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This note is a summary of the paper Neural Word Embedding as Implicit Matrix Factorization [1]. All typos are on
me.

1 Skip-Gram with Negative Sampling (SGNS)

1.1 Notation
The skip-gram model assumes a corpus of words w ∈ VW and their context c ∈ VC , where VW and VC are the
word and context vocabularies. The words typically come from un-annotated corpora of words w1, w2, · · · , wn, and
the context for word wi are the words surrounding it in an L-sized window wi−L, · · · , wi−1, wi+1, · · · , wi+L. The
collection of observed word and context pairs are denoted as D. We use #(w, c) to denote the number of times the
pair (w, c) appears inD. Similarly, #(w) =

∑
c′∈Vc

#(w, c′) and #(c) =
∑

w′∈VW
#(w′, c) are the number of times

w and c occurred in D, respectively.

Each word w and context c is associated with a vector ~w ∈ Rd,~c ∈ Rd, where d is the embedding’s dimension.
These vectors are parameters to be learned. We can put the vectors into a matrix W (C) with dimension |VW | ×
d (|VC | × d) where each row Wi (Ci) refers to the vector representation of the ith word (context) in the corresponding
vocabularies.

1.2 SGNS’s Objective
Consider a word-context pair (w, c), the probability that (w, c) came from the data is modeled as:

P (D = 1|w, c) = σ(~w · ~c) =
1

1 + e−~w·~c (1)

Similarly, the probability that (w, c) did not come from the data is modeled as:

P (D = 0|w, c) = 1− P (D = 1|w, c)
= 1− σ(~w · ~c) = σ(−~w · ~c)

(2)

The SGNS’s objective tries to maximize P (D = 1|w, c) for observed (w, c) pairs and to maximize P (= 0|w, c) for
randomly sampled “negative” examples, under the assumption that randomly selecting a context for a given word is
likely to result in an unobserved (w, c) pair. For a single (w, c) observation, the objective function is then:

log σ(~w · ~c) + k · EcN∼PD
[log σ(−~w · ~cN )] (3)

where k is the number of “negative” samples and cN is the sampled negative context, drawn according to the empirical
unigram distribution PD(c) = #(w,c)

|D| . Finally, the global objective function sums over the observed (w, c) pairs in the
corpus:

L =
∑

w∈VW

∑
c∈VC

#(w, c)
(

log σ(~w · ~c) + k · EcN∼PD
[log σ(−~w · ~cN )]

)
(4)

Optimizing this objective makes observed word-context pairs have similar embeddings, while scattering unobserved
pairs.

1



2 SGNS as Implicit Matrix Factorization

2.1 Characterizing Implicit Matrix
SGNS embeds both words and their contexts into a low-dimensional space Rd, resulting in the word and context
matrices W and C. Consider the product W · CT = M , the SGNS can be described as factorizing an implicit
matrix M of dimensions |VW | × |VC | into two smaller matrices. Each entry Mij in M corresponds to the dot product
Wi ·CT

j = ~wi · ~cj . In other words, each entry contains a quantity f(w, c) reflecting the strength of association between
that particular word-context (w, c) pair.

Consider the global objective (equation 4) above. For sufficiently large dimension d that allows for a perfect recon-
struction ofM , each product ~w ·~c can assume a value independently of the others. Under these conditions, we can treat
the objective L as a function of independent ~w · ~c terms, and find the values of these terms that maximize it.

We start from rewriting equation 4:

L =
∑

w∈VW

∑
c∈VC

#(w, c)
(

log σ(~w · ~c) + k · EcN∼PD
[log σ(−~w · ~cN )]

)
=
∑

w∈VW

∑
c∈VC

#(w, c)
(

log σ(~w · ~c)
)

+
∑

w∈VW

∑
c∈VC

#(w, c)
(
k · EcN∼PD

[log σ(−~w · ~cN )]
)

=
∑

w∈VW

∑
c∈VC

#(w, c)
(

log σ(~w · ~c)
)

+
∑

w∈VW

#(w)
(
k · EcN∼PD

[log σ(−~w · ~cN )]
) (5)

The expectation can be expressed explicitly:

EcN∼PD
[log σ(−~w · ~cN )] =

∑
cN∈VC

#(cN )

|D|
log σ(−~w · ~cN )

=
#(c)

|D|
log σ(−~w · ~c) +

∑
cN∈VC\{c}

#(cN )

|D|
log σ(−~w · ~cN )

(6)

Combining equation 5 and 6, we get:

L =
∑

w∈VW

∑
c∈VC

#(w, c)
(

log σ(~w · ~c)
)

+
∑

w∈VW

#(w) · k · #(c)

|D|
log σ(−~w · ~c)

+
∑

w∈VW

∑
cN∈VC\{c}

#(w) · k · #(cN )

|D|
log σ(−~w · ~cN )

(7)

This reveals the objective for a specific word-context (w, c) pair:

L(w, c) = #(w, c) · log σ(~w · ~c) + k ·#(w) · #(c)

|D|
log σ(−~w · ~c) (8)

Let x = ~w · ~c, and take the partial derivative with respect to x:

∂L

∂x
= #(w, c) · σ(−x)− k ·#(w) · #(c)

|D|
· σ(x) (9)
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To optimize the objective, we set the derivative to zero 1.

∂L

∂x
= #(w, c) · 1

1 + ex
− k ·#(w) · #(c)

|D|
· 1

1 + e−x

= #(w, c) · 1

1 + ex
− k ·#(w) · #(c)

|D|
· ex

1 + ex

=
1

1 + ex

(
#(w, c)− k ·#(w) · #(c)

|D|
· ex
)

= 0

⇒#(w, c) = k ·#(w) · #(c)

|D|
· ex ⇒ ex =

#(w, c)

k ·#(w) · #(c)
|D|

⇒x = ~w · ~c = log

(
#(w, c)

#(w) · #(c)
|D|

· 1

k

)
= log

(
#(w, c)|D|
#(w) ·#(c)

)
− log k

(10)

The expression log
(

#(w,c)|D|
#(w)·#(c)

)
is the well-known point-wise mutual information (PMI) of #(w, c) used widely in

NLP. For negative-sampling value of k = 1, the SGNS objective is factorizing a word-context matrix in which the
association is measured by f(w, c) = PMI(w, c). We denote the PMI matrix as MPMI . For negative-sampling values
k > 1, SGNS is factorizing a shifted PMI matrix MPMIk = MPMI − log k.

2.2 Point-wise Mutual Information
Point-wise mutual information is an information-theoretic association measure between a pair of discrete outcomes x
and y, defined as:

PMI(x, y) = log
P (x, y)

P (x)P (y)
(11)

In our case, PMI(w, c) can be measured empirically as:

PMI(w, c) = log
#(w, c) · |D|
#(w) ·#(c)

(12)

The matrix is ill-defined for pairs that were never observed in the corpus, i.e. PMI(w, c) = log 0 = −∞. A sparse,
consistent and common alternative is to use the positive PMI (PPMI) metric, in which all negative values are replaced
by 0:

PPMI(w, c) = max(PMI(w, c), 0) (13)

2.3 Weighted Matrix Factorization
The assumption of having perfect reconstruction is not possible; hence, some ~w · ~c products must deviate from their
optimal values. The pair-specific objective equation 8 reveals that the loss for a pair (w, c) depends on its number of
observations #(w, c) and expected negative samples k ·#(w) · #(c)

|D| . SGNS’s objective can now be cast as a weighted
matrix factorization problems, seeking the optimal d-dimensional factorization of the matrix MPMI − log k under a
metric which pays more for deviations on frequent (w, c) pairs than deviations on infrequent ones.

An alternative matrix factorization is factorizing the PPMI matrix with truncated SVD. The word and context repre-
sentations can be obtained by WSV D = Ud · Σd and CSV D = Vd or WSV D = Ud ·

√
Σd and CSV D = Vd ·

√
Σd.

The symmetric SVD works better empirically although it is not theoretically clear why.

An interesting middle-ground between SGNS and SVD is the use of stochastic matrix factorization (SMF) approaches,
common in the collaborative filtering literature. The exploration of SMF-based algorithms for word embeddings is left
for future work.

1The derivation here is a little bit cleaner (in my opinion) than the one presented in the paper. However, the results are the same.
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