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Abstract

In this report, we discuss current word representation learning and investigate the
work by Nickel and Kiela [9] where word embeddings are learned in hyperbolic space,
a non-euclidean space. We first review the background of word representation, and
introduce the geometric properties in hyperbolic space. Next, we explain why they
are useful for learning hierarchies and present the experimental results to show the
advantages. Finally, we discuss some limitations and extensions of the work in the
last section.

1 Introduction

In machine learning applications, data representations generally influence the success of
the algorithms. Different data representations may encode different information or ex-
planatory factors of the data. For natural language such as text, distributed representations
have proven to be effective and flexible for capturing prior knowledge. Distributed rep-
resentations of words group similar words together in a vector space. Ideally, distributed
representations embed words’ semantic and syntactic relationship into low-dimensional
vector spaces, called word embeddings.

This report is focused on one particular embedding method called Poincaré embeddings
[9], which is used for learning latent hierarchical structures in the data. We start from the
background behind distributed representations of words. Then we explain one embedding
technique called Poincaré embedding, a new approach for learning hierarchical structures
by embedding text into hyperbolic space. The report presents the results of our experiment
to evaluate the capability of the Poincaré embeddings. Finally, we discuss the limitations
of this method and its extensions.

2 Background

2.1 Word Representation Learning

Learning representation of words has becomes a central question in natural language pro-
cessing. The ability to capture information from the data is the foundation for the learning
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Figure 1: Negative curvature in hyperbolic space (hyperbolic triangle)
Source: Wikipedia

and generation of the downstream natural language processing tasks. In recent years, neu-
ral network based approaches utilize massive amounts of data to embed words into lower
dimension vector spaces. Word embeddings are effective for many natural language pro-
cessing tasks because they are flexible and encode valuable syntactic and semantic infor-
mation. Word embeddings are motivated by the concept that semantic similarities between
words are based on their distributional properties in the large amount of text. The idea of
distributional properties is called distributional hypothesis [5], meaning that linguistic items
with similar distributions have similar meanings.

Popular word embeddings such as GloVe [10], Word2Vec [8], and FastText [1] are widely
used in various tasks and have shown great success. Although these embedding methods
have proven successful, very few methods exist that are able to encode tree-like or graph-
like hierarchical relationships of the data. Methods such as Node2Vec [4] and latent space
approaches [6] are introduced to embed social networks into vector spaces.

2.2 Hyperbolic Geometry

In order to learn efficient representations for hierarchical relationships, researchers pro-
posed to computed the embeddings in a non-euclidean space. Here, we introduce the hy-
perbolic space, space with negative curvature (see figure 1) that holds all the postulates of
Euclid except the fifth one. In hyperbolic geometry, the fifth postulate, parallel postulate,
of Euclidean geometry is replaced by its negation. In other words, in the hyperbolic space,
“there exist a line l and a point P not on l such that at least two distinct lines parallel to l
pass through P ” (see figure 2).

There are several models for representing a hyperbolic plane. The approach discussed
later is based on the Poincaré ball model. In two dimensions, all points are in the interior
of the unit disk and in higher-dimensions, all points are in the interior of the unit ball.
The hyperbolic geometry has certain properties that make it suitable to model hierarchical
data.

In the Poincaré ball model, the set of points are denoted as Bd = {x ∈ Rd, ‖x‖2 ≤ 1},
where ‖x‖2 is the Euclidean norm. The hyperbolic distance between two pointsu, v ∈ Bd
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Figure 2: Poincaré disk hyperbolic parallel lines
Source: Wikipedia

has a particular form

dH(u, v) = arcosh

(
1 + 2

‖u− v‖2

(1− ‖u‖2)(1− ‖v‖2)

)

One property that makes it well-suited for hierarchical structure is that the hyperbolic disc
area and circle length grow exponentially with its radius. For example, in two dimensions
with curvatureK = 1, the hyperbolic disc area is

2π(cosh r − 1) = π
(
(er + e−r)− 2

)
cosh r =

1

2
(er + e−r)

and the hyperbolic circle length is

2π sinh r = π(er − e−r)

sinh r =
1

2
(er − e−r)

A normal tree-like structure that grows exponentially can now be easily placed in the hy-
perbolic circle with radius r that is proportional to its height h. All leaf nodes at level h
are located at the sphere with r radius and all internal nodes at level less than h are located
within the sphere.

In Euclidean space, the disc area (2πr2) and the circle length (2πr) only grow quadrat-
ically and linearly with its radius r. Thus, we will need to increase the dimensionality to
be able to model a single hierarchy. Due to the property discussed above, learning embed-
dings in hyperbolic space have captured the attention of some researchers.

In the following section, we discuss how to embedWordNet corpora in the hyperbolic space
using the Poincaré ball model to capture the hypernymy, hyponymy relation. Even though
a single hierarchy can be modeled in two dimensional hyperbolic space (B2) as shown
above, using a higher dimensional Poincaré ball (Bd) allows us to to model multiple latent
hierarchies within the text corpora.

3



3 Poincaré Embeddings

3.1 WordNet Dataset

The main focus for Poincaré embeddings is its capability to embed data that exhibits latent
hierarchical structures. Thus, we conduct the experiment usingWordNet dataset [3]. Word-
Net is a large lexical database of the English language. It groups nouns, verbs, adjectives
and adverbs into sets of cognitive synonyms (synsets).

We are interested in one of the relations of WordNet called hypernymy, hyponymy relation
(super-subordinate relation or IS-A relation). This relation links more general synsets to
increasingly specific ones. For example, furniture will be linked to bed. In this ex-
ample, we say bed is a hyponymy of furniture and furniture is the hypernymy of
bed.

Furthermore, we are also interested in the transitive closure of the hypernymy, hyponynm
relation. The transitive closure states that the category furniture includes bed and
the category of bed in turn includes bunkbed, which makes bunkbed a hyponynm of
furniture. This is similar to a tree or a directed graph structure. Therefore, all noun
hierarchies ultimately go up to the root node, which is entity.

The hypernymy, hyponynm relation is well suited for the Poincaré embeddings because
it exhibits a clear latent hierarchical structure. In this experiment, we only use mammal
subtree extracted from the noun synsets.

3.2 Experimental set-up

We use the implementation from the author of Poincaré embeddings 1 and the gensim 2

library for our experiment.

The transitive closure of the WordNet mammal hierarchy consists of 1181 words and 6541
hypernymy, hyponymy relations. The embeddings are learned from the set of observed
hypernymy, hyponymy relations pair, denoted as D = {(u, v)}. The embeddings are
learned by minimizing the distance of related words and maximizing the distance of un-
related words in the embedding space.

3.3 Training Details

When embedding a structure into another space, we aim to preserve distances of the re-
lationships and reflect the semantic similarity of the words. For the WordNet dataset, our
goal is to preserve the hierarchical distance of the hypernynm, hyponynm relations. For
example, if two hyponynm x and y are children of a hypernynm z, we can then place z at
the origin O or as a root in a tree. Now, the hierarchical distance between x and y is the
distance between origin O and x plus the distance between origin O and y. We can then

1Github: https://github.com/facebookresearch/poincare-embeddings
2gensim library: https://radimrehurek.com/gensim/index.html
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normalize the hierarchical distance and get a distance ratio of 1.

d(x, y) = d(x,O) + d(y,O)

d(x, y)

d(x,O) + d(y,O)
= 1

However, in Euclidean space the distance ratio is a constant that is always smaller than 1
unless x, y and O are on the same line or plane, which contradicts the hierarchy assump-
tion.

dE(x, y)

dE(x,O) + dE(y,O)
≤ 1

Furthermore, the distance ratio remains a constant asx and ymoves further away from the
origin. Figure 3 shows 7 pairs of two points, A and B, moving further away from origin.
The distance ratio for all pairs of A and B is the same. Figure 4 illustrates that as x norm
increases, the distance ratio in Euclidean space remain constant.

On the other hand, in hyperbolic space, the distance ratio approaches 1 asxnorm increases
(see figure 4).

dH(x, y)

dH(x,O) + dH(y,O)
≈ 1

This means that if we place x and y close to the edge of the Poincaré ball, we can get a
distance close to their original hierarchical distance.

3.3.1 Loss Function

Given a loss function L(θ), we want to learn the embeddings Θ = {θi}ni=1, where θi ∈
Bd, in hyperbolic space that makes pairs of hypernynm and hyponynm close to each other
according to their hyperbolic distance.

Given a set of observed mammal hypernymy, hyponymy relations pair, denoted as D =
{(u, v)}, we minimize the loss function

L(Θ) =
∑

(u,v)∈D

log
e−d(u,v)∑

v′∈N (u) e
−d(u,v′)

where N (u) = {v′|(u, v′) 6∈ D} ∪ {v} is the set of negative examples that is not a
hyponynm for u plus the actual hyponynm v. This loss function minimizes the distance
between related words and maximizes distance between words for which we didn’t observe
the hypernynm, hyponynm relationship.

4 Results and Evaluation

To evaluate the quality of the embeddings, we rank the distance between a pair of relations
d(u, v) among chosen the negative examples for u. After ranking all pairs of relations in
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Figure 3: 7 pairs of point A and B in Euclidean space

Figure 4: Poincaré and Euclidean distance ratio
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Poincaré Embedding

Dimensions 5 10 50 100 200

MAP 0.383 0.386 0.353 0.384 0.388

Mean Rank 4.0 3.9 3.9 3.9 3.9

Table 1: MAP and mean rank of Poincaré embedding

Euclidean Embedding

Dimensions 5 10 50 100 200

MAP 0.019 0.038 0.305 0.325 0.341

Mean Rank 184.5 100.3 11.4 18.4 9.5

Table 2: MAP and mean rank of Euclidean embedding

the mammal subtree, we calculate the mean rank of the data set and the mean average pre-
cision (MAP) of the ranking. Table 1 and table 2 present the results of embedding mammal
subtree in hyperbolic space and in euclidean space. It can be shown that Poincaré embed-
dings can achieve a better result with fewer dimensions.

Next, we visualize the Poincaré embedding by projecting them onto a two dimensional
plane using t-SNE. The visualization shows that the learned embeddings form several clus-
ters in hyperbolic space. We then color all hyponynms of a given word (its hyponynm sub-
tree) to evaluate whether the embeddings capture the transitive closure of the relation. In
figure 5, we color all hyponynms of dog in red. In figure 6 we color all hyponynms of cat
in red. It is shown that hyponynms are placed close to each other in a given subtree in the
embedding space. In figure 7, we randomly annotate some data points to understand what
the clusters represent. We can see that there are several clusters including canidae (”dog-
like” mammals), feliformia (”cat-like” mammals), primates, marine mammals, rodents, and
bats. From the 3 figures, we can see that related words are placed closer and it forms a
circle (ball) like structure that align with our assumption and the properties of hyperbolic
geometry discussed earlier.

5 Discussion and Future Work

The focus of this report is evaluating the properties of hyperboblic geometry and its ca-
pability for embedding hierarchical relations. It is shown experimentally that embeddings
learned in hyperbolic space require far fewer dimensions than embeddings learned in Eu-
clidean space on the WordNet dataset. Furthermore, the simulated distance ratio shows
that Poincaré distance can be used to approximate the true hierarchical distance of the
tree-like structure data.

The embeddings are learned explicitly from text corpus that exhibit clear hierarchical rela-
tions. One aspect of future work is to evaluate their performance in the downstream tasks.
Another aspect of future work is to learn word embeddings in hyperbolic space directly
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Figure 5: dog hyponyms subtree (highlighted in red) in a 25 dimensions Poincaré embed-
dings projected down to 2 dimensions
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Figure 6: Poincaré Embeddings cat homonyms subtree within mammal subtree (25 di-
mensions)

9



Figure 7: Poincaré Embeddings mammal subtree with labels (25 dimensions)
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from free text corpus without exposing hierarchical relations explicitly.

Several recent research works have focused on this direction. Bhuwan et al. [2] extend the
method from Nickel and Kiela [9] to allow learning embeddings with free text. Leimeister
and Wilson [7] attempt to learn word embeddings in hyperbolic space with skip-gram ar-
chitecture from Word2Vec. Alexandru et al. [11] adapts the GloVe algorithm to hyperbolic
space.

These research works show evidence of improvements with tasks that exhibit intuitive
hierarchy but not with all downstream tasks. Further investigation could focus on devel-
oping algorithms to generalize hyperbolic embeddings for more downstream tasks where
hierarchical organizations may not be explicitly shown.
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