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Abstract

We investigate whether unequal access explains why low-income and Black households use
bank branches less than high-income and White households, despite relying on them more. We
obtain a measure of access from a gravity model of consumer trips to bank branches, estimated
using mobile device geolocation data. We find no evidence that low-income communities lack
access, and instead find that lower demand for branch products or services explains their lower
branch use. But in Black communities, poor access explains their entire drop-off in branch use.
The results spotlight areas of the country to best target policies expanding access to banking.

JEL classification: R20, D14, G21
Keywords: spatial economics, household finance, banking

*We give special thanks to Bo Honoré and Luojia Hu for suggesting parts of the econometric method we use in this
paper and for their very helpful feedback. We are grateful to Tori Healey, Gen Li, Lizzie Tong, and Yi (Layla) Wang for
their extraordinary research assistance. We thank Bob Adams, Taha Ahsin, Treb Allen, Bronson Argyle, Costas Arkolakis,
Helen Banga, Nick Barberis, Asaf Bernstein, Mehdi Beyhaghi, Vitaly Bord, Nick Buchholz, Lorenzo Caliendo, Claire
Célérier, Judy Chevalier, Tony Cookson, Jess Cornaggia, Doug Diamond, Jonathan Dingel, Jane Dokko, João Granja,
Cecilia Fieler, Raffi Garcia, Paul Grieco, Paul Goldsmith-Pinkham, Yaming Gong, Gary Gorton, Jessie Handbury, Sean
Higgins, Xuan Hung Do, Jungbin Hwang, Stefan Jacewitz, Umang Khetan, Edward Kim, Kristoph Kleiner, Noura Kone,
Sam Kortum, Cameron LaPoint, Simone Lenzu, Xiang Li, Runjing Lu, Pengfei Ma, Chuck Manski, Erik Mayer, Yuhei
Miyauchi, Luciana Orozco, Christopher Palmer, Piyush Panigrahi, Karen Pence, Matthieu Picault, Roberto Robatto,
Claudia Robles-Garcia, Rosa Sanchis-Guarner, Mario Samano, Shri Santosh, Katja Siem, Brad Shapiro, Kelly Shue,
Mike Sinkinson, David Stillerman, Amir Sufi, Nancy Wallace, Brian Waters; and participants at various seminars and
conferences for their very helpful comments. We thank Jill Kelly, Miriam Olivares, Yichen Yang, the Marx Science
and Social Science Library at Yale, Patricia Carbajales, Pat Claflin, Mazair Fooladi Mahani, and the Clemson Center
for Geospatial Technologies for their valuable assistance in geoprocessing. We are grateful to Bianca Battaglia for her
exceptional copyediting. The views expressed in this paper are those of the authors and do not reflect those of the Federal
Reserve Bank of Chicago or the Federal Reserve System. All errors are our own.

†Federal Reserve Bank of Chicago; 230 La Salle St, Chicago, IL 60604 (email: jung.sakong@chi.frb.org)
‡Yale School of Management; 165 Whitney Ave, New Haven, CT 06510 (email: alexander.zentefis@yale.edu),

Corresponding author.



1 Introduction

Bank branches remain vital means of bank participation for low-income and Black households

in the United States, but they visit them less often than high-income and White households, and do

not offset their lower branch use with greater reliance on mobile and online banking. This disparity

has prompted debates about unequal branch access as a central cause (Friedline and Despard 2016;

Dahl and Franke 2017) that impedes certain households from obtaining the full welfare benefits of

bank participation (Davidson 2018). As a remedy, policies have been proposed to increase branch

access, like investing in community development banks (Ellwood and Patel 2018) and expanding

U.S. postal banking (Baradaran 2013). However, research is divided on whether branch access

differs enough by race and income to explain the disparities (Morgan, Pinkovskiy and Yang 2016;

Goodstein and Rhine 2017; Small, Akhavan, Torres and Wang 2021), and demand-related factors,

such as low cash savings or distrust in banks, provide equally reasonable explanations.1

In this paper, we attempt to make progress in this area using newly available geolocation data

from mobile devices to quantify the extent to which differences in access or in demand separately

explain continued disparities in U.S. bank branch use. Quantifying these two distinct channels is

the paper’s first main contribution. We find that low demand for branch products or services, not

lack of access, drives lower use in low-income areas. But for Black communities, poor access fully

explains their lower branch use. These results illuminate areas around the country to target policies

that expand access to banking.

In the first part of the paper, we estimate a granular measure of bank branch access, relying

on tools from spatial economics and trade. We represent consumer trips from home Census block

groups to bank branches with a standard gravity equation, which consists of block group × time

fixed effects, bank branch × time fixed effects, and the distances between pairs of block groups and

branches. This approach takes advantage of the network of trips that link block group residents to

multiple branches. By using block group fixed effects, we compare how residents of the same block

group visit different branches by varying amounts. The extent to which this within-block group

comparison fully absorbs the block group residents’ overall demand for bank branch products

1Regarding conflicting evidence on bank branch access, Morgan et al. (2016) find minorities are less likely to live
in “banking deserts” (areas with no branches within 10 miles), but Small et al. (2021) show branches are farther from
minority neighborhoods than check cashers. Meanwhile, Goodstein and Rhine (2017) argue the overall influence of
branch locations on branch use appears modest. For evidence of the welfare benefits of bank participation (e.g., improved
access to credit, higher subjective well-being, greater liquid savings, reduced poverty, larger wealth accumulation), see,
for example, Burgess and Pande (2005); Eisfeldt (2007); Fitzpatrick (2015); Prina (2015); Agarwal, Alok, Ghosh, Ghosh,
Piskorski and Seru (2017); Melzer (2018); Célerier and Matray (2019); Brown, Cookson and Heimer (2019); Ji, Teng and
Townsend (2023).
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or services, then the estimated differences between block groups in branch use can plausibly be

attributed to differential access.2

The gravity equation not only allows us to control for demand-related factors, but also generates

a measure of bank branch access. From the gravity model, a block group’s expected number of

branch goers can be split into one part due to “demand” (the block group fixed effect) multiplied by

a second part due to “access.” We use “demand” informally to capture all resident characteristics

that contribute to visiting any bank branch (e.g., average wealth, income, financial sophistication,

trust in banks, flexibility in schedules). The “access” part is an index of bank branches available to

residents of the block group. Each branch in a block group’s index is represented by the branch’s

attributes, as captured by the branch’s fixed effect, and the costs of traveling to the branch. A

branch’s fixed effect proxies for its “quality,” capturing all characteristics of the branch that make it

a destination for residents of any block group (e.g., the branch having a modern design, higher staff

attentiveness, or an efficient drive-through ATM).3

By this index, residents have better bank branch access if branches are closer or if the nearest

branches have superior attributes that attract more visitors. Unlike traditional supply-side measures

of access from the banking literature—such as the number of branches per capita (Claessens 2006) or

the availability of broadband Internet lines for online banking (Arnaboldi and Claeys 2008)—which

only reveal consumers’ opportunity set, this measure embodies consumers’ actual choices.4

Applying this measure of access to a banking setting is the paper’s second main contribution,

as it can be used to examine other parts of household financial markets, such as access to credit

unions, investment advisors, or payday lenders. Based on the median dwell times that visitors in

the geolocation data spend at branches—ranging from less than 6 minutes to over 2.5 hours—the

data appear to pick up both quick trips for straightforward transactions like depositing cash and

long trips for complex transactions like small business borrowing. If lack of access deters vulnerable

populations from visiting bank branches—without clear evidence of them fully compensating with

alternative methods like mobile and online banking—these groups are at greater risk of bearing the

welfare costs of reduced bank participation documented in the literature.

2Using block group fixed effects to control for consumer demand is akin to using firm fixed effects to absorb credit
demand shocks when estimating the consequences of credit supply shocks, in the style of Khwaja and Mian (2008).

3We correlate the estimated branch fixed effects with observable property characteristics, and the results suggest that
the fixed effects are sensible proxies for branch quality: Branches with higher fixed effects have more square footage,
higher property market values, higher price/sq. ft., longer store hours, and are open on weekends.

4The measure of access is conceptually related to indices in the economic geography and trade literature that
describe an exporting country’s access to the importing markets of other countries (e.g., Harris 1954; Head and Mayer
2004; Redding and Venables 2004; Hanson 2005; De Sousa, Mayer and Zignago 2012; Donaldson and Hornbeck 2016;
Fajgelbaum and Gaubert 2020; and Adão, Carrillo, Costinot, Donaldson and Pomeranz 2020).
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The central worry over uncovering the causal effect of access on branch visitation from the

gravity equation is omitted variable bias. Namely, the distance between block groups and branches

is endogenous: People may choose to live near particular kinds of bank branches, and banks may

build their branches in certain areas to cater to particular kinds of clients. Hence, there may exist

unobservable characteristics of residents and branches that correlate both with the distances between

them and visits. To quantitatively assess the impact of possible selection on these unobservable

characteristics, we add an extensive vector of controls to the gravity equation that attempt to account

for endogenous location choices. The controls take inspiration from Balassa (1965)’s measure of

“revealed comparative advantage,” a measure also recently adapted in Paravisini, Rappoport and

Schnabl (2023) for quantifying bank specialization. Overall, a sensitivity analysis reveals that the

gravity parameter estimate is robust to the rich set of controls.

Beyond omitted variables, we face an additional identification challenge: The geolocation data

are subject to differential privacy methods, which try to shield the personal identifiable information

of individuals from becoming public. Noise is added to the number of visitors from a block group

to a branch, and these visitor counts are either truncated or censored if the number is too low.

These distortions introduce non-classical measurement error into the data. Standard gravity model

estimation methods, such as Poisson pseudo-maximum-likelihood (PPML), would render biased

estimates and contaminate the measure of access.

To account for the differential privacy, we instead use the Method of Simulated Moments

(MSM) to estimate the gravity equation. A key insight of our approach is to simulate data from the

gravity model and then apply the same differential privacy algorithm to the simulated data that the

data provider used to privacy-protect the real-world data. Standard MSM is straightforward to

implement this way in models with no or few fixed effects (McFadden 1989; Pakes and Pollard

1989). But the gravity equation has hundreds of thousands of fixed effects across block groups

and branches, which severely complicate the procedure. To tackle this issue in the gravity model

estimation, we introduce an econometric method that adapts MSM to identify high-dimensional

fixed effects. This econometric method is the paper’s third main contribution, as the approach

can be implemented in other empirical settings involving high-dimensional fixed effects in MSM

estimation.

In the second part of the paper, we use the gravity model estimates to uncover how bank branch

access covaries with the household incomes and racial makeups of local communities. Controlling

for the racial and age population shares of block groups, we find that residents of low-income
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block groups have better branch access than residents of high-income block groups. The better

access can arise from either low-income residents living relatively closer to branches or visiting

branches of higher quality. We find that the higher access in low-income communities is entirely

due to better branch proximity and not quality. Unlike those in low-income areas, residents of

block groups with high Black population shares have worse access compared to residents of block

groups with high White shares, controlling for a block group’s median household income and the

population shares of its residents’ ages. The worse access for Black communities stems entirely

from lower branch proximity and not quality. These results reconcile with the existing literature on

banking deserts when recognizing that the paper’s demographic comparisons of branch access are

done at the granular block-group level. For example, Morgan et al. (2016) find that residents of

majority-minority census tracts are less prone to live in banking deserts and argue that this finding

reflects majority-minority tracts being situated mostly in cities. We find that, within cities, residents

of predominately Black block groups live farther away from branches relative to their counterparts

in predominately White block groups.

Finding that the Black-White gap in branch access is from branches being located farther away

from Black communities, we attempt to shed light on some potential reasons for this disparity. To

do so, we correlate the branch access gaps at the county-level with local crime indices (Nau, Sidell,

Clift, Koebnick, Desai and Rohm-Young 2020) and measures of racial bias against Blacks among

Whites (Xu, Nosek and Greenwald 2014; Chetty, Hendren, Jones and Porter 2020). We find that

counties with higher expected risk of crime—especially robbery, murder, and assault—along with

counties with higher levels of either implicit or explicit racial bias have larger Black-White gaps in

branch access.

In the third part of the paper, we isolate the extent to which access or demand explains

the observed racial and income disparities in branch use. We start by regressing the expected

total number of branch goers per block group, as estimated from the MSM, onto demographic

characteristics of the block group residents. Controlling for block group racial and age shares,

we find that every doubling in a block group’s median household income is associated with 15.5

percent more expected branch goers per month. This income gradient in branch use is large, as

the unconditional likelihood of a resident in the geolocation data visiting a bank branch during

the year is about 72 percentage points. Examining differences by race, and controlling for median

household income and age shares, we find that a block group with a 100% Black population share

expects roughly 5.6 percent fewer branch goers per month relative to a block group with a 100%
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White population share.

We next decompose the income gradient and the Black-White gap in branch use into constituent

parts due to access and demand. We do so by regressing each block group’s measure of access

and its estimated fixed effect onto the same set of block-group-level characteristics that we use

to evaluate the block group’s expected total number of branch goers. By construction from the

gravity equation, the estimated coefficients from the three regressions satisfy an identity along

any demographic attribute, separating the elasticity of branch use into two pieces: one part due to

access and the other due to demand.

Performing this decomposition, we find that the +15.5 percent income gradient in branch

use nationwide consists of a -7.5 percent income gradient in access and a +23.0 percent income

gradient in demand. Thus, while residents of low-income block groups have relatively better access

to bank branches, they exhibit a lower propensity to visit any branch, which translates overall

into lower branch use compared to residents of high-income block groups. On the other hand,

Black communities exhibit no robust statistical difference in their demand for branch products or

services nationwide compared to White communities. And yet, residents of Black communities

visit branches less, which implies that the 5.6 percent Black-White gap in branch use cross-country

is entirely due to worse access.

Near the end of the paper, we discuss several policy implications of the results. Of note, in a

counterfactual exercise, we add post office locations to the set of available bank branches—akin to

a national expansion of postal banking (Baradaran 2013; Sanders 2021; Gillibrand 2021)—under

varying assumptions about the quality of postal banks (i.e., their fixed effects). In a low or medium

quality system, the racial gap in access actually widens because post offices also tend to be located

comparatively closer to White communities than Black communities, just like private banks.

However, if the postal banks were of high quality, the Black-White gap in branch access shrinks,

most significantly in big cities.

Related Literature. This paper relates to three areas. The first is the array of work that investigates

financial access, financial use, and their joint relation to inequality. See Claessens (2006) and

Claessens and Perotti (2007) for surveys. In a seminal paper, Beck, Demirguc-Kunt and Peria (2007)

develop indicators of banking sector outreach across 98 countries (e.g., the number of ATMs or

loans per capita). Beck, Demirgüç-Kunt and Martinez Peria (2008) measure bank access barriers

(e.g., account fees or minimum account balances) across 62 countries. See also Washington (2006),
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Blank (2008), Agarwal and Hauswald (2010), Ho and Ishii (2011), and Goodstein and Rhine (2017),

who carefully investigate how improvements in different measures of bank access affect bank use

in the United States, as well as Bachas, Gertler, Higgins and Seira (2018), Bachas, Gertler, Higgins

and Seira (2021), Agarwal, Mukherjee and Naaraayanan (2023), and Fonseca and Matray (2024),

who do the same in other countries. Recent works have also meticulously studied how branch

closures affect small business credit access (Nguyen 2019), how they lead to welfare losses for

older depositors (Jiang, Yu and Zhang 2023), and how they became an unintended consequence of

the Community Reinvestment Act (Cespedes, Jiang, Parra and Zhang 2024). Other recent papers

have carefully examined how search frictions influence consumer loan access and choice (Argyle,

Nadauld and Palmer 2023), how bank and retirement account participation varies across the U.S.

(Yogo, Whitten and Cox 2022), and how Black depositors were afflicted by apparent access but

actual fraud in the 19th century (Célérier and Tak 2023). An advantage of this paper’s measure

of financial access is that it encapsulates the actual choices of individual consumers, rather than

reflecting survey responses or supply-side factors alone, such as the local branch density or the

availability of low-cost accounts. And while the benefits of increasing access are well established,

less is known about the extent to which prevailing U.S. inequities in access sustain disparities

in bank use. We attempt to make progress in this body of work with a research approach that

disentangles the effects of access and demand on the use of bank branches.

Second, the paper relates to the large literature in spatial economics on commuting flows and the

arrangement of economic activity. See Redding (2013) and Redding and Rossi-Hansberg (2017) for

surveys. Much of this work has examined spatial differences in consumption access (e.g., Marshall

and Pires 2018; Allcott, Diamond, Dubé, Handbury, Rahkovsky and Schnell 2019; Ellickson, Grieco

and Khvastunov 2020; Eizenberg, Lach and Oren-Yiftach 2021). We take a closer look at spatial

differences in access to financial services. Recently, several articles in the literature use geolocation

data to answer economic questions. Research has looked at political partisanship (Chen and Rohla

2018), restaurant dining choices (Athey, Blei, Donnelly, Ruiz and Schmidt 2018), voting wait times

(Chen, Haggag, Pope and Rohla 2019), segregation (Athey, Ferguson, Gentzkow and Schmidt 2021),

firm boycotts (Hacamo 2023), social interactions (Büchel, Ehrlich, Puga and Viladecans-Marsal 2020;

Miyauchi, Nakajima and Redding 2021; Kreindler and Miyauchi 2022; Atkin, Chen and Popov 2022),

and the Covid-19 pandemic (Almagro, Coven, Gupta and Orane-Hutchinson 2021; Goolsbee and

Syverson 2021; Chen, Chevalier and Long 2021; Couture, Dingel, Green, Handbury and Williams

2022; Coven, Gupta and Yao 2023). We complement this literature by using geolocation data to
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quantify spatial patterns and transportation costs in banking.

Third, the econometric method we introduce relates to estimation procedures used in the spatial

economics and trade literatures. Novel methods to handle econometric issues when estimating

gravity models have been proposed before, such as Tobit procedures, two-step Heckman procedures,

and Poisson fixed-effects estimators to address zero flows (Eaton and Tamura 1994; Helpman,

Melitz and Rubinstein 2008; Westerlund and Wilhelmsson 2011). Recognizing potential biases

introduced when log-linearizing a gravity equation, Silva and Tenreyro (2006) propose a Poisson

pseudo-maximum-likelihood (PPML) procedure, which became seminal to the literature, and its

extensions can handle a large number of fixed effects (Larch, Wanner, Yotov and Zylkin 2019).

Recently, Dingel and Tintelnot (2021) introduce a remarkably tractable spatial model and estimation

procedure for “granular” environments. When the data in a spatial gravity model’s estimation

is subject to differential privacy and many fixed effects require estimation, we hope this paper’s

econometric method can be of use. More broadly, the paper provides a way to implement the

Method of Simulated Moments when high-dimensional fixed effects require identification. Even

in areas outside of spatial economics, differential privacy algorithms are masking more economic

data sets over time, including the 2020 Census tables and American Community Survey microdata

(Ruggles, Fitch, Magnuson and Schroeder 2019), financial transactions data (Karger and Rajan 2020),

and health records (Allen et al. 2020). The paper’s econometric method can be helpful in estimating

models of economic environments that rely on privacy-preserving datasets.

2 Background on Bank Branches in the U.S.

Online and mobile banking over the past two decades have become major methods of household

access to bank products and services (Boel and Zimmerman 2022). Uptake of Internet banking has

been especially strong in developing countries (Laforet and Li 2005; Mbiti and Weil 2015; D’Andrea

and Limodio 2023) and parts of Europe (D’Andrea, Pelosi and Sette 2021; Mazet-Sonilhac 2022).

Despite this advancement of digital banking, even in the U.S., physical bank branches continue to be

important modes of bank access for U.S. consumers, particularly low-income and Black households.

According to the 2019 FDIC Survey of Household Use of Banking and Financial Services, roughly

81% of all banked and unbanked households visited a bank branch in the past 12 months, and

29.7% visited a branch 10 or more times. Traveling to a branch is the primary (i.e., most common)

method of accessing bank accounts for about 21% of banked respondents. Mobile banking is more
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frequently cited as a primary use method (34%) for banked households, but mobile banking is an

incomplete substitute, as even in this group of respondents, 81.2% stated visiting a branch over the

past year and about 1 in 5 in that group visited ten or more times.

In addition to the FDIC Survey, the Survey of Consumer Finances (SCF) suggests that branches

remain subjectively important to households in their use of banking products and services.

According to the 2019 SCF, the location of branches is most frequently cited as the most important

reason for choosing an institution for a main checking account (43% of respondents). Despite

advances in mobile and online banking over time, the proportion of respondents citing branch

locations as their most important reason has remained roughly the same since 1989 (between 43%

and 49%). The 2016 SCF also reports that almost all of the 84 percent of households with bank

accounts who visited a branch in the past year did so to use services other than just an ATM

(Anenberg, Chang, Grundl, Moore and Windle 2018).

Other survey evidence indicates several reasons why bank branches remain high in importance

for consumers. Many households still prefer personal interactions for general banking services,

complex transactions, and financial advice. A 2019 Deloitte survey of 17,000 banking consumers

found that most respondents prefer branches over online or mobile banking when opening accounts

(e.g., mortgage, wealth management, checking, credit card), and this preference for branches was

uniform across generational cohorts (Srinivas and Wadhwani 2019). Branches appear to be symbols

of trust for consumers, fostering brand recognition, a sense of security, and helping maintain

face-to-face, personal banking relationships. A 2017 J.D. Power survey of retail banking customers

found that respondents who used both digital and branch methods of access expressed greater

satisfaction with their banks than respondents who used digital alone (Hielscher 2017). The inability

to solve banking problems using the digital channel by itself was a key source of dissatisfaction.

Survey evidence also finds that consumers consider having accessible branches and ATMs

nearby to be among the most important retail banking benefits (Gaughan 2021; Martin 2023). A

2020 survey from the financial advisory firm Novantas found that most respondents wanted their

banks to maintain branches close to where they live or work, and 70% of consumers felt having a

branch nearby was important (Cocheo 2020). Community Reinvestment Act disclosures also reveal

that nearby branches are still vital for small business borrowers, as the share of loans made by

lenders without a local presence, while increasing, remains low (Anenberg et al. 2018). Furthermore,

a 2018 Mercator Advisory Group survey found that 79% of small business owners visited a branch

at least once a week and 24% visited daily (Augustine 2018).
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Beyond their importance to the general populace, bank branches play a meaningful role in

serving low-income and minority communities. Empirical studies have found that when branches

are located in these areas, borrowers living there—particularly those with limited credit histories—

have greater access to credit and default less (Ergungor 2010; Ergungor and Moulton 2011; Agarwal,

Chomsisengphet, Liu, Song and Souleles 2018a). Bank branches also appear to be crucial modes

of access for low-income and Black households. In Online Appendix F, we analyze the 2019

FDIC survey’s microdata and find that both household types indicate relying more on bank

branches/ATMs and less on mobile/online banking as their most common method of bank access.

Based on raw averages, 61% of respondents in the lowest income bracket (< $15, 000) say that bank

tellers/ATMs are their primary access method, compared to only 32% of respondents in the highest

income bracket ($75, 000+). Similarly, 50% of Black respondents indicate that bank tellers/ATMs are

their primary access method, compared to only 41% of White respondents. And when controlling

for age and race in a multivariate linear probability regression, we find that respondents in the

lowest income bracket are roughly 25% more likely than those in the highest income bracket to

say that bank tellers/ATMs are their primary method to access their bank accounts compared to

mobile/online. Similarly, controlling for income and age, we find that Black respondents are about

6.4% more likely than White respondents to call bank tellers/ATMs their primary access method.

And yet, despite evidently relying on branches more, both low-income and Black households

visit branches less than high-income and White households, a pattern we aim to explain in our study.

Based on raw averages, 63% of respondents in the lowest income bracket say they visited a bank

branch in the past twelve months, compared to 86% of respondents in the highest income bracket.

Similarly, 69% of Black respondents say they visited a branch in the past twelve months, compared

to 84% of White respondents. And when controlling for age and race, we find that respondents in

the highest income bracket are roughly 22% more likely to say they visited a branch in the previous

year than respondents in the lowest income bracket. A substantial Black-White gap in reported

branch use is also present. Controlling for income and age, we find that Black respondents are 10%

less likely to answer having visited a branch in the past year than White respondents.

Finally, commercial banks themselves see physical branches as critical channels for acquiring

customers, retaining them, and knowing them better (Horton 2019). Branches remain significant

sources to attract bank deposits. JP Morgan Chase, for instance, saw 75% of its deposits’ growth

in 2018 arising from customers using branches (Wathen 2018). Although the number of branches

in the U.S. has been declining since 2013 (Anenberg et al. 2018), many financial institutions think
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of branches as salient “billboards” to consumers, and banks are reluctant to close their physical

presence entirely in communities, in part because they lose information about the local economy

(Nguyen 2021). To enhance the branch experience and draw customers in, several commercial

banks are making large investments in redesigning their physical locations into upgraded “smart

branches” that integrate with new technologies and amenities (Dallerup, Jayantilal, Konov, Legradi

and Stockmeier 2018).

Overall, bank branches remain integral to the financial lives of most U.S. households and a

central customer touch point for commercial banks. Furthermore, we observe significant disparities

in their use by both race and income that could be driven by differences in demand or in access.

3 A Measure of Bank Branch Access

The paper’s measure of bank branch access originates from a standard log-linear, fixed-effects

gravity equation that models the number of visitors from home Census block group i to bank

branch j in time period t.5 That gravity equation is:

E
(
No. of visitorsi jt

)
= exp

(
γit + λ jt − βt log Distancei j

)
. (1)

Block group fixed effect. The first term in the gravity equation, γit, is a block group × time fixed

effect that captures all characteristics of block group i’s residents that contribute to them visiting any

bank branch in the period. The population size, as well as residents’ wealth and income, cash needs,

extent of financial sophistication, amount of trust in banks, and general methods of transportation,

are all encoded in the block group fixed effect. Because it embodies all block group-specific factors

that promote residents to visit any bank, and is orthogonal to the supply-side characteristics of

any particular branch, we refer to a block group fixed effect (albeit informally) as proxying for

block group residents’ “demand” for physical branch products or services. More precisely, it is

the residual demand not met by other bank access methods—like online, mobile, and telephone

banking, or visiting offsite ATMs—that residents optimally choose to satisfy in-person at a branch.

The geolocation data do not reveal the precise activity that a customer partakes at a branch, but we

5Using origin and destination fixed effects to estimate gravity equations has become standard practice in the trade
literature since Harrigan (1996). See also Fally (2015) for a connection between fixed-effects and structural gravity models.
Because we have a panel, the cross-sectional fixed effects are time-varying. Eq. (1) can be derived from a differentiated
product, discrete choice model of consumers selecting branches to visit per period. Online Appendix I provides one
simple model of that sort. We specify Eq. (1) in levels instead of in logs because the estimation procedure described in
Section 5 is run in levels to account for the mobile device data’s differential privacy distortions.
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do know median dwell times spent there, which give some clues. From Table 1, the 10-90 quantile

range is 6 minutes to 2.5 hours. Thus, the data likely include a wide scope of activities, such as

depositing cash, obtaining a loan, or requesting an international wire transfer.

Branch fixed effect. The second term, λ jt, is a branch × time fixed effect that captures all

characteristics of branch j that make it a destination for residents of any block group in the period.

The bank’s brand, the efficiency and courteousness of the branch’s staff, the expertise and experience

of financial advisors, the hours open, the size and design of the physical building along with its

furnishings, and the availability of amenities like safety deposit boxes and drive-through ATMs are

all encoded in the branch fixed effect. Even the excellence or mediocrity of the bank’s online and

mobile offerings is embedded, since this could affect a customer’s choice to visit in-person as a

substitute. Because it embodies all branch-specific factors that draw in visitors from any origin, and

is orthogonal to the demand-side characteristics of any particular block group, we refer to a branch

fixed effect (again informally) as proxying for the bank branch’s “quality.” Nevertheless, a potential

concern with this interpretation is that λ jt conflates two opposing effects: High quality branches

may attract more customers from farther away, but low quality, inefficient branches requiring

multiple visits to solve issues may also attract more visitors. To better understand what drives

the branch fixed effects, we study their correlation with observable property characteristics in

Online Appendix D. The fixed effects indeed align with measures of quality: Branches with higher

fixed effects have more square footage, higher property market values, higher price/sq. ft., longer

weekday hours, and are open on weekends.6

Bilateral travel barrier. The third term, βt log
(
Distancei j

)
, is the bilateral travel barrier between

block group i’s residents and branch j. It combines travel costs, captured by log
(
Distancei j

)
, with

their respective elasticity, βt, to measure the overall impact on visitor flows.7 Distancei j is the

geographic distance between block group i and branch j. In the estimation, we measure distance

using the haversine formula, which accounts for the curvature of the Earth, and we compute the
6To allay concerns that the estimated branch fixed effects are mechanically higher in more populated areas, we

regress them in Online Table A.5 on the population densities of the census tracts in which the branches are located and
find a negative and imprecisely estimated relationship.

7One potential concern is that the elasticity βt should vary by demographic attributes. Online Table A.6 presents
PPML estimates of Eq. (1) using the raw geolocation data, allowing βt to differ by income and race separately. Residents
of low-income block groups and Black communities exhibit precisely estimated lower values of βt, but the differences are
relatively small. For this reason, we let βt vary over time but keep it constant across block groups. A homogeneous βt also
lets branch proximity and branch quality determine a block group’s branch access, instead of differences in residents’
elasticity to distance, which may arise from some groups like low-income and Black communities relying more on
branches and less on alternative banking methods like mobile or online.
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distances between branches and block groups’ centers of population. (See Footnote 39 in the Online

Appendix for details.)8 Finally, Distancei j implicitly presumes that residents visit branches directly

from home. The geolocation data we use do not reveal the exact travel paths of visitors, but only

their home block groups. Hence, the branch access measure below is best thought of as capturing

access around residents’ homes. We know of no accessible data on the commuting or shopping

patterns of U.S. residents at the block group level. But to the extent that residents of low-access

areas visit branches in high-access areas where they work or shop, the access measure will be

underestimated for those groups.9

Identification. Identification of βt as the causal effect of distance on branch visitation hinges

on unobserved determinants of actual visitor counts being orthogonal to Distancei j. However,

Distancei j is endogenous to where people choose to live and where banks choose to build their

branches. For example, existing Chase account owners may elect to live in a town because it

has many nearby Chase branches; or, conversely, Chase may erect a branch with private wealth

management services in an area if it anticipates that these services are attractive to residents there.

The same can be said of minority depository institutions (MDIs) that are located in underserved

neighborhoods precisely to provide for those communities. Unobservable characteristics of residents

and branches may correlate both with the distances between them and visits, which would render

Eq. (1) subject to an omitted variables problem.10 In Online Appendix B.2, we quantitatively assess

the impact of possible selection on these unobservable characteristics by adding a rich set of

controls that try to proxy for the endogenous location choices of residents and branches. These

controls measure the relative shares of types of visitors over others at a branch, reminiscent of

Balassa (1965)’s “revealed comparative advantage.” If people live near a branch that caters to them,

and if that branch is located near the customers it wishes to cater to, then we should expect to

see disproportionate shares of certain types of visitors over others at that branch. We follow the

common approach of assessing the sensitivity of the estimated parameter of interest (the gravity

8An alternative to haversine distance is the road driving time between locations. In Online Appendix Table A.8, we
regress the driving times between about 1 million random block groups and bank branches onto the corresponding
haversine distances. Regressions are run across the entire 1 million observation sample and over subsample block groups
associated with various demographic attributes. Across all samples, the regression adjusted R2s are very high, and the
variation in driving time with respect to haversine distance is stable. Haversine distance is computationally easier to
calculate, and these results suggest that it a good substitute for driving time.

9See Relihan (2022) for a remarkable recent analysis of the online and offline shopping habits of millions of customers
using JP Morgan’s proprietary transactions data.

10Notice that if people, upon moving, became Chase account owners and visited Chase branches because their new
neighborhood was populated with Chase branches, this effect would be attributed to the causal effect of distance.
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coefficient) to the inclusion of the observed controls using OLS and PPML. Overall, the gravity

coefficient estimate is robust to the rich vector of controls.11

Functional form. Eq. (1) imposes a log-linear relation between visitor counts and distance. Fig. 1,

Panel A depicts a clearly negative and fairly linear relation between distance and visitation in the

geolocation data. The relation does flatten out (i.e., becomes nonlinear) when the log number of

visitors approaches 1.4, but that change corresponds to the geolocation data’s privacy protections

that bottom code the visitor counts at 4. When only block group × branch pairs with >4 visitor

counts are plotted in Panel B, a near-linear relation retains throughout. A log-linear gravity model

as in Eq. (1) is standard in the spatial economics literature, and Fig. 1 suggests that it represents the

geolocation data quite well.

Bank branch access. To arrive at a measure of branch access using the gravity model, we sum

across all bank branches available to visit in the period. Doing so gives block group i’s expected

number of visitors to any branch in the period:

E (No. of visitorsit) = exp
(
γit

)
Φit. (2)

The term Φit is defined as:

Φit ≡
∑
j∈Bt

exp
(
λ jt

) (
Distancei j

)−βt
, (3)

where Bt is the set of bank branches open in period t across the country.

Eq. (3) is the paper’s measure of bank branch access. It summarizes information about the set

of branches available to residents of a block group per time period. Given its form, Φit can be

interpreted as an attribute-adjusted branch index that is unique to each block group. Each branch in

a block group’s index is represented by (1) the “quality” of the branch’s attributes in the period, as

measured by its fixed effect, λ jt, and (2) the branch’s distance away. Local areas have better access if

bank branches are relatively closer, especially branches with better attributes.12

11Paravisini et al. (2023) recently use similar Balassa (1965)-style share measures to study bank specialization in
lending.

12The object Φit is conceptually related to what some in the economic geography and trade literature have described
as an exporting country’s “access” to the importing markets of other countries (e.g., Harris 1954; Head and Mayer 2004;
Redding and Venables 2004; Hanson 2005; De Sousa et al. 2012; Donaldson and Hornbeck 2016; Fajgelbaum and Gaubert
2020; and Adão et al. 2020).
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4 Geolocation Data on Branch Visitors

Branch visitors are based on monthly, anonymous geolocation data from mobile devices between

January 2018 and December 2019. The data provider is the firm SafeGraph. We do not use the “raw”

pings from individual mobile devices, but instead, SafeGraph’s aggregated geolocation data that

try to protect user privacy. Rather than reporting the physical whereabouts of an individual device

through time, this aggregated data report bank branch visitors per month by their home Census

block groups (i.e., the network of consumer trips from home block groups to bank branches).

The aggregated data are benefited by SafeGraph’s algorithms that pinpoint a device owner’s

home origin and estimate whether the owner visits a particular branch. However, a limitation is

that the data do not give the demographic attributes of the mobile device owners, the starting

points of their trips, their individual durations spent at a branch, nor what they do at the branch.

A unique visitor in the data is identified by a mobile device, one device is treated as one visitor,

and a device must spend at least 4 minutes at a branch to qualify as a visitor. Online Appendix C

provides background information on the SafeGraph data and a detailed explanation of how we

construct our primary sample.13

4.1 Primary Sample

Our primary (core) data set includes bank branches in all 50 states and the District of Columbia.

To ensure that we only analyze depository institutions, we include only businesses in SafeGraph

with NAICS codes equal to 522110 (Commercial Banking), 522120 (Savings Institutions), or 551111

(Offices of Bank Holding Companies) whose brands are also listed in the FDIC’s 2019 Summary of

Deposits (SOD). We identify the physical locations of bank branches from SafeGraph’s geographic

coordinates, and not from the SOD’s, as we found that SafeGraph’s coordinates were typically more

accurate.14

Our core sample is confined to bank branches for which SafeGraph has visitor data. Many

bank locations recorded in SafeGraph lack such information, as it is often difficult to attribute

13SafeGraph asks all researchers who use the company’s data to include the disclaimer: “SafeGraph is a data company
that aggregates anonymized location data from numerous applications in order to provide insights about physical places,
via the Placekey Community. To enhance privacy, SafeGraph excludes census block group information if fewer than two
devices visited an establishment in a month from a given census block group.” The documentation to the SafeGraph data
is here: SafeGraph Documentation (SafeGraph 2018-2019).

14For most branches, the geographic coordinates in SafeGraph and the SOD matched. When the two sources disagreed,
a Google Maps search of a branch address in the SOD often confirmed that no physical place existed at that address. (The
place’s absence was not due to a branch closing.)

14

https://www.safegraph.com/
http://safegraph.com/
http://Placekey.io
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mobile device visits to particular branches for two reasons. First, in dense environments such as

multi-story buildings or strip malls, SafeGraph might lack confidence about the geometric boundary

of a place. To reduce false visitor attributions, SafeGraph instead allocates visitors to the larger

“parent” space, such as the encompassing mall. Second, and related, a bank branch might be entirely

enclosed indoors within a parent location (i.e., a customer must enter the parent’s structure to reach

the branch). Because mobile device GPS accuracy deteriorates severely within indoor structures,

SafeGraph aggregates visitors to the level of the parent location. For example, many Woodforest

National Bank branches are enclosed in Walmart Supercenters. (Walmart partners with Woodforest

to provide the retail company’s banking services.) Visitors to these enclosed branches cannot be

separated from visitors to Walmart, and so, these branches are deprived of visitor data.15

The SOD registers 86,374 bank branch locations as of 2019. While SafeGraph can account for

71,468 branches according to our core sample definition (83% coverage), only 51,369 of these places

have visitor data and constitute our core sample. Our core sample thus covers around 60% of bank

branches in the United States. Online Fig. A.1 presents a time-series of the number of branches per

month. In Online Appendix B.1, we perform a robustness check of our main findings on access

by including all 2019 SOD bank branches. For branches in the SOD but not in SafeGraph, we use

their geographic distances from block groups, and we impute their estimated fixed effects with the

national average (and median) of the estimated fixed effects of branches in SafeGraph within the

period. Including all SOD branches strengthens the main findings on how access varies by race and

income.16

4.2 Sampling Bias

Our core sample experiences two types of sampling biases: (i) differential privacy and (ii) sample

selection. We discuss each bias below and describe how we address it.

Differential privacy. The first bias emerges from SafeGraph’s efforts to preserve user privacy.

The company applies differential privacy methods to avoid identifying people by their home

15Regarding branch openings and closings, if a bank branch closed and SafeGraph was aware of its closure, any
visitors to the building (say, if a new business opened there) would no longer be attributed to the branch. Likewise,
if a branch opened and SafeGraph was aware of it, visitors would start being attributed to the branch. Nevertheless,
if SafeGraph is unaware of a branch’s opening or closing, visitors would be incorrectly attributed and count toward
measurement error.

16We focus our analysis on commercial banks in this paper and leave for follow-up work the study of access to other
depository institutions like credit unions, and non-traditional financial institutions, like check cashers, pawnbrokers, and
payday lenders.
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locations. First, SafeGraph adds Laplace noise to all positive counts of visitors to a branch from

each home Census block group of the branch’s visitors. Second, they round each of these block

group × branch visitor counts down to the nearest integer. Third, they drop from the data all

rounded visitor counts less than 2. Fourth, if a rounded visitor count equals 2 or 3, they raise it to

4. These last two data adjustments render our sample subject to both truncation from below and

censoring from below, leading to non-classical measurement error. Fig. 2 presents the distribution

of the observed (raw) visitor counts in black, which reveals both the truncation and censoring.

Roughly 84% of the observed visitor counts equal 4, which implies a substantial amount of data

distortion. The distortion also varies by demographic attributes of residents. For example, in block

groups with predominately Black residents (80%+), about 88% of visitor counts equal 4, whereas in

the remaining block groups, about 83% equal 4. We account for SafeGraph’s differential privacy

methods by estimating the gravity equation in Eq. (1) using an econometric method that adapts

the Method of Simulated Moments to estimate high-dimensional fixed effects. Online Appendix A

details the full procedure, and Section 5 provides a summary.

Sample selection. The second bias relates to sample selection, as our data on branch visitation

patterns might not be representative of the true population behavior in the U.S. Potential sampling

bias arises from two sources: the set of branches and the set of visitors. To address potential sampling

bias from missing around 40% of U.S. branches, Online Table A.1 compares the representation of

different demographic groups in the areas covered by our core sample of branches to the areas

covered by all branches in the SOD. Overall, differences in demographic characteristics between

the two sets of areas are precisely estimated, but economically small compared to the mean values

across areas. In addition, we conduct a robustness check on access in Online Appendix B.1, where

we include all branches in the 2019 SOD, and the paper’s main findings on access are strengthened.

Regarding the sample of visitors, our core sample includes 215,686 unique visitor home Census

block groups, and the 2010 U.S. Census records 217,740 block groups, implying close to complete

coverage of U.S. local home areas. SafeGraph aggregates data from around 10% of all mobile devices

in the country, and we calculate about 30 million unique mobile devices visiting all establishments

recorded in SafeGraph, and 1.6 million visiting bank branches per month on average. Online

Fig. A.1 presents a time-series of the number of branch visitors over the sample period. Several other

researchers have documented that geolocation data from mobile devices is broadly representative

of the general population (Squire 2019; Chen and Pope 2020; Athey et al. 2021; Couture et al.

16



2022). To gauge our sample’s representativeness, in Online Appendix F.3, we compare the share of

households in the 2019 FDIC survey who reported visiting a bank branch in the previous 12 months

to the share of mobile devices in SafeGraph that visited branches in the same period, with the

comparison done by household income. There is a strong resemblance between the two sources, as

both reported and observed branch visitor shares are increasing and concave in household income.

Nevertheless, we cannot rule out non-random sampling of mobile devices based on unobserved

characteristics of visitors. As we discuss in Online Appendix G, we do not know the precise

demographic attributes of an individual bank branch visitor, and instead, we infer attributes of

visitors according to the demographic characteristics of their home Census block groups, thus facing

an ecological inference problem (King 1997; King, Tanner and Rosen 2004). The 2019 FDIC Survey

reports smartphone ownership rates by household characteristics. Overall, 85.4% of respondents

own smartphones, with Black respondents reporting slightly lower rates of ownership (81.5%)

compared to White respondents (85.4%). Ownership rates decline to 66.4% among those aged 65+,

63.3% for those earning less than $15,000 per year, and 63.7% among the unbanked. We likely under

sample these groups with lower mobile device ownership rates.

Even so, lower smartphone ownership rates among low-income households, Black households,

and the unbanked reasonably make our estimates of branch use, branch access, and branch demand

by income and race more conservative. The FDIC survey evidence shows that our two demographic

groups of interest (low-income and Black households) visit branches less. Because these two groups

are possibly under sampled in the geolocation data, the extent to which we find that they also visit

branches less in our sample is reasonably an underestimate. Furthermore, although the geolocation

data have these sampling limitations, they are among the few sources of information on observed

patterns of regular consumer travel, patterns that can be linked to important demographic data.

As long as a block group is represented in the data—and nearly all U.S. block groups are in our

sample—and the findings are framed at the block group and not the individual level, the under

sampling of certain households based on differential smartphone ownership is less of an issue.

Finally, SafeGraph may misattribute a mobile device to a home block group. To account for

possible misattribution, we weight block-group level regressions of branch access, branch demand,

and branch use in Sections 6 to 7 by the 2019 5-year American Community Survey (ACS) block

group population counts, thereby down-weighting block groups with disproportionately high

mobile devices and up-weighting block groups with disproportionately low mobile devices.17

17Indeed, Thaenraj (2021) identifies around 1,000 Census block groups in the SafeGraph data that register more
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4.3 Descriptive Statistics

Table 1 reports descriptive statistics of our core sample. On average, the typical branch has 40

unique visitors per month, but there is wide dispersion across branches, as the standard deviation of

visitors is over twice as high at 94.18 The median distance traveled to a branch is 5 miles on average,

but the standard deviation is 16 miles. The median dwell time is 49 minutes on average, but for

half the branches in the sample, the median dwell time is 9 minutes or less. Hence the sample

likely includes quick trips for straightforward transactions (e.g., ATM cash withdrawals, check

cashing, and making change for a $100 bill), as well as long trips for complex financial transactions

(e.g., opening a new account, applying for a home mortgage or small business loan, receiving

personalized retirement planning). With the median dwell time on average being 49 minutes, the

distribution of trips may be skewed towards more of these complex transactions.19

5 Gravity Model Estimation

SafeGraph’s differential privacy methods bias any OLS or PPML estimation of Eq. (1). In this

section, we summarize our alternative econometric method, which adapts the Method of Simulated

Moments (MSM) to identify high-dimensional fixed effects. Online Appendix A has the full details.

5.1 Econometric Method

The method’s goal is to uncover the parameters of the “true” distribution of branch visitors—

based on the gravity model—from the distorted visitor data. Let V∗i jt be the true number of visitors

from block group i to branch j in year-month t that SafeGraph observes. Let Li jt denote the Laplace

noise that SafeGraph adds to V∗i jt to protect user privacy, which is added only if SafeGraph observes

a visitor (i.e., V∗i jt > 0). The noise Li jt ∼ Laplace (0, b), where b is the scale of the distribution, and

SafeGraph informed us that b = 10
9 . Let V+

i jt denote the number of visitors after the noise is added,

devices residing there than the number of people living there according to the Census. Less extreme misattributions are
also possible, but any misattribution is likely between neighboring block groups with similar demographics because the
SafeGraph representation lines up well at the county level (Squire 2019).

18While the number of unique visitors per branch may appear low, it is important to keep in mind that SafeGraph
includes roughly 10% of smartphones in its sample, and so, the population average number of unique visitors per branch
may be closer to 400 per month (about 20 per business day). Also from the table, on average, a typical branch has about
67 visits per month, making the ratio of total visits to unique visitors about 1.7. This ratio is close to the average number
of distinct branches (2.3) that people from a typical block group visit per month.

19A caveat is that we cannot distinguish branch employees from customers in the sample of visitors, and the presence
of the former may raise the median dwell time. Nevertheless, the number of employees relative to customers in the
sample is likely to be low and have a small impact.

18



giving:

V+
i jt = V∗i jt + Li jt. (4)

Let bV+
i jtcdenote the integer floor to which SafeGraph rounds the noisy visitor count. To accommodate

SafeGraph’s truncation and censoring, we denote zi jt as an indicator for whether a block group ×

branch visitor count is present in the sample. The selection equation is

zi jt =


1

0

if bV+
i jtc ≥ 2,

otherwise.
(5)

Let Vi jt denote the visitor count observed in the geolocation data, subject to SafeGraph’s censoring.

The observation equation is

Vi jt = max
{
4, bV+

i jtc
}
, (6)

The econometric method (i) simulates ”true” visitor counts, V∗i jt, from a presumed data-

generating process that follows the gravity model, (ii) manipulates the simulated data according

to Eqs. (4) to (6), and then (iii) chooses the gravity model parameters to minimize the distance

between selected moments of the (manipulated) simulated data and moments of the SafeGraph

geolocation data. We run the estimation separately per year-month of the sample to account for

branch openings and closings and to evaluate the stability of the estimates over time. The steps of

the procedure follow.20

Specify the data-generating process. In the simulations, we specify V∗i jt as Poisson distributed.

We presume a Poisson model instead of an alternative distribution, such as Negative binomial,

because it is parsimonious and interpretations of the fixed effects and the gravity coefficient are

straightforward (Cameron and Trivedi 2013). Using the gravity model in Eq. (1), we express the

true visitor count as following

V∗i jt ∼ Pois
(
exp

(
γit + λ jt − βt log Distancei j

))
. (7)

Sample block group × branch pairs. The sample of over fifty-thousand branches and over two-

hundred-thousand block groups, altogether spanning twenty-four months, makes it computationally

impractical to include all the billions of block group × branch pairs in Eq. (7). We instead include

20For textbook treatments of MSM, see Adda and Cooper (2003), Davidson and MacKinnon (2004), and Evans (2018).
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only stratified sampled pairs. If a block group × branch pair has a positive visitor count, then we

know that residents of the block group visited the branch in the period, and we sample this block

group × branch pair in our simulation with probability 1. If a block group × branch pair has a

missing visitor count in the year-month, then either residents of the block group did not visit the

branch in the period, or the visitor count was left out of the data from SafeGraph’s differential

privacy methods. In each year-month, we sample from this alternative set of missing block group ×

branch pairs such that (i) every pair in the alternative set has the same probability of being sampled,

and (ii) each block group and branch is represented in the stratified sampling. We set the sampling

probability to 1/2000, which implies that, on average, the randomly sampled alternative set of block

group × branch pairs represents slightly higher than a 0.05% sample size of all possible block group

× branch pairs with missing visitor counts. A larger sample size of 0.1% did not alter the estimation

results. We apply probability weights to block group × branch level variables to rebalance the

stratified sampled data, and the weights are the reciprocal of the sampling likelihood, following

standard practice. The stratified sampling implies that all branches in the sample per period are

commonly available to all households.21,22

Simulate the visitor counts. We simulate visitor counts per Eq. (7) and apply the differential

privacy methods expressed in Eqs. (4) to (6). The simulation process differs between the block group

× branch pairs that are sampled with probability 1 and those sampled with probability 1/2000. For

the pairs sampled with probability 1, we draw Poisson random variables with distinct means from

Eq. (7) and then apply Eqs. (4) to (6). For the block group × branch pairs sampled with probability

1/2000, we do not draw random variables in the simulation. If these visitor counts were randomly

drawn, they would have disproportionate impact on any computed moments because of the high

probability weights that multiply them. Noise from the simulation would be amplified and make

the estimation unstable. Rather than randomly drawing these pairs of visitor counts, we construct

21The stratified sampling is similar in spirit to the choice reduction procedure in McFadden (1977) and Davis, Dingel,
Monras and Morales (2019), where the choice sets of consumers include the selections actually chosen (in our case,
branches visited) plus a random subset of all other alternatives (other branches that residents could have visited). We say
“similar in spirit” because McFadden (1977) and Davis et al. (2019) also sample from a set of available alternatives, but
they estimate conditional logit models, unlike here.

22Rather than using a stratified sample, we could have restricted the set of branches per block group using a
distance-based cutoff (e.g., including in residents’ choice sets only the branches within a 10-mile radius of their block
groups). But doing so would contaminate the comparison of block group fixed effects and bank branch access between
areas. For example, if a block group had twice as many branches within a 10-mile radius than another block group, the
former’s access would be twice as high as the latter, all else equal. But actual branch visitation might be similar between
the two block groups. If so, the estimated fixed effect of the block group with more branches would mechanically lower
to equalize visitation. Including all branches in the choice sets of residents will also let us uniquely pin down the branch
fixed effects, which we discuss momentarily.
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their implied empirical probability distribution given the parameter estimates. If an infinite number

of observations were in fact simulated for these pairs, their distribution would coincide with this

constructed empirical distribution. Because the Laplace noise is added after the Poisson draw,

this empirical distribution is a truncated and censored Laplace distribution whose mean is the

realization of the Poisson draw. We construct 7 components of this empirical distribution: (i)-(ii) the

probability that the visitor count equals 0, as well as exceeds 0; (iii)-(iv) the probability that the

visitor count equals 4, as well as exceeds 4; (v) the expected visitor count; and (vi)-(vii) the expected

natural logarithm of visitor counts, conditional on visitor counts exceeding 0, as well as exceeding

4.23

Iterate the fixed effects until convergence. Estimating the hundreds of thousands of fixed effects

in Eq. (7) using the MSM minimization problem alone would be computationally impractical.

Instead, we adopt an iterative routine to identify the fixed effects
{
γit, λ jt

}
and let the minimization

problem identify βt. First, given an estimate of βt and estimates of the block group fixed effects,
{
γit

}
,

we uniquely pin down each branch’s fixed effect, λ jt, by utilizing another data field in SafeGraph

that is unaffected by differential privacy: a branch’s total number of visitors. Because the stratified

sampling implicitly presumes that visitors can arrive from any block group, we can identify each

branch’s fixed effect from an “adding up” condition. Namely, we sum the means of Eq. (7) across

block groups for each branch, which gives the model’s predicted total number of visitors to the

branch in the year-month. We then set that sum equal to the branch’s observed total number of

visitors in SafeGraph, and we invert the equation to extract the branch’s fixed effect. Second, given

estimates of βt and the branch fixed effects,
{
λ jt

}
, from the inversions, we repeatedly update the

block group fixed effects,
{
γit

}
, until the differences in the average simulated visitor counts and

average observed visitor counts of each block group i across all branches per year-month t become

sufficiently small. When the number of fixed effects in each dimension is large, as in our setting,

this routine produces consistent estimates.24

23We cannot apply this approach to the set of block group × branch pairs sampled with probability 1 because each
pair in that set is drawn from a distinct distribution, due, in part, to the block group- and branch-specific fixed effects.
For the pairs sampled with probability 1, we simulate draws. However, the pairs in the alternative set that are sampled
with probability 1/2000 are meant to represent the remaining population of block group × branch pairs, which are very
high in number. One stratified sampled observation from the alternative set is meant to represent 2,000 observations
from the same distribution. We need only construct the empirical distribution that these sampled pairs represent.

24With every update to the block group fixed effects,
{
γit

}
, the branch fixed effects,

{
λ jt

}
, also update from the inversions.

The iterative process we use is similar in spirit to the “zig-zag” algorithm, or Gauss-Seidel method, that is commonly
used to identify high-dimensional fixed effects in linear models (Guimaraes and Portugal 2010).
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Construct the MSM estimator. After both dimensions of fixed effects are identified per estimate

of βt, the MSM minimization problem then selects the optimal βt estimate that minimizes the

weighted sum of squared errors (expressed in percentage points) between the simulated model

moments and data moments. We use 6 unconditional moments that describe important parts of the

distribution of visitor counts: (i)-(ii) the fractions of visitor counts equaling 0 and equaling 4; (iii)-(iv)

the average log distances, when visitor counts equal 0 and equal 4; and (v)-(vi) the OLS coefficients

from regressing log visitor counts onto their associated log distances, when visitor counts equal

0 and equal 4. The model moments include both the simulated draws from the block group ×

branch pairs that are sampled with probability 1 and components of the empirical distribution that

represent the alternative set of pairs that are sampled with probability 1/2000.

5.2 Gravity Estimates

Fig. 2 compares the distribution of observed “raw” visitor counts (in black) to simulated “true”

visitor counts (in blue). The simulated visitor counts include all positive draws from all simulations

across every year-month in the sample period. The black distribution reveals the effects of the

differential privacy on the raw visitor counts, having a large mass at 4. The MSM does a reasonable

job spreading out the mass of visitors into the lower portion of the distribution that is lost in the

observed data. The “true” visitor distribution in blue obeys our assumed Poisson structure, which

may not coincide with the true data-generating process of visitor counts known only to SafeGraph.

Nevertheless, as with standard MSM, potential misspecification of the simulating distribution does

not interfere with the consistency of the estimates (McFadden 1989; Pakes and Pollard 1989). Also

displayed in the figure is the distribution of simulated “manipulated” visitor counts in red, which

is the distribution of the “true” visitor counts after they are manipulated by the differential privacy

methods in Eqs. (4) to (6).

Fig. 3 compares the observed number of visitors from each Census block group to their expected

(i.e., predicted) counterparts from the simulation. It presents a binned scatter plot of the log observed

number of branch goers from each block group versus the log expected number of branch goers

from the block group based on the MSM estimates. SafeGraph’s data censoring levels off the log

observed visitor counts at 1.4, which corresponds to 4 visitors. The company’s data truncation

causes the observed visitor counts to enter below the expected visitor counts, and the gap between

observed and expected counts is largest for block groups with few branch goers, which are areas

where the truncation has the largest impact. The gap shrinks as the number of branch goers from
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a block group increases, such that in block groups with many branch goers, the observed and

expected number of visitors nearly match. This implies that the MSM generates estimates that fit

the geolocation data well in regions least affected by the differential privacy distortions, which one

would hope for.

Fig. 4, Panel A presents the gravity coefficient estimates through time, along with 95% confidence

intervals that are computed using the MSM standard errors. The monthly point estimates of the

gravity coefficient range from about -1.45 to -1.26, and they are fairly stable month-to-month. Thus,

across the country, if a representative branch were located 1% farther away from a representative

block group, the number of residents from that block group who travel to that branch would drop by

around 1.26-1.45% per month. In comparison, Agarwal, Jensen and Monte (2018b) estimate a gravity

model of consumer expenditures in nonfinancial sectors. They find a gravity coefficient of -1.05 for

the average out-of-home purchase. Fig. 4, Panels B and C present histograms of the estimated block

group and bank branch fixed effects across all months of the sample period. Roughly 35% (77%)

of the variation in a block group’s (branch’s) fixed effect over time can be explained by the block

group (branch) itself. This suggests that block group demand tends to vary over time, but branch

quality is fairly stable.25

Online Table A.7 presents gravity coefficient estimates and standard errors from the MSM

estimation, along with estimates and standard errors from traditional OLS and PPML estimations

using the “raw” visitor counts, both per year-month and over the full sample period. Whereas the

MSM gravity coefficient estimates range from -1.45 to -1.26, the OLS estimates range from -0.062 to

-0.038, roughly twenty to thirty times smaller in magnitude. The PPML estimates register higher

magnitudes than the OLS ones, ranging in values from -0.108 to -0.066, but they are still roughly

ten to twenty times smaller in magnitude than the MSM estimates. Overall, the table reveals the

downward bias that SafeGraph’s differential privacy methods introduce to traditional methods of

estimating the gravity equation, stressing the need for the alternative econometric method.

25These values are R’s from panel regressions of γit on i fixed effects, and separately, λ jt on j fixed effects.
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6 Bank Branch Access in the United States

With the gravity model estimates, we next compute the empirical counterpart of Eq. (3), which

is the branch access for residents of block group i in year-month t:

Φ̂it ≡
∑
j∈Bt

exp
(
λ̂ jt

) (
Distancei j

)−β̂t
. (8)

The magnitude of Φ̂it has economic meaning as a block group’s expected total number of branch

goers per month, when branch demand is equalized across block groups (i.e., block group fixed

effects are normalized to zero). The block group fixed effects control for block group populations,

so residents of high-population areas do not mechanically have better access. We characterize

bank branch access by evaluating its geographic heterogeneity over the U.S. and by measuring its

association with the demographic characteristics of block group residents.

6.1 Geography of Branch Access

Fig. 5 illustrates a dot density map of bank branch access by Census block group across the

U.S., where each dot is positioned at a block group’s center of population. Throughout the country,

three patterns are apparent. First, access varies substantially across regions. The eastern shores of

New England, the Mid Atlantic, and the upper Midwest experience the highest access nationwide,

whereas the Deep South observes the lowest access. A population-weighted, block-group-level

regression suggests that 74.4% of the variation in access nationwide is within the four Census

regions. Second, the most pronounced differences in access are between urban and rural areas.

Online Fig. A.2 shows that access declines monotonically as one transitions from Metropolitan

core to Metropolitan suburb, micropolitan suburb, and rural areas, such that access in the typical

rural area is about two-thirds less than access in a typical Metropolitan core.26 Third, even within a

local area, branch access varies significantly. A population-weighted, block-group-level regression

estimates that a sizeable 23% of cross block-group variance in access nationwide is within-county.

Fig. 6 zeroes in on the four largest cities in the U.S. by population: New York City, Los Angeles,

Chicago, and Houston. Around New York City, access is highest for residents of Midtown Manhattan

and lowest for those living in the Bronx, and within each borough there is large variation. In Greater

26The U.S. Department of Agriculture’s Economic Research Service provides Rural-Urban Commuting Area codes
that separate census tracts by their urban/rural status and their commuting relationships with other areas using Census
measures of population density, levels of urbanization, and daily home-to-work commuting.
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Los Angeles, residents of Beverly Hills and the Hollywood area observe substantially better access

than residents living south of the city, such as in Compton and the Palos Verdes Peninsula, despite

that latter neighborhood also being relatively affluent. Around Chicago, residents of the North side

experience better access than those living in the South side, an area with a high Black population

share. Variation in bank branch access is so large around Chicago that the decile break points of

the distribution of access in Cook County, where the city is located, nearly match the decile break

points of the distribution of branch access nationwide. Finally, in Houston, access is highest for

residents living downtown, and declines as one moves farther away from the city.27

6.2 Branch Access by Income and Race

Because a central focus of our study is understanding how bank branch access differs between

Black and White households, we look at national comparisons, but we also investigate Metropolitan

core areas, which exhibit Black population shares close to the national average. Studying access in

these big cities is essential to explaining why Black households use branches less.28

Table 2 presents weighted OLS regressions of log Φ̂it on demographic attributes of block group

residents. Independent variables are population-based shares from the 2019 5-year ACS and the log

number of mobile devices residing in the block group within the period, which is unaffected by

SafeGraph’s differential privacy methods. The number of devices is included to interpret access

on a per capita basis. The five racial/ethnic groups used are non-Hispanic Asian, non-Hispanic

Black, non-Hispanic White, non-Hispanic Other Races, and Hispanic. To make the notion of

“distance” as comparable as possible across different types of areas (urban, rural, and suburban),

we add Rural-Urban Commuting Area (RUCA) fixed effects to our national-level specifications. All

specifications include year-month and county fixed effects. Thus, one can interpret the specifications

as comparing the bank branch access of residents living within the same county, at the same time

period, within, say, a small town, but in different block groups.

27A common measure of bank access is an area’s density of branches. In Online Table A.16, we regress the branch
access measure on branch density at both the county and census tract levels. At these geographies, between 44-62%
of the variation in access is explained by density when state fixed effects are included, suggesting that the paper’s
measure of bank branch access captures more information than just branch density. In addition, the coefficient in the
regression changes sign from positive to negative as the landscape enlarges from census tracts to counties, which reveals
the importance of measuring access over as narrow a terrain as possible.

28From the 2019 5-year ACS, the national Black share is 12%. The Rural-Urban Commuting Areas with Black
population shares closest to this national number are Metropolitan area core (Metro core), having a 15% Black share, and
Micropolitan area core (micro core), having a 9% Black share. Although Metro and micro cores share similar racial shares,
Metro cores vastly outnumber micro cores in household counts (99.5 million vs. 8.5 million), and Metro cores capture
roughly 72% of the 138.9 million total households in the U.S.
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Column (1) conditions the branch access regressions on median household income and pop-

ulation racial shares. Residents of block groups with low median household income experience

better access. If a block group’s median household income doubles, its access drops by roughly

11%, a negative income gradient. However, Black communities have worse access: Residents of

a block group with a 100% Black population share observe 8.2% poorer access than residents of

a comparable block group with a 100% White population share. Because differences in financial

savvy or technical sophistication from age differences might influence branch visits (Caskey and

Peterson 1994; Hogarth, Anguelov and Lee 2005; Rhine and Greene 2013), we add age shares in

column (2). Controlling for age still preserves the negative relation between income and access,

though the magnitude is cut from -11.0% to -7.6%. Also controlling for age, we observe that Black

communities still have worse access, on the order of 5.3%.

Column (3) restricts the sample to block groups in Metropolitan core areas. The negative

coefficients on income and the Black share sharpen. In big cities, a doubling of a block group’s

median household income is associated with its residents observing about 12.6% weaker access,

and the Black-White gap in access is 10.7%. Controlling for age shares in column (4), we find that

the coefficients on income and the Black population share remain negative, though smaller in

magnitude (-8.7% income gradient and 6.4% Black-White gap).29

6.3 Decomposing Access: Branch Proximity and Distance-Adjusted Average Quality

The measure of bank branch access combines information about the quality of branches available

and the cost of traveling to them. We next evaluate how each component contributes to differential

access. One may wonder, for instance, whether Black communities have lower branch access

because there are no branches near them or because their nearest branches are lower quality.

Bank branch access in Eq. (8) can be rewritten as

Φ̂it ≡

∑
j∈Bt

d−β̂t
i j

︸     ︷︷     ︸
Branch Proximity

×

∑
j∈Bt

πi jt exp
(
λ̂ jt

)︸                 ︷︷                 ︸
Distance-adjusted Average Quality

, (9)

29The results in Table 2 reconcile with the earlier literature on banking deserts, such as Morgan et al. (2016), when
recognizing that here, the demographic comparisons of branch access are done at the very local block-group level
within a county and within a type of area (e.g., city, suburb, rural town). For example, Morgan et al. (2016) find that
residents of majority-minority census tracts are less prone to live in banking deserts and argue that this finding reflects
majority-minority tracts being situated mostly in cities. Here, we find that, within cities, residents of predominately Black
block groups live farther away from branches relative to their counterparts in predominately White block groups.
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where the weights πi jt ≡
d−β̂t

i j∑
k∈Bt d−β̂t

. Eq. (9) separates access into two components. The first is branch

proximity, measured as the sum of the inverse of the transportation costs for residents to reach

bank branches across the country. The closer people are to bank branches, the higher their branch

proximity. It can be interpreted as residents’ hypothetical access if branch quality were equalized

across all branches (and normalized to one). The second component is distance-adjusted average

quality, measured as the weighted average quality of branches that residents experience, where

closer branches are assigned higher weight. It can be interpreted as residents’ hypothetical access if

branch proximity were equalized across block groups (and normalized to one).

Columns (5)-(8) of Table 2 present the coefficients of weighted OLS regressions of these two

access components on block-group median household income, racial shares, and age shares.

Columns (5) and (7) provide nationwide estimates, whereas columns (6) and (8) focus on Metro

cores. Nationwide, a doubling in a block group’s median household income is associated with a

7.6% decline in its residents’ proximity to all bank branches. In Metro cores, the drop in proximity

is higher at 8.6%. Looking at distance-adjusted average quality in columns (7)-(8), we find no

statistical difference in the average quality of branches that residents experience in low-income

versus high-income communities, both nationwide and in big cities. Put together, the decomposition

reveals that the higher bank branch access for residents of low-income block groups is entirely

driven by their greater proximity to bank branches and not from experiencing higher quality

branches.

Focusing on the racial differences, we find that Black communities experience significantly

lower branch proximity, 14.3% lower nationwide and 16.8% lower in Metro cores. However, both

nationwide and in Metro cores, members of Black communities—after having made longer-distance

trips to branches—experience higher distance-adjusted average quality (9.0% higher cross-country

and 10.4% higher in big cities). Yet this higher distance-adjusted average quality falls short of the

lower branch proximity. Overall then, reduced proximity to branches is the central explanation for

the lower branch access in Black communities.30

30It is important to stress that the results in columns (7)-(8) of Table 2 do not imply that the branches near Black
communities have higher average quality. Indeed, Online Table A.5 shows that the correlation between a branch’s
estimated fixed effect and the Black racial share of the block group where the branch is located is negative and imprecisely
estimated. Rather, the results in Table 2 reveal that residents of Black communities travel farther to reach branches of
higher average quality.
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6.4 Correlates of Black-White Gaps in Branch Access

The previous section established that the reason why Black communities lack branch access is

because branches are located relatively farther away from them. Fully explaining why these racial

gaps in access exist is beyond the scope of this paper. But to shed some light on them, we run the

specification in column (2) of Table 2 county-by-county, so that the estimated coefficients on the

Black population share are county-specific Black-White gaps in branch access. We then study the

correlation of these racial gaps with county-level measures of neighborhood crime and racial bias

against Blacks among Whites.

Neighborhood Crime. We first examine whether the Black-White gap in branch access is associated

with local indices of crime, with the full analysis described in Online Appendix E.1. The indices

are from the database CrimeRisk, are generated by Applied Geographic Solutions (AGS), and are

distributed by Esri.31 CrimeRisk provides indices for several categories of personal and property

crime, where a score of 100 implies that a neighborhood’s expected risk for that crime matches the

national average. We focus on the five indices that Nau et al. (2020) validated using LAPD crime

rates: robbery, murder, assault, motor-vehicle theft, and personal crime (which includes the first

three categories and rape). Online Table A.9 presents the associations between neighborhood crime

risk and estimated Black-White gaps in branch access across counties. In all cases, counties with

higher expected crime risk have larger Black-White gaps in branch access. For example, in counties

having a 10% higher expected risk of robbery, the access gap is higher by 0.02. By comparison, the

Black-White access gap nationwide is 0.053 (column 2 of Table 2). One explanation for this positive

correlation is that higher local crime raises the cost of operating a branch due to greater investments

in security, making banks reluctant to enter. But another possibility is that other factors drive both

higher expected crime risk and the relative dearth of bank branches in these areas.

Racial bias. We next investigate whether the Black-White gap in branch access is associated with

racial bias, where the full details are provided in Online Appendix E.2.32 We consider a measure of

implicit racial bias from the Implicit Association Test (IAT) in Greenwald, McGhee and Schwartz

31The primary source of CrimeRisk is the FBI Uniform Crime Reports (UCR), which compile crime statistics from
18,000 law enforcement agencies across the U.S., mainly in the largest cities, counties, and metro areas. An advantage of
the CrimeRisk database is that it covers all block groups in the country, albeit it relies on a predictive model to estimate
local crime index values.

32Prior work has studied the adverse consequences of racial bias, for example, on Black boys in school (Simpson
and Erickson 1983; Chavous, Rivas-Drake, Smalls, Griffin and Cogburn 2008), how racial bias is associated with
intergenerational mobility (Chetty et al. 2020), and how it changes after Black electoral victories (Sakong 2023).
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(1998)—which measures the difference in participants matching positive and negative words with

Black versus White faces—and a measure of explicit bias that measures the difference in participants’

answers to whether they “feel warmer toward” Whites versus Blacks. A value of zero for either

measure represents no racial bias against Blacks, and higher levels imply greater racial bias. We

obtain data on the two measures for non-Hispanic White test participants at the county level from

Project Implicit (Xu et al. 2014). Because of potential selection bias from test participation being

voluntary, we also create “adjusted” racial bias measures that are the residuals from projecting

the two measures on respondent demographics and test variables (i.e., month, hour, weekday,

and order of test). Online Table A.10 and Online Table A.11 present the associations between

implicit and explicit racial bias, respectively, and estimated Black-White gaps in branch access across

counties. In all cases, counties with higher racial bias against Blacks among Whites have larger

Black-White gaps in branch access. For instance, in counties with a one standard deviation higher

level of implicit racial bias against Blacks, the access gap is higher by 0.18.33 Again by comparison,

the Black-White access gap nationwide is 0.053. This positive correlation has several potential

explanations. One is that local bank managers are reluctant to recommend new branch sites (or

eager to close underperforming branches) in these areas because of racial bias. An alternative

explanation is that racial bias adversely affects the incomes, employment levels, or wealth of local

residents, making it less profitable for branches to enter. A third possibility is that racial bias is

associated with other underlying factors that contribute to these correlations.

7 Bank Branch Use: Access versus Demand

The gravity model isolates how the unequal spatial distribution of bank branches explains

disparities in household branch use. Since the comparison is across branches for the same block

group, block group-specific demand is absorbed by the block group fixed effects. As an added

benefit, the model generates a simple decomposition of branch visitor counts into two parts.

Summing the log predicted means of Eq. (7) across branches (i.e., log V̂∗it ≡ log
∑

j V̂∗i jt) delivers the

expected total number of residents of block group i who visit any branch in year-month t:

log V̂∗it = γ̂it + log Φ̂it. (10)

33The cross-county standard deviation of implicit racial bias is 0.037.
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Eq. (10) separates a block group’s predicted total number of branch goers into (i) the number of

visitors if branch access were equalized across block groups, plus (ii) the number of visitors if

branch demand were equalized. This decomposition thus separates the parts of branch use that are

due to demand versus access.

One may also evaluate the extent to which variation in branch use across population groups

can be attributed to differences in each component. An OLS regression of log V̂∗it on a vector Xi of

resident characteristics at the block-group level gives

log V̂∗it = XiθV + εV,it. (11)

Similar regressions of both the estimated block group fixed effects and the access measure on Xi

produce

γ̂it = Xiθγ + εγ,it, (12)

log Φ̂it = XiθΦ + εΦ,it. (13)

Along any demographic attribute x, the estimated coefficients from Eqs. (11) to (13) satisfy the

identity:

θ̂V,x ≡ θ̂γ,x + θ̂Φ,x, (14)

which separates the elasticity of branch use with respect to the demographic attribute into one part

due to demand for branch products or services, θ̂γ,x, and the other part due to bank branch access,

θ̂Φ,x.

We begin the empirical analysis of this section by running regressions of the sort in Eq. (11) and

Eq. (12). Regressions of the sort in Eq. (13) were presented earlier in Section 6.2. We then use the

estimates to decompose disparities in branch use into parts explained by differential access and

differential demand.

7.1 Bank Branch Use

Table 3 presents weighted OLS regressions of bank branch visitors and branch demand by

demographic attributes, both nationwide and in Metro cores. In columns (1)-(4), the dependent

variable is a block group’s log expected number of branch visitors, log V̂∗it. Column (1) reports

coefficients on median household income and racial shares. High-income block groups have more
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expected bank branch goers per month (about 18.6% more for every doubling in the block group’s

median household income). However, Black communities have fewer expected branch goers

compared to White communities (4.1% fewer branch goers per month moving from a block group

with a 100% Black share to a comparable block group with a 100% White share). These observed

income and racial differences in branch use are consistent with the reported FDIC survey evidence.

Controlling for block group age shares in column (2), we find that the coefficient on income drops

slightly (15.5%), but the coefficient on the Black population share is more sharply negative (-5.6%).

Columns (3) and (4) focus on Metro core areas, and having controls for age shares in column

(4), we find that the positive income gradient in branch use in big cities remains the same as the

cross-country estimate (15.5%). The magnitude of the Black-White gap in branch use drops slightly

to 3.9% in big cities.

7.2 Bank Branch Demand

In columns (5)-(8) of Table 3, the dependent variable is a block group’s fixed effect γ̂it. In all

columns, low-income block groups observe lower fixed effects, which implies that residents of

these areas have a lower propensity to visit any bank branch. A 1% decline in a block group’s

median household income is associated with a roughly 0.23-0.32% drop in its residents’ demand

for branch products or services. If access were equalized across the country and normalized to one,

this range would correspond to the decline in the block group’s expected number of branch goers

per month.34,35

Turning to racial differences in branch demand, we find that Black communities observe higher

fixed effects than White communities (4.1% higher) in column (5) with just an income control, but

when age controls are added in column (6), the sign of the coefficient on the Black share turns

34Notice that the block group fixed effects load positively and strongly on the block group log number of devices,
confirming intuition that higher population areas would exhibit higher demand for branch products or services overall.
This relation contrasts with the small and negative loading of branch access on the log number of devices in Table 2.

35We cannot say with certainty why residents of low-income areas exhibit lower demand for bank branch products or
services, but evidence from the 2019 FDIC Survey provides some potential explanations. Among unbanked households,
the top 5 reasons cited for not having a bank account are (i) not having enough money to meet minimum balance
requirements (48.9% of respondents), (ii) not trusting banks (36.3%), (iii) avoiding a bank gives more privacy (36.0%), (iv)
bank account fees are too high (34.2%), and (v) fees are too unpredictable (31.3%). The extent to which these reasons
correlate with a respondent’s income can be explanations for the lower demand among residents of low-income block
groups. But our sample also includes banked, and quite likely, underbanked residents, the latter of whom have bank
accounts but still rely on alternative financial services like payday loans. Low-income banked and underbanked residents
might exhibit lower demand for bank branch products or services for the same reasons as unbanked residents. But, they
might also have less demand for the kinds of premium services that require visiting a branch, such as storing valuables in
a safety deposit box, using notary services, or consulting with a banker about more complex financial issues like wealth
management or small business banking. Finally, nonbank financial institutions like check cashers might target their
services and advertising to low-income customers, shifting their demand away from banks.
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negative and is no longer precisely estimated. The change suggests that demand for branch products

or services nationwide between Black and White communities is not robustly different. In Metro

cores, Black communities do observe precisely estimated higher demand without age controls (8.9%

higher in column 7), and the coefficient stays precisely estimated once age controls are added (2.5%

higher in column 8).

7.3 Decomposing Branch Use

We next decompose the variation in branch use into parts due to differences in access versus

demand by inserting the estimates from the branch access regressions of Table 2 and the estimates

from the branch use and demand regressions of Table 3 into the identity of Eq. (14).

Nationwide, the income gradient in branch use from column (2) of Table 3 is +15.5%. This

income gradient consists of a demand gradient of +23.0% from column (6) of the table and an access

gradient of -7.5% in column (2) of Table 2. The decomposition thus shows that the lower demand for

branch products or services among residents of low-income block groups dominates their higher

access and leads to their lower overall branch use. When it comes to racial disparities, column (2) of

Table 3 reveals a Black-White gap in branch use of 5.6%. This gap consists of 0.3% lower demand

and 5.3% lower access. But the difference in demand is imprecisely estimated, implying that the

Black-White gap in branch use is entirely due to a Black-White gap in branch access rather than in

branch demand.

In Metro cores, the income gradient in branch use (column 4 in Table 3) is +15.5%, which can

be separated into an income gradient in demand of +24.2% (column 8 in Table 3) and an income

gradient in access of -8.7% (column 4 in Table 2). As was the case nationally, residents of low-income

block groups experience higher access but lower demand, with the latter eclipsing the former

enough so that overall branch use is lower in low-income communities. As for racial differences in

big cities, residents of areas with high Black population shares exhibit slightly higher demand (an

elasticity of +2.5%) compared to residents of areas with high White population shares, but residents

of Black communities experience significantly weaker access (an elasticity of -6.4%). Thus, in big

cities, the lack of access in Black communities is powerful enough to surpass the higher demand for

branch products or services, producing a 3.9% Black-White gap in branch use.
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8 Discussion of Policy Implications

Many researchers and policymakers have proposed programs to increase bank access by

enlarging the physical presence of branches (Dahl and Franke 2017; Davidson 2018). Example

proposals are investing in community development banks, which are certified commercial banks that

principally serve minority and low-income communities (Ellwood and Patel 2018); and expanding

U.S. postal banking, which would add checking, savings, and possibly credit services to some or all

U.S. Post Office branches (Baradaran 2013). The paper’s results indicate these policies would have

their largest impact in Black communities, particularly those in big cities.

In Online Appendix H, we investigate U.S. postal banking through a counterfactual exercise.

In September 2021, the U.S. Postal Service launched a pilot program in four post office locations

that allowed customers to cash payroll and business checks as gift cards (Heckman 2022). To

study how a national expansion of the policy would affect branch access, we re-estimate each

block group’s access after adding all post office locations registered in SafeGraph to the set of

available branches. We maintain the previously estimated time-series gravity coefficients β̂t, the

estimated fixed effects for private banks λ̂ jt, and the estimated block group fixed effects γ̂it. In

the counterfactual, we explore three distinct scenarios for the fixed effects of postal banks. Each

scenario has postal branches featuring a different quality based on a percentile of the distribution of

private branch fixed effects in each year-month. The scenarios are “low-quality” (postal branches

have the 10th percentile of private branch fixed effects), “medium-quality” (50th percentile), and

“high-quality” (90th percentile). This analysis, similar to a “partial trade impact” evaluation in the

trade literature dealing with policy changes in trade costs like tariffs (Head and Mayer 2014), does

not account for general equilibrium effects resulting from the policy change.

In the low- and medium-quality scenarios, expanding postal banking worsens the Black-White

gap in branch access. This is because post offices are typically closer to White communities, just

like private banks, and adding banking services to post offices would benefit them more. Only

a high-quality postal banking system would narrow the Black-White gap, reducing it by 0.5

percentage points per month nationally (5.3% to 4.8%) and 1.1 percentage points (6.4% to 5.3%)

in Metro core areas. Because block group fixed effects retain their same values from before, any

change in the racial gap in access would equal the change in branch use between groups.

The partial policy analysis ignores changes in demand for branch products or services that postal

banking could spur, a limitation of the exercise since distaste for private banks may explain the low
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estimated block-group fixed effects of low-income communities.36 Postal banking proponents argue

that the unbanked perceive post office branches as more trustworthy than private banks (Office of

the USPS Inspector General 2014; Baradaran 2015). If this is the case, the policy could improve bank

participation by raising demand for branch products or services, which would benefit low-income

communities the most based on the paper’s main analysis. Postal banking could also prompt a

competitive reaction from private banks to attract the unbanked and underbanked, leading to an

endogenous change in their branch fixed effects, something we also omit.

But why do private banks not already cater more to the unbanked and underbanked? We find

that Black communities exhibit slightly higher demand for branch products or services in big

cities, but they experience significantly weaker access there. It is beyond the paper’s scope to fully

explain why private banks do not enter more into these areas. The neighborhood crime and racial

bias correlations in Section 6.4 may give some clues, but it is important to stress that we measure

branch demand from branch visitation, which might not perfectly correlate with bank profits.

Private banks might not enter because doing so is unprofitable. If so, another policy that could

remedy weak branch access would be allocating tax credits to banks that establish new branches in

Black communities, or subsidizing both community development banks and minority depository

institutions (MDIs) to further expand there (Hurtado and Sakong 2022).

Beyond expanding physical branches, another policy that could improve bank access is enhancing

broadband Internet connectivity to reduce the costs of mobile or online banking. The two groups

we identify making the least use of branches (low-income and Black households) simultaneously

rely on branches more as their primary method of banking, rather than mobile or online, and weak

access to broadband could be a reason why.37 Expanding broadband could also raise consumer

access to Fintech firms that offer services entirely online. While a purported goal of Fintech is

increasing financial inclusion, evidence so far on achieving that goal is mixed, and more time is

needed to fully evaluate Fintech’s impact on closing disparities in financial access.38 Even so, in

every wave of the Survey of Consumer Finances since 1989, the location of a bank’s branches is
36In the 2019 Survey of Consumer Finances, the choice “do not like dealing with banks” is the second-most cited

reason for families not having a checking account, and the fraction of unbanked respondents selecting this option as their
reason has increased steadily over time (from 15% in 1989 to 22.9% in 2019).

37Black adults are about 9 percentage points less likely to have home broadband than White adults (71% vs. 80%),
and low income families earning less than $30,000 are 13 percentage points less likely to have broadband at home than
families earning more than $75,000 (86% vs. 99%) (Pew Research Center 2021).

38Erel and Liebersohn (2022) find that Fintech lenders expanded credit from the Paycheck Protection Program to
small business owners in areas with more low-income and minority residents. But Fuster, Plosser, Schnabl and Vickery
(2019) find that Fintech borrowers of purchase mortgages have higher incomes and are less likely to be minorities. In
addition, Friedline, Naraharisetti and Weaver (2020) and Friedline and Chen (2021) find that low-income communities of
color have the lowest Fintech adoption rates.
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cited as the most important reason by far for choosing an institution for a main checking account.

This persistent stated preference suggests that programs targeting the geographic distribution of

bank branch locations will remain important for public policy.

9 Conclusion

We use mobile device geolocation data to develop a local bank branch access measure from

a spatial gravity model. The model and consumer travel patterns enable a research design to

quantify whether differences in access or in demand drive racial and income disparities in branch

use. To overcome distortions in the geolocation data that protect user privacy, we estimate the

gravity model with a new econometric method that adapts the Method of Simulated Moments

to identify high-dimensional fixed effects. This approach may aid other applications involving

privacy-protected big data.

Controlling for block-group racial and age shares, we find that access is better for residents

of low-income communities, and lower demand for branch products or services explains their

lower branch use. In contrast, Black communities have weaker access due to branches being located

relatively far away from them. In big cities, the lack of access for Black communities is so significant

that it eclipses their higher demand for branch products or services, leading to their overall lower

branch use. These results inform where to target policies that increase access to banking across the

country.
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Allcott, H., R. Diamond, J.-P. Dubé, J. Handbury, I. Rahkovsky, and M. Schnell (2019) “Food
deserts and the causes of nutritional inequality,” Quarterly Journal of Economics, 134 (4), 1793–
1844.

Allen, J., C. Bavitz, M. Crosas et al. (2020) “The OpenDP White Paper,” May,
https://projects.iq.harvard.edu/files/opendifferentialprivacy/files/opendp_
white_paper_11may2020.pdf, Working Paper.

Almagro, M., J. Coven, A. Gupta,andA. Orane-Hutchinson (2021) “Racial disparities in frontline
workers and housing crowding during COVID-19: Evidence from geolocation data,” February,
Working paper. New York University, New York, NY.

Anenberg, E., A. C. Chang, S. Grundl, K. B. Moore, and R. Windle (2018) “The Branch Puzzle:
Why Are there Still Bank Branches?” FEDS Notes, https://www.federalreserve.gov/econres/
notes/feds-notes/why-are-there-still-bank-branches-20180820.html.

Argyle, B., T. Nadauld, and C. Palmer (2023) “Real effects of search frictions in consumer credit
markets,” Review of Financial Studies, 36 (7), 2685–2720.

Arnaboldi, F. and P. Claeys (2008) “Internet banking in Europe: a comparative analysis,” Research
Institute of Applied Economics, 8 (11), 1–28.

Athey, S., D. Blei, R. Donnelly, F. Ruiz,andT. Schmidt (2018) “Estimating heterogeneous consumer
preferences for restaurants and travel time using mobile location data,” in AEA Papers and
Proceedings, 108, 64–67.

Athey, S., B. Ferguson, M. Gentzkow, and T. Schmidt (2021) “Estimating experienced racial seg-
regation in US cities using large-scale GPS data,” Proceedings of the National Academy of Sciences,
118 (46), 1–9.

Atkin, D., M. K. Chen, and A. Popov (2022) “The returns to face-to-face interactions: Knowledge
spillovers in Silicon Valley,” june, Working paper no. 30147. National Bureau of Economic
Research, Cambridge, MA.

Augustine, K. (2018) “Small Business Banking: A Captive Audience,” Merca-
tor Advisory Group Summary Report, https://javelinstrategy.com/research/
small-business-banking-captive-audience.

Bachas, P., P. Gertler, S. Higgins, and E. Seira (2018) “Digital financial services go a long way:
Transaction costs and financial inclusion,” in AEA Papers and Proceedings, 108, 444–448, American
Economic Association 2014 Broadway, Suite 305, Nashville, TN 37203.

(2021) “How debit cards enable the poor to save more,” The Journal of finance, 76 (4),
1913–1957.

Balassa, B. (1965) “Trade liberalisation and “revealed” comparative advantage 1,” The manchester
school, 33 (2), 99–123.

Baradaran, M. (2013) “It’s time for postal banking,” Harvard Law Review Forum, 127, 165–175.
(2015) How the other half banks: Exclusion, exploitation, and the threat to democracy: Harvard

University Press.
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(A) All Block Group × Branch Pairs

(B) Block Group × Branch Pairs with >4 Visitors, with
Fixed Effects

Figure 1
Number of Visitors from Block Groups to Bank Branches by Distance

The figure presents binned scatter plots of the log number of visitors from home Census block groups to bank branches
according to the log mile distance between the block groups and branches. Visitor information is from our core SafeGraph
sample ranging from January 2018 to December 2019. The core sample includes only businesses in SafeGraph with
NAICS codes equal to 522110 (Commercial Banking), 522120 (Savings Institutions), or 551111 (Offices of Bank Holding
Companies) for which we have visitor data and whose brands are also listed in the FDIC’s 2019 Summary of Deposits.
Distance is computed from the population-weighted center of a block group to a branch. Centers of population are
from the 2010 Census, and we use the haversine formula to compute distance. Panel A presents the observed (raw)
geolocation data and includes all block group × branch pairs, including those with visitor counts of 2 or 3 that SafeGraph
rounds up to 4. Panel B only includes block group × bank branch pairs with greater than 4 visitors. In that panel, the log
numbers of visitors are residualized by block group × year-month fixed effects and branch × year-month fixed effects.
The log distances are residualized by the same set of fixed effects. To construct the binned scatter plots, we divide the
x-axis values into 100 equal-sized (percentile) bins. We then calculate the mean of the y-axis values and the mean of the
x-axis values within each bin. In addition, for Panel B we add back the unconditional mean of the log numbers of visitors
and the unconditional mean of the log distances to re-scale values.
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Figure 2
Distributions of Visitor Counts

The figure presents distributions of observed visitor counts, simulated “true” visitor counts, and simulated “manipulated”
visitor counts from visitors’ home Census block groups to bank branches. Observed visitor counts, denoted Vi jt from
Eq. (6), are the raw geolocation data from our core SafeGraph sample ranging from January 2018 to December 2019. The
core sample includes only businesses in SafeGraph with NAICS codes equal to 522110 (Commercial Banking), 522120
(Savings Institutions), or 551111 (Offices of Bank Holding Companies) for which we have visitor data and whose brands
are also listed in the FDIC’s 2019 Summary of Deposits. Simulated “true” visitor counts, denoted V∗i jt from Eq. (7), are
draws from the underlying “true” distribution of visitors, which we assume to be Poisson. Simulated ”maniputed” visitor
counts are the ”true” visitor counts after being manipulated via differential privacy methods presented in Eqs. (4) to (6).
The simulated values are computed from the month-by-month Method of Simulated Moments estimation described in
Section 5, with full details of the method in Online Appendix A. The distribution of simulated visitor counts includes all
positive draws from all simulations across every year-month in the sample period. To enhance the depictions of the
distributions, we omit the large number of 0 visitor counts and censor the distributions at 10 visitors. That is, the number
of block group × branch pairs with visitor counts exceeding 10 is assigned to 10+ visitors in the figure.
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Figure 3
Observed vs. Expected Branch Visitors per Census Block Group

The figure presents a binned scatter plot of the log observed number of branch visitors from each Census block group
(i.e., log Vit ≡ log

∑
j Vi jt, where Vi jt is given in Eq. (6)) versus the log expected number of branch visitors from each block

group based on the month-by-month Method of Simulated Moments (MSM) estimates (i.e., log V̂a
it ≡ γ̂it + log Φ̂a

it, where

the access measure Φ̂a
it ≡

∑
j∈bit

ωi
t exp

(
λ̂ jt

)
d−β̂t

i j reflects the branch probability weights used in the stratified sampling that
defined in Eq. (A.30)). The observed and expected number of visitors range over the full sample period from January 2018
to December 2019. The red solid line is a 45◦ line and the light grey solid line cuts the y-axis at 1.4, which corresponds to
SafeGraph’s censoring at 4 visitor counts. The steps of the MSM procedure that generate the expected number of branch
goers are in Section 5, with full details in Online Appendix A. To construct the binned scatter plot, we divide the x-axis
values into 1,000 equal-sized bins. We then calculate the mean of the y-axis values and the mean of the x-axis values
within each bin.
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(A) Time Series of −β̂t,MSM

(B) Census Block Group Fixed Effects (C) Bank Branch Fixed Effects

Figure 4
Method of SimulatedMoments Parameter Estimates

The figure presents the parameter estimates from the month-by-month Method of Simulated Moments (MSM) estimation
of the visitor count gravity relation in Eq. (7). Panel A illustrates the monthly time series of the −β̂t,MSM gravity coefficient
estimates, along with 95% confidence intervals, which are computed using the MSM standard errors in Eq. (A.65). Panel
B presents a histogram of the estimated Census block group fixed effects,

{
γ̂∞it

}
, and Panel C presents a histogram of the

estimated bank branch fixed effects,
{
λ̂∞jt

}
. In each histogram, the fixed effects are grouped into 50 equally-sized bins,

and the estimated fixed effects for all months in the sample period are presented. A summary of the MSM estimation is
provided in Section 5, with full details in Online Appendix A.
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Figure 5
Bank Branch Access Nationwide

The figure illustrates a dot density map of bank branch access by Census block groups nationwide. The figure is based
on our core SafeGraph sample of bank branches; i.e., only businesses in SafeGraph with NAICS codes equal to 522110
(Commercial Banking), 522120 (Savings Institutions), or 551111 (Offices of Bank Holding Companies) for which we
have visitor data and whose brands are also listed in the FDIC’s 2019 Summary of Deposits. Each dot is positioned at a
block group’s center of population. Branch access estimates are calculated from Eq. (8) and are based on the Method
of Simulated Moments estimation described in Section 5, with full details in Online Appendix A. Bank branch access
estimates are calculated month-by-month per block group, and the figure presents weighted monthly averages, where
each month’s weight is its share of the block group’s total observed branch visitors over the core sample period (January
2018 - December 2019). The map is constructed by grouping block groups into deciles and shading the dots so that
higher-ordered colors in the rainbow gradient (indigo and violet) imply higher branch access values and lower-ordered
colors (red and orange) imply lower access values. Block groups where no resident was recorded in SafeGraph as having
visited a branch in the sample period are shaded white.
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(A) New York City, NY

(B) Los Angeles, CA

(C) Chicago, IL

(D) Houston, TX

Figure 6
Bank Branch Access in the Four Largest U.S. Cities

The figure illustrates dot density maps of bank branch access by Census block groups in the four largest U.S. cities
by population as of the 2020 Census. The figure is based on our core SafeGraph sample of bank branches; i.e., only
businesses in SafeGraph with NAICS codes equal to 522110 (Commercial Banking), 522120 (Savings Institutions), or
551111 (Offices of Bank Holding Companies) for which we have visitor data and whose brands are also listed in the
FDIC’s 2019 Summary of Deposits. Each dot in a panel is positioned at a block group’s center of population. Branch
access estimates are calculated from Eq. (8) and are based on the Method of Simulated Moments estimation described in
Section 5, with full details in Online Appendix A. Bank branch access estimates are calculated month-by-month per
block group, and the panels present weighted monthly averages, where each month’s weight is its share of the block
group’s total observed branch visitors over the core sample period (January 2018 - December 2019). Each panel’s map is
constructed by grouping block groups within the panel into deciles and shading the dots so that higher-ordered colors in
the rainbow gradient (indigo and violet) imply higher access values and lower-ordered colors (red and orange) imply
lower access values. Block groups where no resident was recorded in SafeGraph as having visited a branch in the sample
period are shaded white.
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Table 1
Descriptive Statistics - Core SafeGraph Sample

Mean Std. Dev. P10 P25 P50 P75 P90 N

No. of Visits 67 180 6 14 35 78 147 919,076
No. of Visitors 40 94 5 10 23 48 90 919,076
Med. Dist. from Home (mi) 5 16 2 3 4 6 9 822,569
Med. Dwell Time (min) 49 102 6 7 9 30 152 919,076
Device Type - iOS 52% 19,238,792
Device Type - Android 46% 17,207,356

The table reports descriptive statistics of key variables related to bank branch visitation. All values are based on our
core sample of geolocation data, which consists of businesses in SafeGraph with NAICS codes equal to 522110
(Commercial Banking), 522120 (Savings Institutions), or 551111 (Offices of Bank Holding Companies) for which we
have visitor data and whose brands are also listed in the FDIC’s 2019 Summary of Deposits. Data are monthly,
at the branch level, and range from January 2018 - December 2019. No. of Visits is the total number of visits to
a typical bank branch in a month. No. of Visitors is the total number of visitors (i.e., mobile devices) to a typical
branch in a month. Med. Dist. from Home (mi) is the median distance in miles that visitors travel to a branch from
their home (among visitors whose home is identified). Med. Dwell Time (min) is the median amount of time in
minutes that visitors stay at a branch. Device Type is the fraction of total branch visitors using Google Android
vs. Apple iOS mobile devices. The number of observations N used in the first four rows is the total number of
branch-year-months. The number of observations used in the last two rows is the total number of mobile devices
with device-type information over the core sample period.

48



Table 2
Bank Branch Access by Demographic Attributes

Dep. var.: log(Bank branch access of block groups) log(Branch proximity) log(Dist.-adj. avg. quality)

(1) (2) (3) (4) (5) (6) (7) (8)

log(Income) -0.110 -0.076 -0.126 -0.087 -0.076 -0.086 0.001 -0.001
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.001) (0.002)

Black -0.082 -0.053 -0.107 -0.064 -0.143 -0.168 0.090 0.104
(0.005) (0.005) (0.006) (0.006) (0.006) (0.006) (0.003) (0.003)

Asian 0.470 0.438 0.429 0.398 0.422 0.375 0.016 0.023
(0.014) (0.013) (0.014) (0.013) (0.012) (0.013) (0.007) (0.007)

Other 0.023 0.020 0.078 0.073 0.006 0.064 0.015 0.009
(0.023) (0.023) (0.033) (0.033) (0.022) (0.031) (0.011) (0.015)

Hispanic 0.046 0.081 0.021 0.071 -0.003 -0.030 0.085 0.101
(0.007) (0.007) (0.007) (0.008) (0.007) (0.008) (0.004) (0.004)

Age <15 -0.721 -0.814 -0.757 -0.855 0.036 0.041
(0.017) (0.020) (0.017) (0.019) (0.010) (0.011)

Age 35-54 -0.238 -0.204 -0.253 -0.209 0.015 0.005
(0.017) (0.020) (0.017) (0.020) (0.009) (0.011)

Age 55-64 -0.551 -0.573 -0.675 -0.691 0.124 0.117
(0.019) (0.022) (0.019) (0.023) (0.010) (0.012)

Age 65+ -0.245 -0.262 -0.256 -0.277 0.010 0.014
(0.013) (0.015) (0.013) (0.015) (0.007) (0.008)

log(No. of devices) -0.050 -0.053 -0.057 -0.059 -0.063 -0.072 0.010 0.012
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.001) (0.001)

Observations 2,549,020 2,549,020 1,847,252 1,847,252 2,549,020 1,847,252 2,549,020 1,847,252
Adjusted R2 0.704 0.708 0.634 0.640 0.820 0.774 0.684 0.646
Sample Core Core MC MC Core MC Core MC
Year-month FE O O O O O O O O
County FE O O O O O O O O
RUCA FE O O O O

Each column reports coefficients from a multivariate, weighted OLS regression with standard errors clustered at the Census-block-group level reported
in parentheses. One observation is a block group per month per year in the sample period from January 2018 - December 2019. Block groups where no
resident was recorded in SafeGraph as having visited a bank branch in the year-month are dropped. Observations are weighted by block-group
population counts from the 2019 5-year American Community Survey (ACS). All columns use our core sample of branch locations, which consists
of businesses in SafeGraph with NAICS codes equal to 522110 (Commercial Banking), 522120 (Savings Institutions), or 551111 (Offices of Bank
Holding Companies) for which we have visitor data and whose brands are also listed in the FDIC’s 2019 Summary of Deposits (SOD). Demographic
independent variable observations are population-based decimal shares from the 2019 5-year ACS. Income is median household income. The log
number of devices is SafeGraph’s record of the number of mobile devices residing in the block group in the year-month. In columns (1)-(4), the
dependent variable is the natural logarithm of the estimated bank branch access measure, log Φ̂it, from Eq. (8). In columns (5)-(6), the dependent
variable is the natural logarithm of the “branch proximity” component in the decomposition of Φ̂it in Eq. (9), whereas in columns (7)-(8), the dependent
variable is the natural logarithm of the “distance-adjusted average quality” component in that decomposition. All dependent variables are computed
from the month-by-month Method of Simulated Moments estimation described in Section 5, with full details in Online Appendix A. Columns (1), (2),
(5), and (7) include all block groups for which we have branch visitor data, whereas columns (3), (4), (6), and (8) restrict the sample to block groups
with Rural-Urban Commuting Areas (RUCA) codes equaling 1 (Metropolitian area core). The omitted demographic groups are non-Hispanic Whites
and age range 15-34.
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Table 3
Bank Branch Use and Block Group Fixed Effects by Demographic Attributes

Dep. var.: log(Expected no. of visitors) Block group fixed effects

(1) (2) (3) (4) (5) (6) (7) (8)

log(Income) 0.186 0.155 0.190 0.155 0.296 0.230 0.315 0.242
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.005) (0.005)

Black -0.041 -0.056 -0.017 -0.039 0.041 -0.003 0.089 0.025
(0.009) (0.009) (0.010) (0.010) (0.010) (0.010) (0.011) (0.011)

Asian 0.238 0.241 0.227 0.224 -0.232 -0.197 -0.202 -0.174
(0.020) (0.020) (0.020) (0.019) (0.023) (0.022) (0.023) (0.022)

Other 0.034 0.041 0.009 0.016 0.010 0.020 -0.068 -0.058
(0.028) (0.029) (0.038) (0.039) (0.033) (0.033) (0.046) (0.046)

Hispanic 0.008 -0.016 0.021 -0.012 -0.038 -0.097 -0.000 -0.083
(0.009) (0.010) (0.010) (0.011) (0.010) (0.011) (0.011) (0.012)

Age <15 0.341 0.343 1.061 1.157
(0.022) (0.025) (0.026) (0.030)

Age 35-54 0.486 0.529 0.724 0.732
(0.023) (0.026) (0.025) (0.029)

Age 55-64 0.101 0.053 0.651 0.626
(0.025) (0.030) (0.029) (0.034)

Age 65+ 0.248 0.253 0.494 0.515
(0.018) (0.020) (0.021) (0.023)

log(No. of devices) 0.606 0.606 0.601 0.601 0.656 0.659 0.658 0.660
(0.004) (0.004) (0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

Observations 2,549,020 2,549,020 1,847,252 1,847,252 2,549,020 2,549,020 1,847,252 1,847,252
Adjusted R2 0.380 0.381 0.339 0.340 0.310 0.314 0.309 0.313
Sample Core Core MC MC Core Core MC MC
Year-month FE O O O O O O O O
County FE O O O O O O O O
RUCA FE O O O O

Each column reports coefficients from a multivariate, weighted OLS regression with standard errors clustered at the Census-block-group
level reported in parentheses. One observation is a block group per month per year in the sample period from January 2018 - December 2019.
Block groups where no resident was recorded in SafeGraph as having visited a bank branch in the year-month are dropped. Observations are
weighted by block-group population counts from the 2019 5-year American Community Survey (ACS). Dependent variable observations are
based on our core sample of branch locations, which consists of businesses in SafeGraph with NAICS codes equal to 522110 (Commercial
Banking), 522120 (Savings Institutions), or 551111 (Offices of Bank Holding Companies) for which we have visitor data and whose brands
are also listed in the FDIC’s 2019 Summary of Deposits. Demographic independent variable observations are population-based decimal
shares from the 2019 5-year ACS. Income is median household income. The log number of devices is SafeGraph’s record of the number of
mobile devices residing in the block group in the year-month. The dependent variable in columns (1)-(4) is the natural logarithm of the
expected number of branch goers from each block group based on the month-by-month Method of Simulated Moments estimates; i.e.,
log V̂∗it ≡ log

∑
j V̂∗i jt, where V̂∗i jt is the predicted mean of V∗i jt in Eq. (7). The dependent variable in columns (5)-(8) is the estimated block group

fixed effects,
{
γ̂it

}
, from the gravity relation in Eq. (7). The estimation method is described in Section 5, with full details in Online Appendix A.

Columns (1), (2), (5), and (6) include all block groups for which we have branch visitor data, whereas columns (3), (4), (7), and (8) restrict the
sample to block groups with Rural-Urban Commuting Areas (RUCA) codes equaling 1 (Metropolitian area core). The omitted demographic
groups are non-Hispanic Whites and age range 15-34.
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For Online Publication: Appendix

A Econometric Method

Here, we layout the steps of the econometric method we use to estimate the parameters of the fixed effects gravity
model of Eq. (1) using the privacy-protected geolocation data. The approach adapts the Method of Simulated Moments
(MSM) to identify high-dimensional fixed effects. A key insight of the approach is to simulate data from the gravity
model and then apply the same differential privacy algorithm to the simulated data that the data provider used to
privacy-protect the geolocation data. We run the method separately per year-month of our sample period (January
2018 - December 2019).

A.1 Specify the DGP for visitors

The data-generating process (DGP) we simulate is the number of visitors from block groups to branches through
time. We assume that the true number of visitors from block group i to branch j in year-month t, denoted V∗i jt, is
Poisson distributed. Using the gravity model from Eq. (1), we express the true visitor count as obeying

V∗i jt ∼ Pois
(
exp

(
γit + λ jt − βt log Distancei j

))
. (A.15)

We measure distance in miles between branches and the population-weighted center of visitors’ home block groups.
We use the haversine formula to calculate distance, which accounts for the curvature of the Earth.39

To account for the differential privacy algorithm in the simulation, we let Li jt denote the Laplace noise that
SafeGraph adds to V∗i jt to protect user privacy. Noise is added only if SafeGraph observes a visitor (i.e., V∗i jt > 0). The

noise Li jt ∼ Laplace (0, b), where b is the scale of the distribution, and SafeGraph informed us that b = 10
9 . Let V+

i jt denote
the number of visitors after the noise is added, giving:

V+
i jt = V∗i jt + Li jt. (A.16)

Let bV+
i jtc denote the integer floor to which SafeGraph rounds the noisy visitor count. To accommodate SafeGraph’s

truncation and censoring, we denote zi jt as an indicator for whether a block group × branch visitor count is present in
the sample. The selection equation is

zi jt =

 1
0

if bV+
i jtc ≥ 2,

otherwise.
(A.17)

Let Vi jt denote the visitor count observed in the sample, subject to SafeGraph’s censoring. The observation equation is

Vi jt = max
{
4, bV+

i jtc
}
, (A.18)

In the simulation, we implement Eqs. (A.15) to (A.18).

A.2 Sample block group × branch pairs

Technically speaking, every possible block group i and branch j pair should enter Eq. (A.15). But our data of over
fifty-thousand branches and over two-hundred-thousand block groups, altogether spanning twenty-four months,
makes it computationally impractical to have the billions of possible block group × branch pairs enter the MSM
estimation. Instead, we sample pairs using stratified sampling.

39 The haversine distance between two latitude-longitude coordinates
(
lat1, long1

)
and

(
lat2, long2

)
is 2r arcsin

(√
h
)
, where r is the

Earth’s radius and h = hav (lat1 − lat2) + cos (lat1) cos (lat2) hav
(
long2 − long2

)
. The haversine function hav (θ) = sin2

(
θ
2

)
. The centers

of population are computed using population counts from the 2010 Census and are found here: 2010 Census Centers of Population.
We take the Earth’s radius to be 3,956.5 miles, which is midway between the polar minimum of 3,950 miles and the equatorial
maximum of 3,963 miles. The haversine formula treats the Earth as a sphere and is less precise than other measures that consider the
Earth’s ellipticity, such as Vincenty’s formula. Even so, the haversine formula is simple, fairly accurate, and convenient to compute.

1
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In each year-month, block group × branch pairs in the SafeGraph data register either positive (and ≥ 4) or missing
observed visitor counts. If a block group × branch pair has a positive visitor count, then we know that residents of the
block group visited the branch in the period, and we sample this block group × branch pair in our simulation with
probability 1. If a block group × branch pair has a missing visitor count in the year-month, then either residents of
the block group did not visit the branch in the period, or the visitor count was left out of the data from SafeGraph’s
differential privacy methods. In each year-month, we sample from this alternative set of missing block group × branch
pairs such that (i) every pair in the alternative set has the same probability of being sampled, and (ii) each block group
and each branch is part of at least one block group × branch pair in the alternative set. The second condition ensures
that each block group and branch is represented in the stratified sampling. We set the sampling probability to 1/2000,
which implies that, on average, the randomly sampled alternative set of block group × branch pairs represents slightly
higher than a 0.05% sample size of all possible block group × branch pairs with missing visitor counts.

To establish notation for the stratified sampling of block group × branch pairs, we let nt denote the stratified
sample of block group × branch pairs in year-month t. This set is the union of the set of pairs with positive observed
visitor counts that are sampled with probability 1, denoted n1

t , and the alternative set of pairs with missing observed
visitor counts that are sampled with probability 1/2000, denoted n0

t . Let N0
it denote the population of the block group ×

branch pairs with missing observed visitor counts that are associated with block group i. (We use lowercase notation
for the stratified sample of pairs and uppercase notation for the population of pairs.)

We implement the stratified sampling in the following manner to satisfy conditions (i) and (ii) above. To satisfy (ii),
we pick 1 pair randomly from N0

it for each block group i. Notice that we could have chosen more than one pair per block
group i to satisfy (ii), but choosing just one reduces the estimation time. Next, to satisfy (i), we draw a uniform random

variable ui jt ∼ U [0, 1] for each pair in N0
it. We include the pair in the sample if ui jt ≤

p − m
|N0

it |

1 − m
|N0

it |

, where p = 1 −
√

1 − 1/M,

and 1/M is our target sampling probability of 1/2000, and | · | is cardinality of a set. We loop this procedure through each
block group i. We then repeat the process for each branch j (i.e., draw a uniform random variable for each pair again in
N0

it, but looping through all branches).
Notice that we rely on the uniform random variable draw falling short of a threshold to determine whether a block

group × branch pair is sampled because the number of pairs in each set N0
it is discrete, but we want the sampling

probability to be the same across all block group × branch pairs with missing visitor counts. The probability of a pair
being sampled when looping through block groups is the union of the initial 1 random pair choice satisfying condition
(ii) and the threshold condition on the uniform draw. That probability is the following:

1
|N0

it|
+

p − 1
|N0

it |

1 − 1
|N0

it |

−
1
|N0

it|

p − 1
|N0

it |

1 − 1
|N0

it |

, (A.19)

which is simply the probability of the union of the two independent events, where we have used the relation
P (A

⋃
B) = P (A) + P (B) − P (A

⋂
B) for independent events A and B. Some algebra reveals that Eq. (A.19) equals p.

Because we repeat the process across all branches, the probability of a block group × branch pair being sampled either
from the loop through block groups or the loop through branches is

p + p − p2 =
1
M
,

which matches our target sampling probability, as desired.
The stratified sampling requires that we apply probability weights to any variable measured at the block group ×

branch level—such as visitor counts or pairwise distances—so as to rebalance the data and make it represent the target
population as closely as possible. We assign probability weights equaling 1 to the sampled pairs in the set n1

t because
these pairs were sampled with probability 1. We assign probability weights denoted ωt to the sampled pairs in the set
n0

t . These probability weights satisfy:

ωt|n0
t | + 1|n1

t | = Total no. of block groups in year-month t × Total number of branches in year-month t. (A.20)

Rearranging Eq. (A.20) shows that the probability weight ωt per year-month is the number of population pairs with
missing observed visitor counts divided by the number of sampled pairs with missing observed visitor counts. Following
standard practice, we have the probability weights equal the reciprocal of the likelihood of being sampled (M = 2000),
but they can deviate slightly from M by chance because of the random sampling.
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A.3 Initialize the fixed effects routine

In each year-month of the sample period, the MSM uses the visitor data v and the model parameters ψ ≡
{
βt, γit, λ jt

}
to minimize the distance between simulated model moments and data moments. With the very large number of block
groups and branches in our sample, the model of visitor counts in Eq. (A.15) requires hundreds of thousands of
fixed effects to be estimated. Estimating all these parameters from the MSM minimization problem alone would be
computationally impractical. Instead, we adopt an iterative routine to identify the fixed effects

{
γit, λ jt

}
and let the

minimization problem identify βt. Holding fixed an estimate of βt and given initial estimates of the fixed effects, the
routine updates the fixed effects estimates until they converge. After the fixed effects converge per estimate of βt in the
year-month, the MSM minimization problem then chooses the optimal βt estimate that satisfies the moment conditions
in the year-month. We initialize the fixed effects routine with guessed estimates γ̂0

it = λ̂0
jt = 1 for all i and j and t.

A.4 Simulate visitor counts

We run S = 10 simulations of the visitor counts per block group × branch pair. The S simulations are run per
year-month of the sample. We differentially simulate visitor counts from the two sets of sampled block group × pairs,
n0

t and n1
t , because of their different probability weights.

Consider first the set n1
t of pairs with positive observed visitor counts that were sampled with probability 1. Per

year-month, we begin the simulation by drawing |n1
t | × S Laplace random variables having mean zero and scale 10/9,

and we draw |n1
t | × S independent Uniform random variables over the unit interval. We draw these random variables

only once at the beginning of each year-month’s run so that the MSM does not have the underlying sample change for
every guess of the model parameters. Given an estimate β̂t of the gravity coefficient and the initial guessed estimates{
γ̂0

it, λ̂
0
jt

}
of the fixed effects, we then apply the inverse Poisson CDF to transform the Uniform random variables into

Poisson random variables with distinct means given in Eq. (A.15).
Each Poisson draw is a “true” block group × branch visitor count. To replicate SafeGraph’s differential privacy

methods in the simulations, we (i) add a Laplace draw to all non-zero true visitor counts to form a “noisy” block group
× branch visitor count, (ii) round each noisy visitor count down to the nearest integer, (iii) set to 0 all noisy visitor
counts below 2, and (iv) replace all noisy visitor counts that equal 2 or 3 with 4. Simulated visitor counts are 0 if either
the true visitor count (from the Poisson draw) is 0 or the noisy visitor count (from the Poisson draw plus the Laplace
draw) falls below 2. This way, simulated visitor counts that equal 0 arise in the same two ways as would 0 visitor
counts in the observed SafeGraph data. Let ṽ = {ṽ1, ṽ2, . . . , ṽS} be the S simulated visitor counts in year-month t, where
we have excluded a t subscript to simplify notation.

Consider next the set n0
t of block group × branch pairs with missing visitor counts that were sampled with

probability 1/2000. If an extra |n0
t | ×S pairs of visitor counts were simulated in the same manner described in the previous

two paragraphs, those simulated visitor counts would have disproportionate impact on any computed moments
because of the high probability weights that would multiply them. Noise from the simulation would be amplified
and make the estimation unstable. Rather than simulating visitor counts for the block group × branch pairs in n0

t , we
construct their implied empirical probability distribution according to the parameter estimate of ψ in each iteration. If
an infinite number of visitor counts from the pairs in n0

t were in fact simulated, their distribution would coincide with
this constructed empirical distribution. Notice that we cannot apply this approach to the set n1

t of sampled block group
× branch pairs because each pair in that set is drawn from a distinct distribution, due, in part, to the block group- and
branch-specific fixed effects. For those pairs, we simulate draws. However, the sampled pairs in the set n0

t are meant to
represent the remaining block group × branch pairs in the population with missing observed visitor counts, which
are very high in number. One stratified sampled observation is meant to represent 2,000 observations from the same
distribution. We construct the empirical distribution that these sampled pairs represent.

Because the Laplace noise is added after the Poisson draw, this empirical distribution is a truncated and censored
Laplace distribution whose mean is the realization of the Poission draw. With this in mind, let G

(
y, k

)
be the CDF of a

Laplace distribution with mean k and scale 10/9. And let µ̂i jt denote the estimated mean of the Poisson distribution of
visitor counts in Eq. (A.15). Namely,

µ̂i jt ≡ exp
(
γ̂it + λ̂ jt − β̂t log Distancei j

)
. (A.21)

Finally, let the probability that the Poisson distribution draws a visitor count of k, given its estimated mean µ̂i jt be
denoted p

(
k, µ̂i jt

)
. Notice that the parameters of the empirical distribution update with every iteration of the estimated

fixed effects and guess of βt.
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We construct 7 components of the empirical distribution that we use in the moments of the estimation. Because
both the Laplace and Poisson distributions have infinite support, we must insert an upper bound to both supports
when constructing the empirical distribution. We bound the Poisson support at K = 20 and the Laplace support at
L = 30. The upper bounds imply that the 7 components of the empirical distribution hold approximately. As K→∞
and L→∞, they would hold exactly. The 7 components of the empirical distribution we compute are:

1. Probability that the visitor count equals 0:

Pr
(
Ṽi jt = 0|µ̂i jt

)
≈ p

(
0, µ̂i jt

)
+

K∑
k=1

p
(
k, µ̂i jt

)
× G (2, k) . (A.22)

The probability that a simulated visitor count is zero equals the probability that the Poisson draw equals zero,
represented by the first term in Eq. (A.22), plus the cumulative probability that the Poisson draw has a positive
value but the Laplace draw reduces that positive value to the lower bound of 0. That cumulative probability is
represented by the second term in Eq. (A.22). In that term, the Laplace draw has mean k to adjust for different
possible positive draws of the Poisson. Moreover, the CDF value of the Laplace distribution given that mean,
G (2, k), is positioned at 2 because SafeGraph truncates any visitor count below 2. Thus, the second term is
the cumulative probability that the simulated visitor count falls below 2 after the Laplace noise is added to a
positive Poisson draw. The Laplace probability multiplies the Poisson probability because the two draws are
independent. Notice that no Laplace piece enters the first term because SafeGraph adds Laplace noise only to
positive observed visitor counts.

2. Probability that the visitor count exceeds 0:

Pr
(
Ṽi jt > 0|µ̂i jt

)
≈

K∑
k=1

p
(
k, µ̂i jt

)
× (1 − G (2, k)) . (A.23)

This probability is simply the complement of the previous one. Because the visitor count exceeds 0 in this
scenario, Laplace noise is always added to the Poisson draw, and hence, the “survival function” of the Laplace,
given by 1 − G (2, k), multiplies each Poisson probability. The survival value is the probability that the visitor
count avoids truncation.

3. Probability that the visitor count equals 4:

Pr
(
Ṽi jt = 4|µ̂i jt

)
≈

K∑
k=1

p
(
k, µ̂i jt

)
× (G (5, k) − G (2, k)) . (A.24)

The probability that the visitor count equals 4 is the probability that the Poisson draw lands at or above 1 visitor
count times the probability that the Lapalace draw pushes the visitor count to a value in the interval between 2
and 4 inclusive (i.e., the censoring region). Because SafeGraph rounds visitor counts down to the nearest integer,
the probability that the Laplace draw carries the visitor count into the censored region is G (5, k) − G (2, k). For
example, a Poisson draw plus a Laplace draw that equaled 4.

−→
9 would round down to 4.

4. Probability that the visitor count exceeds 4:

Pr
(
Ṽi jt > 4|µ̂i jt

)
≈

K∑
k=1

p
(
k, µ̂i jt

)
× (1 − G (5, k)) . (A.25)

This probability is simply the complement of the previous one. The survival function of the Laplace above 4,
given by 1 − G (5, k), multiplies each Poisson probability. The survival value is the probability that the visitor
count avoids censoring.

5. Expected visitor count:

E
(
Ṽi jt|µ̂i jt

)
≈

K∑
k=1

p
(
k, µ̂i jt

) 4 × {G (5, k) − G (2, k)} +
L∑

l=5

l × {G (l + 1, k) − G (l, k)}

 . (A.26)
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The formula for the mean visitor count is broken up into two parts. Both parts are multiplied by the probability,
p
(
k, µ̂i jt

)
, that the Poisson draw lands at or above 1 visitor count so that the observation enters the support of

the empirical distribution. The first part is the probability that the Laplace draw pushes the visitor count to a
value in the interval between 2 and 4 inclusive (the censoring region) multiplied by 4 visitors. The second part
is the probability that the Laplace draw pushes the visitor count to a value of 5 or higher, multiplied by that
value. Because SafeGraph rounds visitor counts down to the nearest integer, the probability of each value in
this second part is the CDF of the Laplace distribution at 1 above that value less the CDF at the value, given by
G (l + 1, k) − G (l, k).

6. Expected log visitor count, conditional on the visitor count exceeding 0:

E
(
log Ṽi jt|Ṽi jt > 0, µ̂i jt

)
≈

∑K
k=1 p

(
k, µ̂i jt

) [
log 4 × {G (5, k) − G (2, k)} +

∑L
l=5

{
log l × (G (l + 1, k) − G (l, k))

}]
Pr

(
Ṽi jt > 0|µ̂i jt

) . (A.27)

The formula for the mean of the natural logarithm of the visitor count is very similar to that of the mean of the
visitor count from Eq. (A.26). The only adjustments are that the natural logarithm is taken as needed and that
the mean is re-weighted to account for the positive visitor count requirement. That re-weighting is exhibited
via the division by Pr

(
Ṽi jt > 0|µ̂i jt

)
, defined in Eq. (A.23), which is the way to compute the mean of a truncated

random variable.

7. Expected log visitor count, conditional on the visitor count exceeding 4:

E
(
log Ṽi jt|Ṽi jt > 4, µ̂i jt

)
≈

∑K
k=1 p

(
k, µ̂i jt

) [∑L
l=5

{
log l × (G (l + 1, k) − G (l, k))

}]
Pr

(
Ṽi jt > 4|µ̂i jt

) . (A.28)

This conditional mean is even simpler to compute than the one in Eq. (A.27). The formula consists of just the
second component in the numerator of Eq. (A.27), and the re-weighting in the denominator is the probability of
the visitor count exceeding 4, given in Eq. (A.25).

A.5 Iterate the fixed effects until convergence

Under a fixed estimate β̂t, the next step is to iterate the estimated fixed effects until they converge. Because the
fixed effects are measured at the block group or branch level, and not the block group × branch level like the visitor
counts, we need two other sets of probability weights for the fixed effects estimation due to the stratified sampling.
The block group and branch weights are defined similarly as the block group × branch weights in Eq. (A.20), but they
are measured from the perspective of a block group or branch.

Notice that the stratified sample of block group × branch pairs also creates a stratified sample of block groups
and branches separately. With this in mind, we let bit denote the stratified sample of branches for block group i in
year-month t. This set is the union of the set of branches from the pairs sampled with probability 1, denoted b1

it, and
the set of branches from the pairs sampled with probability 1/2000, denoted b0

it. Likewise, let h jt denote the stratified
sample of home block groups for branch j in year-month t. This set is the union of the set of block groups from the
pairs sampled with probability 1, denoted h1

jt, and the set of block groups from the pairs sampled with probability
1/2000, denoted h0

jt. The block groups in h1
jt and branches in b1

it have probability weights equal to 1. The block groups in

h0
jt have probability weights denoted ω j

t , and the branches in b0
it have probability weights denoted ωi

t. These probability
weights are defined as:

ω j
t |h

0
jt| + 1|h1

jt| = Total no. of block groups in year-month t, ∀
(
i, j

)
∈ nt, (A.29)

ωi
t|b

0
it| + 1|b1

it| = Total no. of branches in year-month t, ∀
(
i, j

)
∈ nt. (A.30)

We use the block group- and branch-specific probability weights from Eqs. (A.29) to (A.30) only in the fixed effects
iteration routine. We iterate the estimated fixed effects sequentially. We begin with the estimated branch fixed effects{
λ̂ jt

}
, while holding constant the estimated block group fixed effects

{
γ̂it

}
at γ̂0

it = 1, ∀i and ∀t.
To estimate the branch fixed effects, we take advantage of another data field in SafeGraph: a branch’s total number

of visitors. The SafeGraph name for this field is RAW_VISITOR_COUNT. Unlike the number of visitors from a block group
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to the branch, a branch’s total number of visitors is unaffected by SafeGraph’s differential privacy methods. Because
we presume that block group residents can visit any branch cross-country in the year-month, we can take advantage of
a branch’s total visitors to uniquely pin down the estimate of the branch’s fixed effect. Let VT

jt denote branch j’s total
visitors in year-month t.

The iteration process for estimating the branch fixed effects is as follows. Suppose we are on the k-th iteration.
From Eq. (A.15), the expected number of visitors to branch j from block group i in year-month t based on the k-th
iteration estimates of the fixed effects is

V̂k
i jt = exp

(
λ̂k

jt

)
exp

(
γ̂k

it

)
Distance−β̂t

i j . (A.31)

Summing across block groups, and adjusting for the probability weights defined in Eq. (A.29), we obtain a branch’s
expected total visitor count:

V̂k
jt = exp

(
λ̂k

jt

) ∑
i∈h1

jt

exp
(
γ̂k

it

)
Distance−β̂t

i j +
∑
i∈h0

jt

ω j
t exp

(
γ̂k

it

)
Distance−β̂t

i j

 (A.32)

Given β̂t and the k-th iteration of the estimated block group fixed effects,
{
γ̂k

it

}
, we determine the k-th iteration of

each branch’s estimated fixed effect, λ̂k
jt, by solving for the value that equates the branch’s expected total visitor count,

V̂k
jt from Eq. (A.32), with the branch’s observed total visitor count, VT

jt. Mathematically speaking, the branch’s fixed
effect estimate satisfies:

λ̂k
jt = log VT

jt − log

∑
i∈h1

jt

exp
(
γ̂k

it

)
Distance−β̂t

i j +
∑
i∈h0

jt

ω j
t exp

(
γ̂k

it

)
Distance−β̂i j

 . (A.33)

Per iteration, Eq. (A.33) pins down each branch’s estimated fixed effect as a function of the estimated block group
fixed effects (and the estimate of βt). The estimated block group fixed effects will iterate until they converge, and by
Eq. (A.33), once the estimated block group fixed effects converge, so too do the estimated branch fixed effects, given an
estimate of βt.

The iteration process for estimating the block group fixed effects is as follows. Suppose we are on the k-th iteration.
For each block group i in the year-month, we divide the average observed visitor counts Vi jt across the branches in set
bit, by the average simulated visitor counts across all branches in set bit and all simulations S. With this in mind, we let
the average observed visitor count of block group i be

Vit =
1
|bit|

∑
j∈bit

Vi jt. (A.34)

Let the simulated visitor counts from simulation s in iteration k be denoted Ṽk
i jt (s). The average simulated visitor count

of block group i in simulation s is

Ṽ
k

it (s) =

∑
j∈b1

it
Ṽk

i jt (s) +
∑

j∈b0
it
ωi

tE
(
Ṽk

i jt|µ̂i jt

)
∑

j∈b1
it

1 +
∑

j∈b0
it
ωi

t

, (A.35)

where E
(
Ṽk

i jt|µ̂i jt

)
is provided in Eq. (A.26). Because the calculation is at the block-group level, the probability weights

we use are from the block-group perspective, and they either equal 1 or satisfy Eq. (A.30). Averaging across simulations
delivers the mean simulated visitor count of block group i as

Ṽ
k

it =
1
S

∑
s

Ṽ
k

it (s) . (A.36)
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The ratio of block group i’s average observed visitor count to average simulated visitor count is thus:

χk
it =

Vit

Ṽ
k

it

(A.37)

We take ratios of averages rather than differences of averages because the fixed effects in the visitor count model in
Eq. (A.15) are exponentiated. These block group-level ratios then multiplicatively update each block group’s estimated
fixed effect:

γ̂k+1
it = γ̂k

it ×
(
χk

it

)g
, (A.38)

where g is a modifying term to avoid oscillating estimates, and we set its value to 0.5. Notice that if block group i’s
average simulated visitor count is higher than its average observed visitor count in the data, then χk

it < 1, and the block
group’s estimated fixed effect is revised downward.

After each update of the estimated block group fixed effects, we re-transform the |n1
t | ×S Uniform random variables

into Poisson random variables using (i) the estimate β̂t; (ii) the updated block group fixed effect estimates,
{
γ̂k+1

it

}
; and

(iii) the updated branch fixed effect estimates,
{
λ̂k+1

jt

}
, based on Eq. (A.33). We then apply differential privacy methods

to the “updated” simulated data. The process iterates until the estimated block group fixed effects converge.40

While the estimated fixed effects are updated using ratios of the averages between observed and simulated values,
we found that the estimates converged faster under a convergence criterion that uses differences in the averages instead.
We define convergence as the squared change between iterations in the mean squared difference between average
observed and simulated visitor counts of a block group being sufficiently small. The criterion is similar in spirit to a
GMM minimization problem in which the moments are the difference in means between the observed and simulated
visitor counts of each block group i, using an identity weighting matrix. Minimization is reached when the change
in the GMM objective function becomes sufficiently small. In the calculation of the average squared difference, we
assign more weight to block groups with branch goers to more branches (higher |bit|). Mathematically, the convergence
condition is  1

|nt|

∑
i

|bit|

(
Ṽ

k+1

it − Vit

)2

−
1
|nt|

∑
i

|bit|

(
Ṽ

k

it − Vit

)2


2

< ε (A.39)

for small ε, which we set to 1e−9.
After the condition in Eq. (A.39) is met, we have converged fixed effects estimates, denoted

{
γ̂∞it

}
and

{
λ̂∞jt

}
, for a

given estimated β̂t. The final piece of the estimation is to select the optimal β̂t that minimizes the distance between
simulated and data moments in the year-month.

A.6 Select the moments

To identify βt, we choose 6 unconditional moments of the distribution of visitor counts. We select moments that
describe important parts of the distribution. The moments are computed per year-month across all block groups and
branches. Denote the vector of the data moments in the year-month as m (v), and denote as m

(
ṽs|ψ

)
the analogous

vector of simulated moments from simulation s.
Recall that nt is the set of stratified sampled block group × branch pairs in year-month t. The set is the union of the

set of pairs in n1
t that were sampled with probability 1 and the set of pairs in n0

t that were sampled with probability
1/2000. Recall also that ωt are the probability weights assigned to the pairs in the set n0

t , given in Eq. (A.20). Both the data
and simulated moments only include block group × branch pairs from the stratified sample. The 6 data and simulated
moments are:

40The iterative process we use to identify the fixed effects is similar in spirit to the “zig-zag” algorithm, or Gauss-Seidel method,
that is commonly used to identify high-dimensional fixed effects in linear models (Guimaraes and Portugal 2010).
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1. Percent of visitor counts equal to 0:

m1 (v) ≡

∑
(i, j)∈n1

t
I
(
Vi jt = 0

)
+

∑
(i, j)∈n0

t
I
(
Vi jt = 0

)
ωt∑

(i, j)∈n1
t

1 +
∑

(i, j)∈n0
t
ωt

, (A.40)

m1
(
ṽ|ψ

)
≡

∑
(i, j)∈n1

t
I
(
Ṽi jt = 0

)
+

∑
(i, j)0

t
Pr

(
Ṽi jt = 0|µ̂i jt

)
ωt∑

(i, j)∈n1
t

1 +
∑

(i, j)∈n0
t
ωt

, (A.41)

where I (·) stands for the indicator function and Pr
(
Ṽi jt = 0|µ̂i jt

)
is from Eq. (A.22). The data moment m1 (v) is

straightforward, separating pairs in the two sampled sets, n0
t and n1

t , and applying the different probability
weights. The simulated moment m1

(
ṽ|ψ

)
adds the fraction of the simulated visitor counts from the sampled

set n1
t equaling 0 to the probability of the visitor counts from the sampled set n0

t equaling 0, adjusted by the
probability weights.

2. Percent of visitor counts equal to 4:

m2 (v) ≡

∑
(i, j)∈n1

t
I
(
Vi jt = 4

)
+

∑
(i, j)∈n0

t
I
(
Vi jt = 4

)
ωt∑

(i, j)∈n1
t

1 +
∑

(i, j)∈n0
t
ωt

, (A.42)

m2
(
ṽ|ψ

)
≡

∑
(i, j)∈n1

t
I
(
Ṽi jt = 4

)
+

∑
(i, j)∈n0

t
Pr

(
Ṽi jt = 4|µ̂i jt

)
ωt∑

(i, j)∈n1
t

1 +
∑

(i, j)∈n0
t
ωt

, (A.43)

where Pr
(
Ṽi jt = 4|µ̂i jt

)
is from Eq. (A.24).

3. Average log distance, in cases where Vi jt, Ṽi jt = 0:

m3 (v) ≡

∑
(i, j)∈n1

t
I
(
Vi jt = 0

)
log Distancei j +

∑
(i, j)∈n0

t
I
(
Vi jt = 0

)
ωt log Distancei j∑

(i, j)∈n1
t

1 +
∑

(i, j)∈n0
t
ωt

, (A.44)

m3
(
ṽ|ψ

)
≡

∑
(i, j)∈n1

t
I
(
Ṽi jt = 0

)
log Distancei j +

∑
(i, j)∈n0

t
Pr

(
Ṽi jt = 0|µ̂i jt

)
ωt log Distancei j∑

(i, j)∈n1
t

1 +
∑

(i, j)∈n0
t
ωt

. (A.45)

4. Average log distance, in cases where Vi jt, Ṽi jt = 4:

m4 (v) ≡

∑
(i, j)∈n1

t
I
(
Vi jt = 4

)
log Distancei j +

∑
(i, j)∈n0

t
I
(
Vi jt = 4

)
ωt log Distancei j∑

(i, j)∈n1
t

1 +
∑

(i, j)∈n0
t
ωt

, (A.46)

m4
(
ṽ|ψ

)
≡

∑
(i, j)∈n1

t
I
(
Ṽi jt = 4

)
log Distancei j +

∑
(i, j)∈n0

t
Pr

(
Ṽi jt = 4|µ̂i jt

)
ωt log Distancei j∑

(i, j)∈n1
t

1 +
∑

(i, j)∈n0
t
ωt

. (A.47)

5. OLS coefficient from regressing log visitor counts onto their associated log distances, in cases where
Vi jt, Ṽi jt > 0:

First, using the observed data, we define the regression’s dependent and independent variables, respectively, as

yi jt =
〈
log Vi jt

〉
(i, j)∈n1

t
, (A.48)

Xi jt =
[
〈1〉(i, j)∈n1

t
,

〈
log Distancei j

〉
(i, j)∈n1

t

]
. (A.49)

Here, 〈·〉(i, j)∈n1
t

denotes a vector with length equaling the number of elements in the set n1
t . The dependent

variable yi jt consists of a vector of log visitor counts, whereas the independent variables are a vector of ones and
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a vector of log distances. With these variables established, the data moment is

m5 (v) ≡ Second element of
(
X′i jtXi jt

)−1 (
X′i jtyi jt

)
(A.50)

Notice that because the data moment reflects only positive observed visitor counts from the set n1
t of sampled

block group × branch pairs, the probability weights all equal 1 and do not appear in the data moment.

The corresponding simulated moment uses a weighted least squares (WLS) coefficient because the prob-
ability weights do not all equal 1. With this in mind, we define the observation weights of the WLS as

η̃i jt ≡

 〈1〉(i, j)∈n1
t :Ṽi jt>0〈

ωt Pr
(
Ṽi jt > 0|µ̂i jt

)〉
(i, j)∈n0

t

 , (A.51)

where Pr
(
Ṽi jt > 0|µ̂i jt

)
is from Eq. (A.23). The observation weights consist of (1) a vector of ones with length

equaling the number of block group × branch pairs in n1
t that also have positive simulated visitor counts, and

(2) a vector of weighted probabilities that the simulated visitor counts from the pairs in the sampled set n0
t exceed 0.

The dependent variable in the WLS is defined as

ỹi jt ≡
√
η̃i jt �


〈
log Ṽi jt

〉
(i, j)∈n1

t :Ṽi jt>0〈
E
(
log Ṽi jt|Ṽi jt > 0, µ̂i jt

)〉
(i, j)∈n0

t

 , (A.52)

where � is the element-wise product and E
(
log Ṽi jt|Ṽi jt > 0, µ̂i jt

)
is from Eq. (A.27). The dependent variable

consists of (1) a weighted vector of log simulated visitor counts with length equaling the number of block
group × branch pairs in n1

t that also have positive simulated visitor counts, and (2) a weighted vector of mean
log simulated visitor counts from the pairs in the sampled set n0

t , conditional on the simulated visitor counts
exceeding 0.

The independent variable in the WLS is defined as

X̃i jt ≡

 √
η̃i jt,

√
η̃i jt �


〈
log Distancei j

〉
(i, j)∈n1

t :Ṽi jt>0〈
log Distancei j

〉
(i, j)∈n0

t


 . (A.53)

The independent variable consists of (1) the square root of the weights from Eq. (A.51), and (2) the element-wise
product of the square root of the weights and log distances.

With these terms established, we set the simulated moment as

m5
(
ṽ|ψ

)
≡ Second element of

(
X̃′i jtX̃i jt

)−1 (
X̃′i jt ỹi jt

)
. (A.54)

6. OLS coefficient from regressing log visitor counts onto their associated log distances, where Vi jt, Ṽi jt > 4:

The sixth data moment is similar to the fifth data moment, except that it conditions on the visitor count
exceeding 4 rather than 0. Specifically, let

qi jt =
〈
log Vi jt

〉
(i, j)∈n1

t :Vi jt>4
(A.55)

Zi jt =
[
〈1〉(i, j)∈n1

t :Vi jt>4 ,
〈
log Distancei j

〉
(i, j)∈n1

t :Vi jt>4

]
. (A.56)

The data moment is then
m6 (v) ≡ Second element of

(
Z′i jtZi jt

)−1 (
Z′i jtqi jt

)
. (A.57)
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The sixth simulated moment is also similar to the fifth simulated moment, just now conditioning on Ṽi jt > 4.
Thus, let the WLS observation weights be

ξ̃i jt ≡

 〈1〉(i, j)∈n1
t :Ṽi jt>4〈

ωt Pr
(
Ṽi jt > 4|µ̂i jt

)〉
(i, j)∈n0

t

 , (A.58)

where Pr
(
Ṽi jt > 4|µ̂i jt

)
is from Eq. (A.25). The dependent variable in the WLS is defined as

q̃i jt ≡

√
ξ̃i jt �


〈
log Ṽi jt

〉
(i, j)∈n1

t :Ṽi jt>4〈
E
(
log Ṽi jt|Ṽi jt > 4, µ̂i jt

)〉
(i, j)∈n0

t

 , (A.59)

where E
(
log Ṽi jt|Ṽi jt > 4, µ̂i jt

)
is from Eq. (A.28). Likewise, the independent variable in the WLS is defined as

Z̃i jt ≡

 √
ξ̃i jt,

√
ξ̃i jt �


〈
log Distancei j

〉
(i, j)∈n1

t :Ṽi jt>4〈
log Distancei j

〉
(i, j)∈n0

t


 . (A.60)

With these terms established, we set the simulated moment as

m6
(
ṽ|ψ

)
≡ Second element of

(
Z̃′i jtZ̃i jt

)−1 (
Z̃′i jtq̃i jt

)
. (A.61)

In the procedure, we take the mean of the simulated moments by averaging values across the S simulations. Let
m̂

(
ṽ|ψ

)
be the estimate of the model moments from the S simulations:

m
(
ṽ|ψ

)
=

1
S

∑
S

m
(
ṽs|ψ

)
. (A.62)

The final step of the MSM procedure is to find the estimated β̂t that minimizes the distance between the data
moments and simulated model moments.

A.7 Construct the MSM estimator

The MSM estimator β̂t,MSM minimizes the weighted sum of squared errors between the simulated model moments
and data moments. So that all errors are expressed in the same units and the minimization problem is scaled properly,
we compute the error er

(
ṽ, v|ψ

)
per moment r, which is the percent difference between a data moment and its

corresponding model moment:

er
(
ṽ, v|ψ

)
≡

mr
(
ṽ|ψ

)
−mr (v)

mr (v)
, ∀r ∈ {1, . . . , 6}. (A.63)

Let e
(
ṽ, v|ψ

)
denote the vector of moment errors. The MSM estimator is then

β̂t,MSM = argmin
βt

e
(
ṽ, v|ψ

)′We
(
ṽ, v|ψ

)
, (A.64)

where W is a 6 × 6 weighting matrix that controls how each moment is weighted in the minimization problem. Notice
that each candidate βt in Eq. (A.64) is associated with a different set of converged fixed effects estimates

{
γ̂∞it , λ̂

∞

jt

}
.

We use the identity matrix I for the weighting matrix W. We also implemented a two-step procedure to select an
optimal weighting matrix W, but that approach produced unstable estimates. This is not surprising, given evidence in
the literature of the underperformance of the two-step procedure when there is uncertainty in the estimation of the
weighting matrix (Arellano and Bond 1991; Hwang and Sun 2018).
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Under this identity weighting matrix, one can derive the variance of the MSM estimator β̂t,MSM as

V̂ar
(
β̂t,MSM

)
=

(
1 +

1
S

) (
Ĵ′ Ĵ

)−1
Ĵ′Σ̂Ĵ

(
Ĵ′ Ĵ

)−1
, (A.65)

where Ĵ ≡
∂e(ṽ,v|ψ)
∂βt

is the estimated derivative of the vector of moment errors, evaluated at β̂t,MSM, and Σ̂ ≡

e
(
ṽ, v|ψ

)
e
(
ṽ, v|ψ

)′ is a consistent estimate of the covariance matrix of moment errors. We calculate the derivatives
numerically by taking a central difference around β̂t,MSM.

B Robustness

In this section, we conduct robustness checks on the paper’s main empirical conclusions. In Appendix B.1, we
measure branch access when all SOD branches are included instead of only those in SafeGraph, and in Appendix B.2,
we evaluate the robustness to omitted variable bias due to the endogenous location choices of residents and bank
branches.

B.1 Access with All SOD Branches

In our main analysis, we estimate the gravity model in Eq. (7) using distances and visitor counts from block groups
to branches in SafeGraph for which we have visitor data. We then use Eq. (8) as an empirical measure of bank branch
access per block group. Our sample covers virtually all U.S. Census block groups, but not all U.S. branches. Here, we
re-examine branch access by demographic attributes when all branches in the 2019 SOD are included.

A block group’s estimated bank branch access per period in Eq. (8) consists of four components: (i) the set of
branches available to all residents Bt, (ii) the distances between the block group and branches

{
Distancei j

}
∀ j

, (iii) the

estimated gravity coefficient β̂t, and (iv) the estimated fixed effects of the branches
{
λ̂ jt

}
. For component (i), we use

the set of branches in SafeGraph already included in the main analysis plus the set of branches in the 2019 SOD that
are missing from SafeGraph. For component (ii), we use the haversine distances used before for the branches in the
SafeGraph sample plus the haversine distances between the block groups’ centers of populations and the addresses of
the SOD branches.

In many microfounded gravity models, component (iii), the estimated gravity coefficient β̂t, can be interpreted as
the product of consumer’s traveling costs and elasticity of substitution between branches per period. We need to make
an assumption for this component. It is reasonable to presume that, had we been able to estimate the gravity model of
Eq. (7) with all bank branches in the 2019 SOD, households’ per unit traveling costs would not have been different
than the one implicitly embedded in our earlier estimated β̂t. But the elasticity of substitution between branches might
have been different. Adjusting for this possible change would be challenging. For simplicity, we use each month’s
estimated value of β̂t from the main analysis.

Finally, the estimated branch fixed effects
{
λ̂ jt

}
of component (iv) require two assumptions: values for the estimated

fixed effects of the branches in SafeGraph and values for the estimated fixed effects of the branches in the SOD but not
in SafeGraph. First, for the SafeGraph branches, had we estimated the gravity model on geolocation data involving all
bank branches, the estimated fixed effects of those branches in SafeGraph could have been different from the values
we estimated using data only on our core sample of branches. Rather than speculating the direction of the change, for
simplicity we instead apply their estimated fixed effects from the main analysis. For the branches in the 2019 SOD but
not in SafeGraph, we assume that their estimated fixed effects equal the national average of the estimated fixed effects
of the SafeGraph branches within the year-month. We also try the national median.41

Online Table A.12 repeats the branch access OLS regressions of Table 2, but now with all branches from the 2019
SOD included in each block group’s measure of access. For the estimated fixed effects of the branches in the SOD but

41In this section, we only examine how access would change if all bank branches in the 2019 SOD were included. Based on
Eq. (2), one could further study how expected branch visitation would change per block group, but doing so would require more
assumptions on how the block group fixed effects

{
γit

}
would change had all branches been included. With more bank branches

available, we may have observed more branch goers generally per block group, which would raise a block group’s estimated fixed
effect. Rather than further speculating the change in the fixed effect per block group when all SOD branches are included, we
instead examine only how branch access might change with the additional branches.
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missing from SafeGraph, columns (1)-(4) use the national mean of the estimated branch fixed effects of the branches in
SafeGraph per year-month, whereas columns (5)-(8) use the national median per year-month.

Using either the mean or median produces the same conclusion: Adding all the SOD branches reinforces the earlier
statistical findings on branch access by race and income. The income gradient nationwide in column (2) of Table 2 was
-7.6%. In column (2) of Online Table A.12, the income gradient sharpens in magnitude to -8.4%. In Metro cores, the
negative income gradient sharpens from -8.7% to -9.3%. The Black-White gap in access nationwide widens when all
SOD branches are included. In column (2) of Table 2, the Black-White gap in access was 5.3%. In column (2) of Online
Table A.12, the Black-White gap is 15.6%. In Metro cores, the Black-White gap in access widens from 6.4% to 17.8%.

B.2 Omitted Variable Bias

The primary concern over whether βt in the gravity model of Eq. (1) represents the causal effect of distance
on branch visitation is potential omitted variable bias. Namely, Distancei jt is endogenous to the location choices of
households and banks. People might choose to live in neighborhoods that have bank branches they prefer to visit, and
banks might build branches in neighborhoods whose residents would find those branches attractive. Unobservable
characteristics of residents and branches may correlate both with the distances between them and visits, which would
render Eq. (1) subject to an omitted variables problem.

To make this potential omitted variables problem more concrete, consider the following thought experiment.
Suppose that all branches in high-income areas catered to high-income customers, and all branches in low-income
areas catered to low-income customers. Now randomly swap residents of low-income neighborhoods with residents
of high-income neighborhoods. There is an omitted variables problem if both types of the randomly reallocated
residents then visited branches less, holding constant all block group and branch fixed effects. Similarly from the branch
perspective, randomly swap branches between low-income and high-income neighborhoods. There is an omitted
variables problem if visitor flows to those randomly replanted branches were then lower, all else equal. The potential
for households’ bank brand-specific loyalty and/or branches’ customer-specific specialization (as part of households’ and
branches’ location decisions) confounds the causal interpretation of βt.42

To evaluate the robustness to this possible omitted variable bias, we follow the common approach of assessing the
sensitivity of the estimated parameter of interest (the gravity coefficient) to the inclusion of observed controls. In our
context, such controls should proxy for the true omitted variables that relate to the endogenous location choices of
residents and branches. We assess the sensitivity by running OLS and PPML on Eq. (1) using the raw geolocation data.

What controls do we consider? If people live near a branch that caters to them and if that branch is located near
the customers it wishes to cater to, then we should expect to see disproportionate shares of certain types of visitors
over others at that branch. This logic motivates adding controls that measure the relative shares of types of visitors
over others at a branch, reminiscent of Balassa (1965)’s “revealed comparative advantage.” Because visitors differ by
several characteristics, we add relative shares along three observable categories: two from the branch perspective
and one from the block group perspective. From the branch perspective, we consider block group median household
income and the five racial categories of visitors. From the block group perspective, we consider visitors’ bank brand
choice. The last characteristic is meant to capture the notion that some residents may visit certain branches over others
irrespective of distance because of brand loyalty.43,44

We define the relative shares as follows, first from the branch perspective. The number of visitors from block
group i with characteristic c who visit branch j in year-month t is Vc

i jt. The branch’s total number of visitors with
characteristic c over the sample period is Vc

jt =
∑

t
∑

i Vc
i jt. The branch’s total number of visitors over the sample period

42Notice that if residents visited a branch because that branch was nearby attractive amenities like cafes or parks, that choice
would be encoded in the branch fixed effect. Likewise, if a bank chose to build a branch in a high foot-traffic area, that high foot
traffic is likely a consequence of the area’s features, such as being near public transportation or a large retail shopping center. That
choice too would be encoded in the branch fixed effect.

43Recently, Paravisini et al. (2023) adopt a relative shares measure similar to Balassa (1965) in their study of bank specialization
in lending. In their microfoundation for the measure, banks with unobservable advantages in lending toward certain activities have
a disproportionate share of their loans funding those activities. Likewise, firms engaged in certain activities disproportionately fund
those activities with credit from specialized banks.

44If a branch located in an area because that area has amenities that are attractive to particular subpopulations, then we should
also expect to see a disproportionate share of these types of customers visiting that branch.
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is V j =
∑

t
∑

c Vc
jt. We start by computing the share of branch j’s visitors who have characteristic c:

S̃c
j =

Vc
j

V j
=

∑
t
∑

i Vc
i jt∑

t
∑

c
∑

i Vc
i jt
. (A.66)

We then compare branch j’s share to the visitor-c share of all branches in the country. Using the terminology of Balassa
(1965), we obtain branch j’s “revealed comparative advantage” (RCA) in serving visitors with characteristic c:

RCAc
j =

S̃c
j

S̃c
, (A.67)

where S̃c is the share of all branch visitors across the country over the sample period who have characteristic c:

S̃c =

∑
t
∑

j Vc
jt

V
=

∑
t
∑

j
∑

i Vc
i jt∑

t
∑

j
∑

c
∑

i Vc
i jt
. (A.68)

Unfortunately, we cannot construct the ideal measure RCAc
j because the anonymous geolocation data makes Vc

i jt
unobservable. Instead, we proxy for RCAc

j with an observable counterpart that uses block group visitor counts in the
period, Vi jt, and block group population information about characteristic c from the 2019 5-year ACS. When c refers to
racial categories, we define the proxy:

Srace c
j ≡

∑
t
∑

i Vi jtXrace c
i∑

t
∑

i Vi jt
, (A.69)

where Xrace c
i is block group i’s population share of residents with race c. The racial category proxy measures branch j’s

number of visitors, weighted by their block group racial shares, as a fraction of all of branch j’s visitors.
Because block-group level income is measured as median household income, we have no categories to work with.

Instead, we define the income-related shares as:

Sincome
j ≡

∑
t
∑

i Vi jtXincome
i∑

t
∑

i Vi jt
, (A.70)

where Xincome
i is block group i’s log median household income. The income proxy measures branch j’s number of

visitors, weighted by their block group median household incomes, as a fraction of all of branch j’s visitors.
From the block group perspective, we compute proxies for residents’ bank brand choice. Specifically, we define

Sbrand c
i ≡

∑
t
∑

j Vi jtXbrand c
j∑

t
∑

j Vi jt
, (A.71)

where Xbrand c
j is a dummy equaling 1 if branch j belongs to brand c, and 0 otherwise. The brand proxy measures block

group i’s number of branch goers, weighted by whether they visit brand c, as a fraction of all branch goers in block
group i. We compute Sbrand c

i for the top 5 bank brands by number of branches (JPMorgan Chase, Bank of America,
Wells Fargo, PNC, and U.S. Bank).

Notice that the share proxies in Eqs. (A.69) to (A.71) do not adjust for the shares of all branches (or block groups).
Thus, to gauge a branch’s or block group’s relative comparative advantage, we also rely on the distribution of shares
across branches (or block groups). To include as controls parts of the distribution of shares, we use dummies for the
quartile of the characteristic-c distribution that a branch (or block group) belongs to.

Online Table A.13 presents the means and percentiles of the distributions of the various shares. The mean visitor
shares by race are consistent with the Census population shares, but there is meaningful dispersion in the distributions
across branches. For example, a typical (i.e., mean) branch has about 10% of its visitors from predominately Black
areas, and the U.S. Black population share is 13.6%. But there are some branches (the 95th percentile) with roughly 35%
of their visitors from Black communities. In fact, if we isolate branches belonging to minority depository institutions
(MDIs), we see an even larger share of visitors coming from Black communities.45 Consistent with intuition and the

45According to the FDIC Statement of Policy Regarding Minority Depository Institutions, an MDI “may be a federal insured
depository institution for which (1) 51 percent or more of the voting stock is owned by minority individuals; or (2) a majority of the
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motivation for these Balassa-style controls, we observe a disproportionate share of visitors to MDI branches from
predominately minority communities. The typical Black MDI branch has 52% of its visitors from Black communities,
and Black MDI branches at the 95th percentile have 77%. Similarly, a typical Asian MDI branch has disproportionate
shares of visitors from Asian communities (26%), and a typical Hispanic MDI has disproportionate shares of visitors
from Hispanic communities (70%). Regarding the brand loyalty shares in the table, the distributions for Wells Fargo,
Bank of America, and JPMorgan Chase compare similarly, whereas the distributions for U.S. Bank and PNC are
roughly the same. A typical block group has about 11% of its branch goers visiting a Chase branch, for instance, but
block groups at the 95th percentile have 43% of its branch goers visiting a Chase.

In our empirical strategy, we add the share measures to the gravity model of Eq. (1). To avoid potential spurious
correlation between visitors from block group i to branch j

(
i.e., Vi jt

)
and the share measure of branch j, we leave out

i’s visitor count when constructing a branch’s share:

Srace c
(−i) j ≡

∑
t
∑I

k,i VkjtXrace c
k∑

t
∑I

k,i Vkjt
, (A.72)

Sincome
(−i) j ≡

∑
t
∑I

k,i VkjtXincome
k∑

t
∑I

k,i Vkjt
. (A.73)

Similarly, we leave out branch j’s visitor counts when constructing a block group’s brand share:

Sbrand c
i(− j) ≡

∑
t
∑J

k, j ViktXbrand c
k∑

t
∑J

k, j Vikt
. (A.74)

With these share measures, we employ two specifications. The first uses the level of shares:
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Notice that the branch share variables, Srace c
(−i) j and Sincome

(−i) j , interact with block group i characteristics because the concern

over omitted variables is a block group × branch-specific component. Likewise, the block group share variable Sbrand c
i(− j)

interacts with the branch j characteristic.
Our second specification utilizes dummies for a branch’s (and block group’s) quartile in the distribution of shares,

which also allows for a nonlinear relation between visitation and shares:
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where, for example, D
(
Srace c

(−i) j ∈ Qrace c
q

)
is a dummy that equals 1 if the branch’s share is in quartile q = 1, . . . , 4 of the

board of directors is minority and the community that the institution serves is predominantly minority.”
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distribution of Srace c
(−i) j for each racial category c over the full sample. The bottom quartiles of the distributions are

omitted in Eq. (A.76), which implies that the coefficients on the interaction terms capture the elasticity for branches (or
block groups) with q-level shares relative to those with bottom quartile shares. We try versions of Eqs. (A.75) to (A.76)
using OLS and PPML over the full panel that includes each share variable separately and together with standard
errors two-way clustered by Census block groups and bank branches.

Online Table A.14 and Online Table A.15 present the results. Throughout all specifications, the gravity coefficient
estimate stays virtually unchanged despite meaningful increases in the R2s. Across all PPML estimations, the coefficient
remains around -0.09, and across all OLS estimations, it remains about -0.053. Overall, the gravity coefficient estimate
is robust to the rich vector of controls proxying for endogenous location choice.

C Core Sample Construction

Here, we supply background information on the SafeGraph geolocation data and a detailed explanation of how
we construct our core sample.

C.1 SafeGraph Geolocation Data

We use two of SafeGraph’s primary datasets: Core Places and Patterns. Both datasets have information on millions
of points-of-interest (POIs) in the United States, which SafeGraph defines as “specific location[s] where consumers
can spend money and/or time.”46 Locations such as restaurants, grocery stores, parks, museums and hospitals are
included, but not residential homes or apartment buildings.

The Core Places dataset provides the establishment name (e.g., Salinas Valley Ford Lincoln), brand (e.g., Ford),
six-digit NAICS code, latitude and longitude coordinates, address, phone number, hours open, when the establishment
opened, and when SafeGraph began tracking information about the establishment. SafeGraph describes creating this
dataset using thousands of diverse sources. We use the January 2021 version of the Core Places dataset, which was the
most up-to-date and accurate as of the time of our analysis.

The Patterns dataset contains information on visitors to different locations. A visitor is identified via his or her
mobile device, and one device is treated as one visitor. SafeGraph collects this information from third-party mobile
application developers. Through these mobile applications, SafeGraph gathers a device’s advertisement identifier, the
latitude and longitude coordinates of the device at a designated time, and the horizontal accuracy of the geographic
coordinates.47 In this dataset, SafeGraph aggregates the visitor data and provides several bits of information, including
the number of visits and unique visitors to a POI during a specified date range, the median distance from home that
visitors traveled to reach the POI, the median dwell time spent at the POI, and the number of visitors using Apple’s
iOS or Google’s Android operating system. The Patterns dataset is backfilled to reflect the Core Places from the January
2021 version.

Most importantly for us, the Patterns dataset contains the home Census block groups of visitors, and the number
of visitors from each of those home block groups. To protect user privacy, SafeGraph employs differential privacy
methods to the visitor home block group data. First, it adds Laplace noise to each block group’s visitor count (when
it observes at least one visitor from the block group). Second, after the noise is added, Safegraph rounds the visitor
counts down to their nearest integers. Third, SafeGraph then truncates the rounded visitor counts by only reporting
data from block groups with at least two visitors. Fourth, home block groups with only two, three, or four visitors are
reported as having four visitors.

SafeGraph determines a visitor’s home Census block group using an algorithm. A brief description of that
algorithm is as follows. The algorithm starts by clustering GPS signals from a device during the nighttime hours
between 6pm - 7am local time. The Census block group with the most clusters is recorded as the device’s potential
home location for the day. SafeGraph reviews the previous six weeks of the device’s daily home locations and identifies
the most frequent one as the device’s home Census block group. This home location applies for the device over the
next thirty days, at which point the home location is updated. New devices that appear in the panel require at least five
days of data before they are eligible to have their home locations identified. Finally, SafeGraph computes a confidence
score for each device’s calculated home block group. Only high-confidence home locations are included; otherwise,
the device’s home location is classified as unknown.48

46See the SafeGraph Places Manual and Data Guide for more details.
47See the SafeGraph Privacy Policy for more details.
48Full details of the algorithm are found here: Home Identification Algorithm.
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C.2 FDIC Summary of Deposits

To construct our core sample, we rely on branch information from the Federal Deposit Insurance Corporation
(FDIC). Branch data are from the FDIC’s 2019 Summary of Deposits (SOD).49 We rely on the SOD to confirm that
branch locations we use from SafeGraph belong to actual depository institutions, instead of other financial institutions
that SafeGraph might mistakenly label as a “bank,” but do not take deposits, such as an investment advisory firm.

C.3 Construction Process

Our core sample can be thought of as consisting of two components: (i) a set of locations and (ii) consumer
movement to those locations. We call these two components “places” and “visitors.” In our case, the places and visitors
are specific to bank branches. SafeGraph is our only source of visitor data, and so, we rely on it exclusively. The visitors
data field we use that contains the home Census block groups of the visitors to a branch is VISITOR_HOME_CBGS. As we
describe in the text, this data field is subject to SafeGraph’s differential privacy.

Places data, on the other hand, are available in both SafeGraph and the SOD. Before we detail how we make use of
both sources, we first need to introduce placekey, which is a crucial way we identify a place.

C.3.1 Placekey

Placekey is a free, standardized identifier of physical locations. It supplants a location’s address and latitude-
longitude geocode with a unique identifier. Using this identifier overcomes the challenge of linking locations by
addresses that are spelled differently (e.g., 1215 Third Street, Suite 10 vs. 1215 3rd St., #10) or by latitude-longitude
geocodes that differ slightly but refer to the same place.

A business’s placekey consists of two parts (called “What” and “Where”), and it is written as What@Where. The
What component encodes an address and a point-of-interest. The point-of-interest piece adjusts if a new business opens
at the same address of a previous business that closed. For example, if a bank branch closed, but its building converted
into a bakery, the two businesses would share the same address, but different points-of-interest; and therefore, they
would be assigned different placekeys.

The Where component consists of a unique character sequence. It encodes a hexagonal region on the surface of the
Earth based on the latitude and longitude of the business. The hexagon contains the centroid of the business, and the
Where component is the full encoding of the hexagon. To consider an example Placekey, take the Chase branch at 1190
S. Elmhurst Rd. in Mount Prospect, IL 60056. This branch’s placekey is 223-222@5sb-8gg-jn5. Additional technical
information about Placekey can be found in their white paper located here: Placekey White Paper.

C.3.2 Choosing the Set of Places

Both the SOD and SafeGraph have bank branch locations. SafeGraph locations are already identified by their
placekeys. We generate placekeys for the SOD locations using Placekey’s free API. To construct an accurate and
comprehensive set of places, we take advantage of place information in SafeGraph and the SOD. The quality of
SafeGraph places is higher than those in the SOD. Often, an address in the SOD has an invalid placekey, and a Google
Maps search confirms that no physical place exists at that address. (The place’s absence is not due to a branch closing.)
A higher quality set of places from SafeGraph should come at little surprise, as the success of the company’s business
relies in part on providing highly accurate place information.

On the other hand, the quantity of places is higher in the SOD than in SafeGraph. In SafeGraph, bank branches
are classified by their 6 digit NAICS codes (522110 for Commercial Banking, 522120 for Savings Institutions, and
551111 for Offices of Bank Holding Companies). The number of places in SafeGraph under these categories is less
than the number of branches in the SOD. So that we can link places information to visitor information, all places we
analyze must be included in SafeGraph. For example, a branch in the SOD that is not part of SafeGraph whatsoever
has no visitor information to study. But we can use place information from the SOD to choose the set of places from
SafeGraph that balances quality and quantity. Doing so constructs our core sample, which we define next.

Our core sample includes only SafeGraph places with brands that are included in the SOD and for which we have
visitor geolocation data from SafeGraph. In the SOD, the field CERT identifies a unique banking institution. We rely on
this field to select the list of unique banks, and we use the union of the SOD fields namefull and namehcr to identify a
bank’s brand. In SafeGraph, we use the field LOCATION_NAME to identify a bank brand name. For example, Wells Fargo

49FDIC SOD data are located here: SOD.
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& Company and SunTrust Banks, Inc. are two bank brands with locations in the SOD. All Wells Fargo and SunTrust
Bank places in SafeGraph would be included, and their locations would be identified by SafeGraph’s placekeys for
them. All SOD locations (and their placekeys) are ignored.

D Correlates of Branch Fixed Effects

The estimated branch fixed effects proxy for all attributes of branches that make them destinations for residents of
any block group, controlling for residents’ distances away and residents’ demand for branch products or services, as
proxied by the block group fixed effects. To provide some suggestive evidence on what might influence the branch
fixed effects we estimate, we explore their correlation with observable branch characteristics, in particular, branch
property values, square footage, and hours/days open. Online Appendix D.1 presents detailed definitions of the
characteristics. Descriptive statistics of all characteristics are in Online Table A.17.

Branch property values and square footage are from CoreLogic, a popular data provider of real estate information.
CoreLogic data are from 2021 and are matched by latitude-longitude. Branch hours and days open are from SafeGraph
itself.

Online Fig. A.5 reports bivariate OLS regressions of the estimated branch fixed effects on the branch characteristics.
We compute the correlations using the panel of branch fixed effects. Roughly 77% of the variation over time in a typical
branch’s fixed effect can be explained by the branch’s identity. Standard errors are clustered at the branch level. In
each regression, the estimated branch fixed effects and characteristics have been normalized to have mean zero and
standard deviation one. The figure displays simple correlations and need not reflect causal effects, but the results
follow intuitive patterns.

Branches with higher fixed effects have higher property market values. This positive correlation may reflect several
factors about the building, its condition, the profitability of the branch, and the attractiveness of the surrounding
location that draws in visitors. Larger branches (i.e., those with higher square footage) also have higher fixed effects.
Branches with higher fixed effects also have higher price/sq. ft. Finally, branches with higher fixed effects are open for
longer hours during Monday through Friday, and they are also open on weekends, particularly on Saturday. It is not
surprising that larger branches, those with longer open hours, and those open on the weekend attract more visitors, all
else equal. These characteristics should be encoded in a branch’s fixed effect, and they are also arguably measures of
quality.50

D.1 Definitions of Branch Characteristics

The following are the definitions of the branch characteristics we correlate with the estimated branch fixed effects.
Names of data fields are provided in parentheses.

• Property Value - natural logarithm of the total market value of a parcel’s land and improvement values as
provided by county or local taxing/assessment authority (market_total_value)

• Square Footage - natural logarithm of the building square footage that reflects the most accurate available for use
in assessments/comparables (universal_building_sqft)

• Price/Sq. Ft. - natural logarithm of the ratio of property value to square footage

50We considered correlating the branch fixed effects with measures of local competition—such as the number of competing
entrants or exiters within a certain radius—to assess whether competition is associated with a branch’s estimated “quality.” But we
decided against it for three reasons. First, a branch’s fixed effect tends to vary little over time despite the entry or exit of other
branches in the sample, which may suggest a small effect. Second, from the results above, the branch fixed effects already appear
to correlate in the cross-section with observable measures of quality. Third, the effects of competition on a branch’s fixed effect
depend on the time it takes the market to reach equilibrium, which is hard to judge empirically. To see why, consider the following
two hypothetical scenarios: (i) one Bank of America branch is located 1 mile from a block group, and (ii) one Bank of America
and one Wells Fargo are located 1 mile from the block group. In the short run when the total number of visitors is held fixed, the
Bank of America branch’s estimated fixed effect in the second scenario may register lower than in the first scenario because the
same number of branch goers may split between the two branches. Hence, competition may make it appear as if branch quality is
lower. However, in the longer run, competition may induce the Bank of America and Wells Fargo branches to offer promotions or
add amenities or services that would draw more customers in on the extensive margin, raising the estimated fixed effects of both
locations. Just as importantly, even if local competition may lower a branch’s estimated fixed effect in the short run, branch access,
which is the paper’s focus, need not lower because a new branch is now available to block groups.

17



• Weekday Open Hours - number of hours a branch is open from Monday-Friday (open_hours). For the minority of
branches with conflicting hours listed (e.g., “Mon”: [[“7:00”, “21:00”], [“8:30”, “17:00”], [“9:00”, “16:00”]]), the
narrowest window of open hours is used.

• Open Saturday - dummy equal to 1 if a branch is open on Saturday (open_hours)

• Open Sunday - dummy equal to 1 if a branch is open on Sunday (open_hours)

E Correlates of Black-White Gaps in Access, Demand, and Visitors

Here, we provide full details of the analysis in Section 6.4 of the text. For Black-White gaps in branch access, we
run the specification in column (2) of Table 2 county-by-county and gather the estimated coefficients on the Black
population share. For Black-White gaps in demand and expected visitors, we run the specifications in column (2) and
column (6), respectively, of Table 3 county-by-county, and we collect the estimated coefficients on the Black population
share. The set of coefficients are county-specific Black-White gaps in branch access, demand, and expected visitors.
We then study the correlation of these racial gaps with county-level measures of neighborhood crime and racial bias
against Blacks among Whites.

E.1 Crime Indices

Crime indices are from the 2022 vintage of the CrimeRisk database that is generated by Applied Geographic
Solutions and distributed by Esri. The primary source of CrimeRisk is the FBI Uniform Crime Reports (UCR), which
compile crime statistics from 18,000 law enforcement agencies across the U.S. Crime in America is known to exhibit
extreme spatial variation (Harries 2006), and the UCR database is limited to only the most populous parts of the
country. AGS constructs the CrimeRisk indices by starting with the UCR data over the past seven years, adds crime
reports from a handful of large cities, standardizes the data across jurisdictions, and then implements a statistical
predictive model to produce crime index values for all U.S. block groups. AGS states that its model includes Census
socioeconomic characteristics, but no data are used related to local residents’ ethnicity, race, ancestry, or language
spoken at home.

CrimeRisk produces indices for seven different categories of crime, and each category is modeled separately. It
also provides aggregate indices for personal, property, and total crime, where each aggregate index equally weights its
constituent categories, which accords with the reporting procedures used in the UCR. Block-group CrimeRisk scores
are indexed to the national level, which has a score of 100. A block group with a score of 100 implies that its expected
risk for that crime is close to the national average, whereas a score of 200, for instance, implies an expected doubling in
the risk of that crime.51 Accurately predicting crime rates at the very local level based on data from larger jurisdictions
in the UCR and Census information is quite challenging, and no study has validated the CrimeRisk indices across the
entire country. Nau et al. (2020) evaluates the validity of the indices by comparing them to crime rate data from the Los
Angeles Police Department (LAPD). They find that five indices correlate fairly well and predict LAPD crime rates at
the Census tract level: (1) robbery, (2) murder, (3) assault, (4) motor vehicle theft, and (5) personal crime, where (5) is
an unweighted average of (1)-(3) and the index for rape. With this finding in mind, we focus on these five indices in
our analysis, but we also consider the total crime index, which combines all the CrimeRisk categories across personal
and property crimes (i.e., robbery, murder, assault, rape, larceny, burglary, motor vehicle theft).

The analysis regresses estimated Black-White gaps in branch access across counties (i.e., the county-specific
loadings on the Black population share from the specification in column 2 of Table 2) onto the CrimeRisk indices,
where we divide the indices by 100. Counties with less than 20 Census block groups with estimated access measures
over the sample period are dropped. Observations are weighted by county population counts from the 2019 5-year
ACS. We also consider how the crime indices are associated with the Black-White gaps in branch demand (i.e., the
county-specific loadings on the Black population share from the specification in column 6 of Table 3) and in expected
branch visitors (i.e., the county-specific loadings on the Black population share from the specification in column 2 of
Table 3).

Online Table A.9 has the results. In all cases, areas with higher levels of expected crime risk have larger estimated
Black-White gaps in branch access. All relations are precisely estimated except for motor vehicle theft. As examples,
in counties having a 10% higher expected risk of robbery, the access gap is higher by 0.02, and in counties with a
10% higher expected risk of murder, the access gap is higher by 0.015. By comparison, the Black-White access gap

51https://appliedgeographic.com/2020/07/faq-crimerisk/.
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nationwide is 0.053 (column 2 of Table 2). Associations between expected crime risk and the Black-White gaps in
branch demand and in expected branch visitors are imprecisely estimated.

E.2 Racial Bias

Data on racial bias are from the Project Implicit Database (Xu et al. 2014). We use both implicit and explicit measures
of bias. The implicit measure is based on the Implicit Association Test (IAT) from Greenwald et al. (1998), administered
through an online response module. Respondents are shown pictures of faces (Black or White) and words (associated
with good or bad). They use the same set of buttons on the keyboard to classify the faces into Black or White categories
and words into good or bad categories. IAT is based on the premise that if a respondent has a stronger association in
mind between being White and being good, the classification exercise will take longer when they have to use the same
button to classify a face as being Black and a word as being good. The implicit bias measure we use, the D score, is the
difference in time it takes to classify when Black faces and good words are paired together versus when Black faces
and bad words are paired together.52

The explicit measure of racial bias is based on Project Implicit’s “thermology” questions. Respondents are asked
whether they “feel warmer toward” White Americans and whether they “feel warmer toward” Black Americans, and
respond on a 0-to-10 scale to each question. We subtract the latter from the former to form the explicit bias measure so
that a higher value means the respondent feels warmer toward White Americans than toward Black Americans. This
thermology-based explicit measure has an advantage over the directly elicited preference, because by asking each
preference independently and then taking the difference, it parallels the symmetric nature of the IAT.

Data for both measures span 2003-2017, with roughly 250,000 tests completed each year. We only use test results
from non-Hispanic White respondents. A value of zero for either measure represents no racial bias against Blacks,
and higher levels imply greater racial bias. Because the online tests are voluntary, the data are subject to potential
self-selection bias. To help address potential selection, we also construct “adjusted” versions of both racial bias
measures, which are the residuals from projecting respondents’ racial bias measures on respondent age, race, gender,
education, and test variables (i.e., the month, hour, weekday, and order of test). County-level measures are simple
averages per month of the raw and adjusted measures among non-Hispanic White respondents residing in the county.

The analysis regresses estimated Black-White gaps in branch access across counties (i.e., the county-specific
loadings on the Black population share from the specification in column 2 of Table 2) onto the measures of racial bias.
Counties with less than 20 Census block groups with estimated access measures over the sample period are dropped.
Observations are weighted by county population counts from the 2019 5-year ACS. We also consider how racial bias is
associated with the Black-White gaps in branch demand (i.e., the county-specific loadings on the Black population
share from the specification in column 6 of Table 3) and in expected branch visitors (i.e., the county-specific loadings
on the Black population share from the specification in column 2 of Table 3).

Online Table A.10 has the results with the implicit bias measure (raw and adjusted), whereas Online Table A.11 has
the results with the explicit bias measure (raw and adjusted). The raw (adjusted) measures as independent variables are
in the odd (even) columns of both tables. In all cases, areas with higher levels of implicit or explicit racial bias against
Blacks among Whites have larger, precisely estimated Black-White gaps in branch access. For IAT, the mean raw score
cross-county is 0.4 and standard deviation is 0.037. Based on the coefficient in column (1) of Online Table A.10, this
implies that in counties with a one standard deviation higher level of implicit racial bias against Blacks, the access
gap is higher by 0.18. By comparison, the Black-White access gap nationwide is 0.053 (column 2 of Table 2). For the
thermology-based explicit measure, the mean raw value cross-county is 0.75 and standard deviation is 0.226. Based on
the coefficient in column (1) of Online Table A.11, this implies that in counties with a one standard deviation higher
level of explicit racial bias against Blacks, the access gap is higher by 0.20. Associations between racial bias and the
Black-White gaps in branch demand and in expected branch visitors are imprecisely estimated.

52Recent meta-studies find that IAT is a fairly good predictor of racial discrimination (Oswald, Mitchell, Blanton, Jaccard and
Tetlock 2013). The IAT has also been used frequently in economics and other social sciences to measure racial bias (e.g., Reuben,
Sapienza and Zingales 2014; Lowes, Nunn, Robinson and Weigel 2015, 2017; Carlana 2019; Chetty et al. 2020). Nonetheless, concerns
have been raised over the validity of implicit measures of racial bias, for example with test-retest reliability (Blanton and Jaccard
2008; Schimmack 2021). And IAT is known to better predict interracial behavior and the average racial bias of a group than a single
person’s racial bias (Greenwald, Poehlman, Uhlmann and Banaji 2009). For these reasons, we complement the implicit measure
with an explicit one.
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F FDIC Survey Analysis

In this section, we analyze survey evidence from the 2019 FDIC Survey of Household Use of Banking and
Financial Services. The FDIC fields the survey every two years in June as a supplement to the U.S. Census Bureau’s
Current Population Survey, which covers a representative sample of households in the U.S. each month. The FDIC
survey queries both banked and unbanked households, and the 2019 survey collected responses from almost 33,000
households. In Online Appendix F.1, we discuss survey findings about bank branch use; in Online Appendix F.2, we
analyze differences by demographic characteristics in the primary methods that banked respondents use to access
their bank accounts; and in Online Appendix F.3, we compare reported branch visitor shares according to household
income from the survey to observed shares from the SafeGraph geolocation data.

F.1 Bank Branch Use

Visiting bank branches remains a common and popular bank access method. In the survey, 80.9% of all respondents
(banked and unbanked) answered having visited a bank branch in the past 12 months, and 29.7% reported having
visited a branch 10 or more times. Traveling to a branch is the primary (i.e., most common) method of accessing bank
accounts among 23% of banked respondents. Mobile banking is more frequently cited as a primary method of use for
banked households (31.4%). But 81.2% of respondents who cite mobile banking as their primary method also say they
visited a branch over the past year and about 1 in 5 in this group visited a branch ten or more times.

Household responses to the survey imply significant demographic differences in the likelihood of visiting a branch
over the previous 12 months. In Online Table A.2, we report coefficients from multivariate linear probability regressions
of survey responses on self-reported demographic characteristics. The survey reveals a positive income gradient in
reported branch use. Controlling for age and race, we find that respondents in the highest income bracket ($75, 000+)
are roughly 22% more likely to say they visited a branch in the previous year than respondents in the lowest income
bracket (< $15, 000). A substantial Black-White gap in reported branch use is also present. Controlling for income
and age, we find that Black respondents are 10% less likely to report having visited a branch than White respondents.
Probit regressions, also presented in the table, provide similar estimates of the racial and income differences in branch
use based on the survey responses.

F.2 Primary Bank Access Methods by Respondent Demographics

The FDIC survey provides 6 choices for banked respondents to select as their primary method of banking: Bank
Teller, ATM/Kiosk, Online Banking, Mobile Banking, Telephone Banking, and Other. Across all respondents, the first
four choices dominate as primary access methods. We therefore focus on these methods. Because ATMs and kiosks
are commonly, though not exclusively, located at bank branches, we combine Bank Teller and ATM/Kiosk into one
category that we treat as “visiting a bank branch.” We also combine online and mobile banking into one category, as
those are the two major alternatives to visiting a branch.

The survey responses show that low-income and Black households do not appear to make up their lesser branch
use with greater use of online or mobile banking. In Online Table A.3, we report coefficients from multivariate linear
probability regressions of stated primary access methods on self-reported demographic characteristics. Controlling
for age and race, we find that respondents in the lowest income bracket are roughly 31% less likely than those in the
highest income bracket to say that mobile or online banking is their primary method to access their bank accounts.
Controlling for income and age, we find that Black respondents are about 6.6% less likely than White respondents to
call mobile or online banking their primary access method. Analogous estimates from Probit regressions in Online
Table A.4 document similar differences by income and race. Overall, the survey evidence reveals that banked low
income and Black households respond as relying on mobile/online banking less and bank branches/ATMs more as
their primary access methods.

F.3 Branch Visitor Shares by Household Income: FDIC Survey vs. SafeGraph

Online Fig. A.4 presents a binned scatter plot of the share of bank branch visitors by household income from the
SafeGraph observed (raw) data. Our variable for household income is the median household income of a visitor’s
home Census block group, as measured in the 2019 5-year American Community Survey (ACS). To construct this
panel, we divide the horizontal axis into 100 equal-sized (percentile) bins and plot the mean annual share of residents
visiting a bank branch versus the mean household income within each bin. Each point represents a nonparametric
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estimate of the expected likelihood that a person visits a bank branch over the past year, conditional on the person’s
household income.

Behind the binned scatter plot in Online Fig. A.4, we insert as a bar chart the 2019 FDIC survey responses across the
five income buckets available in the survey. The survey response is the share of respondents (among both banked and
unbanked) that visited a bank branch within the past 12 months (i.e., between July 2018 and June 2019). To coincide
with the 12-month span of the FDIC survey, we measure the annual share of actual branch visitors in the binned
scatterplot over that same period.53

Comparing the FDIC’s survey responses on branch visits to the SafeGraph data is imperfect. The survey responses
measure whether a respondent visited any U.S. bank branch (i.e., the extensive margin across all branches), whereas
SafeGraph measures whether a person visited a particular branch (i.e., the extensive margin between branches).
SafeGraph distinguishes visits from visitors, and we use visitor values in Online Fig. A.4. The same person visiting the
same branch multiple times in the year-month would count as one visitor, but the same person traveling to multiple
branches in the same year-month would count as distinct visitors. The SafeGraph values in the figure would exactly
match the survey responses if (i) SafeGraph included all bank branches in the United States, (ii) it recorded every
branch visitor without error, (iii) it separated out visitors to multiple branches, (iv) branch visits were independent
month-to-month, (v) we knew the household income of individual visitors rather than only the median household
income of their home block groups, and (vi) survey respondents answered accurately.

Notwithstanding these imperfections, relating the FDIC survey responses to the visitation patterns in SafeGraph
is useful and reveals a strong resemblance between the two sources. Both reported branch visitor shares from the
FDIC survey and observed branch visitor shares from the mobile device data are increasing and concave in household
income. Around 63% of respondents with household income less than $15,000 say they visited a branch over the past
year, whereas 86% of those with income $75,000 and above reported having visited. From the geolocation data, we see
that the observed visitor share is 59% for block groups with median household income around $12,000 and 71% for
block groups with median household income around $206,000.

Despite the two sources displaying similar relations between household income and a person’s expected likelihood
of visiting a bank branch, the FDIC survey responses and SafeGraph visitor shares differ from two important aspects.
First, the SafeGraph shares are systematically below the corresponding shares from the FDIC survey. These lower values
are most likely due to our core sample omitting many U.S. bank branches (and their visitors). Another contributing
explanation is that SafeGraph entirely misses some visitors to branches, either from errors in attributing a mobile
device to a branch or from short duration trips that are not counted as a visit. Second, our estimated expected likelihood
of visiting a branch for every additional thousand dollars in household income rises at a slower pace than the survey
responses suggest. To understand this muted slope, recall that income is measured as the median household income of
a visitor’s home Census block group rather than the person’s individual income. Because the likelihood of visiting a
bank increases in income, branch visitors from low-income block groups are more likely to earn income above their
block group’s median. The most likely explanation of the difference in slopes is this measurement error that inflates
the observed visitor shares at the bottom of the income distribution. Another possibility, though, is that SafeGraph
regularly misses branch visitors from high income block groups, which would understate the observed visitor shares
at the top of the income distribution and compress the slope.

G Assigning Demographic Attributes to Individual Visitors

Our goal is not only to develop a local measure of bank branch access, but also to apply that measure to explain
differences in branch use by race and income. But we face a limitation when using anonymous geolocation data: We do
not know the precise demographic attributes of an individual bank branch visitor. Instead, we must assign attributes to
visitors according to the demographic characteristics of their identified home Census block groups. Inferring individual
attributes or behavior from aggregate data is a well-studied area in social science known as ecological inference (King
1997; King et al. 2004).

53To compute this annual share of branch visitors, we first divide the total branch visitors in each Census block group by the total
recorded mobile devices residing in the block group per year-month. This ratio gives an estimate of the probability that a device from
each home block group visits a bank branch at least once during the month. Let this estimated branch visitor probability for block
group i in year-month t be denoted pi,t. Not every block group has a visitor probability each month, so let ki denote the number of
months for which block group i has branch visitors. The annual branch visitor share si for block group i is si = 1−

∏12/ki
t=1

(
1 − pi,t

)12/ki .
After computing each block group’s annual branch visitor share, we categorize block groups by median household income from the
2019 5-year ACS.

21



The information lost in the aggregation makes ecological inference challenging. Aggregate demographic character-
istics of a block group, such as the median household income or the Black population share, might not necessarily fit
an individual branch goer or even the average one. For example, we observe in the data that the expected number of
residents who visit a bank branch increases in the median household income of their home block group. Based on this
finding, a resident from a low-income block group who visits a bank branch is more likely to earn higher income than
her average neighbor.

We have an advantage in that our spatial unit of observation is a Census block group, which is typically quite small
in geographic area. Differences in demographic attributes among residents of block groups is narrower than differences
over larger spatial units, such as zip codes. Inferring individual behavior from grouped data over these smaller areas
has less error. In addition, the heterogeneity in attributes within a block group is also smaller than the heterogeneity
across block groups, which is the variation we exploit when explaining differential patterns of branch access and use.

Even so, benefiting from block-group-level information does not mean that we escape from the ecological inference
problem. Online Fig. A.3, Panel A presents the percentiles of the distribution of individual-level household income
and block-group-level median household income. The percentiles of the two distributions are quite close from the 50th

percentile and below. This close alignment of the two distributions over these percentiles suggests that individual-level
behavior based on income can be inferred quite accurately from the grouped data over this income range. As
the percentiles get farther above the median, however, the gap between the two distributions grows substantially.
Individual-level household income at the top percentiles is over twice as large as block-group-level median household
income. This divergence is unsurprising, as calculating the median household income naturally compresses the
distribution across block groups.

When faced with an ecological inference problem, how can one interpret our coefficients from linear regressions of
variables of interest on demographic attributes? First, in the strictest sense, the interpretation must be restricted to
associating the dependent variable of interest with the characteristics of block group residents. For example, suppose
that our log access measure is regressed on block-group-level racial population shares (with the White population
shares omitted) and a control for the log number of devices residing in the block group. And suppose that the regression
produces a coefficient estimate of −x on the Black population share, which is one of our key independent variables of
interest. The strict interpretation would be: “A 1% increase in the Black population share of residents in a block group
is associated with x% weaker access.”

A second, looser interpretation would express a more global effect. Although the linear coefficients measure local,
incremental changes, one can extrapolate the estimated effects to a global change. One can do so with more confidence
if the independent variable fully spans its domain across block groups. Online Fig. A.3, Panel B plots the distribution
of the Black population shares across block groups. Block groups in our cross section span a range from having a 0
percent to nearly 100 percent Black population share. Therefore, an extrapolated interpretation such as the following is
more plausible in our setting: “A block group with a 100% Black population share observes 100x% weaker access,
compared to a block group with a 100% White population share.”

The third, and loosest, interpretation of our coefficients is to ignore the ecological inference problem entirely and
interpret individual-level behavior from the grouped data. Our small geographic units of observation, the proximity
of the block-group-level income distribution to the individual-level income distribution for nearly all but the top
percentiles, and the spanning of the domain in the Black population share gives more credence to this interpretation
than otherwise. Such an individual-level interpretation would be: “A Black resident experiences 100x% weaker access
than a White resident.”

H Postal Banking

The geolocation data and gravity model allow us to study a policy proposal that might improve access for branch
goers. In particular, we examine postal banking. A Postal Savings System existed in the United States beginning in
1911, but Congress phased it out in 1966 (O’Hara and Easley 1979; Shaw 2018). The system was promoted to reach the
unbanked, and non-farming immigrant populations initially used it for short-term savings and as a partial substitute
for private banks (Schuster, Jaremski and Perlman 2020). Only limited financial services still remain at some post offices,
such as domestic and international money orders and wire transfers. Re-instituting the Postal Savings System has
been a policy proposed by members of Congress (Warren 2014; Gillibrand 2021; Sanders 2021) and parts of academia
(Baradaran 2013; Johnson 2017).

With our data and gravity model estimates, we can asses how a Postal Banking System—which would extend
checking, savings, and possibly credit services to some or all U.S. Post Office branches—might affect both access to
and use of banking products or services at branches. From Eq. (2) and Eq. (3), the expected number of block group
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residents who visit a branch per year-month under a banking system that includes both postal and private banks is
affected by five components: (i) the block group’s fixed effect γit, (ii) the fixed effects of both postal and private bank
branches λ jt, (iii) the distances between the block group and branches Distancei j, (iv) the gravity parameters βt, and (v)
the set of both postal and private branches available to all residents Bt. Our evaluation of a postal banking policy
requires an assumption for each component.

Components (iii) and (v) are the least controversial. For the set of branches, Bt, we include all private bank branches
per year-month in our core sample like before, but now we also include all post office branches as well. We identify
post office branches as all businesses in SafeGraph with NAICS codes equal to 491110 (Postal Services). Selection
by this criterion is convenient, but it is possible that not all postal locations chosen are customer-facing (e.g., some
facilities might be vehicle maintenance centers or administrative buildings). We therefore provide closer to an upper
bound on the postal branch choice set, as not all the postal locations we include might expand to feature banking
services under the policy. One caveat is that SafeGraph likely does not register all post office locations in existence,
which would have the opposite effect of shrinking the branch choice set. For component (iii), we measure distances
between block groups and branches in the same manner as before using the haversine formula between locations and
the population-weighted centers of block groups.

Component (iv) requires an assumption about how the elasticity of branch visitor flows with respect to distance
might change under a postal banking system. In many microfounded gravity models, βt can be interpreted as the
product of consumer’s traveling costs and elasticity of substitution between branches. It is reasonable to presume that
postal banking will not affect per unit traveling costs. But the elasticity of substitution between postal and private
branches might easily differ. One clear reason is that postal banks enable economies of scope that permit residents
to spread out fixed costs of travel in a way that private banks cannot, as a person can access financial services at a
postal bank when dropping off mail. For simplicity, we assume that the gravity model that governs visitor flows to all
bank branches, both postal and private, has the same βt per year-month, as estimated in the month-by-month MSM
procedure from before, which implicitly presumes a common elasticity of substitution across institutions.

The introduction of a postal banking system would reasonably affect component (i), a block group’s fixed effect γit,
which captures all attributes of the block group’s residents that influence demand for any branch’s products or services.
The clearest change is postal banking encouraging bank account ownership among the unbanked. If the policy had
such an effect, residents of the block group who were once non-branch goers would likely become new visitors, which
would raise the block group’s fixed effect and imply greater expected branch use. Rather than speculating the change
in the fixed effect per block group from a postal banking policy, we instead situate them at their estimated values from
before. Doing so means that their impact on branch use in the policy evaluation will likely be underestimated.

Finally, the branch fixed effects
{
λ jt

}
of component (ii) is also challenging to manage. Undoubtedly, the private

bank fixed effects would change under a postal banking system. Residents might substitute away from a private bank
toward a postal bank, which would reduce the average visitor count of the private bank and cut into its fixed effect.
Alternatively, private banks would almost surely respond endogenously to the new competition from postal banks,
perhaps with new price promotions or investments in staff or infrastructure, so as to lift their branches’ perceived
“quality,” which would increase the fixed effects. For simplicity, we assume away any changes in private bank fixed
effects, and instead apply their estimated fixed effects from before. By presuming both unchanged block group and
private bank fixed effects, our approach is a partial impact assessment of a postal banking policy that does not account
for the general equilibrium effects on consumer and producer behavior of adding postal banks. Such an exercise is
akin to what Head and Mayer (2014) call in the trade literature a “partial trade impact” of a policy change, say, in trade
costs.

Not only must we assume estimated values of fixed effects for private banks under a postal banking system, we
must also assign fixed effects to the new postal banks. Here, we consider a set of possible fixed effects to produce a
range of estimates on both branch access and use under a postal banking policy. We first assume that all postal banks
per year-month in the sample share the same fixed effect. This assumption is simple, but restrictive, because it ignores
local variation in postal bank quality cross-country. Second, we assign three estimated fixed effects to postal banks
based on different parts of the distribution of estimated private bank fixed effects per year-month: the 10th percentile,
50th percentile, and 90th percentile. The first assignment implicitly assumes that the quality of postal banks would be
that of the bottom 10 percent of private banks per year-month. We call this a “low quality” postal banking system.
Similarly, the 50th percentile assumes that the typical postal bank would have the quality of the median private bank
per year-month (a “medium quality” system), and the 90th percentile assumes that postal banks would be perceived as
having the same quality as the top 10 percent of private banks per year-month (a “high quality” system).

To measure the extent to which bank branch access would change under postal banking, we re-run the access
regressions from Table 2, but in computing Φit per Census block group, we now include the locations of all post
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office branches that are registered in SafeGraph within a block group’s set of branches. To make the policy evaluation
comparable to our analysis earlier that considered only private banks, we only include block groups whose residents
visited a private bank branch in the year-month.

The results are in Online Table A.18. Under a medium quality system in column (4), the nationwide estimate of the
coefficient on medium household income with controls for block group racial shares and age shares is -8.0%. This value
contrasts to the corresponding coefficient on medium household income in Table 2 of -7.6%. Hence, a postal banking
system of medium quality steepens the negative income gradient in branch access by roughly 0.4 percentage points,
which implies that access would improve relatively more for residents of low-income block groups than high-income
block groups. Under a low-quality postal banking system, the income gradient flattens slightly by 0.2 percentage
points, and under a high quality system, the relative improvement in access for low-income block groups rises to 1.1
percentage points.

The coefficient on the Black population share in column (4) of Online Table A.18 is -5.8%, which is slightly higher
than the coefficient in Table 2. Nationwide, then, a medium-quality postal banking system would improve access for
both Black and White communities, but improve it by relatively more in White than Black communities. The racial
gap in access widens because post offices also tend to be located comparatively closer to White communities than
Black communities, just like private bank branches. Only a high-quality postal banking system would shrink the
Black-White gap in access nationwide, but only by 0.5 percentage points (from 5.3% to 4.8%).

Zeroing in on Metro cores, we find that access would relatively improve for residents of low-income block groups
between 0.2 to 0.6 percentage points under a medium- and high-quality system, respectively, which is a smaller range
than the national estimates. But for Black communities in big cities, access would improve under only a high-quality
postal system, by 1.1 percentage points. Under a low- and medium-quality system, the Black-White gap in access
would widen in big cities by 0.7 and 0.3 percentage points, respectively.

Overall, we find that a postal banking policy would have the largest effects on branch access and (branch use) for
residents of low-income block groups nationwide. But it generally would widen the Black-White gap in access, raising
access relatively more for White communities than for Black communities. If the goal of the policy were to shrink the
Black-White gap in access and use, the postal banking system would need to be of high quality, and its largest impact
would be in big cities. Again, we caveat these findings with the acknowledgement that our investigation embedded
several simplifying assumptions and was conducted in partial equilibrium.

I A Simple Model of Bank Branch Choice

A continuum of residents choose destinations to visit from their home Census block groups per time period. Each
resident r lives in one block group i ∈ G. Bank branches are located across the country, and each branch is indexed by
j ∈ Bt, where the set of branches can vary over time from store openings and closings.

In every period, a resident chooses which single bank branch to visit so as to maximize utility. Residents may also
choose not to visit a branch, either remaining home or visiting another point-of-interest. We index this outside option
choice by j = 0. The indirect utility of resident r living in home block group i and visiting branch j at time t is

Urjt =
zrjtΛ jt

δi j
. (A.77)

The term Λ jt is an index of all attributes of branch j that make it a destination for residents of any block group at
time t. The term zrjt is an idiosyncratic, unobserved error that captures individual differences in residents’ personal
preferences for banking at branch j (e.g., favoring Chase over Wells Fargo, relishing the branch’s proximity to the
children’s daycare, or appreciating the building’s historic architecture). Finally, the term δi j is an iceberg traveling cost
that is defined as

δi j = dκi j, (A.78)

where di j is the distance between home block group i and branch j, and κ > 1 controls the scale of the traveling costs.
To derive mathematically convenient functional forms for the branch choice behavior of the population, we follow

McFadden (1974), Eaton and Kortum (2002), and Ahlfeldt, Redding, Sturm and Wolf (2015) by assuming that the
idiosyncratic component of utility, zrjt, is drawn from an independent Fréchet distribution:

F
(
zrjt

)
= e−H jtz−εrjt , H jt > 0, ε > 1. (A.79)
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The branch-specific parameter H jt > 0 influences the mean of the distribution. A larger H jt implies that a high utility
draw for branch j is more likely among residents of any block group. The term ε > 1 governs the heterogeneity of
idiosyncratic utility. A smaller ε implies that residents are more heterogeneous in their preferences for branches.54

Substituting the expression for Urjt into the distribution of idiosyncratic tastes in Eq. (A.79), one can observe that
residents of block group i at time t are presented with a distribution of utility across branches, Gi jt (u) = Pr

[
Urjt ≤ u

]
=

F
(
uδi j/Λ jt

)
, or

Gi jt (u) = e
−

[
H jt

(
Λ jt
δi j

)ε]
u−ε
. (A.80)

We normalize the value from the outside point-of-interest H0tΛ
ε
0tδ
−ε
i0 = 1. Each resident chooses a location to visit

that yields the maximum utility. Hence, the distribution of utility across all possible locations that a resident would
actually visit is

Git (u) = ΠBt
j=0Gi jt (u) . (A.81)

Inserting Eq. (A.80) into Eq. (A.81), one obtains the utility distribution:

Git (u) = e−(1+Ψit)u−ε , (A.82)

where the parameter Ψit of block group i’s utility distribution is

Ψit =
∑
j∈Bt

H jtΛ
ε
jtd
−κε
i j . (A.83)

The utility distribution generates a gravity equation in visits between home block groups and bank branches. The
share πi jt of residents living in block group i who visit branch j at time t is

πi jt =
H jtΛ

ε
jtd
−κε
i j

1 + Ψit
. (A.84)

The visitor share depends on the characteristics of the branch
(
Λ jt

)
, the average utility draw of the branch

(
H jt

)
, and

the “bilateral resistance” derived from the intervening transportation costs
(
d−κεi j

)
. Other things equal, a resident is

more likely to visit a branch if it has superior attributes, delivers higher average idiosyncratic utility, or is less costly to
reach. In the denominator, Ψit plays the role of “multilateral resistance,” which affects residents’ visitation to all possible
branches. The probability that residents of a block group in, say, Palo Alto, visit a nearby Chase branch depends not
only on the benefits of the branch and the costs of getting there, but also on the benefits and costs of visiting all other
available branches.55
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Figure A.1
Total Bank Branches and Branch Visitors - Core Sample

The figure presents the total number of bank branches and branch visitors each year-month in our core sample. The core sample of
geolocation data includes only businesses in SafeGraph with NAICS codes equal to 522110 (Commercial Banking), 522120 (Savings
Institutions), or 551111 (Offices of Bank Holding Companies) for which we have visitor data and whose brands are also listed in the
FDIC’s 2019 Summary of Deposits.
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Figure A.2
Bank Branch Access by Rural-Urban Commuting Area

The figure presents weighted average measures of bank branch access by primary Rural-Urban Commuting Area (RUCA). We
compute each block group’s monthly access measure according to the Method of Simulated Moments estimation described in
Section 5, with full details of the method in Online Appendix A. The monthly estimates are then averaged over time per block
group, where each month’s weight is its share of the block group’s total branch visitors over the core sample period (January 2018 -
December 2019). Block groups are then assigned to one of the 5 displayed RUCA categories, and each category’s access value is the
population-weighted average of the access measures of all block groups belonging to that category. Population shares are from the
2019 5-year American Community Survey (ACS). Metro Core includes RUCA code 1 alone, Metro Suburb includes codes 2 and 3,
Micro/Town Core includes codes 4 and 7, Micro/Town Suburb includes codes 5, 6, 8, and 9, and Rural includes code 10 alone.
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(A) Household Income

(B) Black Population Share

Figure A.3
Distributions of Demographic Attributes

The figure presents the percentiles of the distributions of U.S. household income and Black population shares. Panel A gives the
percentiles of the individual-level household income distribution and the distribution of median household income at the level of
Census block groups. Panel B gives the percentiles of the distribution of Black population shares across all Census block groups.
Data are from the 5-year American Community Survey. The individual-level data was accessed through IPUMS and represents a 5%
random sample of the population.
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Figure A.4
Bank Branch Visitor Share by Income - FDIC Survey & SafeGraph

The figure presents a binned scatter plot of the shares of residents who visit bank branches according to household income,
comparing FDIC survey responses to observed visitors in SafeGraph. Survey responses are from the 2019 FDIC Survey of Household
Use of Banking and Financial Services, conducted in June 2019. Both banked and unbanked respondents are included. Observed
branch visitor shares are based on our core SafeGraph sample of branch locations between July 2018 and June 2019; i.e., only
businesses in SafeGraph with NAICS codes equal to 522110 (Commercial Banking), 522120 (Savings Institutions), or 551111 (Offices
of Bank Holding Companies) with visitor data whose brands are also listed in the FDIC’s 2019 Summary of Deposits. The survey
responses (represented as grey bars) are the shares of households in the five income categories of the survey that reported visiting a
bank branch within the past 12 months. The width of a bar corresponds to the income range of its category, except for the first
income category (<$15,000) and the last category (>$75,000), where we extend the width of the bars to the nearest thousand dollars
that also includes the reaches of the SafeGraph data. The corresponding SafeGraph values are the annual shares of mobile devices
recorded in SafeGraph that visit a bank branch over the same 12-month period. To compute these annual observed shares of branch
visitors, we first divide a Census block group’s total branch visitors by its total residing mobile devices in each year-month of the
period. This ratio gives an estimate of the probability that a device from each home block group visits a bank branch at least once
during the month. Let this estimated branch visitor probability of block group i in year-month t be denoted pi,t. Not every block
group has a visitor probability each month, so let ki denote the number of months for which block group i has observations. The
annual branch visitor share si for block group i is si = 1 −

∏12/ki
t=1

(
1 − pi,t

)12/ki . A binned scatter plot of these calculated annual visitor
shares by household income overlays the bars from the survey responses. Household income is measured as median household
income from the 2019 5-year American Community Survey. To construct this binned scatter plot, we divide the horizontal axis into
100 equal-sized (percentile) bins and plot the mean annual share of visitors to a bank branch versus the mean household income
within each bin.
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Open Sunday

Open Saturday

Weekday Open Hours

Price per Sq. Ft

Square Footage

Property Value

Property Characteristics

-.1 -.05 0 .05 .1

Point Estimate 95% Confidence Interval

Figure A.5
Correlations of Branch Fixed Effects with Property Characteristics

The figure illustrates unweighted bivariate OLS regression results of z-scores of the estimated panel of branch fixed effects, {λ̂ jt}, on
z-scores of branch property characteristics. Branch fixed effects are estimated from the Method of Simulated Moments, described in
Online Appendix A. Online Appendix D.1 provides detailed definitions of the characteristics. The x’s in the figure mark coefficient
point estimates, whereas the bands are 95% confidence intervals, and standard errors are clustered at the branch level.
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(A) Responses by Race: Primary Banking Methods & Branch Visitation

(B) Responses by Income: Primary Banking Meth-
ods (C) Responses by Income: Branch Visitation

Figure A.6
FDIC Survey Responses on Primary BankingMethods and Branch Visitation

The figure presents raw averages of survey responses about primary banking methods and branch visitation by race and income
from the 2019 FDIC Survey of Household Use of Banking and Financial Services, conducted in June 2019. Primary banking method
is the average of respondents’ answers to the most common way they accessed their bank accounts, among banked respondents
who accessed their accounts in the past twelve months. Branch visitation is the average of respondents’ answers to whether they
have visited a bank branch in the past twelve months, among both banked and unbanked respondents. Panel A illustrates average
responses among Black and White respondents. Panel B presents average responses by respondent income for primary banking
method. Panel C presents average responses by respondent income for branch visitation.
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Table A.2
Survey Reported Branch Visit Shares by Household Characteristics

Dep. var.: Visited a Bank Branch in the Past 12 months (Y=1, N= 0)

Model: OLS Probit

(1) (2) (3) (4) (5) (6)

$15,000 to $30,000 0.128 0.127 0.362 0.363
(0.012) (0.012) (0.034) (0.035)

$30,000 to $50,000 0.178 0.183 0.527 0.552
(0.011) (0.011) (0.033) (0.034)

$50,000 to $75,000 0.206 0.214 0.636 0.673
(0.011) (0.011) (0.035) (0.035)

At least $75,000 0.207 0.218 0.643 0.693
(0.010) (0.010) (0.030) (0.031)

Black -0.144 -0.111 -0.100 -0.476 -0.370 -0.331
(0.009) (0.009) (0.009) (0.028) (0.028) (0.028)

Hispanic -0.121 -0.101 -0.084 -0.409 -0.345 -0.285
(0.009) (0.009) (0.009) (0.028) (0.028) (0.029)

Asian -0.072 -0.074 -0.060 -0.259 -0.274 -0.225
(0.013) (0.013) (0.013) (0.042) (0.042) (0.042)

Other -0.077 -0.056 -0.048 -0.274 -0.203 -0.176
(0.023) (0.023) (0.022) (0.074) (0.075) (0.075)

Age 35-54 0.016 0.048
(0.008) (0.027)

Age 55-64 0.064 0.236
(0.008) (0.031)

Age 65+ 0.074 0.275
(0.008) (0.028)

Constant 0.836 0.660 0.612 0.977 0.457 0.283
(0.003) (0.010) (0.012) (0.011) (0.027) (0.034)

Observations 32,904 32,904 32,904 32,904 32,904 32,904
Adjusted R2 0.021 0.045 0.051
Pseudo R2 0.020 0.041 0.047

Each column reports coefficients from a weighted binary regression with heteroskedasticity-
robust standard errors reported in parentheses. Observations are survey responses from the
2019 FDIC Survey of Household Use of Banking and Financial Services, conducted in June 2019.
Both banked and unbanked respondents are included. Observations are weighted using sample
weights provided in the survey data. Dependent variable observations are binary indicators
for “Yes” or “No” responses to whether respondents have visited a bank branch in the past
twelve months. Demographic independent variable observations are self-reported characteristics
of respondents. Income is household income. Coefficients in columns (1)-(3) are from linear
probability models estimated using OLS. Coefficients in columns (4)-(6) are from Probit regressions.
Omitted demographic categories are household income less than $15,000, non-Hispanic Whites,
and age range 15-34.
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Table A.3
Survey Reported Bank Account Primary Access Method by Household Characteristics - Linear
ProbabilityModel

Dep. var.: Binary Indicator for Primary Method Used to Access Bank Accounts

Access Method: Bank Teller or ATM/Kiosk Mobile or Online

(1) (2) (3) (4) (5) (6)

$15,000 to $30,000 -0.032 -0.040 0.052 0.061
(0.015) (0.014) (0.014) (0.013)

$30,000 to $50,000 -0.130 -0.108 0.169 0.144
(0.014) (0.013) (0.014) (0.013)

$50,000 to $75,000 -0.186 -0.150 0.235 0.195
(0.014) (0.013) (0.014) (0.013)

At least $75,000 -0.302 -0.252 0.364 0.308
(0.013) (0.012) (0.012) (0.012)

Black 0.068 0.018 0.064 -0.074 -0.015 -0.066
(0.011) (0.011) (0.011) (0.011) (0.011) (0.010)

Hispanic 0.066 0.025 0.096 -0.060 -0.013 -0.091
(0.011) (0.011) (0.011) (0.011) (0.011) (0.011)

Asian -0.061 -0.045 0.013 0.077 0.058 -0.005
(0.014) (0.014) (0.013) (0.014) (0.014) (0.013)

Other 0.057 0.025 0.063 -0.060 -0.023 -0.064
(0.029) (0.029) (0.028) (0.029) (0.029) (0.028)

Age 35-54 0.113 -0.121
(0.008) (0.009)

Age 55-64 0.244 -0.265
(0.010) (0.010)

Age 65+ 0.361 -0.397
(0.009) (0.009)

Constant 0.391 0.589 0.363 0.581 0.337 0.585
(0.004) (0.012) (0.013) (0.004) (0.012) (0.013)

Observations 30,425 30,425 30,425 30,425 30,425 30,425
Adjusted R2 0.005 0.053 0.121 0.005 0.070 0.152

Each column reports coefficients from a weighted binary OLS regression with heteroskedasticity-robust standard
errors reported in parentheses. Observations are survey responses from the 2019 FDIC Survey of Household Use
of Banking and Financial Services, conducted in June 2019. Responses are from banked households. Observations
are weighted using sample weights provided in the survey data. Dependent variable observations are binary
indicators for the primary (i.e., most common) method used to access bank accounts among respondents who
accessed their account in the past 12 months. Demographic independent variable observations are self-reported
characteristics of respondents. Income is household income. The dependent variable in columns (1)-(3) equals 1 if
the primary method is “Bank Teller” or “ATM/Kiosk,” and 0 otherwise. The dependent variable in columns (4)-(6)
equals 1 if the primary method is “Mobile Banking” or “Online Banking,” and 0 otherwise. Omitted demographic
categories are household income less than $15,000, non-Hispanic Whites, and age range 15-34.
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Table A.4
Survey Reported Bank Account Primary AccessMethod by Household Characteristics - ProbitModel

Dep. var.: Binary Indicator for Primary Method Used to Access Bank Accounts

Access Method: Bank Teller or ATM/Kiosk Mobile or Online

(1) (2) (3) (4) (5) (6)

$15,000 to $30,000 -0.082 -0.112 0.140 0.184
(0.038) (0.039) (0.039) (0.040)

$30,000 to $50,000 -0.330 -0.292 0.437 0.414
(0.036) (0.037) (0.036) (0.037)

$50,000 to $75,000 -0.470 -0.404 0.604 0.550
(0.036) (0.037) (0.036) (0.037)

At least $75,000 -0.789 -0.699 0.950 0.872
(0.033) (0.034) (0.034) (0.035)

Black 0.173 0.047 0.182 -0.187 -0.041 -0.192
(0.028) (0.029) (0.030) (0.028) (0.029) (0.030)

Hispanic 0.169 0.066 0.274 -0.152 -0.033 -0.262
(0.028) (0.028) (0.029) (0.028) (0.028) (0.030)

Asian -0.164 -0.128 0.033 0.202 0.164 -0.011
(0.039) (0.039) (0.040) (0.039) (0.040) (0.040)

Other 0.147 0.068 0.185 -0.151 -0.061 -0.193
(0.073) (0.075) (0.079) (0.072) (0.075) (0.080)

Age 35-54 0.338 -0.361
(0.027) (0.027)

Age 55-64 0.696 -0.752
(0.029) (0.029)

Age 65+ 0.998 -1.104
(0.027) (0.028)

Constant -0.276 0.226 -0.398 0.204 -0.423 0.236
(0.010) (0.031) (0.038) (0.010) (0.032) (0.038)

Observations 30,425 30,425 30,425 30,425 30,425 30,425
Pseudo R2 0.004 0.040 0.094 0.004 0.052 0.117

Each column reports coefficients from a weighted binary Probit regression with heteroskedasticity-robust standard
errors reported in parentheses. Observations are survey responses from the 2019 FDIC Survey of Household Use
of Banking and Financial Services, conducted in June 2019. Responses are from banked households. Observations
are weighted using sample weights provided in the survey data. Dependent variable observations are binary
indicators for the primary (i.e., most common) method used to access bank accounts among respondents who
accessed their account in the past 12 months. Demographic independent variable observations are self-reported
characteristics of respondents. Income is household income. The dependent variable in columns (1)-(3) equals 1 if
the primary method is “Bank Teller” or “ATM/Kiosk,” and 0 otherwise. The dependent variable in columns (4)-(6)
equals 1 if the primary method is “Mobile Banking” or “Online Banking,” and 0 otherwise. Omitted demographic
categories are household income less than $15,000, non-Hispanic Whites, and age range 15-34.
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Table A.5
Estimated Branch Fixed Effects by Population Density and Local Demographics

Dep. var.: Branch fixed effects (standardized)

(1) (2)

log(Population density) -0.004
(0.004)

Black -0.009
(0.025)

Asian -0.195
(0.056)

Other 0.996
(0.097)

Hispanic 0.044
(0.024)

log(Income) -0.091
(0.010)

Constant 0.025 0.970
(0.025) (0.105)

Observations 918,310 896,692
R2 0.024 0.029
Year-month FE O O
SE cluster Tract CBG

Each column reports coefficients from an unweighted OLS regression with
standard errors clustered at the Census-tract level (column 1) or Census-block-
group level (column 2) reported in parentheses. One observation is a branch
per month per year in the sample period from January 2018 - December
2019. Dependent variable observations are based on our core sample of branch
locations, which consists of businesses in SafeGraph with NAICS codes equal to
522110 (Commercial Banking), 522120 (Savings Institutions), or 551111 (Offices
of Bank Holding Companies) for which we have visitor data and whose
brands are also listed in the FDIC’s 2019 Summary of Deposits. Demographic
independent variable observations are population densities of the Census tracts
where branches are located (column 1) and population-based decimal shares
of the Census block groups where branches are located (column 2), recorded
in the 2019 5-year American Community Survey (ACS). Income is median
household income. The dependent variable is z-scores of the estimated panel of
branch fixed effects, {λ̂ jt}. The estimation method is described in Section 5, with
full details in Online Appendix A. The omitted racial group is non-Hispanic
Whites.
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Table A.6
Heterogeneous Gravity Coefficients by Race and Income

Dep. var.: log(No. of visitorsi jt)

(1) (2)

log(Distancei j) -0.091 -0.088
(0.003) (0.002)

log(Distancei j) 0.021
× Black (0.006)

log(Distancei j) -0.013
× Asian (0.019)

log(Distancei j) 0.066
× Other (0.020)

log(Distancei j) -0.018
× Hispanic (0.009)

log(Distancei j) -0.018
× High Income (0.003)

log(Distancei j) 0.015
× Low Income (0.002)

Observations 5,625,696 5,549,547

The table reports estimates and standard errors
of the gravity coefficients β1,t and β2,t from the
fixed-effects gravity equation:

log
(
No. of visitorsi jt

)
= γit + λ jt − β1,t log

(
Distancei j

)
− β2,t log

(
Distancei j

)
× Pi + εi jt.

Estimates are from an unweighted Poisson pseudo-
maximum-likelihood (PPML) estimation, as in
Silva and Tenreyro (2006), run using ppmlhdfe
in Stata. Standard errors are two-way clustered by
Census block groups and bank branches. Depen-
dent variable observations are the raw number of
visitors from home Census block groups to bank
branches based on our core sample of geoloca-
tion data, which consists of businesses in Safe-
Graph with NAICS codes equal to 522110 (Com-
mercial Banking), 522120 (Savings Institutions),
or 551111 (Offices of Bank Holding Companies)
for which we have visitor data and whose brands
are also listed in the FDIC’s 2019 Summary of
Deposits. Independent variable observations are
the log distances from the population-weighted
center of block groups to visited bank branches
and the log distances interacted with population-
based racial shares (column 1) and interacted with
dummies for high-income and low-income block
groups (column 2), based on the 2019 5-year Amer-
ican Community Survey. Racial shares and income
dummies are denoted Pi in the above equation.
High-income is the third tercile of the distribu-
tion of block groups’ median household incomes,
whereas low-income is the first tercile. Omitted
demographic groups are non-Hispanic Whites and
the second tercile of median household income.
Centers of population are from the 2010 Census,
and we use the haversine formula to compute
distance in miles (see Footnote 39).

38



Table A.7
Comparison Of Gravity Equation EstimationMethods

MSM PPML OLS OLS where > 4

Year Month β s.e. β s.e. β s.e. β s.e.

2018 1 -1.26 (0.035) -0.066 (0.003) -0.038 (0.001) -0.331 (0.030)
2 -1.31 (0.227) -0.072 (0.004) -0.042 (0.001) -0.319 (0.023)
3 -1.32 (0.019) -0.076 (0.003) -0.046 (0.001) -0.295 (0.018)
4 -1.33 (0.033) -0.073 (0.002) -0.045 (0.001) -0.287 (0.016)
5 -1.32 (0.011) -0.075 (0.003) -0.045 (0.001) -0.297 (0.017)
6 -1.30 (0.007) -0.072 (0.002) -0.045 (0.001) -0.288 (0.017)
7 -1.27 (0.043) -0.069 (0.002) -0.043 (0.001) -0.278 (0.018)
8 -1.29 (0.053) -0.079 (0.003) -0.047 (0.001) -0.317 (0.018)
9 -1.34 (0.304) -0.082 (0.002) -0.049 (0.001) -0.340 (0.022)

10 -1.37 (0.090) -0.086 (0.003) -0.051 (0.001) -0.303 (0.016)
11 -1.31 (0.032) -0.086 (0.003) -0.051 (0.001) -0.293 (0.014)
12 -1.31 (0.035) -0.091 (0.003) -0.053 (0.001) -0.269 (0.014)

2019 1 -1.40 (0.018) -0.089 (0.003) -0.053 (0.001) -0.300 (0.014)
2 -1.43 (0.030) -0.089 (0.002) -0.053 (0.001) -0.286 (0.015)
3 -1.37 (0.035) -0.096 (0.003) -0.056 (0.001) -0.279 (0.014)
4 -1.39 (0.016) -0.098 (0.003) -0.056 (0.001) -0.268 (0.012)
5 -1.40 (0.023) -0.106 (0.003) -0.061 (0.001) -0.258 (0.010)
6 -1.38 (0.177) -0.096 (0.002) -0.057 (0.001) -0.274 (0.010)
7 -1.35 (0.106) -0.095 (0.003) -0.056 (0.001) -0.261 (0.011)
8 -1.40 (0.039) -0.103 (0.003) -0.061 (0.001) -0.270 (0.010)
9 -1.41 (0.034) -0.108 (0.003) -0.060 (0.001) -0.290 (0.011)

10 -1.45 (0.031) -0.102 (0.003) -0.059 (0.001) -0.291 (0.012)
11 -1.43 (0.015) -0.099 (0.003) -0.058 (0.001) -0.290 (0.013)
12 -1.41 (0.033) -0.105 (0.003) -0.062 (0.001) -0.285 (0.010)

Panel -0.091 (0.002) -0.053 (0.001) -0.283 (0.008)

The table reports estimates and standard errors of the gravity coefficient βt from the fixed-effects gravity
model in Eq. (1):

log
(
No. of visitorsi jt

)
= γit + λ jt − βt log

(
Distancei j

)
+ εi jt.

Independent variable observations are the log distances from the population-weighted center of block
groups to visited bank branches, where centers of population are from the 2010 Census, and we use the
haversine formula to compute distance in miles (see Footnote 39). Columns (3) and (4) present estimates
from the Method of Simulated Moments estimation described in Section 5, with full details in Online
Appendix A. Columns (5) and (6) present estimates from an unweighted Poisson pseudo-maximum-
likelihood (PPML) estimation, as in Silva and Tenreyro (2006), run using ppmlhdfe in Stata. Columns
(7)-(10) present estimates from an unweighted OLS regression. Dependent variable observations in the
PPML and OLS estimations are the raw number of visitors from home Census block groups to bank
branches based on our core sample of geolocation data, which consists of businesses in SafeGraph with
NAICS codes equal to 522110 (Commercial Banking), 522120 (Savings Institutions), or 551111 (Offices
of Bank Holding Companies) for which we have visitor data and whose brands are also listed in the
FDIC’s 2019 Summary of Deposits. Columns (9) and (10) restrict the sample to visitor counts greater than 4,
which circumvent SafeGraph’s truncation and censoring. The MSM, PPML, and OLS gravity coefficient
estimates are calculated month-by-month over the sample period (January 2018 - December 2019). PPML
and OLS estimates are also calculated over the full sample panel. Standard errors of the MSM estimates are
computed using Eq. (A.65). Standard errors of the PPML and OLS estimates are two-way clustered by both
Census block groups and bank branches.
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Table A.8
Driving Time versus Haversine Distance

Dep. var.: log(Driving time b/w block group and visited branch)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

log(Haversine 0.895 0.890 0.885 0.893 0.896 0.901 0.891 0.890 0.902
distance b/w block group and visited branch) (0.000) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant 0.396 0.430 0.450 0.402 0.395 0.356 0.423 0.442 0.342
(0.001) (0.001) (0.004) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Observations 995,000 725,000 35,000 498,000 497,000 498,000 497,000 508,000 487,000
Adjusted R2 0.988 0.989 0.987 0.989 0.987 0.986 0.989 0.987 0.988
Sample Core MC Core Core Core Core Core Core Core
Black > 0.8 O
Black ≥Med. Black O
Black < Med. Black O
White ≥Med. White O
White < Med. White O
log(Income) ≥Med. log(Income) O
log(Income) < Med. log(Income) O

Each column reports coefficients from a univariate, weighted OLS regression with heteroskedasticity-robust standard errors reported in parentheses. One observation is
a block group × branch pair from our core sample of Census block groups and bank branches, where the branches consist of businesses in SafeGraph with NAICS codes
equal to 522110 (Commercial Banking), 522120 (Savings Institutions), or 551111 (Offices of Bank Holding Companies) for which we have visitor data and whose brands
are also listed in the FDIC’s 2019 Summary of Deposits (SOD). Observations are weighted by block-group population counts from the 2019 5-year American Community
Survey (ACS). Dependent variable observations are the natural log driving times from the population-weighted centers of block groups to branches, where driving
times are computed using the Origin-Destination Cost Matrix of ArcGIS Pro under the default settings. Centers of population are from the 2010 Census. Independent
variable observations are the corresponding natural log haversine distances between block groups and branches. 995,000 block group × branch pairs were drawn
randomly. Column (1) includes the entire random sample of block group × branch pairs. Column (2) restricts the sample to block groups with Rural-Urban Commuting
Areas (RUCA) codes equaling 1 (Metropolitian area core). Column (3) restricts the sample to block groups with Black population shares exceeding 80%. Column (4)
restricts the sample to block groups with Black population shares at or exceeding the median Black population share across all block groups in the entire random sample.
Column (5) restricts the sample to block groups with Black population shares below the median Black population share across all block groups in the entire random
sample. Column (6) restricts the sample to block groups with White population shares at or exceeding the median White population share across all block groups in the
entire random sample. Column (7) restricts the sample to block groups with White population shares below the median White population share across all block groups
in the entire random sample. Column (8) restricts the sample to block groups with the natural logarithm of median household income at or exceeding the median of the
natural logarithm of median household income across all block groups in the entire random sample. Column (9) restricts the sample to block groups with the natural
logarithm of median household income below the median of the natural logarithm of median household income across all block groups in the entire random sample.
Racial shares and median household income are from the 2019 5-year ACS.
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Table A.9
Black-White Gaps and Neighborhood Crime Risk

(a) Robbery

Dep. var.: Black-White Gap in
Access Demand Expected visitors

(1) (2) (3)

Robbery -0.207 0.106 -0.101
(0.045) (0.068) (0.071)

Constant 0.447 -0.244 0.203
(0.074) (0.126) (0.130)

Observations 1,531 1,531 1,531
R2 0.009 0.001 0.000

(b) Assault

Dep. var.: Black-White Gap in
Access Demand Expected visitors

(1) (2) (3)

Assault -0.136 0.009 -0.127
(0.064) (0.082) (0.065)

Constant 0.365 -0.141 0.224
(0.086) (0.128) (0.115)

Observations 1,531 1,531 1,531
R2 0.002 0.000 0.000

(c) Personal Crime

Dep. var.: Black-White Gap in
Access Demand Expected visitors

(1) (2) (3)

Personal crime -0.207 0.050 -0.157
(0.060) (0.086) (0.082)

Constant 0.438 -0.183 0.256
(0.084) (0.139) (0.137)

Observations 1,531 1,531 1,531
R2 0.004 0.000 0.000

(d) Murder

Dep. var.: Black-White Gap in
Access Demand Expected visitors

(1) (2) (3)

Murder -0.152 0.101 -0.051
(0.038) (0.042) (0.034)

Constant 0.385 -0.236 0.149
(0.070) (0.097) (0.087)

Observations 1,531 1,531 1,531
R2 0.006 0.001 0.000

(e) Motor Vehicle Theft

Dep. var.: Black-White Gap in
Access Demand Expected visitors

(1) (2) (3)

Motor Vehicle -0.050 -0.005 -0.055
Theft (0.056) (0.078) (0.067)

Constant 0.280 -0.127 0.153
(0.068) (0.104) (0.104)

Observations 1,531 1,531 1,531
R2 0.000 0.000 0.000

(f) Total Crime

Dep. var.: Black-White Gap in
Access Demand Expected visitors

(1) (2) (3)

Total crime -0.174 -0.185 -0.359
(0.088) (0.183) (0.195)

Constant 0.406 0.056 0.462
(0.102) (0.222) (0.250)

Observations 1,531 1,531 1,531
R2 0.001 0.000 0.001

Each column reports coefficients from a univariate, weighted OLS regression with heteroskedasticity-robust standard errors
reported in parentheses. One observation is a county. Counties with less than 20 Census block groups with estimated branch access
measures over the sample period are dropped. Observations are weighted by county population counts from the 2019 5-year
American Community Survey (ACS). Independent variable observations are crime risk indices at the county-level, obtained from
the CrimeRisk database. In columns (1)-(2), the dependent variable is the estimated Black-White gap in branch access across counties
(i.e., the county-specific loading on the Black population share from the specification in column 2 of Table 2). In columns (3)-(4), the
dependent variable is the estimated Black-White gap in branch demand (i.e., the county-specific loading on the Black population
share from the specification in column 6 of Table 3). In columns (5)-(6), the dependent variable is the estimated Black-White gap
in expected branch visitors (i.e., the county-specific loading on the Black population share from the specification in column 2 of
Table 3).
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Table A.10
Black-White Gaps and Implicit Racial Bias

Dep. var.: Black-White Gap in Branch Access Black-White Gap in Branch Demand Black-White Gap in Expected Branch Visitors

(1) (2) (3) (4) (5) (6)

IAT score for Whites -4.816 -4.898 -4.358 -2.841 -9.175 -7.739
(2.301) (2.176) (7.108) (5.926) (8.655) (7.052)

Constant 2.121 0.612 1.580 0.090 3.701 0.702
(0.929) (0.199) (2.837) (0.511) (3.453) (0.606)

Observations 1,531 1,531 1,531 1,531 1,531 1,531
R2 0.007 0.006 0.001 0.000 0.005 0.003
Adj. Racial Bias O O O

Each column reports coefficients from a univariate, weighted OLS regression with heteroskedasticity-robust standard errors reported in parentheses. One observation is a county.
Counties with less than 20 Census block groups with estimated branch access measures over the sample period are dropped. Observations are weighted by county population counts
from the 2019 5-year American Community Survey (ACS). Independent variable observations are measures of implicit racial bias against Blacks based on mean scores on implicit
association tests (IATs) for non-Hispanic White participants by county, obtained from the Project Implicit Database. Raw test scores are used in odd columns, whereas adjusted test
scores are used in even columns. Adjusted test scores are the residuals from projecting raw scores on respondent age, race, gender, education, and test variables (the month, hour,
weekday, and order of test). In columns (1)-(2), the dependent variable is the estimated Black-White gap in branch access across counties (i.e., the county-specific loading on the Black
population share from the specification in column 2 of Table 2). In columns (3)-(4), the dependent variable is the estimated Black-White gap in branch demand (i.e., the county-specific
loading on the Black population share from the specification in column 6 of Table 3). In columns (5)-(6), the dependent variable is the estimated Black-White gap in expected branch
visitors (i.e., the county-specific loading on the Black population share from the specification in column 2 of Table 3).
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Table A.11
Black-White Gaps and Explicit Racial Bias

Dep. var.: Black-White Gap in Branch Access Black-White Gap in Branch Demand Black-White Gap in Expected Branch Visitors

(1) (2) (3) (4) (5) (6)

Thermology score for Whites -0.867 -0.932 0.434 0.361 -0.433 -0.571
(0.301) (0.311) (0.390) (0.405) (0.323) (0.339)

Constant 0.872 0.656 -0.454 -0.298 0.418 0.358
(0.260) (0.178) (0.338) (0.233) (0.292) (0.207)

Observations 1,531 1,531 1,531 1,531 1,531 1,531
R2 0.009 0.009 0.001 0.000 0.000 0.001
Adj. Racial Bias O O O

Each column reports coefficients from a univariate, weighted OLS regression with heteroskedasticity-robust standard errors reported in parentheses. One observation is a county. Counties with
less than 20 Census block groups with estimated branch access measures over the sample period are dropped. Observations are weighted by county population counts from the 2019 5-year
American Community Survey (ACS). Independent variable observations are measures of explicit racial bias against Blacks based on mean scores on Project Implicit’s “thermology” questions for
non-Hispanic White participants by county, obtained from the Project Implicit Database. Respondents are asked whether they “feel warmer toward” White Americans and whether they “feel
warmer toward” Black Americans, and respond on a 0-to-10 scale to each question. We subtract the latter from the former to form the explicit bias measure so that a higher value means the
respondent feels warmer toward White Americans than toward Black Americans. Raw measures are used in odd columns, whereas adjusted measures are used in even columns. Adjusted
measures are the residuals from projecting raw measures on respondent age, race, gender, education, and test variables (the month, hour, weekday, and order of test). In columns (1)-(2), the
dependent variable is the estimated Black-White gap in branch access across counties (i.e., the county-specific loading on the Black population share from the specification in column 2 of
Table 2). In columns (3)-(4), the dependent variable is the estimated Black-White gap in branch demand (i.e., the county-specific loading on the Black population share from the specification in
column 6 of Table 3). In columns (5)-(6), the dependent variable is the estimated Black-White gap in expected branch visitors (i.e., the county-specific loading on the Black population share from
the specification in column 2 of Table 3).
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Table A.12
Bank Branch Access by Demographic Attributes - All SOD Branches

Dep. var.: log(Bank branch access of block groups)

Imputed branch quality: Mean branch FE in year-month Median branch FE in year-month

(1) (2) (3) (4) (5) (6) (7) (8)

log(Income) -0.131 -0.084 -0.147 -0.093 -0.124 -0.081 -0.140 -0.091
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Black -0.187 -0.156 -0.226 -0.178 -0.148 -0.118 -0.181 -0.135
(0.005) (0.005) (0.006) (0.006) (0.005) (0.005) (0.006) (0.006)

Asian 0.504 0.453 0.454 0.404 0.492 0.447 0.445 0.402
(0.016) (0.016) (0.017) (0.017) (0.015) (0.015) (0.015) (0.015)

Other -0.012 -0.039 0.049 0.012 0.003 -0.015 0.061 0.035
(0.022) (0.022) (0.032) (0.031) (0.022) (0.022) (0.032) (0.031)

Hispanic -0.045 -0.012 -0.087 -0.037 -0.010 0.023 -0.045 0.004
(0.007) (0.007) (0.007) (0.008) (0.007) (0.007) (0.007) (0.008)

Age <15 -0.962 -1.089 -0.869 -0.984
(0.019) (0.022) (0.018) (0.021)

Age 35-54 -0.350 -0.310 -0.307 -0.270
(0.018) (0.022) (0.017) (0.021)

Age 55-64 -0.799 -0.835 -0.705 -0.736
(0.019) (0.023) (0.018) (0.022)

Age 65+ -0.383 -0.418 -0.332 -0.360
(0.014) (0.016) (0.013) (0.015)

log(No. of devices) -0.057 -0.063 -0.065 -0.072 -0.054 -0.058 -0.061 -0.066
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Observations 2,549,020 2,549,020 1,847,252 1,847,252 2,549,020 2,549,020 1,847,252 1,847,252
Adjusted R2 0.891 0.896 0.874 0.881 0.748 0.754 0.694 0.703
Sample Core Core MC MC Core Core MC MC
Year-month FE O O O O O O O O
County FE O O O O O O O O
RUCA FE O O O O

Each column reports coefficients from a multivariate, weighted OLS regression with standard errors clustered at the Census-block-group level
reported in parentheses. One observation is a block group per month per year in the sample period from January 2018 - December 2019. Block
groups where no resident was recorded in SafeGraph as having visited a bank branch in the year-month are dropped. Observations are weighted by
block-group population counts from the 2019 5-year American Community Survey (ACS). In all columns, the dependent variable is the natural
logarithm of the estimated bank branch access measure, log Φ̂it, from Eq. (8). All columns use the complete set of branches in the FDIC’s 2019
Summary of Deposits (SOD). Branches in the SOD that are also in SafeGraph have their fixed effects estimated month-by-month from the Method of
Simulated moments procedure described in Section 5, with full details in Online Appendix A. Branches in the SOD that are not in SafeGraph have
their estimated fixed effects imputed per period with the national mean (columns 1-4) or median (columns 5-8) of the estimated fixed effects of the
branches in SafeGraph. The set of branches in SafeGraph is our core sample of branch locations, which consists of businesses in SafeGraph with
NAICS codes equal to 522110 (Commercial Banking), 522120 (Savings Institutions), or 551111 (Offices of Bank Holding Companies) for which we
have visitor data and whose brands are also listed in the SOD. Demographic independent variable observations are population-based decimal shares
from the 2019 5-year ACS. Income is median household income. The log number of devices is SafeGraph’s record of the number of mobile devices
residing in the block group in the year-month. Columns (1), (2), (5), and (6) include all block groups for which we have branch visitor data, whereas
columns (3), (4), (7), and (8) restrict the sample to block groups with Rural-Urban Commuting Areas (RUCA) codes equaling 1 (Metropolitian area
core). The omitted demographic groups are non-Hispanic Whites and age range 15-34.
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Table A.13
Balassa-style Shares Descriptive Statistics

Percentiles
N Mean 5th 25th 50th 75th 95th

Branch customer specialization:
Share Asian 48,813 0.05 0.00 0.01 0.02 0.05 0.17
Share Asian (MDI) 133 0.26 0.07 0.15 0.25 0.36 0.49
Share Black 48,813 0.10 0.00 0.02 0.06 0.13 0.35
Share Black (MDI) 27 0.52 0.18 0.35 0.54 0.71 0.77
Share Hispanic 48,813 0.14 0.01 0.04 0.08 0.18 0.47
Share Hispanic (MDI) 150 0.70 0.29 0.50 0.79 0.89 0.93
Share other 48,813 0.03 0.01 0.02 0.03 0.03 0.06
Share White 48,813 0.68 0.25 0.56 0.73 0.85 0.94
Log income 48,813 10.93 10.09 10.75 11.00 11.24 11.58

Block group brand loyalty:
Wells Fargo 212,475 0.11 0.00 0.00 0.03 0.18 0.44
BoA 212,475 0.11 0.00 0.00 0.04 0.18 0.43
Chase 212,475 0.11 0.00 0.00 0.02 0.17 0.45
US Bank 212,475 0.04 0.00 0.00 0.00 0.00 0.24
PNC 212,475 0.04 0.00 0.00 0.00 0.01 0.22

The table reports descriptive statistics of the Balassa (1965)-style share variables added as controls
to the gravity equation in Eq. (1), as described in Online Appendix B.2. The top half of the table
presents shares relating to branches’ customer-specific specialization, whereas the bottom-half
presents shares relating to block group residents’ brand-specific loyalty. In the top half, the racial
shares are defined in Eq. (A.72), whereas the income shares are defined in Eq. (A.73). Income is
median household income. MDI stands for Minority Depository Institutions, whose definition is
here. We use the 2019 list of MDIs. Rows with the “(MDI)” label include only branches belonging to
such institutions whose owners are also of that race. For example, “Share Black (MDI)” includes
only Black-owned MDI branches. The other rows in the top half include both MDI and non-MDI
branches in the core sample. In the bottom half, brand-specific loyalty shares are for the top 5 brands
by number of branches and defined in Eq. (A.74).
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Table A.14
Gravity Equation with Balassa-style Level Shares

PPML OLS

Dep. var.: No. of visitorsi jt log(No. of visitorsi jt)

(1) (2) (3) (4) (5) (6) (7) (8)

log(Distancei j) -0.090 -0.088 -0.088 -0.087 -0.053 -0.053 -0.053 -0.052
(0.002) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001)

Spec j ×White 0.152 0.156 0.074 0.078
(0.064) (0.064) (0.024) (0.023)

Spec j × Black 0.028 0.016 0.065 0.058
(0.060) (0.060) (0.023) (0.023)

Spec j × Asian -0.934 -0.959 -0.309 -0.323
(0.318) (0.317) (0.093) (0.093)

Spec j × Hispanic -0.611 -0.552 -0.221 -0.186
(0.206) (0.203) (0.125) (0.123)

Spec j × Other -0.244 -0.258 -0.128 -0.136
(0.062) (0.061) (0.025) (0.025)

Spec j × log(Income) -0.215 -0.214 -0.127 -0.127
(0.019) (0.019) (0.009) (0.009)

BLi ×Wells Fargo -0.156 -0.154 -0.121 -0.121
(0.037) (0.036) (0.017) (0.017)

BLi × BoA -0.314 -0.309 -0.172 -0.173
(0.053) (0.052) (0.025) (0.024)

BLi × Chase -0.268 -0.257 -0.164 -0.160
(0.046) (0.044) (0.020) (0.019)

BLi × US Bank -0.118 -0.116 -0.069 -0.068
(0.060) (0.061) (0.033) (0.033)

BLi × PNC -0.037 -0.036 -0.022 -0.020
(0.067) (0.073) (0.028) (0.029)

Constant 1.721 27.933 1.734 27.868
(0.003) (2.340) (0.003) (2.338)

Observations 5,549,547 5,549,547 5,549,547 5,549,547 5,549,547 5,549,547 5,549,547 5,549,547
R2 0.714 0.724 0.715 0.725 0.477 0.484 0.478 0.485

The table reports estimates and standard errors of the fixed-effects gravity equation augmented with Balassa-style share controls, presented in
Eq. (A.75). Columns (1) to (4) present estimates from an unweighted Poisson pseudo-maximum-likelihood (PPML) estimation, as in Silva and
Tenreyro (2006), run using ppmlhdfe in Stata. Columns (5) to (8) present estimates from an unweighted OLS regression. Standard errors are
two-way clustered by Census block groups and bank branches. Dependent variable observations are the raw number of visitors (columns
1 to 4) and the log raw number of visitors (columns 5 to 8) from home Census block groups to bank branches based on our core sample
of geolocation data, which consists of businesses in SafeGraph with NAICS codes equal to 522110 (Commercial Banking), 522120 (Savings
Institutions), or 551111 (Offices of Bank Holding Companies) for which we have visitor data and whose brands are also listed in the FDIC’s
2019 Summary of Deposits. Independent variable observations are (i) the log distances from the population-weighted center of block groups to
visited bank branches, (ii) branch-level specialization share variables (Spec j) given in Eqs. (A.72) to (A.73) interacted with block group racial
shares and log median household incomes from the 2019 5-year ACS, and (iii) block group-level brand loyalty shares (BLi) for the top 5 bank
brands by number of branches given in Eq. (A.74) interacted with dummies equaling 1 if the branch visited belongs to the particular brand and
0 otherwise. The PPML R2s are computed using the method described here. Centers of population are from the 2010 Census, and we use the
haversine formula to compute distance in miles (see Footnote 39).
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Table A.15
Gravity Equation with Balassa-style Quartile Shares

PPML OLS

Dep. var.: No. of visitorsi jt log(No. of visitorsi jt)

(1) (2) (3) (4) (5) (6) (7) (8)

log(Distancei j) -0.090 -0.091 -0.089 -0.090 -0.053 -0.054 -0.053 -0.054
(0.002) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001)

Spec j Q2 ×White 0.014 0.013 0.003 0.003
(0.024) (0.024) (0.008) (0.008)

Spec j Q3 ×White 0.013 0.012 0.003 0.003
(0.028) (0.028) (0.010) (0.010)

Spec j Q4 ×White -0.057 -0.057 -0.032 -0.032
(0.035) (0.035) (0.015) (0.015)

Spec j Q2 × Black -0.145 -0.141 -0.066 -0.064
(0.032) (0.032) (0.017) (0.017)

Spec j Q3 × Black -0.105 -0.103 -0.051 -0.050
(0.035) (0.035) (0.018) (0.018)

Spec j Q4 × Black -0.119 -0.118 -0.041 -0.040
(0.042) (0.042) (0.019) (0.019)

Spec j Q2 × Asian 0.154 0.163 0.099 0.105
(0.084) (0.084) (0.035) (0.036)

Spec j Q3 × Asian 0.132 0.144 0.093 0.100
(0.080) (0.080) (0.035) (0.035)

Spec j Q4 × Asian 0.050 0.060 0.043 0.049
(0.076) (0.076) (0.034) (0.034)

Spec j Q2 × Hispanic 0.105 0.110 0.037 0.038
(0.155) (0.155) (0.051) (0.051)

Spec j Q3 × Hispanic -0.033 -0.028 -0.008 -0.006
(0.153) (0.152) (0.054) (0.054)

Spec j Q4 × Hispanic -0.095 -0.087 -0.050 -0.047
(0.141) (0.141) (0.054) (0.054)
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Table A.15 (CONTINUED)

PPML OLS

Dep. var.: No. of visitorsi jt log(No. of visitorsi jt)

(1) (2) (3) (4) (5) (6) (7) (8)

Spec j Q2 × Other -0.121 -0.116 -0.064 -0.061
(0.029) (0.029) (0.015) (0.015)

Spec j Q3 × Other -0.266 -0.258 -0.154 -0.149
(0.039) (0.039) (0.017) (0.016)

Spec j Q4 × Other -0.258 -0.253 -0.163 -0.160
(0.042) (0.042) (0.018) (0.017)

Spec j Q2 × log(Income) -0.005 -0.005 -0.003 -0.003
(0.002) (0.002) (0.001) (0.001)

Spec j Q3 × log(Income) -0.017 -0.017 -0.010 -0.010
(0.003) (0.003) (0.001) (0.001)

Spec j Q4 × log(Income) -0.028 -0.028 -0.016 -0.016
(0.004) (0.004) (0.002) (0.002)

BLi Q2 ×Wells Fargo -0.018 -0.017 -0.005 -0.004
(0.008) (0.008) (0.005) (0.004)

BLi Q3 ×Wells Fargo 0.025 0.027 0.011 0.012
(0.008) (0.008) (0.004) (0.004)

BLi Q4 ×Wells Fargo -0.020 -0.019 -0.018 -0.017
(0.009) (0.009) (0.004) (0.004)

BLi Q2 × BoA 0.002 0.003 0.005 0.005
(0.011) (0.011) (0.005) (0.005)

BLi Q3 × BoA 0.024 0.024 0.016 0.017
(0.010) (0.010) (0.004) (0.004)

BLi Q4 × BoA -0.044 -0.043 -0.023 -0.022
(0.012) (0.011) (0.005) (0.005)

BLi Q2 × Chase -0.028 -0.028 -0.009 -0.009
(0.010) (0.010) (0.006) (0.006)

BLi Q3 × Chase 0.024 0.025 0.013 0.013
(0.008) (0.008) (0.004) (0.004)

BLi Q4 × Chase -0.035 -0.033 -0.019 -0.018
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Table A.15 (CONTINUED)

PPML OLS

Dep. var.: No. of visitorsi jt log(No. of visitorsi jt)

(1) (2) (3) (4) (5) (6) (7) (8)

(0.012) (0.012) (0.005) (0.005)

BLi Q2 × US Bank 0.000 0.000 0.000 0.000
(.) (.) (.) (.)

BLi Q3 × US Bank -0.264 -0.264 -0.114 -0.114
(0.102) (0.102) (0.029) (0.029)

BLi Q4 × US Bank 0.046 0.047 0.007 0.007
(0.029) (0.029) (0.016) (0.016)

BLi Q2 × PNC 0.000 0.000 0.000 0.000
(.) (.) (.) (.)

BLi Q3 × PNC -0.050 -0.049 -0.027 -0.027
(0.010) (0.010) (0.005) (0.005)

BLi Q4 × PNC -0.022 -0.021 -0.013 -0.012
(0.006) (0.006) (0.004) (0.004)

Constant 1.721 1.928 1.720 1.925
(0.003) (0.026) (0.003) (0.026)

Observations 5,549,547 5,549,547 5,549,547 5,549,547 5,549,547 5,549,547 5,549,547 5,549,547
R2 0.714 0.716 0.715 0.717 0.477 0.478 0.478 0.479

The table reports estimates and standard errors of the fixed-effects gravity equation augmented with dummies for the quartiles of the
distributions of Balassa-style share controls, presented in Eq. (A.76). Columns (1) to (4) present estimates from an unweighted Poisson
pseudo-maximum-likelihood (PPML) estimation, as in Silva and Tenreyro (2006), run using ppmlhdfe in Stata. Columns (5) to (8) present
estimates from an unweighted OLS regression. Standard errors are two-way clustered by Census block groups and bank branches.
Dependent variable observations are the raw number of visitors (columns 1 to 4) and the log raw number of visitors (columns 5 to
8) from home Census block groups to bank branches based on our core sample of geolocation data, which consists of businesses in
SafeGraph with NAICS codes equal to 522110 (Commercial Banking), 522120 (Savings Institutions), or 551111 (Offices of Bank Holding
Companies) for which we have visitor data and whose brands are also listed in the FDIC’s 2019 Summary of Deposits. Independent
variable observations are (i) the log distances from the population-weighted center of block groups to visited bank branches, (ii) dummies
for the quartiles of branch-level specialization share variables (Spec j) given in Eqs. (A.72) to (A.73) interacted with block group racial
shares and log median household incomes from the 2019 5-year ACS, and (iii) dummies for the quartiles of block group-level brand
loyalty shares (BLi) for the top 5 bank brands by number of branches given in Eq. (A.74) interacted with dummies equaling 1 if the
branch visited belongs to the particular brand, and 0 otherwise. The quartile dummies equal 1 if the branch’s (or block group’s) share is
in the particular quartile of the distribution of the relevant share variable, and 0 otherwise. The bottom quartiles of the distributions are
omitted. The PPML R2s are computed using the method described here. Centers of population are from the 2010 Census, and we use the
haversine formula to compute distance in miles (see Footnote 39).
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Table A.16
Branch Access versus Branch Density

Dep. var.: Census tract weighted average of log(bank branch access) County weighted average of log(bank branch access)

(1) (2) (3) (4) (5)

Branch density 3.612 4.002 2.787 -421.996 -455.377
(2.661) (2.476) (1.860) (29.371) (39.185)

Constant 3.780 3.306
(0.006) (0.019)

Observations 28,862 28,862 28,312 3,106 3,105
Adjusted R2 0.000 0.441 0.836 0.046 0.620
State FE O O
County FE O

Each column reports coefficients from a univariate, unweighted OLS regression with heteroskedasticity-robust standard errors reported in parentheses. One
observation is a Census tract (columns 1-3) or county (columns 4-5). Dependent variable observations are the weighted average of the natural logarithm of
block-group-level estimated bank branch access measures through time, aggregated to either the Census tract or county. The natural logarithm of the estimated access
measure per block group per year-month is log Φ̂it from Eq. (8). In computing the weighted average over time per block group, we take each month’s weight as its
share of the block group’s total branch visitors over the core sample period (January 2018 - December 2019). Access measures are then aggregated to the Census tract
or county level by weighting each block group’s access measure by its share of population in either the Census tract or county to which it belongs. Independent
variable observations are the branch densities of either Census tracts or counties, which are calculated as the number of branches in the area according to the 2019
FDIC Summary of Deposits (SOD) divided by the population of the area. Population counts are from the 2019 5-year American Community Survey (ACS). Columns
(2) and (5) include state fixed effects and column (3) includes county fixed effects.
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Table A.17
Descriptive Statistics of Branch Characteristics

Variable Name Mean Std. Dev. N

Property Value ($1M) 1.60 4.69 66,533
Square Footage (1K) 8.36 41.71 66,533
Price per Sq. Ft. ($) 269.81 288.91 66,533
Weekday Open Hours 40.40 8.68 487,897
Open Saturday (%) 61.86 48.57 487,897
Open Sunday (%) 3.87 19.30 487,897

The table reports descriptive statistics of branch-level property value
and square footage variables from CoreLogic and branch days/hours
open from SafeGraph. Variable definitions are provided in Online
Appendix D.1. For property value, square footage, and price/sq. ft.,
we include branches that appear in both CoreLogic and our core
sample of branch locations. Our core sample consists of businesses in
SafeGraph with NAICS codes equal to 522110 (Commercial Banking),
522120 (Savings Institutions), or 551111 (Offices of Bank Holding
Companies) for which we have visitor data and whose brands are
also listed in the FDIC’s 2019 Summary of Deposits. The number N
of observations per variable is the number of branch × year-month
observations used in the bivariate OLS regressions of the estimated
branch fixed effects on that variable, whose results are in Online
Fig. A.5.
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Table A.18
Bank Branch Access by Demographic Attributes under Postal Banking

Dep. var.: log(Bank branch access of block groups)

USPS branch quality: Low Median High

(1) (2) (3) (4) (5) (6) (7) (8)

log(Income) -0.074 -0.085 -0.112 -0.080 -0.124 -0.089 -0.087 -0.093
(0.003) (0.003) (0.002) (0.003) (0.003) (0.003) (0.002) (0.003)

Black -0.059 -0.071 -0.082 -0.058 -0.104 -0.067 -0.048 -0.053
(0.005) (0.006) (0.005) (0.005) (0.005) (0.006) (0.004) (0.005)

Asian 0.420 0.380 0.412 0.378 0.370 0.340 0.292 0.258
(0.013) (0.013) (0.012) (0.012) (0.012) (0.012) (0.010) (0.011)

Other 0.022 0.077 0.021 0.009 0.074 0.064 -0.017 0.033
(0.023) (0.032) (0.022) (0.021) (0.030) (0.030) (0.019) (0.027)

Hispanic 0.066 0.055 0.040 0.066 0.014 0.056 0.072 0.064
(0.007) (0.008) (0.006) (0.007) (0.007) (0.007) (0.006) (0.006)

Age <15 -0.697 -0.786 -0.663 -0.752 -0.581 -0.666
(0.017) (0.019) (0.016) (0.018) (0.014) (0.016)

Age 35-54 -0.243 -0.204 -0.230 -0.190 -0.198 -0.159
(0.017) (0.020) (0.016) (0.019) (0.014) (0.016)

Age 55-64 -0.560 -0.571 -0.540 -0.539 -0.482 -0.466
(0.018) (0.022) (0.017) (0.021) (0.015) (0.018)

Age 65+ -0.239 -0.253 -0.245 -0.256 -0.244 -0.252
(0.013) (0.015) (0.012) (0.014) (0.011) (0.012)

log(No. of devices) -0.051 -0.057 -0.048 -0.051 -0.053 -0.056 -0.051 -0.053
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Observations 2,549,020 1,847,252 2,549,020 2,549,020 1,847,252 1,847,252 2,549,020 1,847,252
Adjusted R2 0.666 0.578 0.671 0.675 0.592 0.599 0.715 0.675
Sample Core MC Core Core MC MC Core MC
Year-month FE O O O O O O O O
County FE O O O O O O O O
RUCA FE O O O O

Each column reports coefficients from a multivariate, weighted OLS regression with standard errors clustered at the Census-block-group
level reported in parentheses. One observation is a block group per month per year in the sample period from January 2018 - December
2019. Block groups where no resident was recorded in SafeGraph as having visited a private bank branch in the year-month are dropped.
Observations are weighted by block-group population counts from the 2019 5-year American Community Survey (ACS). All columns use
our core sample of private bank branch locations, which consists of businesses in SafeGraph with NAICS codes equal to 522110 (Commercial
Banking), 522120 (Savings Institutions), or 551111 (Offices of Bank Holding Companies) for which we have visitor data and whose brands are
also listed in the FDIC’s 2019 Summary of Deposits, plus businesses in SafeGraph with NAICS codes equal to 491110 (Postal Services) for which
we have visitor data. Demographic independent variable observations are population-based decimal shares from the 2019 5-year ACS. Income is
median household income. The log number of devices is SafeGraph’s record of the number of mobile devices residing in the block group in the
year-month. In all columns, the dependent variable is the log estimated bank branch access measure log Φ̂it from Eq. (8) that includes both
private bank branches and post office branches. The dependent variable is computed from the month-by-month Method of Simulated Moments
estimation described in Section 5, with full details in Online Appendix A. In columns (1) and (2), we assign to each post office location per
year-month an estimated establishment fixed effect λ̂ jt equal to the 10th percentile of the distribution of estimated private bank fixed effects in
the year-month. In columns (3)-(6), we assign the 50th percentile; and in columns (7) and (8), we assign the 90th percentile. Columns (1), (3), (4),
and (7) include all block groups for which we have visitor data, whereas columns (2), (5), (6), and (8) restrict the sample to block groups with
Rural-Urban Commuting Areas (RUCA) codes equaling 1 (Metropolitian area core). The omitted demographic groups are non-Hispanic Whites
and age range 15-34.
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