
Chapter 4

Linear, Quadratic, and Geometric
Models

A linear program (LP) is an optimization problem that all the functions involved are
affine. The feasible set is thus a polyhedron, that is, an intersection of half-spaces.
Quadratic programs (QPs) is an extension of linear programs, in which all constraint
functions involved are affine, and the objective is the sum of a linear function and
a positive semi-definite quadratic form. QPs generalize both LPs and oridinary least-
squares. The objective is the same as in ordinary-least-squares, and the problem in-
cludes polyhedral constraints, just as in LP.

4.1 Unconstrained Minimization of Quadratic
Functions

• The linear function f0(x) = cTx + d with no constraints x ∈ Rn has the
optimal solution as follow:

p∗ = min
x∈Rn

cTx+ d

p∗ =

{
d if c = 0

−∞ otherwise

63



• For the quadratic case

p∗ = min
x∈Rn

1

2
xTHx+ cTx+ d

the minimum value p∗ of the quadratic function depends on the sign of the
eigenvalues ofH (H is symmetric).

p∗ =

{
−1

2
cTH+c+ d ifH � 0 and c ∈ R(H)

−∞ otherwise

4.2 Geometry of Linear and Convex Quadratic
Inequalities

4.2.1 Linear Inequalities and Polyhedra

• Closed Half-space. The set of points x ∈ Rn satisfying a linear inequality
aTi x ≤ bi is a closed half-space; the vector ai is normal to the boundary of the
half-space and points outwards.

• Polyhedron. A collection ofm linear inequalities aTi ≤ bi defines a region in
Rm which is the intersection ofm half-spaces, and is called a polyhedron. It is
equivalent to the matrix formAx ≤ b.

• Polytope. Depending on the actual inequalities, the region can be bounded or
unbounded. If it is bounded, it is called polytope.

• Face. The intersection of a polytope P with a supporting hyperplane H is
called a face of P , which is a convex polytope.

• Vertices. Vertices are the faces of dimension 0.

• Edges. The faces of dimension 1 are the edges of P .

• Facets. The faces of dimension dim P − 1 are called the facets.

• A polyhedron is a convex set, with boundarymade up of flat boundaries (facet).
Each facet corresponds to one of the hyperplanes defined by aTi x = bi. The
vectors ai are orthogonals to the facets, and point outside the polyhedra.
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Figure 4.1: Polytope inR3

• Equality Constraints. Equality constraints are allowed. Sets defined by affine
inequalities and equalities are also polyhedra. The set p = {Ax ≤ b, Cx = d}
can be expressed as an inequalities-only polyhedron:

p = {Ax ≤ b, Cx ≤ d,−Cx ≤ −d}

4.2.2 Quadratic Inequalities and Ellipsoids

• Quadratic inequality. The zero-level set x ∈ Rn of a quadratic inequality

f0(x) =
1

2
xTHx+ cTx+ d ≤ 0 (4.1)

is convex ifH � 0. (4.1) can be written as

f0(x) =
1

2
(x− x̂)H(x− x̂)− 1

4
cTH−1c+ d ≤ 0 (4.2)

which is a (possibly unbounded) ellipsoid with center in x̂ = −1
2
H−1c.

• Representation of ellipsoid. A bounded, full-dimensional ellipsoid is usually
represented in the form

ε = {x : (x− x̂)Tp−1(x− x̂) ≤ 1}, P � 0

where P is the shape matrix of the ellipsoid. This representation is analogous
to (4.1) and (4.2), with

H = 2P−1,
cTH−1c

4
− d = 1
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• Directions and lengths The eigenvectors vi of P define the directions of the
semi-axes of the ellipsoid; the lengths of the semi-axes are given by the eigen-
values of P ,

√
λi.

• The previous discussion suggests that the family of m convex quadratic in-
equalities

1

2
xTHix+ cTi x+ di ≤ 0, Hi � 0, i = 1, · · · ,m

includes the family of polyhedra and polytopes, but it is much richer.

Figure 4.2: A 3-dimensional ellipsoid

Figure 4.3: Intersection of the feasible sets of three quadratic inequalities inR2
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4.3 Linear Programs

4.3.1 Definition

• A linear program is an optimization problem with linear objective and affine
inequality constraints.

p∗ = min
x

cTx+ d

s.t. : Aeqx = beq,

Ax ≤ b

where the constant term d in the objective does not matter.

• Geometric Interpretation of LP. The set of points that satisfy the constraints
of an LP is a polyhedron (or a polytope when it is bounded):

X = {x ∈ Rn : Aeqx = beq, Ax ≤ b}

– Empty feasible set. If the feasible set is empty (i.e. the linear equalities
and inequalities have no intersection), then there is no feasible and hence
no optimal solution. By convention, the optimal objective is p∗ = +∞.

– Non-empty feasible set and bounded. If the feasible set is nonemtpy
and bounded, then the LP attains an optimal solution and the objective
value p∗ is finite. In this case, any optimal solution x∗ is on a vertex,
edge or facet of the feasible polytope. In particular, the optimal solution
is unique if the optimal cost hyperplane {x : cTx = p∗} intersects the
feasible polytope only at a vertex.

– Non-empty feasible set andunbounded. If the feasible set is nonempty
and unbounded, then the LP may or may not attain an optimal solution,
depending on the cost direction c, and there exist direction c such that
the LP is unbounded below. (i.e. p∗ = −∞ and the solution x∗ "drifts" to
infinity)
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Figure 4.4: The bounded region is the feasible set, pointA is xf , pointB is x, and the
direction fromA toB is x−xf . The hyperplane is {x : cTx = cTxf}with direction
c, and the half-space is {x : cT (x− xf ) < 0}. Point c is the optimal value x∗.

4.3.2 Polyhedral Functions

• Polyhedral function. We say that a function f : Rn → R is polyhedral if its
epigraph

epi f =
{

(x, t) ∈ Rn+1 : f(x) ≤ t
}

can be expressed as a polyhedron

epi f =
{

(x, t) ∈ Rn+1 : C

[
x
t

]
≤ d
}

(4.3)

for some matrix C ∈ Rm,n+1, and vector d ∈ Rm.

Examples of Polyhedral Function

• Maxima of affine functions. Polyhedra functions include functions that can
be expressed as a maximum of a finite number of affine functions:

f(x) = max
i=i,··· ,m

aTi x+ bi
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Figure 4.5: An LP with unbounded optimal objective

where ai ∈ Rn, bi ∈ R. For any family of functions fα(x) parameterized by
α ∈ A, it holds that

max
α∈A

fα(x) ≤ t⇔ fα(x) ≤ t, ∀α ∈ A

The epigraph of f

epi f =
{

(x, t) ∈ Rn+1 : max
i=1,··· ,m

aTi x+ bi ≤ t
}

can be expressed as the polyhedron

epi f =
{

(x, t) ∈ Rn+1 : αTi x+ bi ≤ t, i = 1, · · · ,m
}

• L1-norm function. The L1-norm function f(x) = ‖x‖1, x ∈ Rm, is poly-
hedra since it can be written as the maximum of 2n affine functions:

f(x) = max
i=1,··· ,m

max(xi,−xi)

• Sum of maxima of affine functions. Polyhedra functions also include func-
tions that can be expressed as a sum of functionswhich are themselvesmaxima
of affine functions:

f(x) =

q∑
j=1

max
i=1,··· ,m

aTijx+ bij
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• The condition (x, t) ∈ epi f is equivalent to the existence of a vector u ∈ Rq

such that
q∑
j=1

uj ≤ t, aTijx+ bij ≤ uij, i = 1, · · · ,m; j = 1, · · · , q (4.4)

hence, epi f is the projection (on the space of (x, t)-variables) of a polyhedron,
which is itself a polyhedron.

4.3.3 Minimization of Polyhedra Functions

• The problem of minimizing a polyhedral function f , under linear equality or
inequality (polyhedra) constraints, such as

min
x
f(x) : Ax ≤ b

can be cast as an LP

min
x,t

t : Ax ≤ b, (x, t) ∈ epi f

• Since epi f is a polyhedron, it can be expressed as in (4.3), hence the problem
is an LP of the form

min
x,t

t : C

[
x
t

]
≤ d

• Note that explicit representation of the LP in a standard form may require the
introduction of additional slack variables, as was done in (4.4).

• Minimization of Maxima of Affine Functions. Assume that f is defined as
the maximum of linear functions. Then the problem

min
x

max
1≤i≤m

(aTi x+ bi) : Cx ≤ d

can be expressed as the LP

min
x,t

t : Cx ≤ d, aTi x+ bi ≤ t

The objective function is linear in the variables (x, t) and the constraints are
ordinary inequalities involving affine functions.
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• Minimization of a Sum ofMaxima of Affine Functions. We can formulate
the problem of minimizing the function f with values

f(x) =

p∑
j=1

max
1≤i≤m

(aTijx+ bij)

under polytopic constraints as an LP by introducing a new variable for each
max-linear function that appears in the function f . We obtain the LP repre-
sentation

min
x,t

p∑
j=1

tj : tj ≥ aTijx+ bij, Cx ≤ d

i = 1, · · · ,m, j = 1, · · · , p

4.4 Quadratic Programs

4.4.1 Definition

• A quadratic program (QP) is anoptimizationproblemof the standard formwhere
the objective function f0 is a quadratic function and the constraint func-
tions, f0, · · · , fm are affine functions.

p∗ = min
x

1

2
xTHx+ cTx (4.5)

s.t. Aeqx = beq (4.6)
Ax ≤ b (4.7)

• The feasible set of QP is polyhedron (as in LP), but the objective is quadratic,
rather than linear.

• If theH matrix is positive-semide�nite, then the QP is convex.

• LPs are special cases of QPs, in which the matrixH is zero.
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4.4.2 Constrained Least Squares

Quadratic programs arise naturally from least-squares problemswhen linear equality
or inequality constraints need to be enforced on the decision variables. A linearly-
constrained LS problem takes the form

p∗ = min
x

‖Rx− y‖22
s.t. : Aeqx = beq

Ax ≤ b

This is a convex QP, having objective (neglecting a constant term d = ‖y‖2)

f0(x) =
1

2
xTHx+ cTx

withH = 2RTR � 0, cT = −2yTR.

4.4.3 Quadratic Constrained Quadratic Programs

A generalization of the QP model is obtained by allowing quadratic equality and in-
equalities constraints. A quadratic constrained quadratic program (QCQP) takes the
form

P ∗ = min
x

xTH0x+ 2cT0 x+ d0

s.t. : xTHix+ 2cTi x+ di ≤ 0, i ∈ I
xTHjx+ 2cTj x+ dj = 0, j ∈ J

where I,J denote the index sets relative to constraints.

A QCQP is convex if and only if the objective and the inequality constraints are con-
vex quadratic, and all the equality constraints are actually affine, H0 � 0, Hi �
0, Hj = 0.
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4.5 Modeling with LP and QP

4.5.1 Problems Involving Cardinality and TheirL1 Relaxations

Many engineering applications require the determination of solutions that are sparse,
that possess only few non-zero entries (low-cardinality solutions). However, finding for
low-cardinality solutions (i.e., solutions with smallL0 norm) is hard in general, from
a computational point of view. For this reason, several heuristics are often used. For
example, replacing the L0 norm with the L1 norm.

Cardinality Minimization

• Cardinality (L0 norm). The cardinality of a vector x ∈ Rn is the number of
non-zero elements in it. It is sometimes called theL0 norm of x, although the
cardinality function is not a norm. The cardinality is denoted card(x) or ‖x‖0.
The cardinality function is difficult to optimize; thus, in cardinality minimiza-
tion problems, the L1 norm is often used as a surrogate.

• Convex envelope. The convex envelope env f of a function f : C → R is the
largest convex function that is an under estimator of f on C , i.e. env f ≤
f(x)∀x ∈ C and no other convex function is uniformly larger then env f on
C

env f = sup {φ : C → R : φ is convex and φ ≤ f}

• Intuitively, the epigraph of the convex envelope of f corresponds to convex hull
of the epigraph of f (see Figure 4.6).

• Cardinalityminimization. Manyproblems in engineering and scientific com-
puting can be cast as

min
x

Card(x) : x ∈ P

whereP is a polyhedron (a convex set). A related problem is a penalized version
of the above, where we seek to trade-off an objective function against cardi-
nality:

min
x
f(x) + λCard(x) : x ∈ P
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Figure 4.6: A non-convex function f and its convex envelope (dashed) env f

, where f(x) is some (usually convex) cost function, and λ > 0 is a penalty
parameter.

• TheL1 norm heuristic. TheL1 norm heuristic consists in replacing the above
(non-convex) cardinality function Card(x) with a polyhedral (convex) one, in-
volving the L1 norm. This heuristic leads to replace the above prolem with

min
x
‖x‖1 : x ∈ P

where P is a polyhedron.

• The reason why this works is thatL1 norm provides a lower bound for the orig-
inal L0 problem. The L1 norm heuristic is convex and can be written as the
QP by adding slack variables.

4.5.2 LP Relaxations of Boolean Problems

Definition

• Boolean problems. A Boolean optimization problem is one where the vari-
ables are constrained to be Boolean (i.e. to take on values in {0, 1}).

p∗ = min
x
cTx : Ax ≤ b, x ∈ {0, 1}n

Such problems are usually very hard to solve exactly, since they potentially re-
quire combinatorial enumeration of all the 2n possible points in {0, 1}n.
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• LP relaxation. A tractable relaxation of a Boolean problem is typically ob-
tained by replacing the discrete set {0, 1}n with the hypercube [0, 1]n, which
is a convex set.

p̄∗ = min
x
cTx s.t. : Ax ≤ b, x ∈ [0, 1]n

• Lower bound. The feasible set of the relaxed problem is larger than (includes)
the feasible set of the original problem, the relaxation provides a lower bound
on the original problem: p̄∗ ≤ p∗.

Total Unimodularity and Exact Solutions

Boolean problems are not always hard to solve. If the solution of the LP relaxation
is Boolean, then this solution provides an exact solution (optimal) for the original
Boolean problem. Such a solution arises when b is an integer and theAmatrix has a
property called total unimodularity.

• Totally unimodular (TUM). A matrix A is totally unimodular (TUM) if every
square submatrix ofA has determinant -1, 1, or 0. Polytopes defines via TUM
matrices have integer vertices.

• Weighted bipartitematching. A weighted bipartite matching problem arises
when n agents need to be assigned to n tasks, in a one-to-one fashion, and the
cost of matching agent i to task j is wij .
We define variables xij such that xij = 1 if agent i is assigned to task j and
xij = 0 otherwise, the problem can be written as

p∗ = min
x

n∑
i,j=1

wijxij

s.t. : xij ∈ {0, 1} ∀i, j = 1, · · · , n
n∑
i=1

xij = 1 ∀j = 1, · · · , n (one agent for each task)

n∑
j=1

xij = 1 ∀i = 1, · · · , n (one task for each agent)
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AnLP relaxation is obtained by dropping the integer constraint on thexij vari-
ables, obtaining xij ≥ 0.

• Shortest path The shortest path problem is the problem of finding a path
between two vertices (or nodes) in a directed graph such that the sum of the
weights along the edges in the path is minimized. The shortest path problem
can be solved very efficiently with specialized algorithms based on the LP re-
laxation.

4.5.3 Other LP and QP Problems

• Linear binary classification

• Network flows

• Portfolio optimization

• Nash equilibria in zero-sum games

• Filter design

4.6 LS-related Quadratic Programs

A major source of quadratic problems comes from LS problems. The standard LS
objective

f0(x) = ‖Ax− y‖22
is a convex quadratic function, which can be written in the standard form

f0(x) =
1

2
xTHx+ cTx+ d

withH = 2(ATA), c = −2ATy, d = yTy.

Finding the unconstrained minimum of f0 is a linear algebra problem. This amounts
to finding the solution for the system of linear equations from the optimality condi-
tion∇f0(x) = 0 (normal equation):

ATAx = ATy

We next illustrate some variants of the basic LS problem.
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4.6.1 Equality Constrained LS

Minimizing a convex quadratic function under linear equality constraints is equiva-
lent to solving an augmented system of linear equations. Solving the linear equal-
ity constrained LS problem

min
x

‖Ax− y‖22
s.t. : Cx = d

is equivalent to solving the following linear equations in x, λ:[
C 0
ATA CT

] [
x
λ

]
=

[
d

ATy

]

4.6.2 L1 Regularization and The LASSO Problem

• Basispursuit denoisingproblem(BPDN). The regularizedLSproblemswith
L1 norm is known as the basis pursuit denoising problem (BPDN):

min
x∈Rn
‖Ax− y‖22 + λ‖x‖1, λ ≥ 0 (4.8)

where ‖x‖1 = |x1| + · · · + |xn|. The basic idea is that the L1 norm of x us
used as a proxy for the cardinality of x (the number of nonzero entries in x).

• Trade-off. The interpretation is that it formalizes a trade-off between the ac-
curacy with which Ax approximates y and the complexity of the solution, in-
tended as the number of nonzero entries in x.

• Larger λ means the problem is biased towards finding low-complexity (more
zeros) solutions.

• A problem similar to (4.8) is in the context of piece-wise constant fitting. Problem
(4.8) can be cast in the form of a standard QP by introducing slack variables
u ∈ Rn:

min
x,u∈Rn

‖Ax− y‖22 + λ
n∑
i=1

ui

s.t. : |xi| ≤ ui, i = 1, · · · , n
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• Least absolute shrinkage and selection operator (LASSO). An analogous
version of problem (4.8) is obtained by imposing a constraint on the L1 norm
of x, instead of inserting this term in the objective as a penalty. This is called
least absolute shrinkage and selection operator (LASSO) problem (often, it is also
used to refer to problem (4.8)).

min
x∈Rn

‖Ax− y‖22
s.t. : ‖x‖1 ≤ α

• The LASSO problem can be formulated in the form of minimization of ‖x‖1
subject to a constraint on the residual norm

min
x∈Rn

‖x‖1

s.t. : ‖Ax− y‖2 ≤ ε

which can also be cast as QCQP. All these variations on the LASSO problem
yield convex optimization models that can be solved by standard efficient al-
gorithms for QCQP, at least in principle.

4.7 Geometric Programs

Geometric programming (GP) is an optimizationmodel where the variables are non-
negative, and the objective and constraints are sums of powers of those variables,
with non-negative weights. This arises naturally in the context of geometric design,
or with models of processes that are well approximated with power laws. Although
GPs are not convex, we can transform them, via a change of variables, into convex
problems. In its convex form, GP can be seen as a natural extension of LP.

4.7.1 Monomials and Posynomials

Monomials

• Monomials. A function f : Rn → R ismonomial if its domain isR++ (the set
of vectors with positive components) and its value take the form

f(x) = cxa11 x
a2
2 · · ·xann , x ∈ Rn > 0, c > 0, a ∈ Rn
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where we follow the power law notation.

• Log-linearity and Power Laws. Monomials are closely related to linear or
affine functions. If f is a monomial in variable x, the log f is affine in the
vector. Hence monomial functions could be called log-linear.

• Just as linear models are important in (approximate) models between general
variables, monomials play an ubiquituous role for modeling relationships be-
tween positive variables, such as prices, concentrations, energy, or geometric
data such as length, area and volume, etc.

Posynomials

• Posynomial. A posynomial is defined as a function f : Rn
++ → R which is a

non-negative linear combination of positive monomials:

f(x) =
K∑
i=1

cix
a(i) , x > 0

where ci > 0 and a(i) ∈ Rn.

• Generalized posynomial. A generalized posynomial is any function obtained
from posynomials via addition, multiplication, pointwise maximum, and rais-
ing to a constant power. For example,

f(x) = max
(

2x2.31 x72, x1x2x
3.14
3 ,

√
x1 + x32

)

4.7.2 Convex Representation of Posynomials

Monomials and (generalized) posynomials are not convex. Consider a posynomial
function f . Instead of the original (positive) variables, we use the new variable yi =
log xi, i = 1, · · · , n. We then take the logarithm of the function f .

• Monomial. For amonomial f(x) = cxa11 x
a2
2 · · · xann where a ∈ Rn, x ∈ Rn

++

and c > 0, taking a logarithmic change of variables

yi = log xi
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we have

˜g(y) = f(x(y)) = cea1y1 · · · eanyn = cea1y1+···+anyn

[letting b .= log c] = ea
T y+b

log f(x) = aTy + b

where yi = log xi and b = log c. The transformation yields an affine function.

• Posynomial. For a posynomial f(x) =
∑K

k=1 ckxak where c > 0,

log f(x) = log
( K∑
k=1

ea
T
k y+bk

)
where bk = log ck.

• Log-sum-exp. The above can be written to

log f(x) = lse(Ay + b)

where A is the K × n matrix with rows a1, · · · , aK , b ∈ RK , and lse is the
log-sum-exp function, which is convex. We can view a posynomial as the log-
sum-exp function of an affine combination of the logarithm of the orig-
inal variables.

Convex Representation of Generalized Posynomials

We can transform generalized posynomail inequalitites into convex by adding vari-
ables and taking logarithmic change of variables.

• Example. Consider the posynomial

f(x) = max(f1(x), f2(x)),Rn
++ → R

where f1, f2 are two posynomials. For t > 0, the constraint f(x) ≤ t can be
expressed as two posynomials constraints in (x, t), f1(x) ≤ t, f2(x) ≤ t.

80



• Example. For t > 0, α > 0, consider the power constraint

(f(x)α) ≤ t

where f is an ordinary posynomial. Since α > 0, the above is equivalent to

f(x) ≤ t1/a

which is equivalent to the posynomial constraint in (x, t)

g(x, t)
.
= t−1/af(x) ≤ 1

Hence, by adding as many variables as necessary, we can express a generalized
posynomial constraint as a set of ordinary posynomial ones.

4.7.3 Standard Forms of GP

• Standard form. A geometric program (GP) involves generalized posynomial
objective and inequality constraints, and (possibly) monomial equality con-
straints.

min
x

f0(x)

s.t.: fi(x) ≤ 1, i = 1, · · · ,m
hi(x) = 1, i = 1, · · · , p

where f0, · · · , fm are generalized posynomials, and hi, i = 1, · · · , p are pos-
itive monomials.

• Standardposynomials standard form. Assuming for simplicity that thef0, · · · , fm
are standard posynomials, we can express the above GP as

min
x

K0∑
k=1

ck0x
a(k0)

s.t.:
Ki∑
k=1

ckix
a(ki) ≤ 1, i = 1, · · · ,m

gix
r(i) = 1, i = 1, · · · , p

where a(k0), · · · , a(km), r(1), · · · , r(p) are vectors inRn, and cki , gi are positive
scalars.
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• Convex form. Using the logarithmic transformation, we can rewrite the above
non-convex GP into an equivalent convex formulation,

min
y

lse(A0y + b0)

s.t.: lse(Aiy + bi) ≤ 0, i = 1, · · · ,m
Ry + h = 0

where Ai is a matrix with rows aT1i , · · · , a
T
Kii

, bi is a vector with elements
c1i , · · · , cKii. R is a matrix with rows rT(1), · · · , rT(p), and h is a vector with
elements log g1, · · · , log gp.
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