


## Contents

| Acronyms                                                      | 3  |
|---------------------------------------------------------------|----|
| Background                                                    |    |
| Introduction                                                  |    |
| Guidance Note for Teachers                                    |    |
| Course Overview                                               | 9  |
| Course Content: Combined Agronomy and RSS Processing          | 11 |
| Recommended Texts, Resources, and Supplementary Lecture Notes | 17 |
| The Curriculum Development Committee                          | 19 |

## Acronyms

BCTC Bong County Technical College
BWI Booker Washington Institute

IMTC Inter-Ministerial Technical Committee on TVETs

GBCC Grand Bass Community College

GROW GROW Liberia

GOL Government of Liberia

LATA Liberia Agricultural Transformation Agenda

RSS Ribbed Smoked Sheets

RSS-CDC Ribbed Smoked Sheets Curriculum Development Committee

MOA Ministry of Agriculture

MOCI Ministry of Commerce and Industry

MOE Ministry of Education MOL Ministry of Labor

MYS Ministry of Youth and Sports

NCCC Nimba County Community College

TAVTC Tumutu Agriculture Vocational Training Center
TVET Technical and Vocational Education Training

## Background

As the Liberian rubber sector works to regain its momentum in the world market, the Government of Liberia (GOL) is promoting investment in the rubber sector in part through the introduction of Ribbed Smoked Sheets (RSS) processing. The Government of Liberia aims to leverage the West African market demand for Ribbed Smoked Sheets (RSS) in the short-term and other products derived from rubber in the long-term.

In order to grow RSS processing in Liberia, an alternative processing method new to the country, workforce technical skills development will be needed. To this end, four Technical and Vocational Education Training (TVETs) institutions collaborated with the GROW program to develop and launch an RSS curriculum for students. A draft curriculum was developed by an established Curriculum Development Committee (CDC) that consisted of partner TVETs, the Inter-Ministerial Technical Committee (IMTC), and GROW technical team. The draft curriculum was validated at a workshop on August 31, 2017 and approved for piloting at partner TVET institutions. It was piloted for two semesters at partner TVETs in 2017-2018 and updated to reflect learning in 2019. Twelve instructors have completed qualified training courses to continue to teach the course to future students.

The following curriculum is for a single semester course with emphasis on practical and hands on skills development. TVETs with capacity and resources may opt for modified versions tailored for their institutions.

#### About GROW Liberia

GROW Liberia collaborates with businesses, investors, associations, and government agencies to accelerate systemic solutions that transform high growth sectors and drive inclusive economic growth. GROW invests in agricultural industries, including rubber, with funding from the Swedish International Development Cooperation Agency (SIDA).

TVET RSS training program, developed with support from GROW, is important to Liberia's future RSS opportunity. With close to a century of experience as one of Africa's leading natural rubber producers, over 100,000 hectares of rubber plantations under cultivation, and technical colleges now offering courses in rubber cultivation and processing to a youthful workforce, Liberia is well positioned to be a new hub for Ribbed Smoked Sheets (RSS) in West Africa. For the rubber sector in Liberia, RSS presents a less capital intensive processing alternative with the potential to involve a wider range of actors in value addition and contribute to the development of the industry.

The curriculum is a product of the culmination of the combined efforts of GROW Liberia, the IMTC and partner TVET institution

# **MESSAGE** Chair from the Inter-Ministerial Task Force on Technical and Vocational Education and Training

The Inter-Ministerial Task Force on Technical and Vocational Education and Training (TVET) was constituted by the President of Liberia to spearhead the Government's efforts to improve the level of technical training for the youth of the country. The Ministry of Youth and Sports (MYS) chairs the IMTC which is co-chaired by the Ministry of Education (MOE) with the Ministries of Labor (MOL), Agriculture (MOA) and Commerce and Industry (MOCI) serving as members.

On August 31, 2017 the draft curriculum developed for a certificate course in PRODUCTION OF NATURAL RUBBER AND MANUFACTURE OF RIBBED SMOKED SHEETS, (RSS) representing the coordinated efforts of the IMTC and the five TVETs; Bong County Technical College (BCTC), Booker Washington Institute (BWI), Grand Bassa Community College (GBCC), Nimba County Community College (NCCC) and the Tumutu Agriculture Vocational Training Center (TAVTC) with funding and technical support from GROW Liberia, was validated and approved for piloting. TAVTC dropped out of the program due to the lack of support and some difficulties in scheduling alignment.

The initially validated curriculum was rolled out for piloting at the five partner TVETS. Now that the pilot phase is completed and consensus has been attained amongst the partners on the way forward, as recommended, the Government of Liberia wishes to extend its thanks and appreciation to the GROW/SIDA family, the administration and support staff from partnering TVETs, the consultants and all those who contributed to and participated in the development of this product.

This curriculum will serve as the standard course for rubber culture and processing at TVETs and other agricultural institutions.

Honorable D. Zogar Wilson Minister for Youth and Sports

## Introduction

In August, 2017, the Inter-Ministerial Technical Committee (IMTC) on Technical and Vocational Education Training (TVET) validated a CURRICULUM FOR CERTIFICATE COURSE IN "PRODUCTION OF NATURAL RUBBER AND MANUFACTURE OF RIBBED SMOKED SHEETS" that had been jointly developed by a committee composed of representatives from the IMTC and five TVETs with technical support from national and international consultants supported by GROW.

A pilot phase was ran by four (4) TVETs during the 2017/2018 academic year based on memoranda of understanding developed between GROW and five (5) TVETs to develop a training curriculum for rubber agronomy and the processing of natural rubber ribbed smoked sheets that will be piloted at the five TVETs starting in the first semester of the 2017/2018 academic year. The partnership between GROW and the TVETS focused on the following areas:

- Convert RSS training manual developed by GROW into a course of study that will be offered in Second semester 2017/ 2018;
- Develop the associated curriculum, including the instructors training guides, instructional resources and training manuals on all activities ranging from farm management to the RSS processing;
- Develop an internship program that will be offered to participating students as part of the course of study and allow them to put the acquired knowledge into practice at rubber farms and RSS processing facilities;
- Work with the private sector and relevant authorities, including the government and other local, regional and international bodies, for approval and adaptation;
- Set up a monitoring and evaluation framework to ensure that students are acquiring skills and training that meet the needs of the industry.

The curriculum was originally designed to be run for two semesters as a skills development and capacity building training in the rubber value chain for TVET & college students, rubber farmers, factory managers and high school leavers with specific emphasis on rubber production and processing of ribbed smoked sheets (RSS).

The curriculum was validated and piloted at four of the five TVETs. During the pilot phase, GROW and partners monitored and evaluated the program and made recommendations to fine-tune the curriculum which is then expected to be adopted as the standard for all agricultural TVETs and institutions of higher learning. During the course of the curriculum development process, some follow-up support actions were recommended. These include:

- That the TVETs should be encouraged and empowered to establish their own nurseries and rubber farms to enhance their sustainability for teaching practical skills and income generation;
- The TVETs be encouraged to actively participate in extension and advisory services for building capacity in tapping skills and efficiencies to address the low productivity of the smallholders; and
- Conduct research into fabrication of affordable hand operated processing equipment for use by small farmers.

The pilot phase has ended and evaluation indicated that the TVETs recommended that the time frame for the course should be revisited with the view of reducing/compressing the course to one semester instead of the two semesters as originally designed.

This revised curriculum is presented as an alternative one semester training that incorporates both the rubber culture and the RSS production components. The course is structured for 4 periods, each consisting of 3 weeks of theoretical lectures plus 1 week of practical field exercises. This will be followed by a 2-3 week internship at rubber farms or at an RSS production facility.

## **Guidance Note for Teachers**

The curriculum below is intended to be used in TVETs that have existing agriculture training programs. Following a two semester pilot phase in which the course was originally spread over two semesters, it was agreed by the consultants and the participating TVET partner institutions that the course be compressed into one semester. The curriculum is intended to be used as a modified course in Rubber Culture that will replace the existing courses already taught in the agriculture programs at the TVETs. The components of agronomy (rubber culture) and natural rubber processing focusing on the production of ribbed smoked sheets (RSS) have been merged with greater emphasis on field practical skills development and practicums in value addition.

The methodology to be used is focused on the practical aspects of rubber culture and RSS processing. To this end, the course has been structured to hold a full week of intense practical activities every fourth week with concentration on topics and exercises covering rubber culture for the first twelve weeks of a sixteen week semester whilst the last four weeks will concentrate on latex collection, handling and processing of ribbed smoked sheets.

In all instances, practical demonstrations and field studies will be emphasized with visitations/excursions to farms, concessions, processing establishments and 4-6 weeks of internships urged.

The flexibility in the structure should allow institutions to plan and schedule the field studies to fit the students' schedules. A modification of this could also be used, notwithstanding.

COURSE: RUBBER AGRONOMY AND RSS PROCESSING (One Semester)

COURSE TITLE: NATURAL RUBBER CULTURE AND PROCESSING

CREDIT HOURS: 4 (12 WEEKS THEORY; 4 WEEKS PRACTICAL)

COURSE CONTENT: AGRONOMY COMPONENT-NATURAL RUBBER CULTURE (9 WEEKS OF

**INSTRUCTION PLUS 3 WEEKS OF FIELD EXERCISES)** 

PROCESSING COMPONENT- PRODUCTION FOR RIBBED SMOKED SHEETS (3 WEEKS OF INSTRUCTION PLUS 1 WEEK OF PRACTICAL FOLLOWED BY 2

**WEEKS OF INTERNSHIP)** 

DURATION: 16 WEEKS (12 WEEKS OF INSTRUCTION PLUS 4 WEEKS OF PRACTICAL/FIELD

**OPERATIONS)** 

GOAL: TO TRAIN STUDENTS IN THE THEORY AND PRACTICE OF NATURAL RUBBER

CULTURE AS IT APPLIES TO THE LIBERIAN SETTING AND PROCESSING &

**QUALITY CONTROL OF RSS** 

GENERAL OBJECTIVES: TRAINING RUBBER FARMERS, FACTORY MANAGERS AND HIGH SCHOOL

LEAVERS SEEKING FOR JOBS IN RUBBER FARM MANAGEMENT AND RIBBED

**SMOKED SHEETS PRODUCTION** 

#### **UPON COMPLETION OF THE COURSE THE STUDENT WILL:**

- Have a basic understanding of the economics of natural rubber production in Liberia;
- Have a basic knowledge and understanding of the agronomy, anatomy, and physiology of the rubber tree;
- Have acquired basic agronomic skills as well as processing techniques and knowledge of the cultivation of natural rubber;
- Have an understanding of the composition and properties of natural rubber latex;
- Have a grasp of the quality control methods of latex collection and treatment required for RSS production;
- Understand the steps involved in RSS processing, drying and grading;
- Be familiar with the design and operation of smoke houses;
- Have an understanding of the environmental waste control measures for water from the processing operations/activities.

## Course Overview

#### WEEK 1: 3 Hrs. lecture

- World Natural rubber supply and demand;
- Establishment, cultivation and development of natural rubber in Liberia;
- Economics of rubber production and distribution in Liberia;
- Structural Organization and Holdings of the Rubber Sector/Sub-sector.

#### WEEK 2: 3 Hrs. lecture

#### PRE-PLANTING OPERATIONS: SITE SELECTION AND LAND PREPARATION

- Soils for Rubber cultivation and their Characteristics;
- Climatic Conditions and Rainfall Pattern for rubber growing;
- Land suitability, selection and soil conservation:
  - For Root stock production
  - For budwood production
  - For field planting
- Contour planting and terracing and draining to minimize soil erosion;
- Rubber Growing Soils;
- Suitable Clones for conditions in Liberia;
- Legume Cover Crop establishment.

#### WEEK 3: 3 Hrs. lecture

#### FIELD PLANTING

- Field Planting
  - o Planting and establishment of tree architecture plantation;
  - Legume Cover Crop/ What are quality plants/ High yielding clones and their importance to increase productivity;
  - o Planting distances contour planting and terracing and draining to minimize soil erosion
- Intercropping
- Correct agronomic practices to be followed in field preparation for new planting/ replanting of rubber and elimination of root diseases.

#### WEEK 4: 3hrs. Practical /Field exercises

Topic: Plantation visit / Nursery development.

#### WEEKS 5-6: 6 Hrs. lecture

- Field Maintenance and Care/Nursery establishment
  - Weeding Management /slashing/pruning/pest and disease control/cover crop maintenance;
- Bud wood nurseries, stock nurseries and quality plant production;
- Establishment, development and management of root stock and bud wood nurseries;
- Bud grafting techniques, clones or types of planting materials.

#### WEEK 7: 3 Hrs. lecture

Nutrition in natural rubber;

- Fertilizer types and application;
- Fertilization, Manuring, mulching and weed control;
- Chemical applications
  - o Environmental considerations.

#### WEEK 8: 3hrs. Practical /Field exercises

Topic: Nutrition/Fertilization.

#### WEEKS 9-10: 6 Hrs. lecture

- Disease symptoms, identification of diseases;
- Insects, pests and diseases important to rubber cultivation;
- Introduction to breeding methods.

#### WEEK 11: 3 Hrs. lecture

#### **TAPPING AND STIMULATION**

- Marking trees for tapping at the correct girth using a stencil; bark consumption and marking trees for tapping at the correct height;
- Tapping task, marking yielding trees and the role of supervisors;
- Field processing of latex and quality control in the field;
- Importance of hygiene, Cleaning collecting cups and strainers and adding anti-coagulants to prevent pre- coagulation of latex and to control VFA number of latex.

#### WEEK 12: 3hrs. Practical /Field exercises

Topic: Diseases-and pests/Hygiene/Quality Control.

#### WEEK 13-14: 6 Hrs. lecture

- Composition of latex;
- Reception of latex;
- Standardization calculations and purpose of standardization;
- Coagulation of latex:
  - Pan and Tank coagulation;
  - Preparation of stock solution of formic acid;
  - Dosage of acid for coagulation;
  - o Detection of end point.

#### WEEKS 15-16: 6 hrs. Practical/Field operations

- Collection of latex in the field;
- DRC estimation using the Metrolac;
- Coagulation;
- Milling and Washing;
  - o Flattening the coagulum to facilitate feeding it into the mill,
  - Passing through the rolling battery without over lapping,
  - Thorough washing in fresh flowing water,
- Air drying
- Smoke house operation (INTERNSHIP TO BE ARRANGED AT PRODUCTION FACILITY (2-3 WEEKS).

# Course Content: Combined Agronomy and RSS Processing

|    | THEORY                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                     | PRACTICAL (EVERY 4 WE                                                                     | EKS)                                                                                                                                                            |                                                                                                                             |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Wk | Topics /Specific Learning Objective                                                                                                                                                                                                                                                                                                                                                             | Teaching Activities /                                                                                                                                                                                                | Learning Resources                                                                                                                                                                                                                                                  | Specific Learning                                                                         | Teaching Activities                                                                                                                                             | Learning                                                                                                                    |
|    |                                                                                                                                                                                                                                                                                                                                                                                                 | Methodology                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                     | Objective                                                                                 | /Methodology                                                                                                                                                    | Resources                                                                                                                   |
| 1  | <ul> <li>GENERAL INTRODUCTION TO RUBBER</li> <li>CULTURE</li> <li>World Natural rubber supply and demand</li> <li>Cultural practices in the establishment, cultivation and development of natural rubber in Liberia.</li> <li>Economics of rubber production and distribution in Liberia.</li> <li>Structural organization &amp; Categories of holdings in the Rubber Sector Liberia</li> </ul> | Students will study: Trends in worldwide & local rubber production; Historical contribution of rubber to Liberia's GDP; Results of SWOT analysis o the rubber sector. Characterize rubber sector holdings in Liberia | Worldwide rubber production Historical Importance of rubber in Liberia.                                                                                                                                                                                             | Student will:<br>Get an overview of the<br>rubber sector within<br>Liberia and worldwide; | Field trip to small holder rubber farm; large plantations and concession areas to compare and contrast various categories of holdings and management practices; | Statistics,<br>survey reports<br>and databases<br>on the rubber<br>sector                                                   |
| 2  | PRE-PLANTING OPERATIONS:  SITE SELECTION AND LAND PREPARATION  Soils for Rubber cultivation and their Characteristics. Climatic Conditions and Rainfall Pattern for rubber growing in Liberia. Land suitability, selection and soil conservation For Root stock production For budwood production For field planting Contour planting and terracing and draining to minimize soil erosion.      | Learners are asked to: Give reasons for site selection and discuss the steps in site selection. Discussion on criteria for selecting land suitable for rubber planting                                               | Soils Maps of Liberia Training Manuals, Books Rainfall data on Liberia (historical rainfall and new data if available) Diagrams showing site selection processes and steps Diagram/chart illustrating land preparation for various types of planting configurations | Enhance learners' ability to practice basic site selection principles in the field.       | Identify suitable land.<br>Field layout<br>techniques                                                                                                           | Diagrams/ Illustrations & examples of site selection methods Maps showing rainfall patterns, soil and topography of Liberia |

|     |                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                               |                                                                                                                                                                                          | I                                                                                                                                                                                                          |                                                                                                                            | <del>,                                     </del>                                                                                               |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
|     | <ul> <li>Rubber Growing Soils</li> <li>Suitable Clones for conditions in Liberia</li> <li>Legume Cover Crop establishment</li> </ul>                                                                                                                                                        |                                                                                                                                                                                                                                 |                                                                                                                                                                                          |                                                                                                                                                                                                            |                                                                                                                            |                                                                                                                                                 |
| 3   | <ul> <li>Planting and establishment of tree architecture in plantation.</li> <li>What are quality plants?</li> <li>High yielding clones and their importance to increase productivity.</li> <li>Planting distances</li> <li>Intercropping</li> <li>Elimination of root diseases.</li> </ul> | Students will develop planting skills for: Proper plantation architecture/Selection of quality planting materials such as high yielding clones/Planting distances for various clones/Removal of old roots to eliminate diseases | Training Manuals, Books<br>on characteristics of<br>various clones suitable for<br>Liberia                                                                                               | Enhances learners<br>ability to practice these<br>basic principles on their<br>own                                                                                                                         | implements for land clearing/Field layout techniques Ensure getting rid of old roots affected with white root disease when | Tools/implements used in land clearing (manual and mechanized) Field trip to identify suitable land and clearing activities and operations      |
| 4   | PRACTICALS/ FIELD EXERCISES     Field visits to plantations/farms     Field exercises at Nursery established at TVET.                                                                                                                                                                       | Field trip to small holder rubber farm; large plantation and concession area to compare and contrast various categories of holdings. Field work at nursery established at TVETs                                                 | Training Manuals, Books and Charts/Diagrams illustrating rubber planting methods.                                                                                                        | Field lay-out/ Plantation architecture/ Field Planting/ Importance of selection of quality plants /Correct agronomic practices to be followed in field preparation for new planting/ replanting of rubber. | carry out individual planting operations in the field Knowledge on budgrafting and its importance. Enhance basic field     | Field trip to demonstrate the practice and usage of tools in measurement and planting: bud grafting knife, tape lines, twine, ping-a-ling, etc. |
| 5-6 | Weeding Management     /slashing/pruning/cover crop     maintenance  NURSERY ESTABLISHMENT, OPERATION AND MAINTENANCE (O&M)     Bud wood nurseries, stock     nurseries and quality plant                                                                                                   | Weeding/slashing Pruning to make taping panel above 68" / Benefits (economic and agronomic) of intercropping in rubber farms. Teach trainees the agronomic importance                                                           | Diagrams illustrating: Composting/Weeding methods/Mulching, Maintenance of plant density/ population per acre/hectare Rubber seedling in polybags for classroom demonstration. Photos of | Field examples of Planting distance Lining/Pegging/ Holing/Planting methods such as Triangular planting; Square planting; Planting materials; Bare rooted stumps;                                          | maintain growth for<br>maximizing yield.<br>Identify appropriate<br>clones                                                 | learners to write                                                                                                                               |
|     | production                                                                                                                                                                                                                                                                                  | of mulching, shading                                                                                                                                                                                                            | operational nurseries.                                                                                                                                                                   | Poly bags plants;                                                                                                                                                                                          | -                                                                                                                          | field planting to                                                                                                                               |

|   | <ul> <li>Establishment, development and management of root stock and bud wood nurseries.</li> <li>Bud grafting techniques, clones or types of planting materials.</li> <li>Introduction to breeding</li> </ul> | and white washing Bring rubber seedling to class for individual learners to observe and participate in the demonstration of bud grafting; Learners are asked to explain the steps in carrying out budding.                                                                                                                  |                                                                                                                    | Advanced planting;<br>materials<br>Legume Cover crop<br>maintenance                                                                                                                                                                           |                                                                                                                                                                                                                                                                  | correct field<br>planting<br>techniques.                                                                                                             |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7 | NUTRITION AND FERTILIZATION  Nutrition in natural rubber  Fertilizer types and application  Fertilization, Manuring, mulching and weed control  Chemical applications  Environmental considerations            | Learners are provided different types of fertilizer materials and methods for application;                                                                                                                                                                                                                                  | Books, Training manuals, audio-visual aids                                                                         | Students will learn the practice of: Nursery establishment Site selection Types of nurseries and area required for each type; Nursery Management (O&M); Preparation of nursery and seed germination beds; Planting in nurseries; Bud-grafting | nurseries to<br>observe/study<br>various nurseries<br>types including:<br>Seedling nursery<br>Bud wood nursery                                                                                                                                                   | Land and<br>materials to set<br>up a small nursery<br>Polybags,<br>fertilizer, Tools<br>and implements,<br>bud grafting<br>knives                    |
| 8 | FIELD EXERCISES/PRACTICALS                                                                                                                                                                                     | Site visits to concession area/ plantation to observe the calculation of dosages and the methods of application of fertilizers; Practice the correct application of fertilizer. Enable trainees to do fertilizer rate calculation; Know when and how to apply the right fertilizer and at which stage of plant growth cycle | Training manuals, books. Samples of various fertilizers Diagrams/charts of fertilizers and methods of applications | Census and infilling Soil & Foliar analysis Mulching, Shading and whitewashing                                                                                                                                                                | Field trips to illustrate basic crop husbandry techniques, e.g. regular weeding composting, correct pest control among others. Importance of regular application of fertilizer Importance of soil & foliar analysis for cost reduction in fertilizer application | Field trip to practice field application of fertilizer Fertilizers for trainees to carry out the process with teachers facilitating the methodology. |

| 9-10 | FIELD MAINTENANCE AND CARE  Diseases and Pests Infestation Symptoms & Identification & Control Categories of diseases: Foliage Root Panel Distribution/Disease cycles Epidemiology /Symptoms and diagnosis Disease symptoms, identification of diseases/Insect pests and diseases important to rubber cultivation/ Teach the mode of transmission and life cycle | Class lectures on integrated pest management (IPM) with illustrations; Brainstorming sessions to formulate practical pest control measures and how to identify the various diseases of rubber.  Discuss the economic importance of rubber diseases and pest | Training Manuals, Books, diagrams illustrating the life cycle of major insect and other pests. Photos showing: Various pests / Effects of common rubber diseases | Effects of pests and diseases on rubber tree. Identifying the diseases by diagnosing their symptoms and signs. Practical pest and disease control methods                                                                                    | Field observations to identify various pests and diseases and observe the symptoms and effects.                                                                                                                               | Diagrams/ photos showing pests and diseases symptoms, signs and effects; |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 11   | <ul> <li>TAPPING AND STIMULATION</li> <li>Enhance trainees ability with the basic operational activities prior to and during tapping including:</li> <li>Mapping/Marking/Panel marking/Tasking/Opening/</li> <li>Opening Height/Girth measurement/Time of tapping/collection/Tapping materials/Tapping cuts/Tapping quality</li> </ul>                           | Students will learn the correct methods of: Determination of correct time/ conditions when trees are ready for opening. Correct tapping methods; Identify the right instruments and tools for tapping; Basic latex collection techniques                    | Training Manuals, Books Tapping utensils Panel markers, spouts, wires hangers, cups, buckets, among others.                                                      | Field trips to observe: Mapping/Marking Panel marking/ Tasking/Opening Opening Height Girth measurement Time of tapping/ collection Tapping Materials Tapping cuts & panel Tapping quality- depth of tapping & bark consumption; Stimulation | Identify correct tapping methods; Identify the right instruments and tools for tapping enhance trainees ability with the basic field operation activities prior to and during tapping Teach basic latex collection techniques | Tapping utensils Panel markers Training manuals, books,                  |
| 12   | FIELD EXERCISES/SITE VISITS:  ■ Enhance trainees ability to identify symptoms, signs and physiological disorders of rubber plants affected by pest, disease and/or stress;                                                                                                                                                                                       | Site visits to view examples of pests and diseases at selected farms. Arrange visit to farm being opened to observe tasking,                                                                                                                                | Illustrations, Manuals, tapping tools, books                                                                                                                     | Enhancing students field and practical knowledge of mature rubber stands on disease, pest and latex harvesting;                                                                                                                              | note taking, making inquiries and                                                                                                                                                                                             | Notebooks,<br>cameras,<br>recorders,<br>Manuals;                         |

|       | Observe and participate in farm opening exercises Including tapping and stimulation                                                                                                                                                                                                                                  | marking/stenciling                                                                                                                                                                          |                                                                                                                                                                                     |                                                                                                                      |                                                                                                                                                                          |                                                                                                                                    |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 13-14 | EIELD MANAGEMENT OF LATEX     Latex Processing:     Quality control and making of various rubber grades;     Processing at Smallholders' farms (Cup lump, coagulum, RSS, crepe)     Processing at Large Plantation plant (Latex concentrates, Crumb rubber, RSS);     Use of Metrolac to estimate DRC of field latex | Trainees are taught the various methods for production of desired end product (latex for RSS, latex for coagulum, cup lump, etc). Quality control methods stressed;                         | Training Manuals, Books Metrolac, Field preservative Latex collection utensils A diagram/flow chart of the process starting at the tree up to the delivery of latex to farm factory | Correct methods of collection and preparation of latex in the field, practice of QC in the field                     | latex management<br>Cleaning of tapping<br>utensils                                                                                                                      | Tapping and collection utensils, Metrolac and table for DRC estimation. Field trip to observe and study field quality control      |
| 15    | STEP-BY STEP PROCESS INVOLVED ON THE COAGULATION OF LATEX FOR RSS PRODUCTION:                                                                                                                                                                                                                                        | Dilution of formic acid to 1%. Calculation of the volume needed for coagulation Incorporation of acid. Mixing and removing froth on the surface, covering the pans to prevent contamination | Manuals, Books Tapping Utensils Rubber utensils cleaning materials                                                                                                                  | Safety rules Environmental considerations Cleaning techniques for each type of tool. Straining of latex in the field | Field demonstrations of environmental and safety measures How to clean tools used for tapping. Use of the Metrolac and table to determine DRC                            | Tapping utensils and materials; Training Manuals, Books, Anti-coagulants, scales to weigh latex, Metrolac, sieves to strain latex. |
| 16    | Rolling of rubber into sheets     Drying of rubber concepts:/smoke house operation     Environmental Considerations     Waste Management                                                                                                                                                                             | CARRY OUT LABORATORIES ON COAGULATION, MILLING AND DRYING                                                                                                                                   | Metrolac Table, pH paper,<br>Bench and/or hand-held<br>pH meters, Bromocresol-<br>green (BCG) and other<br>acid-base indicators                                                     | Effects of pH,<br>temperature and time<br>on latex quality<br>Knowledge on<br>application of<br>preservatives.       | Observation of auto-<br>coagulation & pre-<br>coagulum (i.e. Cup-<br>lump formation)<br>Preparation of anti-<br>coagulant solutions and<br>incorporation in to<br>latex. | Samples of<br>fresh latex,<br>acids and bases,<br>beakers, hot<br>plate, pipette,<br>etc<br>Training<br>Manuals, Books             |
| 17-18 | INTERNSHIP AT FACTORY: SORTING:, GRADING, BALING, PACKING, STORING                                                                                                                                                                                                                                                   | Learners are to fully participate in the step by step practical sequence                                                                                                                    | Metrolac tables<br>Latex receiving pans SOP<br>manuals for Wet sheet                                                                                                                | Field weighing of latex,<br>DRC estimation using<br>Metrolac, Field quality                                          | Field observation to ensure that:  1. Latex is free of                                                                                                                   | Training<br>Manuals, Books,<br>Metrolac;                                                                                           |

|         |                                              | 16 6                       | Ι                        | T               | T                       |                  |
|---------|----------------------------------------------|----------------------------|--------------------------|-----------------|-------------------------|------------------|
| •       | Students practice the proper                 | of activities for RSS      | production               | control methods | clots or coagulum       | Scales for field |
|         | methods used in preparing RSS                | processing utilizing the   | Calibrated tools from    |                 | pieces                  | weighing         |
|         | for drying and the reasons why               | small hand mills at TVETs  | National Standards       |                 | 2. Bark is clean of     | Dilution table   |
|         | each step is necessary.                      | and compare this to        | Laboratory (see attached |                 | over slap coagulum      | Aluminum and     |
| •       | Practical (hands on) knowledge               | activities when visits are | specs)                   |                 | How to fabricate a      | plastic pans     |
|         | of the field activities involved in:         | made to larger RSS         |                          |                 | small simple filter for | Small barrel,    |
|         | wet sheet production,                        | processing plants;         |                          |                 | purification of water.  | gravel of        |
| •       | Dilution of acid and Latex for the           |                            |                          |                 |                         | varying size,    |
|         | production of wet sheets                     |                            |                          |                 |                         | sand &           |
|         | including acid addition, mixing              |                            |                          |                 |                         | regulator/tap.   |
|         | and removing of froth,                       |                            |                          |                 |                         |                  |
| •       | Water consumption                            |                            |                          |                 |                         |                  |
|         | <ul> <li>Waste water generation</li> </ul>   |                            |                          |                 |                         |                  |
|         | <ul><li>Treatment</li></ul>                  |                            |                          |                 |                         |                  |
|         | systems                                      |                            |                          |                 |                         |                  |
|         | <ul> <li>Rubber trap</li> </ul>              |                            |                          |                 |                         |                  |
|         | <ul> <li>Anaerobic treatment</li> </ul>      |                            |                          |                 |                         |                  |
|         | <ul> <li>Aerobic treatment</li> </ul>        |                            |                          |                 |                         |                  |
|         | <ul> <li>Clarification of treated</li> </ul> |                            |                          |                 |                         |                  |
|         | water                                        |                            |                          |                 |                         |                  |
| •       | Solid wastes                                 |                            |                          |                 |                         |                  |
|         | <ul> <li>Trap rubber</li> </ul>              |                            |                          |                 |                         |                  |
|         | o Sludge                                     |                            |                          |                 |                         |                  |
| Student | ts will learn:                               |                            |                          |                 |                         |                  |
| •       | The factors affecting drying                 |                            |                          |                 |                         |                  |
| •       | Drying characteristics of sheet              |                            |                          |                 |                         |                  |
|         | rubber.                                      |                            |                          |                 |                         |                  |
| •       | Smoke house operation and                    |                            |                          |                 |                         |                  |
|         | smoke drying of sheets/Loading               |                            |                          |                 |                         |                  |
|         | & unloading.                                 |                            |                          |                 |                         |                  |
| •       | Sorting methods;                             |                            |                          |                 |                         |                  |
| •       | Criteria used to grade RSS sheets;           |                            |                          |                 |                         |                  |
| •       | The standard weight of a bale of             |                            |                          |                 |                         |                  |
|         | RSS                                          |                            |                          |                 |                         |                  |
| •       | Internationally accepted                     |                            |                          |                 |                         |                  |
|         | packaging of RSS for shipping;               |                            |                          |                 |                         |                  |
| •       | Criteria for storage areas for RSS           |                            |                          |                 |                         |                  |

# Recommended Texts, Resources, and Supplementary Lecture Notes

- Introductory Rubber Agronomy
- Processing methods
- Handbook of Rubber (Volume 1-Agronomy), RRI Sri Lanka
- Handbook of Rubber (Volume 2-Processing); RRI Sri Lanka
- Any pertinent literature on natural rubber production, exploitation and processing.
- Listing of materials from curriculum.
- Laboratory Manual to Accompany Natural Rubber Production and Ribbed Smoked Sheets (RSS)
   Processing Course
- Power Point Presentations from Consultants
- Lecture/supplementary notes-agronomy
- Lecture/supplementary notes- processing
- Laboratory Manual to Accompany RSS Training.

## General Teaching Aids and Materials to be sourced for RSS Training at TVETs

- Acids and bases
- · Agro-chemicals, spraying cans
- Air-circulation laboratory oven
- Balance and others
- Basic tools and agro-chemicals
- Beakers
- Bench and/or hand-held pH meters
- Chemicals (formic and, acetic acid)
- Hot plate
- Indicators
- Pesticides and Spraying cans
- pH paper
- Burette, Pipette, etc.
- Stopwatch
- Thermometers
- Record books.

#### Rubber Culture Materials

- Bud wood plants including tools
- Budded rubber seedlings
- Budding knife and other materials
- Implements and tools: lining ropes, measuring tape, shovels
- Nursery trays, boxes
- Panel markers, marking stencils, spouts, wires hangers, cups, buckets
- Pests and disease samples

- Polythene bags and rubber seeds
- Polythene bags
- Rubber implement cleaning materials
- Rubber seedlings
- Rubber seeds
- Samples of fresh latex
- Sieves for straining latex
- Tapping utensils and materials
- Weed plants in rubber
- Young rubber seedling.

#### **Rubber Processing Materials**

- Metrolac
- Anti-coagulants, latex preservatives
- Baling scale
- Latex receiving pans
- RSS Packaging materials
- Scales for weighing of latex.

### Specialized RSS Requirements

- Access to an RSS smoke house
- Access to an operating RSS factory or a demonstration facility with hand mills
- Calibrated tools from National Standards Laboratory
- Metrolac tables.

## Training Manuals and Books

- Quality control manual for RSS
- SOP Manual for Smoking of sheets
- SOP manuals for Wet sheet production
- Training Manuals.

#### Audio Visual Aids

- Charts showing socio-economic importance of rubber
- Diagrams showing the principles and practices associated with establishment of rubber farms (site selection, land preparations, planting etc.)
- Diagrams showing the steps in field maintenance and upkeep
- Pictorial of the operation of RSS processing machinery including power and hand mills
- BCG color coding showing effect of pH ranges on latex
- Video displays, Charts & Diagrams depicting all aspects of rubber value chain.

# The Curriculum Development Committee

| No | NAME                   | INSTITUTION                                   | POSITION                                  |  |
|----|------------------------|-----------------------------------------------|-------------------------------------------|--|
| 1  | Terry N. Dologbay      | Nimba County Community College                | Instructor                                |  |
| 2  | Justin G. Luo          | Nimba County Community College                | Coordinator                               |  |
| 3  | Darlington Kilay       | Nimba County Community College                | Instructor                                |  |
| 4  | Jacob B. Swee, Sr.     | Booker Washington Institute                   | Vice Principal for Instruction            |  |
| 5  | Galimah G. Taylor      | Booker Washington Institute                   | Instructor                                |  |
| 6  | Joseph D. Adebodun     | Tumutu Agriculture Vocational Training Center | Director                                  |  |
| 7  | William S. Kessellie   | Tumutu Agriculture Vocational Training Center | Assistant Director                        |  |
| 8  | Sokowuah K. Subah      | Grand Bassa Community College                 | Director                                  |  |
|    | George G. Williams     | Grand Bassa Community College                 | Instructor                                |  |
| 10 | William Vonyegar       | Grand Bassa Community College                 | Instructor                                |  |
| 11 | Jeremiah Swinteh       | Grand Bassa Community College                 | Instructor                                |  |
| 9  | Philip Ndaloma         | Bong County Technical College                 | Dept. Head/Agriculture                    |  |
| 10 | Emmanuel Gbarnjah      | Bong County Technical College                 | Instructor, Chemistry                     |  |
| 11 | Daniel B. V. Wrayee    | Ministry of Agriculture                       | Assistant Director                        |  |
| 12 | Alieu L. Kemokai       | Ministry of Youth and Sports                  | Admin Assistant                           |  |
| 13 | Roland C. Massaquoi    | College of Agriculture /University of Liberia | Associate Prof. Agronomy/Consultant       |  |
| 14 | J. Emmanuel Milton     | Ministry of Education                         | Subject Specialist-Curriculum Development |  |
| 15 | Frankie N. Cassell     | Bong County Technical College                 | Vice President for Academic Affairs       |  |
| 16 | Eric G. Eastman        | WRTCAF/UL                                     | Professor of Agricultural Engineering     |  |
| 17 | Franklin Philips       | WRTCAF/UL                                     | Asst. Professor of Agronomy and Pathology |  |
| 18 | Patrick Blamo, Jr.     | National Standards Laboratory (NSL)/MOCI      | Laboratory Analyst                        |  |
| 19 | Adolphus Collins       | MOE                                           | Bureau of TVET                            |  |
| 20 | Patrick Anderson       | MOE                                           | Director                                  |  |
| 21 | Sarath Kumara          | GROW                                          | International Consultant                  |  |
| 23 | Emma Odundo            | GROW                                          | Market Development Specialist             |  |
| 24 | Gorpudolo Seleweyan    | GROW                                          | Intervention Manager-Rubber Sector        |  |
| 25 | Renee A. Murray        | GROW                                          | Intervention Manager-Rubber Sector        |  |
| 27 | Derrick Nyumah         | GROW                                          | Senior Intervention Manager-Rubber Sector |  |
| 28 | Dr. Roland C Massaquoi | GROW                                          | Curriculum Development Consultant         |  |