Chapter 5

Second-order Cone and Robust Models

Second-order cone programming (SOCP) is a generalization of linear and quadratic programming that allows for affine combinations of variables to be constrained inside a special convex set, a second-order cone. The SOCP model includes as special cases problems with convex quadratic objective and constraints. SOCP models are particularly useful in geometry problems, approximation problems, and probabilistic problems.

5.1 Geometry of Cones

- Cone. A set of points $C \in \mathbb{R}^{n}$ is called a cone if

$$
\begin{array}{r}
\alpha x \in C, \forall x \in C, \alpha \geq 0 \\
x+y \in C, \forall x \in C, y \in C
\end{array}
$$

This is similar to a subspace, but instead of $\alpha \in \mathbb{R}$, here $\alpha>0$.

- Example. Simple examples: $|x| \leq y, y \geq 0$. See Figure 5.1.
- Slice. A slice of a cone is its intersection with a subspace (e.g. linear constraint). It can be a polyhedral, ellipsoidal, or something else.

Figure 5.1: Examples of a cone

Figure 5.2: Examples of intersection of convex cones and subspace

- Polyhedral cone. By adding one dimension to the polyhedron $A x \leq b, x \in$ \mathbb{R}^{n}, we can get a polyhedral cone in \mathbb{R}^{n+1}. A polyhedral cone in $(x, t) \in \mathbb{R}^{n+1}$ is

$$
\{A x \leq b t, t \geq 0\}
$$

The slice $t=1$ is the original polyhedron. See Figure 5.3

Figure 5.3: Polyhedron and polyhedral cone

- Ellipsoidal cone. A ellipsoid $x^{T} P x+q^{T} x+r \leq 0, P \succ 0, x \in \mathbb{R}^{n}$ can be represented by $\|A x+b\| \leq c$. By adding a dimension, we can get a ellipsoidal cone

$$
\{\|A x+b t\| \leq c t\}
$$

in $(x, t) \in \mathbb{R}^{n+1}$. The slice $t=1$ is the original ellipsoid. See Figure 5.4.

Figure 5.4: Ellipsoid and ellipsoidal cone

Figure 5.5: SOC in \mathbb{R}^{3}

5.2 Second-order Cone Programs

- Second-order cone (SOC)in \mathbb{R}^{3}. The SOC in \mathbb{R}^{3} is the set of vectors $\left(x_{1}, x_{2}, y\right)$ such that $\sqrt{x_{1}^{2}+x_{2}^{2}} \leq y$. Horizontal sections of this set at level $y=1$ is is the circle of center $(0,0,1)$ and radius one (in dark blue).
- $(n+1)$-dimensional SOC. The second-order cone in \mathbb{R}^{n+1} is defined as

$$
\mathcal{K}_{n}=\left\{(x, t), x \in \mathbb{R}^{n}, t \in \mathbb{R}:\|x\|_{2} \leq t\right\}
$$

- Convex cone. An SOC is a convex cone. The set \mathcal{K}_{n} is convex, since it can be expressed as the intersection of (infinite) half-spcaes:

$$
\mathcal{K}_{n}=\bigcap_{u:\|u\|_{2} \leq 1}\left\{(x, t), x \in \mathbb{R}^{n}, t \in \mathbb{R}: x^{T} u \leq t\right\}
$$

It is also a cone, since for any $z \in \mathcal{K}_{n}$ it holds that $\alpha z \in \mathcal{K}_{n}, \forall \alpha \geq 0$.

5.2.1 The Rotated Second-order Cone

The rotated second-order cone in \mathbb{R}^{n+2} is the set

$$
\mathcal{K}_{n}^{r}=\left\{(x, y, z), x \in \mathbb{R}^{n}, y \in \mathbb{R}, z \in \mathbb{R}: x^{T} x \leq 2 y z, y \geq 0, z \geq 0\right\}
$$

It can be expressed as a linear transformation (a rotation) of the (plain) second-order cone in \mathbb{R}^{n+2}

$$
\|x\|_{2}^{2} \leq 2 y z, y \geq 0, z \geq 0 \Leftrightarrow\left\|\left[\begin{array}{c}
x \\
\frac{1}{\sqrt{2}}(y-z)
\end{array}\right]\right\|_{2} \leq \frac{1}{\sqrt{2}}(y+z)
$$

Pick $w=\left(x, \frac{y-z}{\sqrt{2}}\right), t=\frac{y+z}{\sqrt{2}}$. The two sets of variables are related by a rotation matrix R.

Proof.

$$
\begin{aligned}
\left\|\left[\begin{array}{c}
x \\
\frac{1}{\sqrt{2}}(y-z)
\end{array}\right]\right\|_{2} & \leq \frac{1}{\sqrt{2}}(y+z) \\
\|x\|_{2}^{2}+\frac{1}{2}(y-z)^{2} & \leq \frac{1}{2}(y+z)^{2} \\
\|x\|_{2}^{2}+\frac{1}{2}\left(y^{2}-2 y z+z^{2}\right) & \leq \frac{1}{2}\left(y^{2}+2 y z+z^{2}\right) \\
\|x\|_{2}^{2} & \leq 2 y z
\end{aligned}
$$

