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Research question: how to explore-exploit  
over explainable recommendations?

• e.g. home page of Spotify 
• items arranged into shelves, each 

shelf has an explanation for the 
associated recommendation



1. Pareto principle for content producers 

2. a causal diagnosis of filter bubbles in recommendation 

3. contextual bandits for recommendation 

4. explained recommendations 

5. introducing Bart (bandits for recommendations as treatments) 

6. offline and online experiments on homepage data 

7. conclusions & future work

Outline
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• known as the Matthew effect or Pareto principle [Juran, 1937]
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• in general: collaborative filtering engines use implicit feedback data 
from users to learn a model of user preferences
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Standard collaborative filtering methods are 
limited in that they can only exploit or ignore

logged feedback data

observed implicit  
feedback for item A

observed implicit  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impression 0
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estimated rate = 0 estimated rate >= 0.1

• the estimated performance will be identical only 31.3% of the time
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“At the beginning […] the pack was well 
shuffled, and, the operator and subject having 
taken their places, the operator was governed 

by the color of the successive cards in choosing 
whether he should first diminish the weight 

and then increase it, or vice versa.”
On Small Differences in Sensation,  

C. S. Peirce & J. Jastrow (1885)Charles Sanders Peirce
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“train on the right data”

= 𝔼X,A∼Uniform(𝒜),Y[log pθ(Y |A, X)]

Let’s restart from the basic ideal of  
randomized controlled trials

random item
recommended

set of all items model  
parameters

context
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• the central question of contextual multi-armed bandits 
• standard methods include epsilon-greedy, Thompson 

sampling, and upper confidence bounds

π

A

ε-greedy

best action A* 
under preference 
model prediction

π(A |X) =
(1 − ϵ) + ϵ

|𝒜 |
when A = A*

ϵ
|𝒜 |

otherwise

exploration parameter (when fixed -> crude 
exploitation; can also decay over time)
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Research question: how to explore-exploit  
over explainable recommendations?

naively, the bandit has to try every possible combination of item and 
explanation many times before being able to exploit the best combinations
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0 101 0 Stockholm No

1 3 0 Stockholm Yes

2 45 1 Stockholm No

3 99 1 New York No

4 11 0 New York Yes

Let’s make our lives easy: aim to train user preference model 
on logged impressions assumed independent given context.

What set of bandit assumptions lead to this procedure?
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Experimental evaluation

• we collected randomized recommendation data 
• offline experiments: 

• counterfactual estimation of A/B test performance using 
importance sampling reweighting 

• online A/B test experiments
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Bart limitations and future work

• user preference model: 
• assumes independence of impression outcomes 
• attempts to estimate absolute reward, competitive 

pairwise model closer to how humans judge items 
• maximizes our defined reward, does it approximate user 

satisfaction? 
• ranking model not defined to promote diversity 
• exploration-exploitation over a candidate set not the full 

item set



Is bandits a good idea for your problem?

Things to consider: 
• confounding: are you training a model using data 

collected with another model? 
• consider counterfactual evaluation on its own; less need 

to explore/exploit 
• auto-confounding: are you repeatedly training a model 

using data generated by the same model? 
• consider counterfactual evaluation and explore/exploit



Thank you, any questions?

email: jamesm@spotify.com


