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1 Implicit lifted net framework
The implicit prediction model defines a prediction rule that processes an input point
u ∈ Rp to produce a predicted ouput vector ŷ(u) ∈ Rq via an implicit equation in
some vector x ∈ Rn:

ŷ(u) = Cx, x = φ(Ax+Bu) (1)

where φ is the activation function applied component-wise to a vector. Parameters
(weights) of the model are contained in the matrices A ∈ Rn×n, B ∈ Rn×p, C ∈
Rq×n. For notation simplicity, we do not include bias terms in the notation. The
vector x ∈ Rn can be thought of as “state” corresponding to n “hidden” features
extracted from the inputs.

2 Formulate feedforward neural networks
Standard feedforwardneural networkprediction rules can be formulated as the above
model with (A,B) strictly upper block diagonal, where the number of blocks is equal
to that of hidden layers. Consider a feedforward neural network with L > 1 layers:

ŷ(u) = WLxL, xl+1 = φ(Wlxl), x0 = u (2)
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HereWl, l = 1, · · · , L, are given weight matrices. Equation (2) can be expressed as
(1), with x = (xL, · · · , x1), and the weight matrices

[
A B
C 0

]
=


0 WL−1 · · · 0 0

0 0
. . . ...

...
. . . W1 0

0 W0

WL 0 · · · 0 0

 (3)

whereA,B are strictly upper block triangular. The implicit rule is computed via the
block matrix multiplication[

A B
C 0

][
x
u

]
=

[
Ax+Bu
Cx

]
(4)

The implicit equation x = φ(Ax+Bu) can be solved via a forward pass through the
network.

3 Formulate recurrent neural networks
A simple RNN has three components which are inputs, recurrent hidden states, and
outputs. The input is a sequence of vectors through time t, such as u1, · · · , ut−1, ut,
where each input ut has p input units ut = (u1t , u

2
t , · · · , u

p
t ). At each time step, the

network takes in a input ut and the previous hidden state ht−1 to produce the next
hidden state ht. The first hidden state h0 is initialized randomly at first. The hidden
state ht defines the state space or “memory” of the network.

ht = φH(WHht−1 +WIut) (5)

HereWH is the “shared” weightmatrix for hidden state andWI is the “shared” weight
matrix for the input. φH is the activation function for the hidden state. Themodel can
output at every time step except t = 0 or only output at the end of the sequence de-
pending on the task. The output at each time step yt has q units yt = (y1t , y

2
t , · · · , y

q
t )

that are computed via

yt = φO(WOht) (6)

where φO is the activation function for the output layer.
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If we consider the case when the network only outputs at the end of the se-
quence at time step t. Then, equation (5) and (6) can be expressed as (1), with x =
(ht, ht−1, · · · , h0), u = (ut, · · · , u1), and weight matrices

[
A B
C 0

]
=


0 WH · · · 0 0 WI · · · 0 0

0 0 WH
...

... 0 WI
...

...
. . . . . . 0

. . . . . . 0
0 WH 0 WI

WO 0 · · · 0 0 0 · · · · · · 0

 (7)

whereA,B are strictly upper block triangular and have the same block diagonal sub-
matrices,WH andWI respectively, shared across all hidden state and input. The im-
plicit rule is computed via the block matrix multiplication

[
A B
C 0

][
x
u

]
=



0 WH · · · 0 0 WI · · · 0 0

0 0 WH
...

... 0 WI
...

...
. . . . . . 0

. . . . . . 0
0 WH 0 WI

WO 0 · · · 0 0 0 · · · · · · 0

0 0
. . . ... 0 0

. . . ... 0
. . . . . . 0

. . . 0





ht
ht−1
...
h1
h0
ut
...
u1


Now, if we consider the case when the network outputs at every time step t, then the
matrix C would become

C =


WO 0 · · · 0

0 WO 0
...

. . . WO 0
0 WO


3.1 Bi-directional RNN
Conventional RNNonly consider the previous context of data. A bi-directional RNN
(BRNN) considers the input sequence in both the past and the the future. BRNNuses
one RNN layer to process the sequence from start to end in a forward time direction
and another RNN to process the sequence backwards from end to start in a backward
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time direction. The forward and backward hidden sequences are denoted by
−→
h t and←−

h t at time t. The forward hidden sequence is computed as

−→
h t = φH

(
W−→

H

−→
h t−1 +W−→

I
ut
)

(8)

where it is iterated over t = (1, ..., T ). The backward layer is

←−
h t = φH

(
W←−

H

←−
h t−1 +W←−

I
ut
)

(9)

which is iterated backward over time t = (T, ..., 1). The output sequence yt at time
t is

yt = φO

(
W−→

O

−→
h t +W←−

O

←−
h t

)
(10)

Let us first look at the hidden state and input. Equation (8) and (9) can be ex-
pressedwith−→x = (

−→
h t,
−→
h t−1, · · · ,

−→
h 0),←−x = (

←−
h t,
←−
h t−1, · · · ,

←−
h 0),u = (ut, · · · , u1),

and weight matrices

[
A B

]
=

 W−→
H

0 W−→
I

0 W←−
H

W←−
I

 (11)

where only A is strictly upper block triangular. Again, the implicit rule is computed
via the block matrix multiplication

 W−→
H

0 W−→
I

0 W←−
H

W←−
I



−→x
←−x

u

 (12)

Similarly, the output layer can be expressed via the matrix C

C =
[
W−→

O
W←−

O

]
=


W−→

O
0 · · · 0 0 · · · 0 W←−

O

0 W−→
O

0
...

... 0 W←−
O

0
. . . W−→

O
0 0 W←−

O

. . .
0 W−→

O
W←−

O
0
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Finally, equation (8), (9), and (10) can be formatted as

 A B

C 0

 −→x←−x
u

 =


W−→

H
0 W−→

I

0 W←−
H

W←−
I

W−→
O

W←−
O

0



−→x
←−x

u
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