
Chapter 5

Second-order Cone and Robust
Models

Second-order cone programming (SOCP) is a generalization of linear and quadratic pro-
gramming that allows for affine combinations of variables to be constrained inside
a special convex set, a second-order cone. The SOCP model includes as special cases
problems with convex quadratic objective and constraints. SOCP models are partic-
ularly useful in geometry problems, approximation problems, and probabilistic prob-
lems.

5.1 Geometry of Cones

• Cone. A set of points C ∈ Rn is called a cone if

αx ∈ C, ∀x ∈ C, α ≥ 0

x+ y ∈ C, ∀x ∈ C, y ∈ C

This is similar to a subspace, but instead of α ∈ R, here α > 0.

• Example. Simple examples: |x| ≤ y, y ≥ 0. See Figure 5.1.

• Slice. A slice of a cone is its intersectionwith a subspace (e.g. linear constraint).
It can be a polyhedral, ellipsoidal, or something else.
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Figure 5.1: Examples of a cone

Figure 5.2: Examples of intersection of convex cones and subspace

• Polyhedral cone. By adding one dimension to the polyhedron Ax ≤ b, x ∈
Rn, we can get a polyhedral cone inRn+1. A polyhedral cone in (x, t) ∈ Rn+1

is {
Ax ≤ bt, t ≥ 0

}
The slice t = 1 is the original polyhedron. See Figure 5.3

Figure 5.3: Polyhedron and polyhedral cone

• Ellipsoidal cone. A ellipsoid xTPx + qTx + r ≤ 0, P � 0, x ∈ Rn can be
represented by ‖Ax+ b‖ ≤ c. By adding a dimension, we can get a ellipsoidal
cone {

‖Ax+ bt‖ ≤ ct
}

in (x, t) ∈ Rn+1. The slice t = 1 is the original ellipsoid. See Figure 5.4.
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Figure 5.4: Ellipsoid and ellipsoidal cone

Figure 5.5: SOC inR3

5.2 Second-order Cone Programs

• Second-order cone (SOC) inR3. The SOC inR3 is the set of vectors (x1, x2, y)
such that

√
x21 + x22 ≤ y. Horizontal sections of this set at level y = 1 is is the

circle of center (0, 0, 1) and radius one (in dark blue).

• (n+ 1)-dimensional SOC. The second-order cone inRn+1 is defined as

Kn =
{

(x, t), x ∈ Rn, t ∈ R : ‖x‖2 ≤ t
}

• Convex cone. An SOC is a convex cone. The setKn is convex, since it can be
expressed as the intersection of (infinite) half-spcaes:

Kn =
⋂

u:‖u‖2≤1

{
(x, t), x ∈ Rn, t ∈ R : xTu ≤ t

}
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It is also a cone, since for any z ∈ Kn it holds that αz ∈ Kn, ∀α ≥ 0.

5.2.1 The Rotated Second-order Cone

The rotated second-order cone inRn+2 is the set

Krn =
{

(x, y, z), x ∈ Rn, y ∈ R, z ∈ R : xTx ≤ 2yz, y ≥ 0, z ≥ 0
}

It can be expressed as a linear transformation (a rotation) of the (plain) second-order
cone inRn+2

‖x‖22 ≤ 2yz, y ≥ 0, z ≥ 0⇔
∥∥∥∥[ x

1√
2
(y − z)

]∥∥∥∥
2

≤ 1√
2

(y + z)

Pickw = (x, y−z√
2

), t = y+z√
2
. The two sets of variables are related by a rotationmatrix

R.

Proof. ∥∥∥∥[ x
1√
2
(y − z)

]∥∥∥∥
2

≤ 1√
2

(y + z)

‖x‖22 +
1

2
(y − z)2 ≤ 1

2
(y + z)2

‖x‖22 +
1

2
(y2 − 2yz + z2) ≤ 1

2
(y2 + 2yz + z2)

‖x‖22 ≤ 2yz
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