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46



Chapter 3

Convexity

3.1 Convex Sets

3.1.1 Open and Closed Sets, Interior and Boundary

• Open. A set X ⊆ Rn is open if for any point x ∈ X , there exist a Euclidean
ball centered in x,Bε(x), which is contained inX .

Bε(x)
.
= {z : ‖z − x‖2 < ε}

ThenX ⊆ Rn is open if

∀x ∈ X ,∃ε > 0 : Bε(x) ⊂ X

That is, if a set is open, then we can always find a Euclidean ball with radius ε
centered at x ∈ X that is still in the setX .

• Closed. A set X ⊆ Rn is said to be closed if its complement Rn\X is open. A
closed set can be defined as a set which contains all its limit points. In a com-
pletemetric space, a closed set is a set which is closed under the limit operation.

• The whole space Rn and the empty set ∅ are declared open by definition and
they are also closed by definition.
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• Interior. The interior of a setX ⊆ Rn is defined as

intX = {z ∈ X : Bε(z) ⊆ X , for some ε > 0}

The interior of a subset S consists of all points of S that do not belong to the
boundary ofS. That is, any point in the set that is able to construct a Euclidean
ball in the set.

• Closure. The closure of a setX ⊆ Rn is defined as

X̄ = {z ∈ Rn : z = lim
k→∞

xk, xk ∈ X ,∀k}

The closure ofX is the set of limits of sequences inX . The sequence converges
to an element in the closed set.

• In otherword, the closure ofX consists of all points inS togetherwith all limit
points of S. It may equivalently be defined as the union of S and its boundary,
and also as the intersection of all closed sets containing S. Intuitively, the clo-
sure can be thought of as all the points that are either in S or "near" S. The
notion of closure is in many ways dual to the notion of interior.

• Boundary. The boundary ofX is defined as

∂X = X̄ \intX

where int denotes interior (i.e. closure = interior + boundary).

• Bounded. A set is said to be bounded if it is contained in a ball of finite radius,
meaning that every element is at most a finite distance away from each other.

• Compact. IfX ⊆ Rn is closed and bounded, then it is said to be compact.

3.1.2 Combinations and Hulls

• Linear hull (subspace). Given a set of points (vectors), P = {x1, · · · , xm},
the linear hull (subspace) generated by these points is the set of all possible linear
combinations of the points.

x = λ1x1 + · · ·+ λmxm, λi ∈ R, i = 1, · · · ,m
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Figure 3.1: Left: A conic hull in R2, an affine hull in R1 and a convex hull in R1.
Convex hull is a subset of affine hull. Right: The convex hull of the union of two
ellipses.

• Affine hull. The affine hull, aff P is the set generated by taking all possible lin-
ear combinations of the points inP , under the restriction that the coefficients
λi sum up to 1.

• Convexcombination. This is a special type of linear combinationx = λ1x1+
· · ·+ λmxm in which the coefficients λi are restricted to be non-negative and
to sum up to 1. Intuitively, this is a weighted average of the points.

• Convex hull. The set of all possible convex combination of the point set

co(x1, · · · , xm) =

{
x =

m∑
i=1

λixi : λi ≥ 0, i = 1, · · · ,m;
m∑
i=1

λi = 1

}

• Convex hull is a subset of affine hull. We can think of convex hull as it is con-
tained in the affine hull.

• Conic combination. Linear combinationwhere the coefficients are restricted
to be non-negative.

• Conic hull. The set of all possible conic combination of the point set

conic(x1, · · · , xm) =

{
x =

m∑
i=1

λixi : λi ≥ 0, i = 1, · · · ,m

}
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Figure 3.2: Convex and non-convex set

3.1.3 Convex Sets

• Convex. A subset C ⊆ Rn is convex if it contains the line segment between 2
points in it.

x1, x2 ∈ C, λ ∈ [0, 1]⇒ λx1 + (1− λ)x2 ∈ C

• Dimension of convex set. The dimension d of a convex setC ⊆ Rn is defined
as the dimension of its affine hull. Notices that it ccan happen that d < n.

• Subspace and affine sets, such as lines, planes, and higher-dimensional "flat"
sets are convex, as they contain the entire line passing through any 2 points,
not just the line segment. Half-spaces are also convex.

• Cone. A set C is a cone if it has the property that if x ∈ C , then αx ∈ C , for
every α ≥ 0.

• Convex cone. A setC is a convex cone if it is convex and it is a cone. The conic
hull of a set is a convex cone.

3.1.4 Operations that Preserve Convexity

• Intersection. The intersection of a (possibly infinite) family of convex sets is
convex. This property can be used to prove convexity for a wide variety of
situations.
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• Affine transformation. If a map f : Rn → Rm is affine, and C ⊂ Rn is
convex, then the image set f(c) is convex.

f(C) = {f(x) :∈ C}

3.1.5 Supporting and Separating Hyperplanes

Theorem 3 (Supporting hyperplane theorem). If C ⊆ Rn is convex and z ∈ ∂C ,
then there exists a supporting hyperplane for C at a boundary point z.

Theorem 4 (Separating hyperplane theorem). Let C1, C2 be convex subsets of Rn

that do not intersect. Then there exists a separating hyperplaneH forC1, C2. Furthermore,
if C1 is closed and bounded and C2 is closed, then C1, C2 can be strictly separated.

Figure 3.3: Seperating hyperplane
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3.2 Convex Functions

3.2.1 Definitions

• Effective domain. The effective domain (domain) of a function f : Rn → R is
the set over which the function is well defined.

domf = {x ∈ Rn : −∞ < f(x) <∞}

• Convexity. A function f : Rn → R is convex if domf is a convex set and for
all x, y ∈ domf and all λ ∈ [0, 1] it holds that

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

• Concave. A function is concave if−f is convex.

• Strictly convex. A function f is strictly convex if inequality above holds strictly
(i.e., with < instead of≤).

• Epigraph. Given a function f : Rn → (−∞,+∞], its epigraph (the set of
points lying above the graph of the function) is the set

epi f = {(x, t), x ∈ domf, t ∈ R : f(x) ≤ t}

• If f is a convex function if and only if epi f is a convex set.

• Sublevel set. The α-sublevel set of f is defined as

Sα = {x ∈ Rn : f(x) ≤ α}

• If f is a convex function, then Sα is a convex set.

• Closed function. A function f → (−∞,∞] is closed if its epigraph is a closed
set. This is equivalent to that every sublevel set Sα of f, α ∈ R is closed.

• Sum of convex functions. If fi : Rn → R, i = 1, · · · ,m are convex func-
tions, then the function

f(x) =
m∑
i=1

αifi(x), αi ≥ 0, i = 1, · · · ,m

is also convex over ∩i dom fi.
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• Affine variable transformation. Let f : Rn → R be convex, and define

g(x) = f(Ax+ b), A ∈ Rn,m, b ∈ Rn

Then g is convex over dom g = {x : Ax+ b ∈ domf}.

• Example. f(z) = − log(x), is convex over dom f = R++, hence f(x) =
− log(ax+ b) is also convex over ax+ b > 0.

3.2.2 Alternative Characterizations of Convexity

Besides the definition, there are other rules or conditions that can characterize con-
vexity of a function. From now on, when mentioning convexity of a function, it is
implicitly assumed that dom f is convex.

First-order Conditions

• If f is differentiable (i.e., dom f is open and the gradient exists everywhere on
the domain), then f is convex if and only if

∀x, y ∈ dom f, f(y) ≥ f(x) +∇f(x)T (y − x)

• The geometric interpretation is that the graph of f is bounded below every-
where by any one of its tangent hyperplanes, or that any tagent hyperplane is a
supporting hyperplane for epi f .

Figure 3.4

• The gradient of a convex function at a point x ∈ Rn divides the whole space
in two half-spaces.
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Second-order Conditions

• If f is twice differentiable, then f is convex if and only if its Hessian matrix
∇2f is positive semide�nite everywhere on the (open) domain of f , that is if
and only if∇2f � 0 for all x ∈ dom f .

Restriction to a Line

• A function f is convex if and only if its restriction to any line is convex. Re-
striction to a line means that for every x0 ∈ Rn and v ∈ Rn, the function of
scalar variable t

g(t) = f(x0 + tv)

is convex.

3.2.3 Operations that Preserve Convexity

• Compositionwith an affine function. The compositionwith an affine func-
tion preserves convexity. IfA ∈ Rm×n, b ∈ Rm, f : Rm → R is convex, then
the function g : Rm → R, g(x) = f(Ax+ b) is convex.

• Pointwise supremum or maximum The pointwise maximum of a family of
convex functions is convex. If (fα)α∈A is a family of convex functions indexed
by the parameter α, and A is an compact set for α, then the pointwise maxi-
mum function

f(x) = max
α∈A

fα(x)

is convex.

• Example. The dual norm

f(x) = ‖x‖∗ = max
y:‖y‖≤1

yTx

is convex, since it is defined as the maximum of convex (in fact, linear) func-
tions, indexed by the vector y.
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• Example. The largest sigular value of a matrix

f(X) = σmax(X) = max
v:‖v‖2=1

‖Xv‖2

is convex, since it is the pointwisemaximumof convex functions which are the
composition of the Euclidean norm (convex function) with the affine function
X → Xv.

• Non-negativeweighted sum. Thenonnegativeweighted sumof convex func-
tions is convex.

• Partial minimum. If f is a convex function in (x, z) (jointly convex in the
variables x and z) then the function

g(x) = min
z
f(x, z)

is convex.

• Composition with monotone convex functions. If f = h ◦ g, with h, g
convex and h non-decreasing, then f is convex. The condition f(x) ≤ z corre-
sponds to h(g(x)) ≤ z, which is equivalent to the existence of y such that

h(y) ≤ z, g(x) ≤ y

• The above rules have direct extensions ot functions of a vector argument. If the
component functions gi : Rn → R, i = 1, ·, k, are convex and h : Rk → R is
convex and non-decreasing with dom gi = domh = R, then

x→ (h ◦ g)(x)
.
= h(g1(x), · · · , gk(x))

is convex.

• Example. If gi are convex, then log
∑

i e
gi(x) is also convex.

3.2.4 Subgradients and Subdifferentials

The characterization of a convex differentiable function

∀x, y ∈ dom f, f(y) ≥ f(x) +∇f(x)T (y − x)
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Figure 3.5: The convex set {(x, y, z) : h(y) ≤ z, g(x) ≤ y} and its projection on
the space of (x, z)-variables is the epigraph of f . The epigraph of g is the projection
of (x, y)-variables.

states that at any point x ∈ domf , the function f(x) is lower bounded by an affine
function of y, and that the bound is exact at x.

f(y) ≥ f(x) + gTx (y − x), ∀y ∈ domf (3.1)

where gx = ∇f(x). Even when f is non-differentiable (gradient may not exist at
some points), the relation may still hold for suitable vectors gx.

• Subgraident. If x ∈ domf and (3.1) holds for some vectors gx ∈ Rn, then gx
is called a subgradient of f at x.

• Subdifferential. The set of all subgradients off atx is called the subdifferential,
denoted by ∂f(x).

• A subgradient is a surrogate of the gradient. It coincides with the gradient
whenever a gradient exists, and it generalizes gradient at points where f is
non-differentiable.
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Theorem5. For a convex f , a subgradent always exists at all points in the relative interior
of the domain. Moreover, f is directionally differentiable at all such points. For a convex
function f ,

f(y) ≥ f(x) + gTx (y − x)

∀y ∈ domf
∀gx ∈ ∂f(x)

∀x ∈ relint domf

1. The subdifferential ∂f(x) is a closed, convex, nonempty and bounded set.

2. If f is differentiable at x, the ∂f(x) contains only one element: the gradient of
f at x, that is, ∂f(x) = {∇f(x)}.

3. For any v ∈ Rn

f ′v(x)
.
= lim

t→0+

f(x+ tv)− f(x)

t
= max

g∈∂f(x)
vTg

where f ′v(x) is the directional derivative of f at x along the direction v.

• Example. The absolute value function f(x) = |x|, x ∈ R has subgradients
g ∈ [−1, 1] at 0.

∂|x| =

{
sgn(x) ifx 6= 0,

[−1, 1] ifx = 0

3.3 Convex Problems

3.3.1 Definition

• Optimization problem. An optimization problem of the form

p∗ = min
x∈Rn

f0(x) (3.2)

subject to: fi(x) ≤ 0, i = 1, · · · ,m (3.3)
hi(x) = 0, i = 1, · · · , q (3.4)

is called a convex optimization problem, if
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1. the object function f0 is convex;
2. the functions defining the inequality constraints, fi, are convex;
3. the functions defining the equality constraints, hi, are affine.

• The problem can equivalently be defined as

p∗ = min
x∈X

f0(x) (3.5)

where the decision variable x must belong to a convex set X . When x ∈ Rn,
then the problem is unconstrained.

• Feasible set. The feasible set of the problem is the set of points x that satisfy
the constraints. If X is empty, then the problem is infeasible. In such a case, it
is customary to set p∗ = +∞.

• Optimal set. The optimal set is defined as the set of feasible points for which
the objective funtion attains the optimal value:

Xopt = {x ∈ X : f0(x) = p∗}
= arg min

x∈X
f0(x)

• Unbounded below. If the problem is feasible and p∗ = −∞, we say that the
problem is unbounded below.

• Attained. If the problem is feasible but still no optimal solution exists (e.g. the
solution only exists in the limit), we say that the optimal value p∗ is not attained.
at any finite point.

• Feasibility problem. If we are only interested in verifying if the problem is
feasible or not, then the problem is called a feasibility problem.

find x ∈ X or prove thatX is empty.

3.3.2 Local and Global Optima

• Local optima. A point z is local optimum if there exists a ballBr of radius r > 0
centered at z such that z minimizes f0 locally in the ballBr .

min
x∈X

f0(x) subject to:‖x− z‖2 < r

where ∀x ∈ Br ∩ X , f0(x) ≥ f0(z).
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• Global optima. If z is a global optimumpoint, then it holds instead thatf0(x) ≥
f0(z),∀x ∈ X .

Theorem 6. Consider the optimization problem

min
x∈X

f0(x)

If f0(x) is a convex function andX is a convex set, then any locally optimal solution is also
globally optimal. Moreover, the set Xopt of optimal points is convex.

3.3.3 Uniqueness of the Optimal Solution

For any convex optimization problem, any locally optimal solution is also globally
optimal, but this does not mean, in general, that the optimal solution is unique. In-
tuitively, such a lack of uniqueness is in the case due to the flatness of the objective
function around the optimal points.

Theorem 7. If f0 in the optimization problem

p∗ = min
x∈X

f0(x)

is a strictly convex function,X is a convex set, andx∗ is an optimal solution to the problem,
then x∗ is the unique optimal solution, that is Xopt = x∗.

Theorem 8. Let f0 is a non-constant linear function (f0 = cTx, c 6= 0), and X is
closed, full-dimensional, and strictly convex. If the problem admits an optimal solution x∗,
then this solution is unique.

• Alternative condition for uniqueness. This states that another sufficient
condition for uniqueness of the optimal solution is the class of convex pro-
grams with linear objective function and strictly convex feasible set.

3.3.4 Problem Transformation

An optimization problem can be transformed, or reformulated, into an equivalent one
by means of several useful "tricks".
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Monotone Objective Transformation

• Consider an optimization problem of the form (3.5). Let ϕ : R→ R be a con-
tinuous and strictly increasing function overX , and consider the transoformed
problem

g∗ = min
x∈Rn

ϕ(f0(x)) (3.6)

subject to: fi(x) ≤ 0, i = 1, · · · ,m (3.7)
hi(x) = 0, i = 1, · · · , q (3.8)

• Problems (3.5) and (3.8) have the same feasible set and the same set of optimal
solutions.

• A common convexity-preserving objective transformation consists of squar-
ing a (non-negative) objective.

Monotone Constraint Transformation

• If a constraint in a problem can be expressed as l(x) ≤ r(x), andϕ is a contin-
uous and strictly increasing function overX , then this constraint is equivalent
to

ϕ(l(x)) ≤ ϕ(r(x))

• Ifϕ is continuous and strictly decreasing overX , then the constraints is equiv-
alent to

ϕ(l(x)) ≥ ϕ(r(x))

Change of Variables

If F : X → Y is an invertible mapping (i.e. ∀y ∈ Y there exist a unique x ∈ X
such that F (x) = y, F−1(y) = x), describing a change of variables where the setX
includes the intersection of the domain of f0 with the feasible set X of the problem.
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Then problem (3.4) can be reformulated as

p∗ = min
y∈Rn

g0(y)

subject to: gi(y) ≤ 0, i = 1, · · · ,m
si(y) = 0, i,= 1, · · · , q

where gi(y) = fi(F
−1(y)) and si(y) = hi(F

−1(y)).

Addition of Slack Variables

Bringing in new slack variables into the problem is a equivalent to the original prob-
lem. Consider the problem with the objective involves the sum of terms,

p∗ = min
x

r∑
i=1

ϕi(x)

s.t.: x ∈ X

Introducing slack variables ti, we reformulate the problem as

g∗ = min
x,t

r∑
i=1

ti

s.t.: x ∈ X
ϕi(x) ≤ ti, i = 1, · · · , r

where the new problem has the original variable x, plus the vector of slack variables
t = (t1, · · · , tr).

Other Transformations

• Substituting equality constraints with inequality constraints.

• Elimination of inactive constraints.
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3.3.5 Optimality Conditions

• Consider the optimization problemminx∈X f0(x), where f0 is convex and dif-
ferentiable, andX is convex. Then,

x ∈ X is optimal⇔ ∇f0(x)T (y − x) ≥ 0, ∀y ∈ X

• If∇f0(x) 6= 0, then∇f0(x) is a normal direction defining a supporting hyper-
plane {y : ∇f0(x)T (y − x) = 0}.

• When the problem is unconstrained (i.e. X in Rn), then the optimality con-
dition becomes∇f0(x) = 0.
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