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Adversarial Examples

An adversarial example x∗ = x + δ is constructed from a benign
sample x by adding a perturbation vector δ under an allowable
perturbation region ∆.
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Adversarial Examples

The adversary wants to find such a perturbation that maximizes the
loss function.

The perturbation can be found by solving an optimization problem

max
δ

L(hθ(x + δ), y) (1)

s.t. δ ∈ ∆ (2)

where x∗ = x + δ is an adversarial example, L is the loss function, hθ
is the hypothesis function, and y is the label.
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Worst-case Loss

We refer this to the worst-case loss; hence, the expected worst-case
loss for the entire data set D is

1

|D|
∑

(x ,y)∈D

max
δ∈∆

L(hθ(x + δ), y) (3)

where |D| is the total number of the data point.
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Robust Classifier

We want to train a classifier that is robust under the aforementioned
worst-case scenario.

The training task can be formulated as the following min-max
optimization problem.

min
θ

1

|D|
∑

(x ,y)∈D

max
δ∈∆

L(hθ(x + δ), y) (4)
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Attack and Defense

Given the min-max framework,
I any attack method can be viewed as approximately solving the inner

maximization problem and
I any defense is approximately solving the outer minimization problem.
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Training a Robust Classifier

Given the above formulation, we can train a robust classifier by
1 Solve the inner maximization problem for each pair of (x , y) in the

training set D

δ∗(x,y) = arg max
δ∈∆

L(hθ(x + δ), y) (5)

2 Update model parameters θ by gradient descent

θ := θ − α

|D|
∑

(x,y)∈D

∇θL
(
hθ(x + δ∗(x,y)), y

)
(6)

where α is the step size.
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Training a Robust Classifier

We typically cannot solve the inner maximization since it’s usually
non-convex.

The community has found that if the inner maximization problem is
solved ”well enough”, then this strategy can perform well1.

If we cannot solve it exactly, then we can either
I lower bound it
I upper bound it

1Aleksander Madry et al. Towards Deep Learning Models Resistant to Adversarial
Attacks. 2017. eprint: arXiv:1706.06083.

Alicia Tsai (aliciatsai@berkeley.edu) Adversarial Robustness September 2019 8 / 14

arXiv:1706.06083
aliciatsai@berkeley.edu


Lower Bounding The Inner Maximization
Adversarial Attack

Any feasible δ gives us a lower bound on the inner objective value.
This is equivalent to constructing an adversarial example.

One simple way to find a feasible δ is by performing (projected)
gradient ascent on δ to maximize the inner objective function.
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Upper Bounding The Inner Maximization
Convex Relaxation

For a typical multi-layer neural network, the inner maximization
problem is non-convex.

We can construct a convex outer bound on this non-convex
adversarial polytope2.

2J. Zico Kolter and Eric Wong. “Provable defenses against adversarial examples via
the convex outer adversarial polytope”. In: CoRR abs/1711.00851 (2017). arXiv:
1711.00851. url: http://arxiv.org/abs/1711.00851.
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Upper Bounding The Inner Maximization
Interval Bound Propagation (IBP)

Solving the convex relaxation is rather complicated. An easy and
extremely efficient way to obtain an upper bound is via bound
propagation.

Given a perturbation region ‖δ‖∞ ≤ ε, we know that l0 ≤ x0 ≤ u0 for
a given input x0, and hence we can propagate the bound through the
network

li ≤ Φ(Wixi−1 + bi ) ≤ ui (7)

This is an even relaxed version of the convex relaxation.
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Adversarial Word Substitution

Interval bound propagation is used to train a robust model against
word substitution attack3.

3Robin Jia et al. Certified Robustness to Adversarial Word Substitutions. 2019.
eprint: arXiv:1909.00986.
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Certification for Robustness

The upper bound can be used to determine whether or not an
adversarial example exists within a certain perturbation region.

One way to determine this is by considering the targeted attack of a
given input against every possible class.

This means that no point within the perturbation region exists that
will change the class prediction.

hθ(x + δ)y ′ − hθ(x + δ)y < 0, ∀y ′ 6= y (8)
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Certification for Robustness

This provides a guarantees on the adversarial robustness.

If we cannot make the true class activation lower than any other
classes even in the convex outer polytope (or any relaxed version),
then we know that no norm-bounded adversarial perturbation of the
input exists that could mis-classify it.
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