* differs from $\arg\min_{n} q_{n,t}$ and $\arg\max_{n} q_{n,t}$. With this modification, the arguments go through identically, so we omit them here. In particular, conditions (P1) and (P2) allow us to verify that $D\left(\frac{t_1}{q^*}
ight) > 0$ and $D(Kq^*) < 0$, which allows us to prove that $(q_{n,t})_{n=1}^{N}$ are positive, bounded processes. Unlike Proposition 2, we do not need to examine the consumption shares $x_{n,t}$, because they are constant in the complete-markets case.
B.7 Proof of Proposition 2

Consider \(g_{n,t} = g + \lambda (q_{n,t} - \delta^{-1}) \) with \(\lambda > \delta^2 \) and fixed \(\epsilon \) that satisfies \(0 < \epsilon < \delta^{-2} - \lambda^{-1} \). Recall that \(Q_t = q^* = \delta^{-1} \) holds in equilibrium. The general proof strategy will be to conjecture asset price processes that feature extrinsic volatility and then verify that the conjectured dynamics are consistent with equilibrium—namely, asset valuations remain positive and bounded, and consumption shares remain positive.

Construction of diffusions. Follow Lemma 3 to construct \(\sigma_{n,t}^q = \psi_I \frac{\sigma_n^*}{\alpha_{n,t} x_{n,t}} Me_n \) for some matrix \(M \) with \(\text{rank}(M) = N - 1 \), some \(\nu^* \) in the null-space of \(M \), and some scalar process \(\psi_I \). Given \(\rho = 1 \), Eq. (A.9) implies that all wealth-consumption ratios are constant over time and across locations at \(\omega_{n,t} = \delta^{-1} \). Substituting \(\omega_{n,t} \) and \(\sigma_{n,t}^q \) into Eq. (A.23) implies

\[
\pi_{n,t} = \frac{\delta \nu_n^* \psi_I}{x_{n,t}} Me_n.
\]

We also conjecture an equilibrium with \(\xi_{n,t}^q = 0 \), which satisfies Eq. (A.20). Finally, conjecture an equilibrium with the following idiosyncratic volatilities. If \(\hat{v} \neq 0 \) but \(N \geq 3 \), set \(\xi_{n,t}^q = 0 \) for all \(n \neq n^*_t \), where \(n^*_t \) is some location index that differs from \(\arg \min_n q_{n,t} \) and \(\arg \max_n q_{n,t} \) (such an index exists with probability one, if \(N \geq 3 \)). If instead \(\hat{v} = 0 \), just set \(\xi_{n,t}^q = 0 \) for all \(n \), and let \(n^*_t \) be an arbitrary location index. To satisfy Eq. (A.21), we must then set

\[
\xi_{n,t}^q = -\sum_{n=1}^{N} \frac{q_{n,t} \alpha_{n,t}^*}{q_{n^*_t} \alpha_{n^*_t}} \nu_{n,t}.
\]

Under these conjectures, we will use properties (P1) and (P2) in Proposition 2 to verify the conditions of equilibrium.

Boundedness of valuations. Define

\[
D(q) := -1 + (\delta + \lambda \delta^{-1}) q - \lambda q^2. \tag{B.7}
\]

Note that \(D(q) = 0 \) is a quadratic equation that has two roots: \(\delta^{-1} \) and \(\delta \lambda^{-1} \). Moreover, \(D(q) > 0 \) if and only if \(q \in (\delta \lambda^{-1}, \delta^{-1}) \). Substituting the above conjectures and all other equilibrium objects into the asset-pricing Eq. (A.2), we have

\[
\begin{align*}
(\text{if } n \neq n^*_t) & \quad dq_{n,t} = \left[D(q_{n,t}) - \left(\delta^2 q^2 \sum_{i=1}^{N} \left(\nu^*_i \frac{\nu^*_i}{x_{i,t}} \right)^2 \right) q_{n,t} + \delta \left(\frac{\nu^*_n \psi_I}{\alpha_{n,t} x_{n,t}} \right)^2 \right] dt + \frac{\nu^*_n \psi_I}{\alpha_{n,t}} Me_n \cdot dZ_t \tag{B.8} \\
(\text{if } n = n^*_t) & \quad dq_{n,t} = \left[D(q_{n,t}) - \left(\delta^2 q^2 \sum_{i=1}^{N} \left(\nu^*_i \frac{\nu^*_i}{x_{i,t}} \right)^2 \right) q_{n,t} + \delta \left(\frac{\nu^*_n \psi_I}{\alpha_{n,t} x_{n,t}} \right)^2 - \frac{\nu^*_n \psi_I}{\alpha_{n,t} x_{n,t}} \cdot \bar{e}_{n,t} \right] dt + \frac{\nu^*_n \psi_I}{\alpha_{n,t} x_{n,t}} Me_n \cdot dZ_t + q_{n,t} \bar{e}_{n,t}^q d\hat{B}_t \tag{B.9}
\end{align*}
\]

An important fact to observe is the following: under the assumptions of the proposition, the dynamics of \(\hat{q}_t := \min_n q_{n,t} \) and \(\tilde{q}_t := \max_n q_{n,t} \) both take the form of Eq. (B.8). Indeed, if \(N \geq 3 \), then the definition of \(n^*_t \) implies that Eq. (B.8) applies to \(dq_t \) and \(d\hat{q}_t \). On the other hand, if \(\hat{v} = 0 \), then Eqs. (B.8) and (B.9) are equivalent, so again (B.8) applies to \(dq_t \) and \(d\hat{q}_t \).

We now show that if properties (P1) and (P2) are satisfied, then \(q_{n,t} \) remains bounded for all \(n \). Under property (P2), we have \(\psi_I = 0 \) if \(q^*_I = \delta (\epsilon + \lambda^{-1}) \), and so

\[
if \quad q_I = \delta (\epsilon + \lambda^{-1}), \quad dq_I = D(\delta (\epsilon + \lambda^{-1})) dt > 0.
\]
Therefore, q_t can never cross $\delta(\epsilon + \lambda^{-1})$ from above in a path-continuous way. Under property (P1), the drift and diffusion coefficients of q_t are bounded, so q_t is almost-surely path-continuous. This proves that the entire path is bounded below: if $q_0 \geq \delta(\epsilon + \lambda^{-1})$, then $q_t \geq \delta(\epsilon + \lambda^{-1})$ for all t almost-surely. An analogous argument applies to \dot{q}_t: properties (P1) and (P2) imply \dot{q}_t can never cross $K\delta^{-1}$ from below. Thus, if $q_0 \leq K\delta^{-1}$, then $\dot{q}_t \leq K\delta^{-1}$ for all t, almost-surely. Since $q_t \leq q_{n,t} \leq \dot{q}_t$ for all n, we have proved that $\{(q_{n,t})_{n=1}^\infty : t \geq 0\}$ is positive and bounded almost-surely. Note that free disposal automatically holds by the fact that $(q_{n,t})_{n=1}^\infty \geq 0$.

Survival of consumption shares. Next, we show that $\lim_{T \to \infty} E_t[e^{-\delta T} x_{n,T}^{-1}] = 0$. Substituting equilibrium objects into (A.18), we have

$$dx_{n,t} = \psi_t^2 \sigma^2 (1 - x_{n,t}) \left(\frac{(v_n^*)^2}{x_{n,t}} - x_{n,t} \sum_{i \neq n} \frac{(v_i^*)^2}{x_{i,t}} \right) dt + \psi_t \sigma_v d\tilde{Z}_{n,t}. \tag{B.10}$$

Decompose $x_{n,T}$ into two parts as follows. Define

$$x_{n,T}^\psi := x_{n,0} \mathbf{1}_{\{\psi_0 > 0\}} + \int_0^T \mathbf{1}_{\{\psi_t > 0\}} dx_{n,t} \quad \text{and} \quad x_{n,T}^0 := x_{n,0} \mathbf{1}_{\{\psi_0 = 0\}} + \int_0^T \mathbf{1}_{\{\psi_t = 0\}} dx_{n,t}.$$

Clearly, $x_{n,T}^\psi + x_{n,T}^0 = x_{n,T}$. From Eq. (B.10), notice that $dx_{n,T}^0 = \mathbf{1}_{\{\psi_t = 0\}} dx_{n,t} = 0$, so that $(x_{n,T})^{-1} = (x_{n,0})^{-1} + (x_{n,T}^\psi)^{-1} - (x_{n,T}^0)^{-1}$. Putting these pieces together, we have

$$\lim_{T \to \infty} E_t[e^{-\delta T} (x_{n,T})^{-1}] = \lim_{T \to \infty} E_t\left[e^{-\delta T} \left((x_{n,0})^{-1} + (x_{n,T}^\psi)^{-1} - (x_{n,T}^0)^{-1} \right) \right] = \lim_{T \to \infty} E_t[e^{-\delta T} (x_{n,T}^\psi)^{-1}]$$

Finally, since $\psi_t / x_{n,t} \leq \psi_t / \min x_{i,t}$ is bounded, by requirement (P1), we have $(x_{n,T}^\psi)^{-1}$ bounded, which proves that $\lim_{T \to \infty} E_t[e^{-\delta T} (x_{n,T}^\psi)^{-1}] = 0$.

Verify No-Bubble and No-Ponzi conditions. At this point, it remains to verify that the No-Ponzi conditions hold. We actually start by verifying the no-bubble Condition 1:

$$\lim_{T \to \infty} E_t[\xi_{n,T} q_{n,T} Y_{n,T}] = \lim_{T \to \infty} E_t[a_{n,T} q_{n,T} e^{-\delta T} \frac{1}{x_{n,T}}] \leq \lim_{T \to \infty} E_t[q_{n,T} e^{-\delta T} \frac{1}{x_{n,T}}] \leq K\delta^{-1} \lim_{T \to \infty} E_t[e^{-\delta T} \frac{1}{x_{n,T}}] = 0.$$

In the first line, we have used (A.7); in the second line, we have used the fact that $a_{n,T} \leq 1$; in the third line, we have used the boundedness of q_n by $K\delta^{-1}$, and then the result proved earlier that $\lim_{T \to \infty} E_t[e^{-\delta T} \frac{1}{x_{n,T}}] = 0$. This proves that Condition 1 holds.

Next, note that $w_{n,t} = \delta^{-1} c_{n,t} = \delta^{-1} x_{n,t} Y_t$, so that $w_{n,t} \geq 0$ if and only if $x_{n,t} \geq 0$. The latter inequality is proved by inspecting the dynamics (A.18).

Now, since $w_{n,t}$ and $q_{n,t}$ are both positive, and since $\xi_{n,t}$ is the local state-price density, we know $(\xi_{n,T} w_{n,t})_{t \geq 0}$ and $(\xi_{n,T} q_{n,t} Y_{n,t})_{t \geq 0}$ are both continuous, positive super-martingales. So by Doob’s super-martingale convergence theorem, we know that $\lim_{T \to \infty} \xi_{n,T} w_{n,T}$ and $\lim_{T \to \infty} \xi_{n,T} q_{n,T} Y_{n,T}$ both exist and are finite. Next, transversality condition (A.5) and no-bubble Condition 1 imply there exists a sub-sequence of times $(T_j)_{j=1}^\infty$ along which $\lim_{j \to \infty} \xi_{n,T_j} w_{n,T_j} = 0$ and $\lim_{j \to \infty} \xi_{n,T_j} q_{n,T_j} Y_{n,T_j} = 0$. But these limits must be the same along any subsequence, by the first step (i.e., that the limits exist), which shows $\lim_{T \to \infty} \xi_{n,T} w_{n,T} = \lim_{T \to \infty} \xi_{n,T} q_{n,T} Y_{n,T} = 0$. Finally, combine the previous limits with equity market clearing $\theta_{n,T} = q_{n,T} Y_{n,T}$ to obtain (4).
C Other stabilizing forces

This online appendix provides three additional microfoundations for sources of endogeneity that keep valuation ratios stable—therefore, we call these stabilizing forces. In Section C.1, we replace the growth-valuation link with a connection between valuations and beliefs about growth. In Section C.2, we model firms that invest, subject to a debt overhang problem, which microfounds connection between valuations and growth—this is similar to our baseline model but with a particular microfoundation. In Section C.3, we model a creative destruction process that depends on valuations. In all of the extensions in this appendix, we will assume that agents have log utility ($\rho = 1$).

C.1 Valuation-dependent beliefs as a “stabilizing force”

In the main text, we study a positive connection between asset valuations and growth. Here, we explore a model in which asset valuations increase beliefs about growth rather than actual growth. For reasons that will become clear, self-fulfilling volatility requires segmented futures markets (i.e., no cross-location trading on the dB_t shock); if futures markets were integrated, all agents would agree on the aggregate risk price, and beliefs would not affect asset valuations. Unfortunately, the analysis of this setting is substantially more complex than our baseline model, so we will specialize to an economy with constant true growth rates g, without any idiosyncratic risk ($\hat{\nu} = 0$), and with an additional cross-location entry/exit margin that facilitates analysis of the wealth distribution. More details on this entry/exit margin below. Furthermore, we will eventually specialize to a two-location economy, in which one location is vanishingly small (like a small open economy).

Endowments. Each location receives identical geometric Brownian motions

$$\frac{dy_{n,t}}{y_{n,t}} = gd\tau + \nu dB_t$$

Therefore, the aggregate output also follows $dY_t / Y_t = gd\tau + \nu dB_t$. Furthermore, each locations’ endowment share is constant over time. Therefore, we write α_n for the location-n endowment share, dropping the time subscript.

Beliefs. Let \mathbb{P} be the objective probability measure. Subjective beliefs are modeled as follows. For some process $\gamma_{n,t}$, we define the likelihood ratio between subjective beliefs and the physical probability as

$$H_{n,t} := (\frac{d\mathbb{P}^n}{d\mathbb{P}})_t = \exp \left[\int_0^t \gamma_{n,s} dB_s - \frac{1}{2} \int_0^t \gamma_{n,s}^2 ds \right]. \quad (C.1)$$
By Girsanov’s theorem, this amounts to assuming that agents in location \(n \) believe that \(d\tilde{B}_n, t := dB_t - \gamma_n, t dt \) is a Brownian motion. Meanwhile, agents have rational beliefs about all other shocks. As with the endogeneity in fundamental growth rates in Eq. (6), we assume that

\[
\gamma_n, t = \frac{\lambda}{\nu}(q_n, t - \delta^{-1}), \quad \lambda > 0. \tag{C.2}
\]

Equation (C.2) says that investors become more optimistic about growth when prices rise. An implication of these assumptions is that agent \(n \) holds the following subjective belief \(\tilde{g}_n, t := \frac{1}{dt} \tilde{E}_n^t[\tilde{y}_n, t \mid \tilde{y}_n, t] \) about his local endowment growth rate:

\[
\tilde{g}_n, t = g + \lambda(q_n, t - \delta^{-1}). \tag{C.3}
\]

This mirrors Eq. (6), but for perceived growth rather than true growth.

Valuations. In general, as there are no \(d\tilde{B}_t \) shocks, asset valuations take the form

\[
\frac{dq_n, t}{q_n, t} = \mu_n^q dt + \varsigma_n^q dB_t + \sigma_n^q \cdot dZ_t.
\]

However, we will conjecture an equilibrium in which \(\varsigma_n^q = 0 \) for all \(n \).

Optimization and risk prices. Without hedging markets for the aggregate \(dB_t \) shock, location \(n \) has its own aggregate risk price, and its SDF follows

\[
d\xi_n, t = -\xi_n, t \left[r_t dt + \eta_n, t dB_t + \pi_n, t \cdot dZ_t \right].
\]

Different to the baseline model, marginal utility incorporates the belief distortion, so optimal consumption sets

\[
H_{n, t}e^{-\delta t} \frac{1}{c_{n, t}} = \xi_{n, t}.
\]

Thus, optimal consumption dynamics for each location \(n \) are then

\[
\frac{dc_{n, t}}{c_{n, t}} = \left[r_t - \delta - \gamma_n, t (\gamma_n, t + \eta_n, t) + (\gamma_n, t + \eta_n, t)^2 + \|\pi_n, t\|^2 \right] dt + (\gamma_n, t + \eta_n, t) dB_t + \pi_n, t \cdot dZ_t. \tag{C.4}
\]

As before, with log utility, the location-\(n \) wealth-consumption ratio is equal to \(\omega_{n, t} := \frac{v_{n, t}}{c_{n, t}} = \delta^{-1} \).

Apply Itô’s formula to this result, using the dynamic budget constraint (3) with the following substitutions: \(\theta_{n, t} = 0 \) (since there are no futures markets), \(\eta_t \) replaced by the location-specific risk price \(\eta_{n, t} \) (again, since there are no futures markets), \(\theta_{n, t} = q_{n, t} y_{n, t} \) (equity market clearing), and imposing the conjecture \(\varsigma^q_{n, t} = 0 \). The results are

\[
\eta_{n, t} + \gamma_{n, t} = \frac{\delta \kappa_n q_{n, t}}{x_{n, t}} \nu \tag{C.5}
\]

\[
\pi_{n, t} = \frac{\delta \kappa_n q_{n, t}}{x_{n, t}} \sigma^q_{n, t}. \tag{C.6}
\]

In other words, the risk exposures of representative agent \(n \) coincide with the risks they hold through their local equity.
Aggregation. Applying Itô’s formula to the goods market clearing condition \(\sum_{n=1}^{N} c_{n,t} = Y_t \), we obtain

\[
rt = \delta + g + \sum_{n=1}^{N} x_{n,t} \gamma_{n,t} (\gamma_{n,t} + \eta_{n,t}) - \sum_{n=1}^{N} x_{n,t} (\gamma_{n,t} + \eta_{n,t})^2 + \|\pi_{n,t}\|^2 \quad (C.7)
\]

from matching drifts, and

\[
\sum_{n=1}^{N} \alpha_n \eta_{n,t} = \delta^{-1} \quad (C.8)
\]
\[
\sum_{n=1}^{N} \alpha_n \eta_{n,t} \sigma^q_{n,t} = 0 \quad (C.9)
\]

from matching diffusion coefficients and substituting Eqs. (C.5)-(C.6) above for \(\eta_{n,t} \) and \(\pi_{n,t} \). Eq. (C.8) is simply the aggregate wealth constraint. Eq. (C.9) is a constraint on the relative extrinsic volatilities. To satisfy this constraint, follow Step 1 of Lemma 3 to pick a matrix \(M \) and vector \(v^* \). Then, introduce a positive process \(\psi_t \) (as in Proposition 2) and let

\[
\alpha_n \eta_{n,t} \sigma^q_{n,t} = \psi_t v^* Me_n. \quad (C.10)
\]

Clearly, Eq. (C.10) solves Eq. (C.9). The dynamics of \(x_{n,t} = c_{n,t}/Y_t \) are given by applying Itô’s formula to its definition:

\[
\frac{dx_{n,t}}{x_{n,t}} = \left[r_t - \delta - g - \gamma_{n,t} (\gamma_{n,t} + \eta_{n,t}) - \nu (\gamma_{n,t} + \eta_{n,t})^2 + \|\pi_{n,t}\|^2 \right] dt + (\gamma_{n,t} + \eta_{n,t} - \nu) dB_t + \pi_{n,t} \cdot dZ_t. \quad (C.11)
\]

Finally, the equilibrium asset-pricing condition is

\[
p^q_{n,t} + g + \frac{1}{q_{n,t}} - r_t = \nu \eta_{n,t} + \sigma^q_{n,t} \cdot \pi_{n,t}. \quad (C.12)
\]

This completes the set of equilibrium equations, analogous to Appendix A. The key question is whether the dynamics above induce stationary valuations \((q_{n,t})_{n=1}^{N} \) and stationary consumption shares \((x_{n,t})_{n=1}^{N} \).

Entry/exit margin. We assume in reduced-form that entry/exit occurs between the locations in a way that keeps \(\eta_{n,t} + \gamma_{n,t} \leq \bar{\eta} \) for all \(n, t \). Such an assumption is reasonable, because the Sharpe ratios represent risk-adjusted profits to investors. In fact, with log utility, with an entry cost that is proportional to wealth, and in an equilibrium without self-fulfilling volatility, this is actually the optimal entry process, as shown in Khorrami (2018). Different entry costs map into different values of \(\bar{\eta} \). We will assume \(\bar{\eta} > \nu \), i.e., entry occurs when Sharpe ratios are somewhat above the perfect risk-sharing Sharpe ratio. Using Eq. (C.5), such an entry process translates into a lower bound for \(x_{n,t} \):

\[
x_{n,t} \geq \bar{x}_{n,t} := \bar{\eta}^{-1} \delta \alpha_n \eta_{n,t} \nu. \quad (C.13)
\]

When \(x_{n,t} \) falls, Sharpe ratios rise, which provides an incentive for investors to flow from other locations into location \(n \), keeping \(x_{n,t} \geq \bar{x}_{n,t} \). Thus, \(\bar{x}_{n,t} \) is a reflecting boundary for \(x_{n,t} \). Modeling entry in this way substantially simplifies the analysis of the equilibrium dynamical system.
Steady state. The equilibrium dynamical system for \((x_{n,t}, q_{n,t})_{n=1}^{N} \) is governed by Eqs. (C.12) and (C.11). If there is no self-fulfilling volatility, \(q_t = 0\), then this dynamical system has a deterministic steady state which is given by \(x_{n,t} = \bar{x}_n\) and \(q_{n,t} = \delta^{-1}\) for all \(n\). Although the stability properties of the dynamical system are much more complicated in this model than in our baseline model, by specializing to \(N = 2\) locations and treating one location as “small”, we may obtain some sharp analytical results.

Example with one small and one large location. To transparently establish the existence of a sunspot equilibrium, we now specialize to \(N = 2\) locations. With \(N = 2\), we can focus on location-1 and determine the location-2 equilibrium objects via market clearing. In particular, drop the location subscripts and denote \(\alpha := \alpha_1, x_t := x_{1,t}, \) and \(q_t := q_{1,t}\). Then, the location-2 objects are \(\alpha_2 = 1 - \alpha, x_{2,t} = 1 - x_t\), and

\[
q_{2,t} = \frac{\delta^{-1} - \alpha q_t}{1 - \bar{\alpha}}
\]

Furthermore, we will assume that

\[
M = \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}
\]

so that \(v^* = (1, 1)' \in \text{null}(M)\).

This specification is equivalent to assuming there is only one extrinsic shock. Therefore, let us define abuse notation and define \(Z_t := Z_{1,t}\).

Let us focus now on the location-1 valuation \(q_t\) and consumption share \(x_t\). Substitute Eqs. (C.2), (C.5), (C.6), and (C.10) into Eq. (C.12) to obtain

\[
dq_t = \left[-1 + \frac{\delta q_t^2}{\bar{\alpha}x_t} + \left(\bar{\rho} - g + \lambda \delta^{-1}\right)q_t - \left(\lambda - \frac{\delta}{x_t} v^2\right)q_t^2\right]dt + \frac{\psi_t}{\bar{\alpha}}dZ_t.
\]

Then, substituting (C.7) into (C.14) and doing some algebra, we obtain

\[
dq_t = \left[-1 + \left(\frac{\delta}{\bar{\alpha}x_t} - \frac{\delta^2 q_t}{x_t(1 - x_t)}\right)\psi_t^2 + A_{1,t}q_t + A_{2,t}q_t^2 + A_{3,t}q_t^3\right]dt + \frac{\psi_t}{\bar{\alpha}}dZ_t
\]

where

\[
A_{1,t} := \delta + \frac{\lambda \delta^{-1} - \bar{\nu}^2}{1 - \bar{\alpha}} - \frac{\delta q_t^2}{x_t(1 - x_t)}; \\
A_{2,t} := \alpha \left(\frac{\delta^2}{x_t} + \frac{2\delta^2}{1 - x_t} - \frac{2\lambda}{1 - \bar{\alpha}}\right) - \lambda; \\
A_{3,t} := \alpha \left(\frac{\lambda \delta}{1 - \bar{\alpha}} - \frac{\alpha \delta v^2}{x_t(1 - x_t)}\right).
\]

Similarly, substitute various results into Eq. (C.11), we obtain

\[
dx_t = \left[x_t \frac{\lambda \delta^{-1} \bar{\alpha}}{1 - \bar{\alpha}} (1 - \delta q_t)^2 - \lambda (q_t - \delta^{-1})a \delta q_t - a \delta q_t v^2 \right]
\]

\[+ \left(\frac{a \delta q_t}{x_t} v^2 - \frac{(x_t - a \delta q_t)^2}{1 - x_t} v^2 + \left(\frac{\psi_t}{x_t}\right)^2 - \left(\frac{\delta \psi_t}{x_t}\right)^2 - \frac{\lambda \delta q_t - \lambda q_t}{1 - x_t}\right)dt + (\delta \psi_t - x_t) \nu dB_t + \delta \psi_t dZ_t.
\]

Given the entry process, consumption shares also obey \(x_t \geq \eta^{-1} \delta \nu a q_t\) and \(1 - x_t \geq \eta^{-1} \delta \nu (1 - \alpha) q_{2,t}\). Combining these bounds and using the expression for \(q_{2,t}\), equilibrium has

\[
\eta^{-1} \delta \nu a q_t \leq x_t \leq 1 + \eta^{-1} \delta \nu a q_t - \eta^{-1} \nu.
\]

(C.17)
Equilibrium requires the dynamics (C.15) to be such that $q_t > 0$ and $q_t < \delta^{-1}/\alpha$ (so that $q_{2,t} > 0$) for all t.

Figure C.1 provides an illustration of the drifts of Eqs. (C.15) and (C.16) when $\psi_t = 0$. The dynamics look like they could be locally stable (see the solid and dotted lines in the left panel, near the higher steady state), but this conclusion seems to depend on the level of x_t relative to α (consumption versus endowment shares). Of course, this figure also depends on a specific choice of other parameters. So the question is whether some more general statements can be made about dynamical stability.

Figure C.1: Valuation and consumption share dynamics.

![Figure C.1: Valuation and consumption share dynamics.](image)

Notes. Parameters are $\delta = 0.05$, $g = 0.02$, $\nu = 0.1$, $\alpha = 0.1$, $\lambda = \frac{\nu^2}{1 + \nu^2} + \delta^2$.

Proving the general stationarity of $(q_t)_{t \geq 0}$ is technically difficult, so we sketch the main ideas in a limiting case in which one location is vanishingly small. This is essentially a “small open economy” limit. In particular, for each α, the equilibrium is indexed as follows. Let $\psi_t = \alpha \psi^*_t$ be the self-fulfilling volatility process (this intentionally vanishes with α). Let x^α_t and q^α_t be the resulting consumption share and valuation in equilibrium. Thus, $(x_t, q_t, \psi_t)_{t \geq 0} = (x^\alpha_t, q^\alpha_t, \alpha \psi^*_t)_{t \geq 0}$ is the equilibrium for a fixed α. We will take $\alpha \to 0$ and establish the desired stability properties in that limiting equilibrium. Let $x^*_t := \lim_{\alpha \to 0} x^\alpha_t$ and $q^*_t := \lim_{\alpha \to 0} q^\alpha_t$ be the limiting equilibrium objects.

In this limiting equilibrium, $x^*_t = 0$ with probability 1. Indeed, inspecting the dynamics (C.16) with $\alpha \to 0$ and $\psi_t = \alpha \psi^*_t \to 0$, we see that

$$dx^*_t = -(x^*_t \nu)^2 dt - x^*_t \nu dB_t.$$

The initial consumption share of location 1 is $x^\alpha_0 = \alpha \delta q^\alpha_0$, so $x^*_0 = 0$. Using the dynamics above, we then have $x^*_t = 0$ for all t.

5
Define $\bar{x}_t^* := \lim_{x \to 0} \frac{x^2}{\alpha}$, and note its initial value $\bar{x}_0^* = \delta q_0^*$. Given the entry/exit margin, captured in Eq. (C.13), we have $\bar{x}_t^* \geq \eta^{-1} \delta v q_t^*$ (the upper bound scaled by $1/\alpha$ diverges and becomes irrelevant as α shrinks).

We can now examine the limiting dynamics for q_t^* and \bar{x}_t^*:

\[
\begin{align*}
\frac{dq_t^*}{dt} &= \left[-1 + \frac{\delta}{\bar{x}_t^*} (\psi_t^*)^2 + \left(\delta + \lambda \delta^{-1} - v^2 \right) q_t^* + \left(\frac{\delta v^2}{\bar{x}_t^*} - \lambda \right) (q_t^*)^2 \right] dt + \psi_t^* dB_t \\
\frac{d\bar{x}_t^*}{dt} &= \left[\frac{(\delta q_t^*)^2}{\bar{x}_t^*} v^2 - \delta q_t^* [v^2 + \lambda (q_t^* - \delta^{-1})] + \left(\frac{\delta \psi_t^*}{\bar{x}_t^*} \right)^2 \right] dt + (\delta q_t^* - \bar{x}_t^*) v dB_t + \delta \psi_t^* dB_t
\end{align*}
\]

where $\bar{x}_t^* \geq \eta^{-1} \delta v q_t^*$. (C.19)

A steady state of this system is $(\bar{x}_t^*, q_t^*, \psi_t^*) = (1, \delta^{-1}, 0)$. To show that self-fulfilling volatility is possible (i.e., $\psi_t^* \neq 0$), we need to show that $q_t^* > 0$ for all t with probability 1. To do this, we need the following parameter restrictions:

\[
\begin{align*}
\delta &> v^2 \\
\lambda &> \delta^2 + \delta v^2 + 2 \nu \delta^{1.5} \\
\nu &< \frac{1}{2} \left(\frac{\delta + \lambda \delta^{-1} - v^2}{v} \right)
\end{align*}
\]

Note that (C.21)-(C.23) are mutually consistent (i.e., the proposed interval for η is non-empty).

Consider the first-passage time

\[
\tau := \left\{ t \geq 0 : q_t^* \leq \bar{q}_t^* := \frac{\delta + \lambda \delta^{-1} - v^2}{2(\lambda - \delta v^2 / \bar{x}_t^*)} \right\}.
\]

Let $\psi_t^* = 0$, so that self-fulfilling volatility vanishes as valuations reach the lower bound specified in (C.24). Then, we have the following lemma, which shows that the equilibrium is stable and therefore permits self-fulfilling volatility.

Lemma C.1. Under parameter assumptions (C.21)-(C.23), we have $dq_t^* > 0$ almost-surely, and consequently $(q_t^*)_{t \geq 0} > 0$ given any process $(\psi_t^*)_{t \geq 0}$ that vanishes as q_t^* approaches q_t^*.

Proof. We will first conjecture and then verify that $\bar{x}_t^* > \delta v^2 / \lambda$. Given this conjecture, notice from the definition of \bar{q}_t^* in (C.24) that

\[
\bar{q}_t^* > \frac{\delta + \lambda \delta^{-1} - v^2}{2\lambda}.
\]

Under parameter assumption (C.21), the right-hand-side of the expression above is strictly positive. Combine parameter assumption (C.23) with the entry barrier in (C.20), along with $q_t^* \geq \bar{q}_t^*$ and the lower bound for q_t^* in (C.25). The result is that we verify

\[
\bar{x}_t^* > \frac{\delta v^2}{\lambda}.
\]

Next, we need to show that $dq_t^* > 0$ if $\psi_t^* = 0$. Consider the function

\[
f(q; x) := -1 + \left(\delta + \lambda \delta^{-1} - v^2 \right) q + \left(\frac{\delta v^2}{x} - \lambda \right) q^2
\]
Note that \(dq^*_t = f(q^*_t; \hat{x}^*_t)dt \). As a function of \(q, f(q; x) \) is a quadratic function with two roots \(q_+ \) and \(q_- \), which are

\[
q_+(x) = \frac{\delta + \lambda \delta^{-1} - v^2 + \sqrt{(\delta + \lambda \delta^{-1} - v^2)^2 - 4(\lambda - \frac{\delta v^2}{x})}}{2(\lambda - \frac{\delta v^2}{x})}
\]

\[
q_-(x) = \frac{\delta + \lambda \delta^{-1} - v^2 - \sqrt{(\delta + \lambda \delta^{-1} - v^2)^2 - 4(\lambda - \frac{\delta v^2}{x})}}{2(\lambda - \frac{\delta v^2}{x})}
\]

Under assumption (C.22), note that both roots are real. Furthermore, both roots are strictly positive and distinct for any \(x > \frac{\delta v^2}{\lambda} \). In such case, we have \(f(q, x) > 0 \) for all \(q \in (q_-(x), q_+(x)) \). Thus, the inequality (C.26), combined with the fact that

\[
q^*_t \in \left(q_-(\hat{x}^*_t), q_+(\hat{x}^*_t) \right)
\]

proves that \(f(q^*_t; \hat{x}^*_t) > 0 \).

Finally, we may define a sequence of stopping times as follows. Let \(\tau_0 := \tau \) and define recursively

\[
\tau_{k+1} := \left\{ t > \tau_k : q^*_t \leq q^*_t := \frac{\delta + \lambda \delta^{-1} - v^2}{2(\lambda - \frac{\delta v^2}{\hat{x}^*_t})} \right\}.
\]

The same method above can used to prove that \(dq^*_t > 0 \) for any \(k \), which implies \(\tau_{k+1} > \tau_k \) almost-surely. Then, in each time interval \((\tau_k, \tau_{k+1}) \), we have that \(q^*_t \geq q^*_t \). Furthermore, we have \(q^*_t > \frac{\delta + \lambda \delta^{-1} - v^2}{2\lambda} > 0 \), following the proof method above. By piecing together the sequences of stopped processes, this completes the proof that \((q^*_t)_{t \geq 0} > 0 \) almost-surely, as long as \(\psi^*_n = 0 \) for each \(k \). \(\square \)

C.2 Debt overhang as a “stabilizing force”

In this section, we sketch an economy where firms face an investment problem, subject to neo-classical adjustment costs and debt-overhang. The result is a version of Q-theory, but with under-investment. Because the predictions of this theory are so well-established, at some points we make reduced-form assumptions to simplify the analysis and illustrate our main points on stability.

Firms. There are a continuum of firms in each location \(n \), each employing a linear technology with productivity \(a \) and capital as the sole input. The evolution of firm-level capital is

\[
dk^{(i)}_{n,t} = k^{(i)}_{n,t} \left[q^{(i)}_{n,t} - \kappa \right] dt + k^{(i)}_{n,t} \delta dB^{(i)}_{n,t},
\]

where \(\iota \) is the endogenous investment rate, \(\kappa \) is the exogenous depreciation rate, and \(B^{(i)} \) is an idiosyncratic Brownian shock. The cost of making investment \(ik \) is given by \(\Phi(i)k \), where \(\Phi(\cdot) \) is a convex adjustment cost function. Thus, the investment-production block has the standard homogeneity property in capital.

For this section only, we denote by \(q^{(i)}_{n,t} \) the location-\(n \) average value of capital to equity, i.e. “average Q” (this will not be the same as the price-dividend ratio that is called “\(q \)” in the main text, because the dividend is output minus investment). Thus, the value of firm \(j \) is given by \(q^{(j)}_{n,t}k^{(j)}_{n,t} \).

We also assume that all firms have long-term debt outstanding, in fact a perpetuity with a fixed and continuously-paid coupon as in Leland (1994) and its descendent papers, without micro-founding the reasons for why (e.g., debt tax shield), as this is unimportant. Furthermore, to keep
things simple, we assume existing firms can never issue new debt. Finally, firms default optimally, subject to some default costs that are proportional to the firm’s capital (these can be redistributed to households to create no deadweight loss). Under these conditions, a typical finding is (see for example Hennessy, 2004, Proposition 2)

\[q_{n,t}^{(j)} := \text{marginal value of capital to equity} < \text{average value of capital to equity} = q_{n,t}^{(j)} \]

Moreover, essentially by definition of \(q \), the optimal investment satisfies \(q_{n,t}^{(j)} = \Phi'(i_{n,t}^{(j)}) \) (see for example Hennessy, 2004, equation 11). Thus, we see that \(i_{n,t}^{(j)} > \Phi'(i_{n,t}^{(j)}) \). The lack of equality here measures the deviation from neoclassical Q-theory.

Despite this deviation, we have the following property. Since \(q_{n,t}^{(j)} \) increases with \(q_{n,t}^{(j)} = \Phi'(i_{n,t}^{(j)}) \), and since \(\Phi \) is a convex function, we have \(i_{n,t}^{(j)} \) increasing in \(q_{n,t}^{(j)} \). We will furthermore make the reduced-form assumption that \(i_{n,t}^{(j)} = i(q_{n,t}^{(j)}) \) for some univariate increasing function \(i(\cdot) \). This assumption is quite benign as it is typically satisfied in applications, because \(q_{n,t}^{(j)} \), hence \(q_{n,t}^{(j)} \), will typically be monotonic functions of the underlying firm-level state (e.g., leverage ratio).

In summary, we have the following two firm-level properties under debt overhang:

\[q_{n,t}^{(j)} > \Phi'(i_{n,t}^{(j)}) \]
\[i'(q_{n,t}^{(j)}) > 0. \]

Condition (C.27) captures the specific debt-overhang mechanism, whereas condition (C.28) is much more general and applies in almost any investment model. With a more general contractual structure, DeMarzo et al. (2012) also obtains these two results.

Aggregation. We will now make two assumptions that are mainly for tractability in aggregation. First, when a firm defaults and exits, it is replaced by another firm with the same identity \(j \) that inherits the defaulting capital stock. We assume this new entrant issues new debt is such that the aggregate location-\(n \) value of debt outstanding is always a constant fraction of total location-\(n \) capital; i.e., total location-\(n \) value of debt is always \(\beta k_{n,t} \). Alternatively, this proportionality of aggregate debt to capital could be ensured by augmenting the model with a time-varying exogenous exit rate, but allowing new entrants to issue debt in an optimal way. Either way, this set of assumptions implies it suffices to study equity.

Second, we make assumptions to avoid studying the full cross-sectional distribution of firms within a location. We assume that properties (C.27)–(C.28) also hold in the aggregate at each location, and we will presume a certain approximate aggregation on investment and investment costs. In particular, let us define the appropriate aggregates, for capital, average \(Q \), and investment:

\[k_{n,t} := \int k_{n,t}^{(j)} dj \]
\[q_{n,t} := \frac{1}{k_{n,t}} \int q_{n,t}^{(j)} k_{n,t}^{(j)} dj \]
\[i_{n,t} := \frac{1}{k_{n,t}} \int i(q_{n,t}^{(j)}) k_{n,t}^{(j)} dj. \]

As an approximation, we assume the existence of functions \((i, \Phi)\) such that the following hold:

\[i(q_{n,t}) \approx \int k_{n,t}^{(j)} i(q_{n,t}^{(j)}) dj \]
\[k_{n,t} \Phi(i(q_{n,t})) \approx \int k_{n,t}^{(j)} \Phi(i(q_{n,t}^{(j)})) dj. \]
The nature of these approximations is to say that aggregate location-n investment is solely a function of aggregate average Q, rather than the full cross-sectional distribution of average Q’s. Furthermore, we assume the following aggregate versions of properties (C.27)-(C.28), i.e.,

\[
\begin{align*}
q_{n,t} &> \Phi'(\bar{t}_{n,t}) \\
\bar{t}'(q_{n,t}) &> 0.
\end{align*}
\] (C.31) (C.32)

We conjecture these properties would go through in a full analysis of equilibrium using the cross-sectional distribution of firm size and Q, but this is beyond the scope of this paper. As we make these aggregation approximations, note that we also assume the functions (t, \Phi) are independent of location n.

Stability. Now, we can proceed to study stability. The aggregate portfolio of location-n firms’ liabilities (debt plus equity) has value (\beta + q_{n,t})k_{n,t}, which is a claim to the profits \int (a - \Phi(t_{n,t}^{(i)}))k_{n,t}^{(i)}dj. Based on approximation (C.30), this aggregate profit can be approximately written \int (a - \Phi(t(q_{n,t})))k_{n,t}. Furthermore, the return on this portfolio is deterministic, given that all fundamental shocks are idiosyncratic (hence defaults will be idiosyncratic), and thus the return must equal the riskless bond return \text{r}_t in equilibrium. Thus, \text{q}_{n,t} evolves deterministically, and the (approximate) valuation equation states

\[
\frac{a - \Phi(t(q_{n,t}))}{q_{n,t}} + \bar{t}(q_{n,t}) - \kappa + \frac{\dot{q}_{n,t}}{q_{n,t}} = r_t.
\] (C.33)

Lemma C.2. Suppose the number of locations N is large enough, that approximations (C.29)-(C.30) hold, and that properties (C.31)-(C.32) hold with sufficient gaps between the left- and right-hand-sides (i.e., underinvestment is large enough). Then, the equilibrium of the model with debt overhang is locally-stable.

Proof of Lemma C.2. We start with approximate valuation equation (C.33). Differentiate \dot{q}_{n,t} with respect to \text{q}_{n,t} and \text{q}_{-n,t} to obtain

\[
\begin{align*}
\frac{d\dot{q}_{n,t}}{dq_{n,t}} &= r_t + \kappa - \bar{t}(q_{n,t}) + \Phi'(t(q_{n,t})){\bar{t}'(q_{n,t})} - q_{n,t}\bar{t}'(q_{n,t}) + q_{n,t}dr_t \frac{d\text{r}_t}{dq_{n,t}} \\
\frac{d\dot{q}_{n,t}}{dq_{-n,t}} &= q_{n,t}dr_t \frac{d\text{r}_t}{dq_{-n,t}}.
\end{align*}
\]

We will study these equations in the limit N \to \infty, which suffices, because the lemma allows us to later make N large enough.

As N \to \infty, one can show that

\[
r_t \to \delta - \kappa + \lim_{N \to \infty} \sum_{n=1}^N \frac{k_{n,t}}{k_{i,t}}\bar{t}(q_{n,t}),
\]

which has zero derivative with respect to \text{q}_i for any \text{i}. Substituting this result for \text{r}_t, we obtain \frac{d\dot{q}_{n,t}}{dq_{n,t}} = 0 and

\[
\frac{d\dot{q}_{n,t}}{dq_{n,t}} = \delta + \lim_{N \to \infty} \sum_{m=1}^N \frac{k_{m,t}}{k_{i,t}}\bar{t}(q_{m,t}) - \bar{t}(q_{n,t}) - (q_{n,t} - \Phi'(t(q_{n,t}))){\bar{t}'(q_{n,t})}.
\]

This equals 0 in steady state.
The fact that the middle terms net out to zero in steady state is a consequence of the fact that \(dk_n, t = k_n, t [\ell(q_n, t) − \kappa] dt \), and all locations must experience the same growth rate \(\ell(q_n, t) − \kappa \) in steady state. Thus, we will have \(dq_n, t / dq_n, t < 0 \), hence local stability by \(dq_n, t / dq_n, t = 0 \), if and only if

\[
[q_n, t − \Phi'(\ell(q_n, t))] t'(q_n, t) > \delta.
\]

This will be true if properties (C.31)-(C.32) hold with sufficient gaps, as assumed.

C.3 Creative destruction as a “stabilizing force”

In this section, we consider another model that allows multiplicity. We show how an overlapping generations (OLG) “perpetual youth” economy – built upon Blanchard (1985) – augmented with a particular type of creative destruction – similar to Gârleanu and Panageas (2020) – creates a stabilizing force upon which extrinsic shocks can be layered. In particular, if new firm creation is more intense when asset valuations are low, the economy possesses a natural stabilizing force. A possible rationale for this feature is that when capital asset valuations are low, they make labor look relatively attractive, which offers a robust outside option for those new entrepreneurs willing to enter. The contribution relative to Gârleanu and Panageas (2020) is to show how this is possible with an arbitrary number of assets (corresponding to the \(N \) locations) whose markets are, in addition, not integrated.

Cohorts, Endowments, Markets. In this model, all agents face a constant hazard rate of death \(\beta > 0 \), with all dying agents replaced by newborns (in the same location), so that population size is constant at 1. To keep matters simple, assume all locations have identical constant endowment growth rates and no shocks. That said, the endowment growth of an individual agent differs from the aggregate growth rate; this is the crucial ingredient in this model.

In particular, we assume some amount of *creative destruction*. The endowments of living agents decay at rate \(\kappa_n, t \) (obsolescence rate), while newborn agents arrive to the economy with new trees of total size \(\kappa_n, t + g \) (or, in per capita units, their individual trees are \(\kappa_n, t + g / \beta \) in size). Specifically, the time-\(t \) endowment accruing to location-\(n \) agents born at time \(s \leq t \) is

\[
y_n^{(s)} = y_n(t)(\kappa_n, s + g) \exp \left[−\int^t_s (\kappa_n, u + g) du \right].
\]

Note that the aggregate endowment follows

\[
dy_n, t = d \left(\int_{−\infty}^t y_n^{(s)} ds \right) = y_n(t) dt + \int_{−\infty}^t dy_n^{(s)} ds = \underbrace{y_n(t)(\kappa_n, t + g) dt}_{\text{newborn entry}} − \underbrace{y_n(t)\kappa_n, dt}_{\text{obsolescence}} = y_n(t)gd t.
\]

For now, we leave \(\kappa_n, t \) unspecified, but note that its formulation will be the determinant of whether multiplicity is possible or not.

Agents can only trade in financial markets while alive. In addition to the tradability of claims to local endowments, agents can access a market for annuities that insures their death hazard and provides a stream of \(\beta w_n^{(s)} \) of income per unit of time, where \(w_n^{(s)} \) is the wealth of a location-\(n \) agent born at time \(s \leq t \). This assumption is standard in perpetual youth models.

Solution. Under these assumptions, one can show that agents consume \(\delta + \beta \) fraction of their wealth, so that the aggregate wealth condition (A.19) is replaced by

\[
\sum_{n=1}^N \kappa_n q_n, t = (\delta + \beta)^{-1}.
\]
where \(q_{n,t}\) is the (aggregated across cohorts) location-\(n\) valuation ratio. Let \(\xi_{n,t}\) denote the location-\(n\) state-price density, which follows

\[
d\xi_{n,t} = -\xi_{n,t} \left[r_t dt + \pi_{n,t} dZ_{n,t} \right].
\]

We will continue to examine a bubble-free equilibrium, so that

\[
q_{n,t} = \mathbb{E}_t \left[\int_t^\infty \frac{\xi_{n,T}^{(s)}}{\xi_{n,t}^{(s)}} y_{n,T}^{(s)} d\tau \right] \quad \text{(for any birth-date } s \leq t, \text{ this yields the same answer)}.
\]

Critically, this valuation does not incorporate wealth gains due to entry of future newborns (i.e., this is the value of alive firms). The dynamic counterpart of this valuation equation is, for some diffusion coefficient \(\sigma_{n,t}\),

\[
\frac{dq_{n,t}}{q_{n,t}} = \left[r_t + \kappa_{n,t} - \frac{1}{q_{n,t}} + \sigma_{n,t}^2 \pi_{n,t} \right] dt + \sigma_{n,t} dZ_{n,t}.
\] (C.34)

The equilibrium riskless rate is obtained as follows. The goods market is integrated across locations, so the market clearing condition is given by

\[
Y_t = \sum_{n=1}^N y_{n,t} = \sum_{n=1}^N \int_t^-\beta e^{-\beta(t-s)} c_{n,t}^{(s)} ds.
\]

Optimal consumption dynamics for alive agents are

\[
\frac{dc_{n,t}^{(s)}}{c_{n,t}^{(s)}} = \left[r_t - \delta + \pi_{n,t}^2 \right] dt + \pi_{n,t} dZ_{n,t}
\]

whereas newborn agents consume

\[
\beta c_{n,t}^{(t)} = \frac{\left(\delta + \beta \right)}{\text{cons-wealth ratio}} \times \left(\kappa_{n,t} + \tilde{g} \right) y_{n,t} q_{n,t}.
\]

Applying Itô’s formula to goods market clearing, and using these results, we obtain

\[
r_t = \delta + \beta - \sum_{n=1}^N \kappa_{n,t} \pi_{n,t}^2 - \left(\delta + \beta \right) \sum_{n=1}^N \alpha_n q_{n,t} \kappa_{n,t}.
\] (C.35)

Stability. To see how the stabilizing force works, it is instructive to once again study the deterministic equilibrium in which extrinsic shocks have no volatility. Substituting (C.35) into (C.34) with \(\sigma_{n,t}^2 = 0\), we obtain

\[
q_{n,t} = -1 + \left(\delta + \beta \right) q_{n,t} - \left[\left(\delta + \beta \right) \sum_{i=1}^N \alpha_i q_{i,t} \kappa_{i,t} - \kappa_{n,t} \right] q_{n,t} \quad \text{when } \sigma_{n,t}^2 = 0 \quad \forall i.
\] (C.36)

The first piece is the unstable component, propelling valuations further and further away from the “steady state” value \((\delta + \beta)^{-1}\). The second piece—capturing the relative amount of creative destruction in location \(n\)—is the stabilizing force.
Based on equation (C.36), we claim that if \(\kappa_{n,t} \) decreases sufficiently rapidly as \(q_{n,t} \) increases, then valuation dynamics are stable. Let \(\kappa_{n,t} = \kappa(q_{n,t}) \) for a decreasing function \(\kappa(\cdot) \). Denote the steady-state mean and sensitivity of this function by \(\bar{\kappa} := \kappa((\delta + \beta)^{-1}) \) and \(\lambda := -\kappa'((\delta + \beta)^{-1}) \), respectively. Then, compute

\[
\frac{\partial \bar{\kappa}}{\partial q_m} \bigg|_{q_i=(\delta+\beta)^{-1} \forall i} = \begin{cases} \delta + \beta - \lambda(\delta + \beta)^{-1}(1 - \alpha_n) - \alpha_n \bar{\kappa}, & \text{if } m = n; \\ \lambda(\delta + \beta)^{-1} \alpha_m - \alpha_m \bar{\kappa}, & \text{if } m \neq n. \end{cases}
\]

Construct the steady-state Jacobian matrix as

\[
J := \left[\frac{\partial \bar{\kappa}}{\partial q_m} \bigg|_{q_i=(\delta+\beta)^{-1} \forall i} \right]_{1 \leq n, m \leq N}.
\]

(C.37)

Local stability of the steady-state can be determined by the eigenvalues of \(J \). By the Gershgorin circle theorem, all of these eigenvalues will have strictly negative real parts if \(J \) has negative diagonal elements and is diagonally dominant. This is easily guaranteed by making \(\bar{\kappa} \) and \(\lambda \) large enough, meaning the amount of creative destruction and its sensitivity to prices are both large enough. The result is summarized in the following lemma, with the proof omitted.

Lemma C.3. Assume \(\bar{\kappa} > \delta + \beta \) and \(\lambda > (\delta + \beta) \bar{\kappa} \). Then, all eigenvalues of \(J \) have strictly negative real parts. Consequently, the equilibrium of the creative destruction model is locally stable.

D Example: sunspot fluctuations in the aggregate valuation

Most of the paper focuses on redistributive fluctuations. Here, we also present an example in which the aggregate valuation can be subject to self-fulfilling fluctuations. The results of Theorem 1 and Lemmas 1-2 imply that an indeterminate aggregate valuation requires \(\rho < 1 \) and a sufficiently large growth-valuation link parameter \(\lambda \).

We will present this example in a one-location economy (\(N = 1 \)), so without loss of generality we may also shut down the idiosyncratic fundamental shock (\(\dot{\tilde{\nu}} = 0 \)). Eq. (A.24) contains the aggregate valuation dynamics \(dQ_t \) in general. Substituting \(\tau_t = 0 \) due to Eq. (A.17), as well as the expression for \(r_t \) in (A.14) and the expression for growth \(g_t \) in (7), the aggregate valuation ratio \(Q_t \) satisfies

\[
dQ_t = Q_t \left[\delta + (\rho - 1)(g - \lambda q^*) + (\rho - 1)\lambda Q_t - \frac{1}{2}\rho(\rho - 1)\nu^2 - \frac{1}{Q_t} + (\rho - 1)\nu \xi_t^Q \right] dt \\
+ Q_t \left[\xi_t^Q dB_t + \sigma_t^Q dZ_t \right].
\]

Following the constructions in Propositions 1-2, let us conjecture an equilibrium with \(\xi_t^Q = 0 \). In that case, and recalling that \(q^* = \delta + (\rho - 1)g - \frac{1}{2}\rho(\rho - 1)\nu^2 \), we may rewrite the dynamics as

\[
dQ_t = D(Q_t) dt + Q_t \sigma_t^Q dZ_t \tag{D.1}
\]

where

\[
D(Q) := -1 + Q \left[\frac{1}{q^*} + (1 - \rho)\lambda q^* \right] - (1 - \rho)\lambda Q^2 \\
= -Q - q^* \left(\lambda(1 - \rho)Q - \frac{1}{q^*} \right).
\]

The only question for whether or not we have equilibrium is whether or not the dynamics in (D.1) keep \(Q_t \) positive and bounded. Basically, this boils down to the properties of the function \(D(\cdot) \), as well as how \(\sigma_t^Q \) is specified.
We require $\rho < 1$ and $\lambda > \frac{1}{(1-\rho)(q^*)^2}$. In that case, the shape of the function $D(\cdot)$ is an inverse-U with two steady states, q^* and $q^{**} := \frac{1}{\lambda(1-\rho)q^*} < q^*$. The larger steady state is locally stable, since $D'(q^*) < 0$—exactly as in Theorem 1. The smaller steady state q^{**} is unstable. Therefore, the function $D(\cdot)$ is positive for $Q \in (q^{**}, q^*)$ and negative for $Q > q^*$. The idea is then to specify σ^Q_t to keep Q_t in the region (q^{**}, ∞). The following formal result explains how this can be done. We omit the proof as it is based on standard boundary classification results for one-dimensional SDEs.

Proposition D.1. Suppose $N = 1$. Pick an interval $[\bar{q}, \tilde{q}]$, where $q^{**} \leq \bar{q} < q^* < \tilde{q}$. Pick a bounded function V such that $V(q) > 0$ on (\bar{q}, \tilde{q}) and such that

$$\lim_{q \to \bar{q}} \frac{V(q)^2}{q - \bar{q}} < -2D(\bar{q}) \quad \text{and} \quad \lim_{q \to \tilde{q}} \frac{V(q)^2}{q - \tilde{q}} < 2D(\tilde{q}). \quad \text{(D.2)}$$

Then, there exists an equilibrium where Q_t follows

$$dQ_t = D(Q_t)dt + V(Q_t)dZ_t$$

and remains forever inside $[\bar{q}, \tilde{q}]$.

Figure D.1 presents an example of such a construction, where we have used the volatility function $V(q) = 0.1(q - \bar{q})(\tilde{q} - q)$, which satisfies condition (D.2). You can see that volatility vanishes at the points \bar{q} and \tilde{q}, which allows the drift $D(Q)$ to take over at those points, inducing the valuation to mean-revert to steady state.

Figure D.1: Aggregate valuation dynamics.

Notes. Parameters are $\delta = 0.05$, $g = 0$, $\nu = 0$, $\rho = 0.5$, $\lambda = \frac{2}{(1-\rho)(q^*)^2}$, and $\bar{q} = 1.5q^*$.
E International model of Section 5.2

Derivation of equilibrium. As before, let \(Y_t := \sum_{n=1}^{N} y_{n,t} \) be aggregate tradable consumption, and define (tradable) consumption shares \(x_{n,t} := c_{n,t} / Y_t \) and (tradable) endowment shares \(e_{n,t} := y_{n,t} / Y_t \). Country \(n \) state price density \(\tilde{\zeta}_{n,t} \) still evolves according to Eq. (A.1), repeated here for convenience

\[
\frac{d\tilde{\zeta}_{n,t}}{\tilde{\zeta}_{n,t}} = -r_t dt - \eta_t dB_t - \tilde{\eta}_t \cdot d\tilde{B}_t - \pi_{n,t} \cdot d\tilde{Z}_t.
\]

The representative agent of country \(n \) maximizes (26) subject to the lifetime budget constraint

\[
w_{n,0} = \mathbb{E}_0 \left[\int_0^\infty \frac{\tilde{\zeta}_{n,t}}{\tilde{\zeta}_{n,0}} (c_{n,t} + p_{n,t} e_{n,t}) dt \right].
\] (E.1)

Solving this maximization problem delivers FOCs \(e^{-\delta t} \phi \tilde{\zeta}_{n,t} = \tilde{\zeta}_{n,t} \) and \(e^{-\delta t} (1 - \phi) \tilde{\zeta}_{n,t} = \tilde{\zeta}_{n,t} p_{n,t} \), which together imply the expenditure shares in (28). To obtain the dynamic consumption rule, substitute these FOCs back into the budget constraint (E.1) to get \(c_{n,0} + p_{n,0} \tilde{e}_{n,0} = \delta w_{n,0} \). This is equivalent to Eq. (27) after using the definition of the price and quantity index \(P_{n,t} C_{n,t} = c_{n,t} + p_{n,t} e_{n,t} \). Then, the optimal dynamics of non-tradable consumption \(x_{n,t} \), expenditure \(P_{n,t} C_{n,t} \), and wealth \(w_{n,t} \) all take the same form, namely

\[
\frac{dc_{n,t}}{c_{n,t}} = \frac{dw_{n,t}}{w_{n,t}} = \left[r_t - \delta + \eta_t^2 + \frac{\|\pi_{n,t}\|^2}{\tilde{\zeta}_{n,t}} \right] dt + \eta_t dB_t + \tilde{\eta}_t \cdot d\tilde{B}_t + \pi_{n,t} \cdot d\tilde{Z}_t.
\] (E.2)

As in the baseline model, using \(\sum_{n=1}^{N} dc_{n,t} = dY_t \) and matching drifts and diffusions, we obtain the interest rate in Eq. (A.14) and risk prices in Eqs. (A.15)-(A.17), all repeated here for convenience

\[
r_t = \delta + g_t - \nu^2 - \sum_{n=1}^{N} x_{n,t} \|\pi_{n,t}\|^2, \quad \text{and} \quad \eta_t = \nu, \quad \text{and} \quad \tilde{\eta}_t = 0, \quad \text{and} \quad \sum_{n=1}^{N} x_{n,t} \pi_{n,t} = 0.
\]

Therefore, the dynamics of \(x_{n,t} \) are identical to the baseline model Eq. (A.18). Finally, use the tradable expenditure share rule to write aggregate wealth as

\[
\sum_{n=1}^{N} w_{n,t} = \sum_{n=1}^{N} \frac{c_{n,t}}{\phi \delta} = Y_t / \phi \delta.
\] (E.3)

So far, this is nearly identical to the baseline model. The step that diverges from the baseline model, which we tackle next, regards the local equity pricing equation.

The return on local equity \(dR_{n,t} \) is defined by

\[
dR_{n,t} := \frac{1}{q_{n,t}} dt + \frac{d(q_{n,t} (y_{n,t} + p_{n,t} \tilde{y}_{n,t}))}{q_{n,t} (y_{n,t} + p_{n,t} \tilde{y}_{n,t})},
\]

where the valuation ratio \(q_{n,t} \) has dynamics of the form

\[
\frac{dq_{n,t}}{q_{n,t}} = \mu_{q_{n,t}} dt + \sigma_{q_{n,t}} dB_t + \tilde{\sigma}_{q_{n,t}} \cdot d\tilde{B}_t + \sigma_{q_{n,t}} \cdot d\tilde{Z}_t.
\]
Apply Itô’s formula to \(d(q_{n,t}(y_{n,t} + p_{n,t}\hat{y}_{n,t})) \), using the fact from Eqs. (27)-(28) that \(p_{n,t}\hat{y}_{n,t} = \frac{1-\phi}{\phi}c_{n,t} \) and also using the equilibrium risk prices and interest rate, to obtain
\[
\begin{align*}
 dR_{n,t} &= \frac{1}{q_{n,t}} dt + \mu^q_{n,t} dt + \xi^q_{n,t} dB_t + \phi^q_{n,t} \cdot \hat{B}_t + \sigma^q_{n,t} \cdot dZ_t \\
 &= \frac{\phi y_{n,t}}{\phi y_{n,t} + (1-\phi)c_{n,t}} \left(\left[g_{n,t} + v\nu_{n,t} + v\xi^q_{n,t} \right] dt + vdB_t + \nu_{n,t} \cdot dB_t \right) \\
 &\quad + \left(1-\phi \right) c_{n,t} \left(r_t - \delta + v^2 + \pi^2_{n,t} + v\nu_{n,t} + \pi_{n,t}\sigma^q_{n,t} \right) dt + vdB_t + \pi_{n,t} \cdot dZ_t
\end{align*}
\]
(E.4)
Consequently, the no-arbitrage pricing equation is (after substituting the equilibrium risk prices and doing extensive algebra)
\[
\pi_{n,t} = \frac{q_{n,t}(y_{n,t} + p_{n,t}\hat{y}_{n,t})}{\hat{w}_{n,t}} \left(\sigma^q_{n,t} + \frac{p_{n,t}\hat{y}_{n,t}}{y_{n,t} + p_{n,t}\hat{y}_{n,t}} \pi_{n,t} \right)
\]
(E.5)
Eq. (E.5) characterizes the critical dynamical system of the model.
To connect the risk prices to the valuation dynamics, recall the dynamic budget constraint
\[
d\hat{w}_{n,t} = (w_{n,t}r_t - P_{n,t}C_{n,t}) dt + \hat{\theta}_{n,t}(\nu_{t} dt + dB_t) + \hat{\theta}_{n,t} \cdot (\hat{\eta}_{t} dt + dB_t) + \hat{\theta}_{n,t}(dR_{n,t} - r_t dt).
\]
(E.6)
First, using local equity market clearing \(\theta_{n,t} = q_{n,t}(y_{n,t} + p_{n,t}\hat{y}_{n,t}) \) and matching the \(dZ_t \) loadings in Eq. (E.6) to those in Eq. (E.2), we have
\[
\pi_{n,t} = \frac{q_{n,t}(y_{n,t} + p_{n,t}\hat{y}_{n,t})}{\hat{w}_{n,t}} \left(\sigma^q_{n,t} + \frac{p_{n,t}\hat{y}_{n,t}}{y_{n,t} + p_{n,t}\hat{y}_{n,t}} \pi_{n,t} \right)
\]
(E.7)
Using \(p_{n,t}\hat{y}_{n,t} = (1-\phi)\delta w_{n,t} \) and \(c_{n,t} = \phi \delta w_{n,t} \), and then solving this equation for \(\pi_{n,t} \), we obtain
\[
\pi_{n,t} = \frac{\phi \alpha_{n,t} + (1-\phi)x_n t}{x_{n,t}(1-\phi)\delta \nu_{n,t}} q_{n,t}\sigma^q_{n,t}.
\]
(E.8)
Using Eq. (E.7) inside \(\sum_{n=1}^{N} x_{n,t}\pi_{n,t} = 0 \), we have the following restriction on sunspot volatilities:
\[
0 = \sum_{n=1}^{N} \frac{\phi \alpha_{n,t} + (1-\phi)x_n t}{1-(1-\phi)\delta \nu_{n,t}} q_{n,t}\sigma^q_{n,t}.
\]
(E.9)
Second, summing both Eqs. (E.6) and (E.2) over \(n \), using \(\eta_{t} = \nu \) and \(\hat{\eta}_{t} = 0 \), using futures market clearing conditions \(\sum_{n=1}^{N} \theta_{n,t} = 0 \) and \(\sum_{n=1}^{N} \hat{\theta}_{n,t} = 0 \), and using the aggregate wealth constraint (E.3), we obtain
\[
\nu = \delta \sum_{n=1}^{N} \sigma_{n,t}(\phi \alpha_{n,t} + (1-\phi)x_{n,t})(\nu + \xi^q_{n,t})
\]
\[
0 = \sum_{n=1}^{N} \sigma_{n,t}(\phi \alpha_{n,t} + (1-\phi)x_{n,t})(\nu_{n,t} + \xi^q_{n,t})
\]
This completes the set of equilibrium equations, analogously to Appendix A.

Construction and stability of sunspot equilibria. Let \(M \) be an \(N \times N \) matrix with \(\text{rank}(M) = N - 1 \) and unit-length columns, let \(v^* := (v_1^*, \ldots, v_N^*)' \geq 0 \) be in the null-space of \(M \), and let \(\psi_t \) be a positive
scalar process (exactly as in Lemma 3). Since $0 = \sum_{n=1}^{N} x_{n,t} \pi_{n,t}$ holds, as in the baseline model, we thus construct a candidate equilibrium with

$$\pi_{n,t} = \frac{\delta \psi_t}{x_{n,t}} v_n^* M e_n.$$ \hfill (E.9)

By Eq. (E.7), we then have

$$\frac{\phi \alpha_{n,t} + (1 - \phi)x_{n,t}}{1 - (1 - \phi)\delta q_{n,t}} q_{n,t}^q = \psi_t v_n^* M e_n,$$ \hfill (E.10)

From this point, and assuming the growth-valuation link $g_{n,t} = g + \lambda(q_{n,t} - \delta^{-1})$ with $\lambda > \delta^2$, the arguments in Proposition 2 go through without modification. We thus only sketch the intuition.

In particular, to see that the valuation dynamics are stable, substitute $\hat{\varsigma}_{q_{n,t}} = 0$, $r_t = \delta + g - v^2 - \sum_{n=1}^{N} x_{n,t} \pi_{n,t} \|^2$, $g_{n,t} = g + \lambda(q_{n,t} - \delta^{-1})$, and Eqs. (E.9)-(E.10) into Eq. (E.5) to get

$$q_{n,t} \mu_{n,t}^q = -1 + 2 \phi \alpha_{n,t} x_{n,t} \psi_t^2 \sum_{i=1}^{N} (v_i^*)^2.$$ \hfill (E.11)

When $\psi_t = 0$, the entire second line of Eq. (E.11) vanishes. In that case, we can see that $q_{n,t} \mu_{n,t}^q$ is decreasing with respect to $q_{n,t}$ if and only if

$$\frac{2 \phi \alpha_{n,t}}{\phi \alpha_{n,t} + (1 - \phi)x_{n,t}} \lambda q_{n,t} > \delta + \lambda \delta^{-1} \frac{\phi \alpha_{n,t}}{\phi \alpha_{n,t} + (1 - \phi)x_{n,t}}.$$ \hfill (E.12)

For $q_{n,t} = \delta^{-1}$ (steady state), this condition becomes

$$\lambda > \delta^2 \frac{\phi \alpha_{n,t} + (1 - \phi)x_{n,t}}{\phi \alpha_{n,t}}.$$ \hfill (E.13)

Therefore, if λ is large enough (e.g., larger than $K \delta^2$), then we can construct a sunspot equilibrium in which volatility ψ_t vanishes whenever either (i) $q_{n,t}$ deviates too far from “steady state”; or (ii) $\frac{\phi \alpha_{n,t} + (1 - \phi)x_{n,t}}{\phi \alpha_{n,t}}$ becomes too large (e.g., it reaches K in the example where $\lambda > K \delta^2$).