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Research question: how to explore-exploit
over explainable recommendations?
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A small number of producers dominate
consumption in culture

e.g. musicians, authors, actors

producer popularity
B

leads to leads to

R
exposure to new consumers

e.g. word of mouth, media coverage

known as the Matthew eftect or Pareto principle [Juran, 1937]
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e.g. matrix factorization

Y =UV'
yd \ N

#users X #items #users X K #items X K
logged feedback data latent variables fitted
to logged feedback data

in general: collaborative filtering engines use implicit feedback data
from users to learn a model of user preferences
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“How Algorithmic Confounding in Recommendation Systems Increases
Homogeneity and Decreases Ultility” (Chaney et al. 2017)

“Modeling User Exposure in Recommendation” (Liang et al. 2016)
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the estimated performance will be identical only 31.3% of the time



Randomized controlled trials
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In recommendation: uniform random items
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I .et’s restart from the basic ideal of
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How to balance exploration and exploitation?

- the central question of contextual multi-armed bandits

- standard methods include epsilon-greedy, 1 hompson
sampling, and upper confidence bounds

g-greedy
best action A* exploration parameter (when fixed -> crude
A under preference exploitation; can also decay over time)
T / model prediction
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naively, the bandit has to try every possible combination of item and
explanation many times before being able to exploit the best combinations



Bart

- Bart (bandits for recommendations as treatments) consists
of:

- auser preference model conditioned on the context
- aranking procedure + propensities

- a training procedure

For details, see our new publication “Explore, Exploit, Explain™ at RecSys
www.jamesmc.com/s/BartRecSys.pdf
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[et's make our lives easy: aim to train user preference model
on logged impressions assumed independent given context.

impression_id  card_id shelf id context streamed?

Stockholm

3 0 Stockholm Yes
45 1 Stockholm No
99 1 New York No
11 0 New York Yes

What set of bandit assumptions lead to this procedure?
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Experimental evaluation

- we collected randomized recommendation data

- offline experiments:
- counterfactual estimation of A/B test performance using
importance sampling reweighting

- online A/B test experiments
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Offline experiments

Bart 2nd Order Bart 3rd Order

Logistic Regression Random

1- - o

1.2 1.6 2 1.2 1.6 2
Log 10(Rank) of Embedding

(similar conclusions as N DCG @10 for the metric)
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Stream Rate Relative to Random

Online A/B test

Bart 2nd order Bart 3rd order Control Logistic Regression Random
Recommendation Method




Bart limitations and future work

user preference model:
- assumes independence of impression outcomes

- attempts to estimate absolute reward, competitive
pairwise model closer to how humans judge items

- maximizes our defined reward, does it approximate user
satisfaction?

ranking model not defined to promote diversity

exploration-exploitation over a candidate set not the full
item set




Is bandits a good idea for your problem?

"1'hings to consider:

- confounding: are you training a model using data
collected with another model?

. consider counterfactual evaluation on its own; less need
to explore/exploit

- auto-confounding: are you repeatedly training a model
using data generated by the same model?

- consider counterfactual evaluation and explore/exploit



‘T'hank you, any questions?

email: jamesm@spotify.com



