# Homotopy Theory 

Andrew Kobin

Fall 2017

## Contents

0 Introduction ..... 1
0.1 Some Point-Set Topology ..... 2
0.2 Based Categories ..... 6
$0.3 \quad H$-Spaces and Co- $H$-Spaces ..... 8
1 Cofibration and Fibration ..... 13
1.1 Cofibrations ..... 13
1.2 Cofibration Sequences ..... 23
1.3 Fibrations ..... 29
1.4 Fibration Sequences ..... 35
1.5 Fibrations and Bundles ..... 37
1.6 Serre Fibrations ..... 40
2 Cellular Theory ..... 43
2.1 Relative CW-Complexes ..... 43
2.2 Whitehead's First Theorem ..... 44
3 Higher Homotopy Groups ..... 48
$3.1 n$-Connectedness ..... 48
3.2 The Blakers-Massey Theorem ..... 50
3.3 The Hurewicz Theorem ..... 56
3.4 Brown Representability ..... 60
3.5 Eilenberg-Maclane Spaces ..... 64
3.6 Infinite Symmetric Products ..... 66
4 Algebraic Constructions ..... 70
4.1 The Derived Functor $\lim ^{1}$ ..... 70
4.2 Mapping Telescopes ..... 73
4.3 Postnikov Towers ..... 75
4.4 Goodwillie Towers ..... 78
4.5 Localization of a Topological Space ..... 79
4.6 Rational Localization ..... 83
5 Stable Homotopy Theory ..... 86
5.1 The Spanier-Whitehead Category ..... 86
5.2 The Homotopy Category of Spectra ..... 89

## 0 Introduction

These notes are taken from a course in homotopy theory taught by Dr. Nicholas Kuhn at the University of Virginia in the fall of 2017. The main topics covered include:

- Mapping spaces and their topologies
- Cofibrations and fibrations
- Puppe sequences, Verdier's lemmas
- The first Whitehead theorem
- $\lim ^{1}$ and mapping telescopes
- Standard theorems in homotopy theory, including:
- Blakers-Massey theorem
- Hurewicz theorem
- the second Whitehead theorem
- Freudenthal suspension theorem
- Brown representability and Eilenberg-MacLane spaces
- Steenrod operations
- The Serre spectral sequence.

The companion texts for the course are May's A Concise Course in Algebraic Topology and May-Ponto's follow-up More Concise Algebraic Topology.

Recall that two maps $f, g: X \rightarrow Y$ between topological spaces are said to be homotopic, written $f \simeq g$, if there exists a continuous map $H: X \times I \rightarrow Y$ (where $I=[0,1]$ ) such that $H_{0}=f$ and $H_{1}=g$. Then $\simeq$ is an equivalence relation and we denote the set of equivalence classes of maps $X \rightarrow Y$ under $\simeq$ by $[X, Y]$.

Lemma 0.0.1. If $W \xrightarrow{e} X \xrightarrow{f, g} Y \xrightarrow{Z}$ are maps and $f \simeq g$, then $h \circ f \simeq h \circ g$ and $f \circ e \simeq g \circ e$.
This lemma implies that we may form the homotopy category $h(\mathrm{Top})$ whose objects are topological spaces and whose Hom sets are $[X, Y]$. Similarly, one can define $h\left(\mathrm{Top}_{*}\right)$ from the category $\mathrm{Top}_{*}$ of pointed topological spaces; the constructions make sense for (reasonable) subcategories of Top and Top ${ }_{*}$. Homotopy theory studies these and related categories using algebraic topology. For example, the Homotopy Axiom for a homology theory $H$ says that each $H_{n}$ factors through $h(\mathrm{Top})$ :


Definition. A homotopy functor on the category of topological spaces is a functor $T$ : Top $\rightarrow$ Sets that factors through the homotopy category $h$ (Top).

Two of the basic problems studied in homotopy theory are:
(a) For a space $X$, study the functor $[X,-]: h($ Top $) \rightarrow$ Sets. For example, setting $X=S^{n}$ and studying $\left[S^{n},-\right]$ is basically the study of homotopy groups $\pi_{n}(-)=\left[S^{n},-\right]_{*}$.
(b) For a space $Y$, study the contravariant functor $[-, Y]: h(\mathrm{Top}) \rightarrow$ Sets. For example, $H^{2}(X ; \mathbb{Z}) \cong\left[X, \mathbb{C} P^{\infty}\right]$. Another important example is if $\operatorname{Vect}_{n}(X)$ is the set of isomorphism classes of $n$-dimensional vector bundles over $X$, then there is a space $B O(n)$ (called a classifying space) such that $\operatorname{Vect}_{n}(X) \cong[X, B O(n)]$.

Homotopy theory also provides methods of calculation that are useful in different areas of topology, including:

- If a homotopy functor $T: h(\mathrm{Top}) \rightarrow$ Sets actually takes values in a category with more algebraic structure, such as AbGps, Rings, $\mathrm{Vec}_{k}$, then we can apply algebraic techniques to study $T$.
- Long exact sequences allow for efficient computation.
- "Local-to-global" properties allow one to study a characteristic of a space $X$ by studying it on simpler subspaces. For example, the Mayer-Vietoris sequence and van Kampen's theorem exhibit this type of property. They have a common generalization in the Blakers-Massey theorem.
- Stable invariants play an important role in homotopy theory. For a simple example, recall that if $\Sigma X$ is the suspension of $X$, then $\widetilde{H}_{n}(X) \cong \widetilde{H}_{n+1}(\Sigma X)$.


### 0.1 Some Point-Set Topology

In this section, we review two important concepts from general topology: the compact-open topology and the category of compactly generated spaces.

Suppose $X$ and $Y$ are topological spaces and define

$$
\begin{aligned}
Y^{X} & =\{f: X \rightarrow Y\} \\
C(X, Y) & =\{f: X \rightarrow Y \mid f \text { is continuous }\}
\end{aligned}
$$

The following construction, due to Ralph Fox (1947), puts a topology on $C(X, Y)$ with certain nice formal properties which we will explain afterward.

Definition. Suppose $C \subseteq X$ is compact and $U \subseteq Y$ is open. Define

$$
\langle C, U\rangle=\{f \in C(X, Y) \mid f(C) \subseteq U\}
$$

Then the compact-open topology on $C(X, Y)$ is defined to be the topology generated by the subbasis $\{\langle C, U\rangle \mid C \subseteq X$ compact, $U \subseteq Y$ open $\}$. We denote the resulting topological space by $\operatorname{Map}(X, Y)$.

Example 0.1.1. If $X$ is a discrete space, $\operatorname{Map}(X, Y)=Y^{X}$ since all functions are continuous. In particular, $\operatorname{Map}(X, Y) \cong \prod_{x \in X} Y$ with the usual product topology.

Suppose $X, Y$ and $Z$ are sets and $F: X \times Y \rightarrow Z$ is a function. This induces a function $\widehat{F}: X \rightarrow Z^{Y}, \widehat{F}(x)(y)=F(x, y)$.

Theorem 0.1.2. For any $X, Y, Z$, the assignment $F \mapsto \widehat{F}$ induces a bijection $Z^{X \times Y} \cong$ $\left(Z^{Y}\right)^{X}$.

If $X, Y, Z$ are topological spaces, we can ask about the subsets $\operatorname{Map}(X \times Y, Z) \subseteq Z^{X \times Y}$ and $\operatorname{Map}(X, \operatorname{Map}(Y, Z)) \subseteq\left(Z^{Y}\right)^{X}$. In particular, we can ask:
(i) if the map $Z^{X \times Y} \rightarrow\left(Z^{Y}\right)^{X}$ (which is a bijection) induces a map $\operatorname{Map}(X \times Y, Z) \rightarrow$ $\operatorname{Map}(X, \operatorname{Map}(Y, Z))$ - if so, it is injective of course;
(ii) whether this map is also a bijection;
(iii) whether the map is continuous;
(iv) and if so, whether it is also a homeomorphism.

Lemma 0.1.3. If $F: X \times Y \rightarrow Z$ is continuous, then for each $x \in X, \widehat{F}(x): Y \rightarrow Z$ is continuous.

Proof. $\widehat{F}(x)$ is the composition $Y \stackrel{i_{x}}{\longrightarrow} X \times Y \xrightarrow{F} Z$, where $i_{x}: y \mapsto(x, y)$.
Proposition 0.1.4. If $F: X \times Y \rightarrow Z$ is continuous, then $\widehat{F}$ is continuous. In particular, the assignment $F \mapsto \widehat{F}$ restricts to an injection $\operatorname{Map}(X \times Y, Z) \hookrightarrow \operatorname{Map}(X, \operatorname{Map}(Y, Z))$.

Proof. To show $\widehat{F}: X \rightarrow \operatorname{Map}(Y, Z)$ is continuous, i.e. that open sets pull back to open sets, it suffices to check this on a subbasis. In other words, it suffices to show if $C \subseteq X$ is compact and $U \subseteq Y$ is open, then $\widehat{F}^{-1}(\langle C, U\rangle)$ is open in $X$. First note that

$$
x \in \widehat{F}^{-1}(\langle C, U\rangle) \Longleftrightarrow\{x\} \times C \subseteq F^{-1}(U)
$$

Since $C$ is compact, the tube lemma implies that there is an open neighborhood $V$ of $x$ in $X$ such that $V \times C \subseteq F^{-1}(U)$. That is, $V \subseteq \widehat{F}^{-1}(\langle C, U\rangle)$. Therefore $\widehat{F}^{-1}(\langle C, U\rangle)$ is open.

It turns out that the converse to this statement, i.e. the surjectivity of the map $\operatorname{Map}(X \times$ $Y, Z) \rightarrow \operatorname{Map}(X, \operatorname{Map}(Y, Z))$, only holds with certain extra conditions. For any spaces $Y$ and $Z$, let $\varepsilon_{Y, Z}: \operatorname{Map}(Y, Z) \times Y \rightarrow Z$ be the evaluation map, $\varepsilon_{Y, Z}(f, y)=f(y)$. Then it's easy to check that $\widehat{\varepsilon}_{Y, Z}$ is the identity on $\operatorname{Map}(Y, Z)$.

Lemma 0.1.5. Suppose $\varepsilon_{Y, Z}$ is continuous. Then if $\widehat{F}: X \rightarrow \operatorname{Map}(Y, Z)$ is continuous, so is $F: X \times Y \rightarrow Z$.

Proof. $F$ is the composition $X \times Y \xrightarrow{\widehat{F} \times i d_{Y}} \operatorname{Map}(Y, Z) \times Y \xrightarrow{\varepsilon_{Y, Z}} Z$ and each piece is continuous. Therefore $F$ is continuous.

Proposition 0.1.6. If $Y$ is locally compact and Hausdorff, then for all spaces $Z, \varepsilon_{Y, Z}$ is continuous.

Corollary 0.1.7. If $Y$ is locally compact and Hausdorff, then the map $\operatorname{Map}(X \times Y, Z) \rightarrow$ $\operatorname{Map}(X, \operatorname{Map}(Y, Z)), F \mapsto \widehat{F}$ is a bijection.

In other words, the functors $-\times Y$ and $\operatorname{Map}(Y,-)$ are an adjoint pair from the category Top to itself. Similar proofs to those above give the following easy results using the evaluation map.

Lemma 0.1.8. If $\varepsilon_{X \times Y, Z}$ is continuous, then $\operatorname{Map}(X \times Y, Z) \rightarrow \operatorname{Map}(X, \operatorname{Map}(Y, Z))$ is continuous.

Lemma 0.1.9. If $\varepsilon_{X, \operatorname{Map}(Y, Z)}$ is continuous, then the inverse of $\operatorname{Map}(X \times Y, Z) \rightarrow \operatorname{Map}(X, \operatorname{Map}(Y, Z))$ is also continuous.

Lemma 0.1.10. If $\varepsilon_{X, Y}$ and $\varepsilon_{X, Z}$ are both continuous, then

$$
\begin{aligned}
\operatorname{Map}(Y, Z) \times \operatorname{Map}(X, Y) & \longrightarrow \operatorname{Map}(X, Z) \\
(f, g) & \longmapsto f \circ g
\end{aligned}
$$

is continuous.
Lemma 0.1.11. If $\varepsilon_{X, Y}$ and $\varepsilon_{X, Z}$ are continuous, then $\operatorname{Map}(X, Y \times Z) \rightarrow \operatorname{Map}(X, Y) \times$ $\operatorname{Map}(X, Z)$ is a homeomorphism.

Corollary 0.1.12. If $X$ and $Y$ are locally compact, Hausdorff spaces, then the map $\operatorname{Map}(X \times$ $Y, Z) \rightarrow \operatorname{Map}(X, \operatorname{Map}(Y, Z))$ is a homeomorphism.

Remark. To explain the prominence of the evaluation maps in these proofs about $\operatorname{Map}(X, Y)$, one may prove that the compact-open topology is the coarsest topology on $C(X, Y)$ for which the evaluation $\varepsilon_{X, Y}: C(X, Y) \times X \rightarrow Y$ is a continuous map.

In 1967, Steenrod introduced the following class of topological spaces.
Definition. A space $X$ is compactly generated if $X$ is Hausdorff and a subset $C \subseteq X$ is closed if and only if $C \cap K$ is closed in $K$ for all compact subspaces $K \subseteq X$.

Example 0.1.13. Every locally compact, Hausdorff space is compactly generated.
Example 0.1.14. If $X$ is metrizable, then $X$ is compactly generated.
Proposition 0.1.15. Let $X$ and $Y$ be Hausdorff spaces. Then
(a) If $X$ is compactly generated, then a map $f: X \rightarrow Y$ is continuous if and only if $\left.f\right|_{K}$ is continuous for all $K \subseteq X$ compact.
(b) If $q: X \rightarrow Y$ is a quotient map and $X$ is compactly generated, then $Y$ is compactly generated.
(c) Suppose $X=\bigcup X_{\alpha}$ has the coherent (direct limit) topology, i.e. $C \subseteq X$ is closed if and only if $C \cap X_{\alpha}$ is closed in $X_{\alpha}$ for all $\alpha$. Then if each $X_{\alpha}$ is compactly generated, so is $X$.

Remark. There are some inherent failures in restricting to the class of compactly generated spaces. For example:

- If $X$ and $Y$ are compactly generated, then $X \times Y$ is not always compactly generated. However, if $X$ is compactly generated and $Y$ is locally compact and Hausdorff, then $X \times Y$ is compactly generated.
- If $X$ is compactly generated and $A \subseteq X$ is a subspace, then $A$ need not be compactly generated. For example, let $X=\mathbb{R}$ and $A=\mathbb{Q} \subseteq \mathbb{R}$ with the subspace topology. Then $\mathbb{R}$ is locally compact and Hausdorff and therefore compactly generated by Example 0.1 .13 , but $\mathbb{Q}$ is not compactly generated.
- Even if $X$ and $Y$ are compactly generated, $\operatorname{Map}(X, Y)$ is not always compactly generated.

Let HTop be the category of Hausdorff topological spaces and let $\mathcal{K}$ be the category of compactly generated spaces. Steenrod defines the following functor between these categories.

Definition. The $k$-functor is the assignment $k:$ HTop $\rightarrow \mathcal{K}$ sending $X$ to $k(X)=X$ as a set with the topology given by declaring $C \subseteq X$ to be closed if and only if $C \cap K$ is closed in $K$ for all compact subspaces $K \subseteq X$.

Lemma 0.1.16. For any Hausdorff topological space $X, k(X)$ is compactly generated.
Lemma 0.1.17. For all Hausdorff $X$, the identity on $X$ induces a continuous map $X \rightarrow$ $k(X)$.

Theorem 0.1.18. The $k$-functor $k:$ HTop $\rightarrow \mathcal{K}$ has a left adjoint given by the inclusion $\mathcal{K} \hookrightarrow$ нTop.

To remedy the failures in the above remark, we make the following definitions standard for spaces in $\mathcal{K}$ :

- For a subset $A \subseteq X$ where $X \in \mathcal{K}$, we regard $A$ as a subspace of $X$ by viewing $A=k(A)$. Thus a subspace of a compactly generated space does not in general have the subspace topology.
- Products in $\mathcal{K}$ are given by $X \times_{\mathcal{K}} Y=k(X \times Y)$. In the future we will simply write $X \times Y$.
- The morphisms $\operatorname{Hom}(X, Y)=\operatorname{Map}(X, Y)$ do not in general form a compactly generated space, so we set $\operatorname{Hom}_{\mathcal{K}}(X, Y)=k(\operatorname{Hom}(X, Y)$. In the future we will denote this by $\operatorname{Map}(X, Y)$.

Proposition 0.1.19. For all compactly generated spaces $X$ and $Y$, the evaluation map $\varepsilon_{X, Y}: \operatorname{Map}(X, Y) \times X \rightarrow Y$ is continuous.

In particular, the previous results for $\varepsilon_{X, Y}$ hold in $\mathcal{K}$, notably the homeomorphism

$$
\operatorname{Map}(X \times Y, Z) \xrightarrow{\sim} \operatorname{Map}(X, \operatorname{Map}(Y, Z))
$$

from Corollary 0.1.12.
Remark. Since $[0,1]$ and any $n$-simplex $\Delta_{n}$ are compactly generated, for any space $X$,

- $X \times[0,1]$ is compactly generated if $X$ is compactly generated;
- $\operatorname{Map}\left(\Delta_{n}, X\right)=\operatorname{Map}\left(\Delta_{n}, k(X)\right)$.

Therefore we do not lose any information with the homotopy functors $H_{\bullet}$ or $[Y,-]$, since $H_{\bullet}(k(X))=H_{\bullet}(X)$ and $[Y, k(X)]=[Y, X]$.

Example 0.1.20. Let $I=[0,1]$ and $X, Y \in \mathcal{K}$. Then $\operatorname{Map}(I \times X, Y)=[X, Y]$ and $\operatorname{Map}(I, \operatorname{Map}(X, Y))$ coincides with the set of path components of $\operatorname{Map}(X, Y)$. So the bijection in Corollary 0.1.7 identifies $[X, Y]=\pi_{0}(\operatorname{Map}(X, Y))$.

### 0.2 Based Categories

Let $\mathrm{Top}_{*}$ be the category of based spaces, with objects ( $X, x_{0}$ ) where $X$ is a topological space and $x_{0} \in X$ is a point, and with based maps as morphisms:

$$
\operatorname{Map}_{*}(X, Y)=\left\{f \in \operatorname{Map}(X, Y) \mid f\left(x_{0}\right)=y_{0}\right\}
$$

Note that $\operatorname{Map}_{*}(X, Y)$ is itself based: the constant map $X \rightarrow Y$ sending every $x \in X$ to $y_{0}$ is continuous. We say two based maps $f, g:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ are based homotopic if there exists a continuous map $H: X \times I \rightarrow Y$ such that $H_{0}=f, H_{1}=g$ and $H_{t}\left(x_{0}\right)=y_{0}$ for all $t \in I$. Denote by $[X, Y]_{*}$ the set of based homotopy equivalence classes of based maps $f: X \rightarrow Y$.

Remark. The category of based spaces is related to the ordinary category of topological spaces as follows. For any space $X$, let $X_{+}=X \amalg *$ where $*$ is a basepoint disjoint from $X$ that is both open and closed in $X_{+}$. Then for any based space $Y,\left[X_{+}, Y\right]_{*}=[X, Y]$. Further, the natural map $\pi: X_{+} \rightarrow X$ induces a morphism $[X, Y]_{*} \rightarrow\left[X_{+}, Y\right], f \mapsto f \circ \pi$ whenever $X, Y$ are both based.

Lemma 0.2.1. For any topological spaces $X, Y$ and points $x_{0} \in X, y_{0} \in Y$, there is a pullback diagram

where $e_{x_{0}}$ is the evaluation map $f \mapsto f\left(x_{0}\right)$.

Definition. For a collection of based spaces $\left\{\left(X_{\alpha}, x_{\alpha}\right)\right\}$, their wedge product is the quotient space

$$
\bigvee X_{\alpha}=\left(\coprod X_{\alpha}\right) /\left(x_{\alpha} \sim x_{\beta}\right)
$$

Lemma 0.2.2. Wedge product is a pushout in Top:


The notion of products in the based category $\mathrm{Top}_{*}$ is defined as follows.
Definition. The smash product of two based spaces $X, Y \in \operatorname{Top}_{*}$ is the space

$$
X \wedge Y=(X \times Y) /(X \vee Y)
$$

In analogy with Corollary 0.1.7, we have:
Proposition 0.2.3. For any based spaces $X, Y$ and $Z$, the natural map

$$
\operatorname{Map}_{*}(X \wedge Y, Z) \longrightarrow \operatorname{Map}_{*}\left(X, \operatorname{Map}_{*}(Y, Z)\right), \quad F \mapsto \widehat{F}
$$

is a bijection.
View the interval $I=[0,1]$ as a based space with basepoint 0 . Using previous notation, let $I_{+}$be the interval with a disjoint basepoint $*$.

Definition. Let $f, g: X \rightarrow Y$ be two based maps. A based homotopy from $f$ to $g$ is a based map $H: X \wedge I_{+} \rightarrow Y$ satisfying $H_{0}=f$ and $H_{1}=g$.

By Proposition 0.2.3, a based homotopy is equivalent to a map $\widehat{H}: X \rightarrow \operatorname{Map}\left(I_{+}, Y\right)$. Each of these definitions coincides with the 'usual' notion of based homotopy, i.e. a continuous map $H: X \times I \rightarrow Y$ with $H_{0}=f, H_{1}=g$ and $H_{t}\left(x_{0}\right)=y_{0}$ for every $t$.

Definition. The cone on a based space $X$ is the smash product $C X=X \wedge I$.
Definition. The path space on a based space $X$ is the space $P X=\operatorname{Map}_{*}(I, X)$.
Corollary 0.2.4. For any based spaces $X, Y$, there is a bijection $\operatorname{Map}_{*}(C X, Y)=\operatorname{Map}_{*}(X, P Y)$.
Proof. Apply Proposition 0.2.3.
Definition. For a based space $X$, the suspension of $X$ is the smash product $\Sigma X=X \wedge S^{1}$.
Definition. For a based space $X$, the loop space of $X$ is the space $\Omega X=\operatorname{Map}_{*}\left(S^{1}, X\right)$.
Corollary 0.2.5. For any based spaces $X, Y$, there is a bijection $\operatorname{Map}_{*}(\Sigma X, Y)=\operatorname{Map}_{*}(X, \Omega Y)$.
Proof. Apply Proposition 0.2.3.

Lemma 0.2.6. Let $X$ be a based space. Then
(a) The suspension $\Sigma X$ is a pushout:

(b) Dually, the loop space $\Omega X$ is a pullback:


## $0.3 \quad H$-Spaces and Co- $H$-Spaces

Suppose $S$ is a set. We say $S$ has a product with unit if there is a basepoint $e \in S$ and a set map $m: S \times S \rightarrow S$ such that $m(s, e)=s=m(e, s)$ for all $s \in S$. We describe the following situations in Top ${ }_{*}$ :
(1) For fixed $Y$, when does $[X, Y]$ have a natural product with unit?
(2) For fixed $X$, when does $[X, Y]$ have a natural product with unit?

By natural, we mean something different in each case. For (1), naturality says that for any map $f: X^{\prime} \rightarrow X$, there is a commutative diagram

where $f^{*}(h)=h \circ f$ for any $h: X \rightarrow Y$. On the other hand, naturality in situation (2) means for any map $g: Y \rightarrow Y^{\prime}$, there is a commutative diagram

where $g_{*}(h)=g \circ h$ for any $h: X \rightarrow Y$.
Example 0.3.1. If $Y$ is a topological group, then every $[X, Y]$ has a product given by $(f g)(x)=f(x) g(x)$ for all $f, g: X \rightarrow Y$. This is an example of situation (1).

Example 0.3.2. Similarly, when $Y=\Omega Z$ is a loop space, $[X, \Omega Z]$ has a product given by concatenation of loops: if $\alpha, \beta: X \rightarrow \Omega Z$ then $(\alpha \beta)(x)=\alpha * \beta(x)$ where

$$
\alpha * \beta(x, t)= \begin{cases}\alpha(x, 2 t), & 0 \leq t \leq \frac{1}{2} \\ \beta(x, 2 t-1), & \frac{1}{2}<t \leq 1\end{cases}
$$

Fix $Y$ and suppose that for all $X$, there exists a natural product with unit $m_{X}:[X, Y] \times$ $[X, Y] \rightarrow[X, Y]$. Then for each $X$, there is a canonical identification $[X, Y \times Y]=[X, Y] \times$ $[X, Y]$. Define $m_{X}^{\prime}$ to be the resulting map $[X, Y \times Y] \rightarrow[X, Y]$. For the specific case $X=Y \times Y$, the identity is a distinguished map $1_{Y \times Y} \in[Y \times Y, Y \times Y]$. We write $m=$ $m_{Y \times Y}^{\prime}\left(1_{Y \times Y}\right) \in[Y \times Y, Y]$.

Lemma 0.3.3. For any $X$, the diagram

commutes.
Proof. For any $h: X \rightarrow Y \times Y$, we must show that $m_{*}(h)=m_{X}^{\prime}(h)$. Consider the diagram


Then the bottom triangle commutes by definition of $m_{Y \times Y}^{\prime}$ and the square commutes by naturality of $m_{X}$. Moreover, if we take $1_{Y \times Y} \in[Y \times Y, Y \times Y]=[Y \times Y, Y] \times[Y \times Y, Y]$ and apply $h^{*} \times h^{*}$, we get precisely $h \in[X, Y \times Y]$. Going around the diagram a different direction, $h^{*} \circ m_{Y \times Y}^{\prime}\left(1_{Y \times Y}\right)=h^{*}(m)=m \circ h=m_{*}(h)$. So it follows that $m_{X}^{\prime}(h)=m_{*}(h)$, i.e. the top triangle commutes.

The following result says that natural products with unit $m_{X}$ on every $[X, Y]$ are completely determined by this product map $m: Y \times Y \rightarrow Y$.

Proposition 0.3.4. Fix $Y$. Then $m_{X}:[X, Y] \times[X, Y] \rightarrow[X, Y]$ is a natural product with unit if and only if the diagram

commutes up to homotopy, where $\nabla: Y \vee Y \rightarrow Y$ is the 'fold map', i.e. the identity on each component.

Proof. ( $\Longrightarrow$ ) If $m_{X}$ is a product with unit, let $\pi_{1}, \pi_{2}: Y \times Y \rightarrow Y$ be the two coordinate projections and $i_{1}, i_{2}: Y \hookrightarrow Y \times Y$ the coordinate inclusions. Then by naturality,

$$
m_{X}\left(\pi_{1}, \pi_{2}\right) \circ i_{1}=m_{X}\left(\pi_{1} \circ i_{1}, \pi_{2} \circ i_{1}\right)=m_{X}(1, u)=1
$$

up to homotopy, where $u$ is the unit of $m_{X}$. Likewise, $m_{X}\left(\pi_{1}, \pi_{2}\right) \circ i_{2}=1$ up to homotopy. It follows that $Y \vee Y \hookrightarrow Y \times Y \xrightarrow{m_{X}\left(\pi_{1}, \pi_{2}\right)} Y$ is homotopic to $\nabla$.
$(\Longleftarrow)$ Conversely, suppose $m$ makes the above diagram homotopy commute. Then the product on $[X, Y]$ can be written $m_{X}\left(h_{1}, h_{2}\right)=m \circ\left(h_{1} \times h_{2}\right) \circ \Delta$ where $\Delta: x \mapsto(x, x)$ is the usual diagonal map on $X$. Then for any $h: X \rightarrow Y$ and the constant map $c: X \rightarrow, x \mapsto y_{0}$,

$$
m_{X}(c, h)(x)=m \circ(c \times h) \circ \Delta(x)=m \circ(c(x), h(x))=m \circ\left(y_{0}, h(x)\right) \simeq h(x)
$$

by hypothesis. Similarly $m_{X}(h, c)=h$ so $m_{X}$ is a product with unit. Naturality is a similar chase.

Definition. We say $Y$ is an $\mathbf{H}$-space if there is a map $m: Y \times Y \rightarrow Y$ making the diagram

commute up to homotopy.
There is a dual notion:
Definition. We say $X$ is a co-H-space if there is a map $p: X \rightarrow X \vee X$ making the diagram

commute up to homotopy.
Proposition 0.3.5. Fix $X$. Then there is a natural product with unit $p^{Y}:[X, Y] \times[X, Y] \rightarrow$ $[X, Y]$ for all $Y$ if and only if $X$ is a co- $H$-space.

Proof. Dual to the proof of Proposition 0.3.4.
Lemma 0.3.6. For any space $Z$, the suspension $\Sigma Z$ is a co-H-space.
Proof. First, note that $S^{1}$ is a co- $H$-space by Proposition 0.3 .5 , since $\left[S^{1}, Y\right]=\pi_{1}(Y)$ admits a group structure which is natural in $Y$. More generally, for any $X, Y, Z$, we have a natural identification $[X \wedge Z, Y] \cong\left[X, \operatorname{Map}_{*}(Z, Y)\right]$ so it follows that if $X$ is a co- $H$-space, then so is $X \wedge Z$. In particular, the case $X=S^{1}$ implies $\Sigma Z$ is a co- $H$-space for all $Z$.

Theorem 0.3.7. Suppose that $X$ is a co- $H$-space and $Y$ is an $H$-space. Then the two associated products on $[X, Y]$ are, in fact, the same. Moreover, this product is associative and commutative.

Proof. For any $h_{1}, h_{2}: X \rightarrow Y$, let $h_{1} \cdot h_{2}=m_{X}\left(h_{1}, h_{2}\right)$ be their product in $[X, Y]$ coming from the $H$-space structure on $Y$ and let $h_{1} * h_{2}=p^{Y}\left(h_{1}, h_{2}\right)$ be their product coming from the co- $H$-space structure on $X$. Consider the diagram


By hypothesis, the triangles homotopy commute and of course the square commutes on the nose. However, from Proposition 0.3.4, the right triangle encodes the product on $[X, Y]$ via $h_{1} \cdot h_{2}=m \circ\left(h_{1} \times h_{2}\right) \circ \Delta$, while the dual version in Proposition 0.3.5 shows that the left triangle gives $h_{1} * h_{2}=\nabla \circ\left(h_{1} \vee h_{2}\right) \circ p$. Hence $h_{1} \cdot h_{2}$ equals $h_{1} * h_{2}$ up to homotopy.

To show the product is associative and commutative, we first show that it is a homomorphism of sets with product, i.e. for any $f, g, h, j \in[X, Y],(f g)(h j)=(f h)(g j)$. This follows from the commutative diagram


Here, flip interchanges the second and third copies of $[X, Y]$. The diagram commutes by naturality of $m_{X}, p^{Y}$ and the fact that the product structures on $[X, Y]$ are the same.

Finally, take $f, g, h \in[X, Y]$ and let $e$ be the unit. Then by the above, $f(g h)=(f e)(g h)=$ $(f g)(e h)=(f g) h$ and $f g=(e f)(g e)=(e g)(f e)=g f$. Therefore the product is associative and commutative.

Example 0.3.8. One can show (e.g. using the ring structures on $H^{\bullet}\left(S^{n}\right)$ and $\left.H^{\bullet}\left(S^{n} \times S^{n}\right)\right)$ that if $S^{n}$ is an $H$-space, then $n$ must be odd. In fact:

Theorem 0.3.9 (Adams). $S^{n}$ is an $H$-space if and only if $n=1,3,7$.

## 1 Cofibration and Fibration

Cofibrations are, in a simple sense, maps $i: A \rightarrow X$ that are 'nice inclusions'. To motivate this, recall that the excision theorem from homology theory says: for a subspace $Z \subseteq X$ and $A \subseteq X$ such that $\bar{Z} \subseteq \operatorname{Int}(A)$, the inclusion of pairs $(X \backslash Z, A \backslash Z) \hookrightarrow(X, A)$ induces an isomorphism

$$
H_{\bullet}(X \backslash Z, A \backslash Z) \xrightarrow{\sim} H_{\bullet}(X, A) .
$$

This is equivalent to the Mayer-Vietoris sequence by the following argument. Let $B=X \backslash Z$ and $A \subseteq X$ such that $A \backslash Z=A \cap B$. Then $\bar{Z} \subseteq \operatorname{Int}(A)$ if and only if $\operatorname{Int}(A) \cup \operatorname{Int}(B)=X$, and if this holds, the excision isomorphism is $H_{\bullet}(B, A \cap B) \xrightarrow{\sim} H_{\bullet}(X, A)$.

The condition $A \cup B=X$ even suffices for the Mayer-Vietoris sequence when some 'nice' conditions are assumed. One version of 'nice' is the condition that ( $X, A$ ) is a good pair, sometimes called a collared pair: there exists an open set $U \subseteq X$ such that $A \subseteq U \subseteq X$ and $A \hookrightarrow U$ is a deformation retract.

One familiar situation arises when $X$ is equal to $A$ with an $n$-cell attached, or more explicitly, $X$ is the pushout of the following diagram:


Then the map $\left(D^{n}, S^{n-1}\right) \rightarrow(X, A)$ induces an isomorphism $H_{\bullet}\left(D^{n}, S^{n-1}\right) \xrightarrow{\sim} H_{\bullet}(X, A)$, and the former is computable so $(X, A)$ is a really nice pair in this case.

A key fact that relates all of these conditions in the above example is that ( $D^{n}, S^{n-1}$ ) is a collared pair and this implies $(X, A)$ is also a collared pair. This property of passing to pushouts will be an important characteristic of cofibrations.

### 1.1 Cofibrations

Definition. $A$ map $i: A \rightarrow X$ is called $a$ cofibration if it satisfies the homotopy extension property (abbreviated HEP), which says that given the natural inclusion $i_{0}: A \hookrightarrow$ $A \times I$, a map $h: X \rightarrow Y$ and a homotopy $K: A \times I \rightarrow Y$, there exist a homotopy $H: X \times I \rightarrow Y$ making the following diagram commute:


Example 1.1.1. Let $i: A \hookrightarrow X$ be an honest embedding and let $Y$ be the subspace $X \times\{0\} \cup A \times I \subseteq X \times I$, with $h: X \hookrightarrow Y$ and $K: A \times I \hookrightarrow Y$ the usual inclusions. Then if $i: A \hookrightarrow X$ is a cofibration, this just means the induced map $H: X \times I \rightarrow Y$ is a retraction. This statement holds even when $i: A \rightarrow X$ is any cofibration (though we will see that every fibration is an inclusion of a closed subspace) and with $X \times\{0\} \cup A \times I$ replaced by the pushout of the diagram


In fact, the converse is true as well:
Lemma 1.1.2. For any $i: A \rightarrow X$, let $Y$ be the pushout of $i$ and the map $A \hookrightarrow A \times I$. Then the following are equivalent:
(1) i satisfies the HEP.
(2) There exists a map $r: X \times I \rightarrow Y$ which satisfies $r \circ j=i d_{Y}$, where $j: Y \rightarrow X \times I$ is the map induced by pushout.

Example 1.1.3. The canonical embedding $S^{n-1} \hookrightarrow D^{n}$ is a cofibration since $D^{n} \times I$ retracts onto $D^{n} \times\{0\} \cup S^{n-1} \times I$ by "punching the can in". More generally, for any space $X$, the natural inclusion $X \hookrightarrow C X$ induces such a retract and hence is a cofibration.

Remark. The homotopy extension property for $i: A \rightarrow X$ can be rephrased in the following way (it is equivalent by Corollary 0.1.12): for any $h: X \rightarrow Y$ and $\widehat{K}: A \rightarrow \operatorname{Map}(I, Y)$, there is a map $\widehat{H}: X \rightarrow \operatorname{Map}(I, Y)$ making the diagram

commute, where $e_{0}$ is the evaluation map $g \mapsto g(0)$.
Lemma 1.1.4. Suppose $Z$ is Hausdorff. Given a pair $j: Y \rightarrow Z$ and $r: Z \rightarrow Y$ with $r \circ j=i d_{Y}, j$ is injective and $j(Y)$ is closed in $Z$.

Proof. First, $r \circ j$ restricts to $Y \xrightarrow{j} j(Y) \xrightarrow{r} Y$ which is still the identity on $Y$, hence a bijection with continuous inverse. It follows that $j$ is a homeomorphism onto $j(Y)$. To show the image is closed, let $e=j \circ r: Z \xrightarrow{r} Y \xrightarrow{j} Z$ and consider the map $E: Z \rightarrow Z \times Z$
sending $z \mapsto(z, e(z))$. Also let $\Delta(Z) \subseteq Z \times Z$ be the usual diagonal subspace. Then $E^{-1}(\Delta(Z))=\{z \in Z \mid e(z)=z\}=j(Y)$, but since $Z$ is Hausdorff, $\Delta(Z)$ is closed and thus so is $E^{-1}(\Delta(Z))$.

If $r, j$ is such a pair of maps, it now makes sense to call $j$ a closed embedding and $r$ a retraction (onto $Y$ ). From now on we assume all spaces are Hausdorff.

Proposition 1.1.5. Every cofibration $i: A \rightarrow X$ is a closed embedding.
Proof. Let $P$ be the pushout of $A \rightarrow A \times I$ and $A \rightarrow X$. By Lemma 1.1.4, the induced map $j: P \rightarrow X \times I$ is a closed embedding. It follows that $X \times\{1\} \cup P \rightarrow X \times\{1\}$ is a closed embedding, but this is precisely $i: A \rightarrow X$.

Proposition 1.1.6. Cofibrations satisfy the following properties:
(a) Suppose $Y$ is the pushout of the following diagram:


Then if $i$ is a cofibration, so is $j$.
(b) If $\left\{i_{\alpha}: A_{\alpha} \rightarrow X_{\alpha}\right\}$ is a collection of cofibrations, then $\coprod i_{\alpha}: \coprod A_{\alpha} \rightarrow \coprod X_{\alpha}$ is a cofibration.
(c) The composite of cofibrations is a cofibration.
(d) Suppose $A_{1} \xrightarrow{i_{1}} A_{2} \xrightarrow{i_{2}} A_{3} \xrightarrow{i_{3}} \cdots$ is a coherent sequence of cofibrations and $A=$ $\underset{\leftarrow}{\lim }\left(A_{j}, i_{j}\right)$. Then each induced map $A_{j} \rightarrow A$ is a cofibration.

Definition. The unbased cone of $X$ is the space $C X=(X \times I) /(X \times\{0\})$.
Proposition 1.1.7. The inclusion $i_{1}: X \hookrightarrow C X, x \mapsto(x, 1)$ is a cofibration.
Proof. Define $r: C X \times I \rightarrow C X \times\{0\} \cup X \times\{1\} \times I$ by

$$
r([x, s], t)= \begin{cases}\left(\left[x, \frac{2 s}{2-t}\right], 0\right), & t<2-2 s \\ \left([x, 1], \frac{2 s-2+t}{s}\right), & t \geq 2-2 s\end{cases}
$$

Then $r$ is a retraction. Apply Lemma 1.1.2.
Thus we can justify the claim in Example 1.1.3.
Corollary 1.1.8. $S^{n-1} \hookrightarrow D^{n}$ is a cofibration for any $n$.

We say $(X, A)$ is a relative $C W$-complex if $X=\bigcup X_{n}$ for a sequence of skeleta $X_{0} \rightarrow$ $X_{1} \rightarrow X_{2} \rightarrow \cdots$ and $A=X_{0}$.

Corollary 1.1.9. If $(X, A)$ is a relative $C W$-complex, the $A \hookrightarrow X$ is a cofibration.
Proof. By definition, each skeleton $X_{n}$ is obtained from $X_{n-1}$ by attaching $n$-cells, which can be viewed as a pushout diagram


Then by Corollary 1.1.8, each $f_{\alpha}: S^{n-1} \rightarrow D^{n}$ is a cofibration, and applying parts of Proposition 1.1.6 says that:

- $\coprod S^{n-1} \rightarrow \amalg D^{n}$ is a cofibration by (b);
- $X_{n-1} \rightarrow X_{n}$ is a cofibration by (a);
- Each $X_{n} \rightarrow X$ is a cofibration by (d);

In particular, $A=X_{0} \rightarrow X$ is a cofibration.
Proposition 1.1.10. If $i: A \rightarrow X$ is a cofibration and $A$ is contractible, then the quotient map $X \rightarrow X / A$ is a homotopy equivalence.

Proof. Since $A$ is contractible, there is a homotopy $K: A \times I \rightarrow A$ with $K_{0}=i d_{A}$ and $K_{1}$ constant. Thus since $i$ is a cofibration, $H_{0}: X \times\{0\} \rightarrow X$ lifts to a homotopy $H: X \times I \rightarrow X$ making the following diagram commute:


This descends to a map $\bar{H}: X / A \times I \rightarrow X / A$ by the universal property of the quotient map $p: X \rightarrow X / A$. Notice that $H_{1}$ sends $A$ to a point, so $\bar{H}_{1}$ lifts to $X$ :


Then $\bar{H}$ is a homotopy $i d_{X / A} \simeq p \circ \bar{H}_{1}$ and $H$ is a homotopy $i d_{X} \simeq \bar{H}_{1} \circ q$. Hence $p$ is a homotopy equivalence.

Corollary 1.1.11. Suppose $i: A \rightarrow X$ is a cofibration and $X \cup C A$ is the following pushout:


Then $X \cup C A \rightarrow X \cup C A / C A$ is a homotopy equivalence.
Proof. It's easy to see that $X \cup C A / C A$ is exactly $X / A$. Then the previous result applies.
Proposition 1.1.12. Suppose $i: A \rightarrow X$ and $j: B \rightarrow Y$ are cofibrations and $X \times B \cup A \times Y$ is the pushout of the diagram


Then the induced map $X \times B \cup A \times Y \rightarrow X \times Y$ is a cofibration.
Definition. For $i: A \rightarrow X$ and $j: B \rightarrow Y$ as above, the map $X \times B \cup A \times Y \rightarrow X \times Y$ is called the pushout product of $i$ and $j$, written $i \square j$.

Definition. A basepoint $x_{0} \in X$ is nondegenerate if $\left\{x_{0}\right\} \hookrightarrow X$ is a cofibration.
Corollary 1.1.13. If $X$ and $Y$ have nondegenerate basepoints, then the natural inclusion $X \vee Y \rightarrow X \times Y$ is a cofibration.

Corollary 1.1.14. Suppose $Y$ is an $H$-space with nondegenerate basepoint. Then the multiplication map $m: Y \times Y \rightarrow Y$ from Proposition 0.3.4 makes the diagram

commute directly, not just up to homotopy.
Definition. A pair of spaces $(X, A)$ is a neighborhood deformation retract, or NDR pair, if there exists a pair of maps $u: X \rightarrow I$ and $h: X \times I \rightarrow X$ satisfying:
(i) $u^{-1}(0)=A$.
(ii) $h_{0}=i d_{X}$.
(iii) $\left.h_{t}\right|_{A}=i d_{A}$ for all $t \in I$.
(iv) If $U=u^{-1}([0,1))$, then $h_{t}(U) \subseteq A$ for all $t \in I$.

Proposition 1.1.15. $(X, A)$ is an $N D R$ pair if and only if $A \hookrightarrow X$ is a cofibration.
Next, suppose we have a pushout diagram


This can be viewed as a map of pairs $(X, A) \rightarrow(Y, B)$ and there is an induced map on homology $H_{\bullet}(X, A) \rightarrow H_{\bullet}(Y, B)$. We will show that when one of the maps is a cofibration, the map on homology is actually an isomorphism. We begin with a special case that is well-known for 'nice pairs' $(X, A)$.

Lemma 1.1.16. Suppose $i: A \rightarrow X$ is a cofibration. Then there is an isomorphism $H_{\bullet}(X, A) \rightarrow H_{\bullet}(X / A, A / A)=\widetilde{H}_{\bullet}(X / A)$.

Proof. Note that $X / A$ can be viewed as a pushout:


Let $C A$ be the cone on $A$ and consider the diagram


The top arrow is an isomorphism by the homotopy axiom and the left arrow is an isomorphism by excision. Further, since $i$ is a cofibration, $C A \rightarrow X \cup C A$ is a cofibration and $X \cup C A \rightarrow$ $X / A$ is a homotopy equivalence by Corollary 1.1.11. Hence the bottom row is also an isomorphism, so this proves $H_{\bullet}(X, A) \rightarrow H_{\bullet}(X / A, A / A)$ is an isomorphism.

Lemma 1.1.17. If

is a pushout diagram then the induced map $X / A \rightarrow Y / B$ is a homeomorphism.
Proof. The pushout of a pushout is a pushout, so the result follows from the diagram


Theorem 1.1.18. If $i: A \rightarrow X$ is a cofibration, $f: A \rightarrow B$ is any map and $Y$ is the pushout of $i$ and $f$,

then the induced map on homology $H_{\bullet}(X, A) \rightarrow H_{\bullet}(Y, B)$ is an isomorphism.
Proof. Consider the diagram


Then the left and right arrows are isomorphisms by Lemma 1.1.16, while the bottom row is an isomorphism Lemma 1.1.17. Hence $H_{\bullet}(X, A) \rightarrow H_{\bullet}(Y, B)$ is an isomorphism.

Fix arbitrary maps $i: A \rightarrow X$ and $f: A \rightarrow B$ and denote the pushout by $P(f)$ :


A natural question to ask is: if $f, g: A \rightarrow B$ are homotopic, then are $P(f)$ and $P(g)$ necessarily homotopy equivalent? The answer, as it turns out, is no in general:

Example 1.1.19. Consider the trivial map $i: S^{1} \rightarrow *$ and two maps $f, g: S^{1} \rightarrow D^{2}$, where $f$ is the natural inclusion $S^{1}=\partial D^{2}$ and $g$ is a constant map. Then $P(f)=S^{2}$, while $P(g)=D^{2}$ and these are clearly not homotopy equivalent spaces.

Lemma 1.1.20. Let $i: A \rightarrow X$ be a cofibration and let $f: A \rightarrow B$ and $F: A \times I \rightarrow B$ be maps such that $F_{0}=f$ and

are pushout squares. Then the induced map $K: P(f) \rightarrow P(F)$ is a homotopy equivalence under $B$.

Proof. We have a diagram


Since $i$ is a cofibration, there exists a map $\bar{F}: X \times I \rightarrow P(f)$ making the above commute. Now the right square may be viewed as a pushout diagram:


In particular, we get a map $r: P(F) \rightarrow P(f)$ which satisfies $r \circ K=i d_{P(f)}$. We finish by showing $K \circ r \simeq i d_{P(F)}$. Define a set

$$
U=\{0\} \times I \cup I \times\{0\} \cup I \times\{1\} \subseteq I \times I .
$$

(As a subset of the square $I \times I$, this set is equal to the union of the bottom, left and right sides.) Now we have a diagram in which the right square is a pushout:


Here, the map $X \times U \rightarrow P(F)$ is defined on $X \times\{0\} \times I$ by $\tilde{f} \times 1$, on $X \times I \times\{0\}$ by $\tilde{F}$, and on $X \times I \times\{1\}$ by $K \times \bar{F}$. Since $i$ is a cofibration, $i \times 1: A \times I \rightarrow X \times I$ is also a cofibration (this is obvious from the HEP). Therefore the map $X \times U \rightarrow P(F)$ just described induces $H^{\prime}: X \times I \times I \rightarrow P(F)$, and since the right square in the diagram above is a pushout, this induces $H: P(F) \times I \rightarrow P(F)$. By construction, $H_{0}=i d_{P(F)}$ and $H_{1}=K \circ r$ so we're done.

Theorem 1.1.21. If $i: A \rightarrow X$ is a cofibration and $f, g: A \rightarrow B$ are homotopic maps, then $P(f)$ and $P(g)$ are homotopy equivalent under $B$, i.e. there is a commutative diagram

and homotopies $H: P(f) \times I \rightarrow P(f)$, with $H_{0}=i d_{P(f)}$ and $H_{1}=b \circ a$; and $K: P(g) \times I \rightarrow$ $P(g)$, with $K_{0}=i d_{P(g)}$ and $K_{1}=a \circ b$; such that $H$ and $K$ also commute with $i(f)$ and $i(g)$.

Proof. If $F: A \times I \rightarrow B$ is the homotopy, with $F_{0}=f$ and $F_{1}=g$, then Lemma 1.1.20 gives a diagram

in which each triangle is a homotopy equivalence under $B$. Therefore $P(f)$ and $P(g)$ are homotopy equivalent under $B$.

Corollary 1.1.22. Suppose $Z$ is obtained from a space $Y$ by attaching an $n$-cell via an attaching map $f: S^{n-1} \rightarrow Y$ which is nullhomotopic. Then $Z$ is homotopy equivalent to $Y \vee S^{n}$ under $Y$.

Proof. The wedge product $Y \vee S^{n}$ and $Z=Y \cup_{f} D^{n}$ can each be viewed as a pushout:

where $c$ is a constant map, but by hypothesis, $f$ and $c$ are homotopic.
Definition. The homotopy pushout of two maps $f: X \rightarrow Y$ and $g: X \rightarrow Z$ is the pushout $P^{h}(f, g)$ of the diagram


Corollary 1.1.23. If $f, f^{\prime}: X \rightarrow Y$ are homotopic and $g, g^{\prime}: X \rightarrow Z$ are homotopic, then the homotopy pushouts $P^{h}(f, g)$ and $P^{h}\left(f^{\prime}, g^{\prime}\right)$ are homotopy equivalent.

Proof. By Proposition 1.1.6(b), $i_{0} \times i_{1}: X \times X \rightarrow X \times I$ is a cofibration so apply Theorem 1.1.21.

Observe that for any maps $f: X \rightarrow Y$ and $g: X \rightarrow Z$, there is a natural map $\pi$ : $P^{h}(f, g) \rightarrow P(f, g)$ given by the following diagram:


In fact, $\pi$ can be viewed as a quotient map.
Proposition 1.1.24. If either $f$ or $g$ is a cofibration, the induced map $\pi$ : $P^{h}(f, g) \rightarrow P(f, g)$ is a homotopy equivalence.

Definition. The mapping cylinder of $f: X \rightarrow Y$ is the pushout of the diagram


Theorem 1.1.25. Every map $f: X \rightarrow Y$ factors through a cofibration $\tilde{f}$,

such that $p$ is a homotopy equivalence.
Proof. Take $M$ to be the mapping cylinder $M(f)$.

### 1.2 Cofibration Sequences

Suppose $[X, Y]$ is the based space of homotopy classes of based maps from $X$ to $Y$, two based spaces. Given such a map $f: X \rightarrow Y$, there is an induced map

$$
\begin{aligned}
f^{*}:[Y, W] & \longrightarrow[X, W] \\
g & \longmapsto g \circ f
\end{aligned}
$$

for any $W$, which is natural in $W$. Consider the "kernel" of $f$, i.e. the set

$$
\text { ker } f^{*}=\{g \in[Y, W] \mid g \circ f \text { is nullhomotopic }\} .
$$

Note that $g \circ f$ being nullhomotopic is equivalent to the existence of a based homotopy $H: X \times I \rightarrow W$ such that $H_{0}=c$ is a constant map and $H_{1}=g \circ f$, which in turn is equivalent to the existence of $\widetilde{H}: C X \rightarrow W$ such that $\widetilde{H}_{1}=g \circ f$, i.e. $g \circ f$ is equal to $X \xrightarrow{i_{1}} C X \xrightarrow{\widetilde{H}} W$.

Now let $C(f)$ be the pushout of the diagram


Then $g \circ f$ is nullhomotopic if and only if $g$ factors through $i(f): Y \rightarrow C(f)$, i.e. the diagram


In other words, $[C(f), W]$ can be identified with the kernel of $f^{*}$. To be precise:
Lemma 1.2.1. For any $f: X \rightarrow Y$ and any $W$, there is an exact sequence of based sets

$$
[C(f), W] \xrightarrow{i(f)^{*}}[Y, W] \xrightarrow{f^{*}}[X, W] .
$$

Definition. The set $C(f)$ is called the (homotopy) cofibre of $f$, or sometimes the mapping cone of $f$.

In analogy with the kernel-cokernel sequence in algebra, one has $C(f) \simeq Y / f(X)$.
Proposition 1.2.2. Let $X$ and $Y$ be spaces. Then
(a) If $f, g: X \rightarrow Y$ are homotopic, then $C(f)$ and $C(g)$ are homotopy equivalent under $Y$.
(b) If $j: A \rightarrow X$ is a cofibration, then $C(j)$ and $X / A$ are homotopic under $X$.

Proof. (a) follows from the diagram

and Theorem 1.1.21.
(b) likewise follows from the diagram


Proposition 1.2.3. For any map $f: X \rightarrow Y$, there are natural long exact sequences in reduced homology and cohomology

$$
\begin{aligned}
& \cdots \rightarrow \widetilde{H}_{n}(X) \xrightarrow{f_{*}} \widetilde{H}_{n}(Y) \xrightarrow{i(f)_{*}} \widetilde{H}_{n}(C(f)) \xrightarrow{\delta} \widetilde{H}_{n-1}(X) \rightarrow \cdots \\
& \cdots \rightarrow H^{n}(C(f)) \xrightarrow{i(f)^{*}} H^{n}(Y) \xrightarrow{f^{*}} H^{n}(X) \xrightarrow{\delta} H^{n+1}(C(f)) \rightarrow \cdots
\end{aligned}
$$

Proof. Since $i(f)$ is a cofibration (by Proposition 1.1.6), it is an embedding by Proposition 1.1.5 so $(C(f), Y)$ is a pair of spaces and there is a diagram

where the top row is the long exact sequence for $(C(f), Y)$, the bottom row is the long exact sequence for the pair $(C X, X)$, and the vertical column is an isomorphism by Theorem 1.1.18. Then $C X$ is contractible, so $\widetilde{H}_{n}(C X)=0$ and so by exactness we get an isomorphism $H_{n}(C X, X) \xrightarrow{\sim} \widetilde{H}_{n-1}(X)$. This constructs the desired exact sequence. The proof for cohomology is analogous.

Consider the second iteration of the cone construction:

$$
X \xrightarrow{f} Y \xrightarrow{i(f)} C(f) \xrightarrow{i^{2}(f)} C(i(f)) .
$$

Since $i(f)$ is a cofibration, the natural quotient map

$$
q: C(i(f)) \longrightarrow C(i(f)) / C Y=C(f) / Y=C X / X=\Sigma X
$$

is a homotopy equivalence by Proposition 1.1.10. Let $\pi(f)=q \circ i^{2}(f): C(f) \rightarrow \Sigma X$.
Lemma 1.2.4. For any map $f: X \rightarrow Y$ and any space $W$,

$$
[\Sigma X, W] \xrightarrow{\pi(f)^{*}}[C(f), W] \xrightarrow{i(f)^{*}}[Y, W] \xrightarrow{f^{*}}[X, W]
$$

is an exact sequence of sets.
Iterating again, we get a sequence

where $-\Sigma f$ is the map $\Sigma X=X \wedge S^{1} \rightarrow Y \wedge S^{1}=\Sigma Y$ induced by $z \mapsto \bar{z}$ on $S^{1}$. This construction continues inductively, constructing the so-called long exact sequence in homotopy.

Theorem 1.2.5 (Puppe). For any map $f: X \rightarrow Y$ and any space $W$, there is a long exact sequence of pointed sets which is natural in $W$ :

$$
\begin{aligned}
& \cdots \rightarrow\left[\Sigma^{n} C(f), W\right] \rightarrow\left[\Sigma^{n} Y, W\right] \rightarrow\left[\Sigma^{n} X, W\right] \rightarrow\left[\Sigma^{n-1} C(f), W\right] \rightarrow \cdots \\
& \cdots \rightarrow[\Sigma C(f), W] \xrightarrow{(\Sigma i(f))^{*}}[\Sigma Y, W] \xrightarrow{(\Sigma f)^{*}}[\Sigma X, W] \xrightarrow{\pi(f)^{*}}[C(f), W] \xrightarrow{i(f)^{*}}[Y, W] \xrightarrow{f^{*}}[X, W] .
\end{aligned}
$$

Corollary 1.2.6. For any $f: X \rightarrow Y$ and $W$, there is a natural long exact sequence

$$
\cdots \rightarrow\left[C(f), \Omega^{n} W\right] \rightarrow\left[Y, \Omega^{n} W\right] \rightarrow\left[X, \Omega^{n} W\right] \rightarrow\left[C(f), \Omega^{n-1} W\right] \rightarrow \cdots
$$

Proof. Apply Corollary 0.2.5.
Proposition 1.2.7. Given a map of pairs

which commutes up to homotopy, there exists a map $\gamma: C(f) \rightarrow C\left(f^{\prime}\right)$ and a diagram

in which the middle square commutes and the right square commutes up to homotopy.
Suppose we have a composition $X \xrightarrow{g} Y \xrightarrow{f} Z$. Then up to homotopy equivalence, we can think of $C(g)$ as $Y / g(X)$ and $C(f)$ as $Z / f(Y)$, and also $C(f \circ g)$ as $Z / f \circ g(X)$. In analogy with algebra, we might hope to have $Z / X$ homotopy equivalent to $(Z / X) /(Y / X)$, e.g. if we suppose $X \subseteq Y \subseteq Z$ are subspaces, for simplicity. Indeed, we have:
Proposition 1.2.8. For any maps $X \xrightarrow{g} Y \xrightarrow{f} Z$, the maps $C(g) \xrightarrow{h} C(f \circ g) \rightarrow C(h)$ induce a homotopy equivalent between $C(f)$ and $C(h)$.
Proof. This follows from the diagram

where the top row is the cofibre sequence for $g: X \rightarrow Y$, the left column is the cofibre sequence for $f: Y \rightarrow Z$, the diagonal-to-middle row is the cofibre sequence for $f \circ g: X \rightarrow Z$ and the right column comes from naturality.

As a result, we can identify $C(f)$ as the cofibre of the map $C(g) \rightarrow C(f \circ g)$.
Proposition 1.2.9. For any based map $f: X \rightarrow Y$,
(a) The group $[\Sigma X, W]$ acts on $[C(f), W]$ via the map $\pi(f)^{*}:[\Sigma X, W] \rightarrow[C(f), W]$ for any space $W$.
(b) $\pi(f)^{*}$ is a map of $[\Sigma X, W]$-sets.
(c) For any maps $\alpha, \beta: C(f) \rightarrow W, i(f)^{*}[\alpha]=i(f)^{*}[\beta]$ if and only if $\alpha$ and $\beta$ are in the same orbit of the $[\Sigma X, W]$-action on $[C(f), W]$.

Recall from Section 0.2 that for a based space $X$, the space $X_{+}=X \coprod\left\{x_{0}\right\}$ induces an equivalence between the based maps $[X, Y]_{*}$ and the unbased maps $\left[X_{+}, Y\right]$ for any $Y$. This induces a cofibration sequence $S^{0} \rightarrow X_{+} \xrightarrow{p} X \rightarrow S^{1}$. Then for any connected $Y$, we get an exact sequence of sets

$$
\pi_{1}(Y)=\left[S^{1}, Y\right]_{*} \rightarrow[X, Y]_{*} \rightarrow\left[X_{+}, Y\right] \rightarrow\left[S^{0}, Y\right]=*
$$

Corollary 1.2.10. For any based spaces $X$ and $Y, \pi_{1}(Y)$ acts on $[X, Y]_{*}$ and the orbits are in one-to-one correspondence with the unbased homotopy classes of maps $X \rightarrow Y$.

Corollary 1.2.11. For any connected space $Y, \pi_{1}(Y)$ acts on $\left[S_{+}^{1}, Y\right]$ by conjugation.
Cofibration sequences have many applications to the study of homotopy groups of spheres, $\pi_{k}\left(S^{n}\right)$.

Proposition 1.2.12. For all $X$ and $Y$, the map $d: X \wedge Y \rightarrow \Sigma(X \vee Y)$ is nullhomotopic.
Proof. Consider the cofibration sequence

$$
X \vee Y \xrightarrow{i} X \times Y \xrightarrow{p} X \wedge Y \xrightarrow{d} \Sigma(X \vee Y) \xrightarrow{\Sigma i} \Sigma(X \times Y) \xrightarrow{\Sigma p} \Sigma(X \wedge Y) .
$$

Then to prove $d$ is nullhomotopic, it is equivalent to prove the map $(\Sigma i)^{*}:[\Sigma(X \times Y), W] \rightarrow$ $[\Sigma(X \vee Y), W]$ is surjective for any space $W$. Indeed, this follows from the Puppe sequence

$$
\cdots \rightarrow[\Sigma(X \wedge Y), W] \xrightarrow{(\Sigma p)^{*}}[\Sigma(X \times Y), W] \xrightarrow{(\Sigma i)^{*}}[\Sigma(X \vee Y), W] \xrightarrow{d^{*}}[X \wedge Y, W] \rightarrow \cdots
$$

To show $(\Sigma i)^{*}$ is surjective, note that $\Sigma(X \vee Y)=\Sigma X \vee \Sigma Y$, so we can split $[\Sigma(X \vee Y), W]=$ $[\Sigma X, W] \times[\Sigma Y, W]$. If $X \xrightarrow{i_{X}} X \times Y \xrightarrow{\pi_{X}} X$ are the natural inclusion and projection for $X$ (and $i_{Y}, \pi_{Y}$ are the same for $Y$ ), then $(\Sigma i)^{*}$ can be viewed as

$$
\left(i_{X}^{*}, i_{Y}^{*}\right):[\Sigma(X \times Y), W] \longrightarrow[\Sigma X, W] \times[\Sigma Y, W]
$$

Consider the diagram of groups


Then by group theory, $\left(i_{X}^{*}, i_{Y}^{*}\right)$ is onto.
Example 1.2.13. Let $X=Y=S^{n}$ and consider the map $f_{n, n}: S^{2 n-1} \rightarrow S^{n} \vee S^{n}$ which attaches a $2 n$-cell to $S^{n} \vee S^{n}$ to form $S^{n} \times S^{n}$. If $\nabla: S^{n} \vee S^{n} \rightarrow S^{n}$ is the folding map, we obtain a class $\left[i_{n}, i_{n}\right]:=\left[\nabla \circ f_{n, n}\right] \in \pi_{2 n-1}\left(S^{n}\right)$, called the Whitehead product. Consider the cofibration sequence

$$
S^{2 n-1} \xrightarrow{f_{n, n}} S^{n} \vee S^{n} \rightarrow S^{n} \times S^{n} \rightarrow S^{2 n} \xrightarrow{d} \Sigma\left(S^{n} \vee S^{n}\right) .
$$

Then $d=\Sigma f_{n, n}$ so by Proposition 1.2.12, $\Sigma\left[i_{n}, i_{n}\right]: S^{2 n} \rightarrow S^{n+1}$ is nullhomotopic.
Recall from Example 0.3 .8 that $S^{n}$ may only be an $H$-space if $n$ is odd (and moreover, this only happens when $n=1,3,7$ by Adams' theorem). Consider the pushout


Then by definition of the pushout, there exists an $H$-space structure $m: S^{n} \times S^{n} \rightarrow S^{n}$ if and only if there exists a retract $r: J \rightarrow S^{n}$. Composing with the attaching map $f_{n, n}$, we get a pushout diagram

so $J$ retracts onto $S^{n}$ if and only if there exists a map $D^{2 n} \rightarrow S^{n}$ which induces a nullhomotopy of $\left[i_{n}, i_{n}\right]$. In other words, $S^{n}$ admits an $H$-space structure precisely when $\left[i_{n}, i_{n}\right]$ is nullhomotopic. Thus in general, $\left[i_{n}, i_{n}\right] \in \pi_{2 n-1}\left(S^{n}\right)$ is not null (e.g. when $n$ is even), but we showed above that $\Sigma\left[i_{n}, i_{n}\right]=0$ in $\pi_{2 n}\left(S^{n+1}\right)$.

Proposition 1.2.14. There is a homotopy equivalence between $\Sigma(X \vee Y \vee(X \wedge Y))$ and $\Sigma(X \times Y)$.

Corollary 1.2.15. The exact sequence

$$
0 \rightarrow[\Sigma(X \wedge Y), W] \xrightarrow{(\Sigma p)^{*}}[\Sigma(X \times Y), W] \xrightarrow{(\Sigma i)^{*}}[\Sigma(X \vee Y), W] \rightarrow 0
$$

splits.

### 1.3 Fibrations

In this section we discuss the dual notion to cofibrations. Recall that the homotopy extension property defining a cofibration $i: A \rightarrow X$ can be stated as a lifting problem:


We use this to define fibrations.
Definition. A map $p: E \rightarrow B$ is a fibration if for any maps $\tilde{h}: W \rightarrow E$ and $H: W \times I \rightarrow$ $B$ such that $p \circ \tilde{h}=H_{0}$, there exists a lift $\widetilde{H}: W \times I \rightarrow E$ of $H$ making the following diagram commute:


Example 1.3.1. It follows from the above diagrams that if $i: A \hookrightarrow X$ is a cofibration, then for all $Z$, the adjoint $i^{*}: \operatorname{Map}(X, Z) \rightarrow \operatorname{Map}(A, Z)$ is a fibration. For example, if $\left\{x_{0}\right\} \hookrightarrow X$ is the inclusion of a nondegenerate basepoint of $X$, then the evaluation map $e_{x_{0}}: \operatorname{Map}(X, Z) \rightarrow Z$ is a fibration for every $Z$.

Example 1.3.2. Given any spaces $B$ and $F$, the projection $B \times F \rightarrow B$ is a fibration. Indeed, given a diagram

there is a lift $\widetilde{H}=\left(H, \tilde{h}_{F}\right)$, where $\tilde{h}_{F}$ is the composition $W \times I \rightarrow W \xrightarrow{h_{F}} F$.
Example 1.3.3. Suppose $p: Y \rightarrow X$ is a covering map of (reasonable) spaces. Given a diagram

with $W$ path-connected (in general, one may define $\widetilde{H}$ on each path component), pick $w_{0} \in W$ and set $y_{0}=\tilde{h}\left(w_{0}\right) \in Y$ and $x_{0}=p\left(y_{0}\right) \in X$. Then lifting $H$ to $\widetilde{H}$ is equivalent to $H_{*}\left(\pi_{1}\left(W \times I,\left(w_{0}, 0\right)\right)\right) \subseteq p_{*}\left(\pi_{1}\left(Y, y_{0}\right)\right)$ but since $\left(i_{0}\right)_{*}: \pi_{1}\left(W, w_{0}\right) \rightarrow \pi_{1}\left(W \times I,\left(w_{0}, 0\right)\right)$ is induced by a homotopy equivalence and the above square commutes, this inclusion is guaranteed. Hence $p$ is a fibration and the lift $\widetilde{H}$ is always unique. This is not true of a general fibration.

We will see that every fibration is essentially equivalent to one of these examples.
Definition. $A$ map $p: E \rightarrow B$ is a (locally trivial) fibre bundle with fibre $F$ if there is an open cover $\left\{U_{\alpha}\right\}$ of $B$ and homeomorphisms $U_{\alpha} \times F \rightarrow p^{-1}\left(U_{\alpha}\right)$ making the following diagram commute for each $U_{\alpha}$ :


It will follow from a result in Section 1.5 that every fibre bundle is a fibration.
Example 1.3.4. When $F$ is a discrete space, a bundle with fibre $F$ is a covering space.
Proposition 1.3.5. Let $p: E \rightarrow B$ be a fibration. Then
(a) For any map $f: B^{\prime} \rightarrow B$, the pullback $f^{*} p: P \rightarrow B^{\prime}$,

is a fibration.
(b) For any fibrations $\left\{p_{\alpha}: E_{\alpha} \rightarrow B_{\alpha}\right\}$, the product $\prod p_{\alpha}: \prod E_{\alpha} \rightarrow \prod B_{\alpha}$ is a fibration.
(c) If $p^{\prime}: E^{\prime} \rightarrow E$ is a fibration, then $p \circ p^{\prime}: E^{\prime} \rightarrow B$ is also a fibration.
(d) The induced map $p_{*}: \operatorname{Map}(X, E) \rightarrow \operatorname{Map}(X, B)$ is a fibration for all $X$.

Proof. Dual to the proof of Proposition 1.1.6.
Theorem 1.3.6. Suppose $B$ is path-connected and $p: E \rightarrow B$ is a fibration. Then
(1) All of the fibres $E_{x}:=p^{-1}(x)$ are homotopy equivalent.
(2) Every choice of path $\alpha$ in $B$ from $x$ to $y$ determines a homotopy class of homotopy equivalences $\alpha_{*}: E_{x} \rightarrow E_{y}$ depending only on the homotopy class of $\alpha$ rel endpoints.
(3) Under the above, concatenation of paths corresponds to composition of homotopy equivalences. In other words, there is a well-defined homomorphism of groups

$$
\begin{aligned}
\pi_{1}(B, x) & \longrightarrow\left\{\text { homotopy classes of self homotopy equivalences of } E_{x}\right\} \\
\quad[\alpha] & \longmapsto\left(\alpha^{-1}\right)_{*} .
\end{aligned}
$$

Proof. Take a path $\alpha$ from $x$ to $y$ in $B$. Then the inclusion $E_{x} \hookrightarrow E$ induces the following diagram:

where $G(e, t)=\alpha(t)$ for all $t \in[0,1]$. Since $p$ is a fibration, we get a lift $\widetilde{G}$. At $t=0$, $\widetilde{G}_{0}: E_{x} \times\{0\} \rightarrow E$ is just the inclusion of the fibre $E_{x} \hookrightarrow E$. On the other hand, for any $t$, $p \circ \widetilde{G}_{t}$ is the constant map at $\alpha(t)$ so in particular at $t=1, \widetilde{G}_{1}$ gives a map $E_{x} \rightarrow E_{\alpha(1)}=E_{y}$. Set $\alpha_{*}=\left[\widetilde{G}_{1}\right]$. To check $\alpha_{*}$ is well-defined, suppose $\alpha^{\prime}:[0,1] \rightarrow B$ is another path homotopic rel endpoints to $\alpha$. Set $H=\alpha^{\prime} \circ \operatorname{proj}_{[0,1]}$ where $\operatorname{proj}_{[0,1]}: E_{x} \times[0,1] \rightarrow[0,1]$ is the second coordinate projection. Then using the homotopy lifting property on the diagram

we get a map $\widetilde{H}: E_{x} \times[0,1] \rightarrow E$ and, as above, a map $\widetilde{H}_{1}: E_{x} \rightarrow E_{y}$. One then constructs a homotopy from $\widetilde{G} \rightarrow \widetilde{H}$ using that $\alpha \simeq \alpha^{\prime}$ rel endpoints; this then induces a homotopy $\widetilde{G}_{1} \rightarrow \widetilde{H}_{1}$. Hence $\alpha_{*}$ is well-defined and (2) is proved.

It is clear that for paths $\alpha, \beta$ in $B$ such that $\beta(0)=\alpha(1)$, we have $(\alpha * \beta)_{*}=\beta_{*} \circ \alpha_{*}$. Thus when $\beta=\alpha^{-1}, \beta_{*} \circ \alpha_{*}=\left(c_{x}\right)_{*}$, where $c_{x}$ is the constant path at $x$. Since $\left(c_{x}\right)_{*}=\left[i d_{E_{x}}\right]$, we have that $\beta_{*}=\left(\alpha^{-1}\right)_{*}$ is a homotopy inverse of $\alpha_{*}$. Hence $\alpha_{*}$ is a homotopy equivalence, so using path-connectedness we see that all fibres are homotopy equivalent, proving (1).

Finally, it is routine to prove the homotopy classes of homotopy equivalences $E_{x} \rightarrow E_{x}$ form a group under composition. Then for (3), the above shows that $(\alpha * \beta)_{*}=\beta_{*} \circ \alpha_{*}$ and the trivial class goes to the homotopy class of the identity map $E_{x} \rightarrow E_{x}$, so $[\alpha] \mapsto\left(\alpha^{-1}\right)_{*}$ is a homomorphism.

As with cofibrations, there is a notion of fibration in the based category $\mathrm{Top}_{*}$. For a based space $\left(X, x_{0}\right)$, let

$$
P X=\left\{\alpha: I \rightarrow X \mid \alpha(0)=x_{0}\right\}
$$

denote the (based) path space of $X$, as in Section 0.2.
Lemma 1.3.7. For any $X, P X$ is contractible.
Proof. This follows easily from the fact that $I=[0,1]$ is contractible.
Lemma 1.3.8. For any $X$, the endpoint map $P X \rightarrow X, \alpha \mapsto \alpha(1)$ is a fibration.
Proof. To prove $p$ satisfies the homotopy lifting property, we need to complete the following diagram for any space $W$ :


For $w \in W, g(w) \in P Y$ is a map such that $p \circ g(w)=H(w, 0)$. That is, $g(w)$ is a path ending at the starting point of the homotopy $H(w,-)$. To lift, just continue this path by defining

$$
\widetilde{H}(w, s)(t)= \begin{cases}g(a)((1+s) t), & 0 \leq t \leq \frac{1}{1+s} \\ H(a,(1+s) t-1), & \frac{1}{1+s}<t \leq 1\end{cases}
$$

Then $\widetilde{H}$ is continuous, $\widetilde{H}(w, 0)=w(a)$ and $p \circ \widetilde{H}(w, s)(-)=\widetilde{H}(w, s)(1)=H(w, s)$. Hence $p: P Y \rightarrow Y$ is a fibration.

Notice that the fibres of the endpoint fibration $p: P Y \rightarrow Y$ are, up to homotopy, the loop space $\Omega Y$.

Definition. A map of fibrations between $p: E \rightarrow B$ and $p^{\prime}: E^{\prime} \rightarrow B^{\prime}$ is a pair of maps $f: B \rightarrow B^{\prime}$ and $\tilde{f}: E \rightarrow E^{\prime}$ making the following diagram commute:


Definition. $A$ fibre homotopy between maps of fibrations $\left(f_{0}, \tilde{f}_{0}\right)$ and $\left(f_{1}, \tilde{f}_{1}\right)$ is a pair of homotopies $(H, \widetilde{H})$ such that $H$ is a homotopy $f_{0} \rightarrow f_{1}, \widetilde{H}$ is a homotopy $\tilde{f}_{0} \rightarrow \tilde{f}_{1}$ and the following diagram commutes:


Two fibrations $p: E \rightarrow B$ and $q: E^{\prime} \rightarrow B$ over the same base are said to be fibre homotopy equivalent if there exist maps of fibrations

such that $f \circ g$ and $g \circ f$ are fibre homotopic to the identity.
We next make rigorous the idea that 'every map is a fibration' (up to homotopy), just as Theorem 1.1.25 showed that every map was a cofibration up to homotopy. Suppose $f: X \rightarrow Y$ is continuous.

Definition. The mapping path space of $f$ is the pullback fibration $P_{f}:=f^{*}\left(Y^{I}\right)$ along the starting point fibration $q: Y^{I} \rightarrow Y, \alpha \mapsto \alpha(0)$. That is, $P_{f}=\left\{(x, \alpha) \in X \times Y^{I} \mid \alpha(0)=f(x)\right\}$ and there is a commutative diagram


Definition. The mapping path fibration of $f: X \rightarrow Y$ is the map $p_{f}: P_{f} \rightarrow Y$ given by $p(x, \alpha)=\alpha(1)$, that is, the restriction of the endpoint fibration.

Theorem 1.3.9. For any continuous $f: X \rightarrow Y$,
(1) There is a homotopy equivalence $h: X \rightarrow P_{f}$ such that the diagram

commutes.
(2) $p_{f}: P_{f} \rightarrow Y$ is a fibration.
(3) If $f$ is a fibration, then $h$ is a fibre homotopy equivalence.

Proof. (1) Define $h(x)=\left(x, c_{f(x)}\right)$ where $c_{f(x)}$ is the constant path (in $Y$ ) at $f(x)$. Then the projection $\pi: P_{f} \rightarrow X$ is obviously a homotopy inverse to $h$, since $\pi \circ h(x)=\pi\left(x, c_{f(x)}\right)=x$; and $h \circ \pi \simeq i d$ via $F((x, \alpha), s)=\left(x, \alpha_{s}\right)$, where $\alpha_{s}(t)=\alpha(s t)$.
(2) We must complete the following diagram for any space $A$ :


For $a \in A$, we have $g(a)=\left(g_{1}(a), g_{2}(a)\right)$ where $g_{1}(a) \in X$ and $g_{2}(a)$ is a path in $Y$ starting at $f\left(g_{1}(a)\right)$ and ending at $H(a, 0)$. Continue this path to get the desired lift by setting $\widetilde{H}(a, s)(t)=\left(g_{1}(a), \widetilde{H}_{2}(a, s)(t)\right)$, where

$$
\widetilde{H}_{2}(a, s)(t)= \begin{cases}g_{2}(a)((1+s) t), & 0 \leq t \leq \frac{1}{1+s} \\ H(a,(1+s) t-1), & \frac{1}{1+s}<t \leq 1\end{cases}
$$

(3) Note that $\pi: P_{f} \rightarrow X$ is not a fibration map a priori. To fix this, define $\gamma: P_{f} \times I \rightarrow Y$ by $\gamma(x, \alpha, t)=\alpha(t)$. Then we have a diagram

which commutes by definition of $P_{f}$, so there exists a lift $\tilde{\gamma}$ since $f$ is a fibration. Define $g: P_{f} \rightarrow X$ by $g(x, \alpha)=\tilde{\gamma}(x, \alpha, 1)$. Then the diagram

commutes by construction and $g$ is a fibre homotopy inverse of $f$.

### 1.4 Fibration Sequences

Recall that in Section 1.2, we constructed a cofibre $C(f)$ for every map $f: X \rightarrow Y$ such that the sequence $X \rightarrow Y \rightarrow C(f)$ induced an exact sequence of sets $[C(f), W] \rightarrow[Y, W] \rightarrow$ $[X, W]$ for every $W$. Analogously, we define:

Definition. The homotopy fibre $F(f)$ of a map $f: Y \rightarrow X$ is the pullback of the diagram


Explicitly, $F(f)=\left\{(y, \alpha) \mid y \in Y, \alpha: I \rightarrow X, \alpha(0)=x_{0}, \alpha(1)=f(y)\right\}$ where $x_{0}$ is the basepoint of $X$.

Proposition 1.4.1. For all $f: Y \rightarrow X$ and spaces $W$,

$$
[W, F(f)] \xrightarrow{p(f)_{*}}[W, Y] \xrightarrow{f_{*}}[W, X]
$$

is an exact sequence of sets.
Proof. Dual to Lemma 1.2.1.
Recall (Proposition 1.2.2) that if $i: A \hookrightarrow X$ is a cofibration, then $C(i) \rightarrow X / A$ is a homotopy equivalence. There is a dual notion for fibrations. Suppose $p: Y \rightarrow X$ is a fibration and let $F=p^{-1}\left(x_{0}\right)$ be the fibre of a basepoint $x_{0} \in X$. Then there is a diagram

where $F \rightarrow F(p)$ is the map $y \mapsto\left(y, c_{x_{0}}\right)$ for the constant map $c_{x_{0}}$ at $x_{0}$.

Proposition 1.4.2. If $p: Y \rightarrow X$ is a fibration, then $F=p^{-1}\left(x_{0}\right) \rightarrow F(p)$ is a homotopy equivalence.

Lemma 1.4.3. For any map $f: Y \rightarrow X, p(f): F(f) \rightarrow Y$ is a fibration.
Thus we can continue to build our homotopy sequence as in Section 1.2:


Theorem 1.4.4 (Puppe Fibration Sequence). For any map $f: Y \rightarrow X$, there is a long exact sequence of sets for any $W$ :

$$
\cdots \rightarrow[W, \Omega F(f)] \rightarrow[W, \Omega Y] \rightarrow[W, \Omega X] \rightarrow[W, F(f)] \rightarrow[W, Y] \rightarrow[W, X]
$$

Corollary 1.4.5. Suppose $p: E \rightarrow B$ is a based fibration with fibre $F=p^{-1}\left(b_{0}\right)$. Then

$$
\cdots \rightarrow \Omega F \rightarrow \Omega E \rightarrow \Omega B \rightarrow F \rightarrow E \rightarrow B
$$

is a sequence of fibrations in which every map (but the last) is an inclusion of a fibre in a fibration. Moreover, for any $W$ there is a long exact sequence of sets

$$
\cdots \rightarrow[W, \Omega F] \rightarrow[W, \Omega E] \rightarrow[W, \Omega B] \rightarrow[W, F] \rightarrow[W, E] \rightarrow[W, B] .
$$

Corollary 1.4.6 (Homotopy Long Exact Sequence). For any based fibration p:E $\rightarrow B$ with homotopy fibre $F$, there is a long exact sequence of groups

$$
\cdots \rightarrow \pi_{2}(F) \rightarrow \pi_{2}(E) \rightarrow \pi_{2}(B) \rightarrow \pi_{1}(F) \rightarrow \pi_{1}(E) \rightarrow \pi_{1}(B) \rightarrow \pi_{0}(F) \rightarrow \pi_{0}(E) \rightarrow \pi_{0}(B)
$$

Corollary 1.4.7. If $p: Y \rightarrow X$ is a covering map, then $p_{*}: \pi_{n}(Y) \rightarrow \pi_{n}(X)$ is an isomorphism for all $n>1$.

Proof. For any covering space, the fibre $F \hookrightarrow Y$ is a discrete set, so $\pi_{n}(F)=0$ for all $n>0$. Apply the long exact sequence of homotopy groups.

Corollary 1.4.8. For any spaces $B, F$ and any $n \geq 0$, there is an isomorphism $\pi_{n}(B \times F) \cong$ $\pi_{n}(B) \times \pi_{n}(F)$.

Proof. Apply the long exact sequence to the trivial fibration $F \hookrightarrow B \times F \rightarrow B$.

### 1.5 Fibrations and Bundles

In this section we prove that every fibre bundle is a fibration.
Definition. A map $p: E \rightarrow B$ is a local fibration if there exists an open cover $\left\{U_{\alpha}\right\}$ of $B$ such that each $p^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha}$ is a fibration.

Theorem 1.5.1 (Local-to-Global). If $B$ is a paracompact space then any local fibration $p: E \rightarrow B$ is a fibration.

Proof. (Sketch) Given a diagram

we want to construct an extension $\widetilde{H}$ of $\widetilde{H}_{0}$. Assume $\left\{U_{\alpha}\right\}$ is a cover such that $p$ is a fibration on each $p^{-1}\left(U_{\alpha}\right)$. Since $B$ is paracompact, there exists a partition of unity $\left\{\varphi_{\alpha}\right\}$ subordinate to the $U_{\alpha}$. We may assume $\left\{U_{\alpha}\right\}$ is countable, so that we have $U_{1}, U_{2}, \ldots$ For each $n \geq 1$, set $\tau_{n}=\varphi_{1}+\ldots+\varphi_{n}$; also set $\tau_{0}=0$. Now define

$$
X_{n}=\left\{(x, t) \in X \times I \mid t \leq \tau_{n}(x)\right\} .
$$

Then $X_{0}=X \times\{0\}$ and we have a chain of subspaces

$$
X_{0} \subseteq X_{1} \subseteq X_{2} \subseteq \cdots \subseteq \bigcup_{n=1}^{\infty} X_{n}=X \times I
$$

Set $\widetilde{H}_{0}=H_{0}$. We construct an extension $\widetilde{H}_{n}: X_{n} \rightarrow E$ for each $n$ inductively. Given $\widetilde{H}_{n-1}$, consider the map $s: X \times I \rightarrow X \times I$ given by $(x, t) \mapsto\left(x, \min \left(\tau_{n-1}(x)+t, 1\right)\right)$.


We may restrict to an open set $V_{n} \subseteq X \times I$ such that $H \circ s\left(V_{n}\right) \subseteq U_{n}$. Then the fibration property on $U_{n}$ gives a lift $K: V_{n} \rightarrow E$ in the following diagram:

where $\Gamma\left(\tau_{n}\right)$ is the graph of $\tau_{n}$. Then define the extension $\widetilde{H}_{n}: X_{n} \rightarrow E$ by

$$
\widetilde{H}_{n}(x, t)= \begin{cases}\widetilde{H}_{n-1}(x, t), & \text { if }(x, t) \in X_{n-1} \\ K(x, t), & \text { if }(x, t) \in X_{n} \backslash X_{n-1}\end{cases}
$$

It is easy to check that $\widetilde{H}_{n}$ has the desired properties, so we are done by induction.
Recall that $p: E \rightarrow B$ is a (locally trivial) fibre bundle with fibre $F$ if there exists an open cover $\left\{U_{\alpha}\right\}$ of $B$ and homeomorphisms


Corollary 1.5.2. Every fibre bundle is a fibration.
Proof. Each $U_{\alpha} \times F \rightarrow U_{\alpha}$ is a fibration by Example 1.3.2, so $p$ is a local fibration. Apply Theorem 1.5.1.

Example 1.5.3. If $G$ is a discrete group acting freely and properly discontinuously on a space $X$ and $H$ is any subgroup of $G$, then $X / H \rightarrow X / G$ is a covering map. Conversely, when $Y$ is a nice enough space and $X$ is its universal cover, then $G=\pi_{1}(Y)$ acts freely and properly discontinuously on $X$ and every cover of $X$ has the form $X / H \rightarrow X / G=Y$ for some subgroup $H \leq G$. One might hope that a similar result would hold if $G$ is a group object in a different category. For example, if $G$ is a Lie group acting smoothly, freely and properly discontinuously on a manifold $M$, then for all closed subgroups $H \leq G, M / H \rightarrow M / G$ is a fibre bundle with fibre $G / H$.
Example 1.5.4. View $S^{2 n+1}$ as the set of unit vectors in $\mathbb{C}^{n+1}$ and let $S^{1}$ be the circle group of complex numbers with modulus 1 . Then $S^{1}$ acts freely and properly discontinuously on $S^{2 n+1}$ via $\lambda\left(x_{0}, \ldots, x_{n}\right)=\left(\lambda x_{0}, \ldots, \lambda x_{n}\right)$ for any $\lambda \in S^{1}$. This determines a fibration

$$
S^{1} \rightarrow S^{2 n+1} \rightarrow \mathbb{C} P^{n}
$$

In particular, when $n=1$, we get the Hopf fibration $S^{1} \rightarrow S^{3} \rightarrow S^{2}=\mathbb{C} P^{1}$. Applying Corollary 1.4.6, we get the following information:

$$
\begin{array}{ll} 
& \pi_{n}\left(S^{3}\right) \cong \pi_{n}\left(S^{2}\right) \text { for } n \geq 3 \\
\text { and } & \pi_{2}\left(S^{2}\right) \cong \pi_{1}\left(S^{1}\right) \cong \mathbb{Z} .
\end{array}
$$

A vector bundle is a fibre bundle $p: E \rightarrow B$ in which each fibre $p^{-1}(b)$ is a (real) vector space of dimension $n$ and the local trivializations of the bundle, $h_{i}: U_{i} \times \mathbb{R}^{n} \rightarrow p^{-1}\left(U_{i}\right)$, induce vector space isomorphisms

$$
\{x\} \times \mathbb{R}^{n} \xrightarrow{h_{i}} p^{-1}(x) \xrightarrow{h_{j}^{-1}}\{x\} \times \mathbb{R}^{n}
$$

whenever $x \in U_{i} \cap U_{j}$. We say two vector bundles $E \xrightarrow{p} B$ and $E^{\prime} \xrightarrow{p^{\prime}} B$ are isomorphic if there is a homeomorphism over $B$

inducing linear isomorphisms on each fibre. A bundle is called trivial if it is isomorphic to a product bundle of the form $B \times \mathbb{R}^{n} \rightarrow B$.
Example 1.5.5. The tangent bundle to a smooth manifold is a vector bundle $T M \rightarrow M$ whose fibres are the tangent spaces $T_{x} M$ at each $x \in M$.

For a map $f: B^{\prime} \rightarrow B$ and any bundle $p: E \rightarrow B$, we define the pullback bundle $f^{*} p: f^{*} E \rightarrow B^{\prime}$ by setting $f^{*} E=\left\{(x, y) \in B^{\prime} \times E \mid f(x)=p(y)\right\}$ and taking $f^{*} p$ to be the natural projection.

For a fixed space $B$, let $\operatorname{Vect}_{n}(B)$ be the set of all isomorphism classes of $n$-dimensional vector bundles on $B$.

Theorem 1.5.6. For any $n$,
(1) $\operatorname{Vect}_{n}(-)$ is a contravariant functor under pullback.
(2) If $f, g: X \rightarrow B$ are homotopic maps, then $f^{*} E$ and $g^{*} E$ are homotopy equivalent for any bundle $E \rightarrow B$.
That is, $\operatorname{Vect}_{n}(-)$ is a homotopy functor, so it factors through the homotopy category: $\operatorname{Vect}_{n}(-): h(\text { Top })^{o p} \rightarrow$ Sets.
Example 1.5.7. Recall that for a smooth $n$-manifold $M$, a map $f: M \rightarrow \mathbb{R}^{\ell}$ is an immersion if $d_{x} f: T_{x} M \rightarrow \mathbb{R}^{\ell}$ is a one-to-one linear map for all $x \in M$. An important problem in geometric topology is to find the smallest $\ell$ so that there exists an immersion $f: M \rightarrow \mathbb{R}^{\ell}$.

Let $\operatorname{Gr}_{n}\left(\mathbb{R}^{\ell}\right)$ be the $n$th Grassmannian of $\mathbb{R}^{\ell}$ and set

$$
\operatorname{Gr}_{n}=\operatorname{Gr}_{n}\left(\mathbb{R}^{\infty}\right)=\bigcup_{\ell=1}^{\infty} \operatorname{Gr}_{n}\left(\mathbb{R}^{\ell}\right)
$$

Then one can define a canonical bundle $\gamma_{\ell}^{n}: E_{n}\left(\mathbb{R}^{\ell}\right) \rightarrow \operatorname{Gr}_{n}\left(\mathbb{R}^{\ell}\right)$ by $E_{n}\left(\mathbb{R}^{\ell}\right)=\{(V, v) \in$ $\left.\operatorname{Gr}_{n}\left(\mathbb{R}^{\ell}\right) \times \mathbb{R}^{\ell} \mid v \in V\right\}$. This extends to a so-called universal bundle $\gamma^{n}: E_{n} \rightarrow \operatorname{Gr}_{n}$ which has the property that for all paracompact spaces $X$,

$$
\begin{aligned}
{\left[X, \mathrm{Gr}_{n}\right] } & \longrightarrow \operatorname{Vect}_{n}(X) \\
f & \longmapsto f^{*} E_{n}
\end{aligned}
$$

is an isomorphism. Now if $f: M \rightarrow \mathbb{R}^{\ell}$ is an immersion, there is a natural map

$$
\begin{aligned}
\tau_{f}: M & \longrightarrow \operatorname{Gr}_{n}\left(\mathbb{R}^{\ell}\right) \\
x & \longmapsto d_{x} f\left(T_{x} M\right)
\end{aligned}
$$

such that $T M \cong \tau_{f}^{*} E_{n}\left(\mathbb{R}^{\ell}\right)$ as bundles over $M$. It turns out that if an immersion $f: M \rightarrow \mathbb{R}^{\infty}$ exists, the homotopy class of $\tau_{f}$ is independent of $f$. Let $\tau_{M}$ denote the homotopy class of $\tau_{f}$ for any immersion $f: M \rightarrow \mathbb{R}^{\infty}$.

Suppose $M$ admits an immersion $f: M \rightarrow \mathbb{R}^{\ell}$ for some $\ell$. Then the diagram

commutes up to homotopy. Applying $\mathbb{Z} / 2 \mathbb{Z}$-cohomology, we get

which implies $\operatorname{ker} i_{\ell}^{*} \subseteq \operatorname{ker} \tau_{M}^{*}$. In fact, the converse holds as well, so $M$ admits an immersion into $\mathbb{R}^{\ell}$ if and only if $\operatorname{ker} i_{\ell}^{*} \subseteq \operatorname{ker} \tau_{M}^{*}$. This provides us with an algebraic obstruction to check rather than a topological one.

### 1.6 Serre Fibrations

Consider the defining diagram for a map $p: E \rightarrow B$ to be a fibration:


Some nice features of the map $i$ are that it's both a cofibration and a homotopy equivalence. This generalizes as follows.

Theorem 1.6.1 (Strøm). Suppose $i: A \rightarrow X$ is a cofibration, $p: E \rightarrow B$ is a fibration and there is a pair of maps


Then if either $i$ or $p$ is a homotopy equivalence, there exists an $f: X \rightarrow E$ making the diagram commute.

To prove Strøm's theorem, we need:
Lemma 1.6.2. If $i: A \rightarrow X$ is a cofibration and a homotopy equivalence, then there are maps $r: X \rightarrow A, s: X \rightarrow X \times I$ and $H: X \times I \rightarrow X$ making the diagram

commute.
Proof. Since $i$ is a cofibration, by Lemma 1.1.2 there exists a $u: X \rightarrow I$ such that $u^{-1}(0)=A$. One can modify this to give a deformation retract $r: X \rightarrow A$ together with a homotopy $H^{\prime}: X \times I \rightarrow X$ satisfying $H_{0}^{\prime}=i \circ r, H_{1}^{\prime}=i d_{X}$ and $\left.H_{t}^{\prime}\right|_{A}=i d_{A}$ for all $t \in I$. Define $s: X \rightarrow X \times I$ by $s(x)=(x, u(x))$ and $H: X \times I \rightarrow X$ by

$$
H(x, t)= \begin{cases}H^{\prime}\left(x, \frac{t}{u(x)}\right), & \text { if } t<u(x) \\ H^{\prime}(x, 1), & \text { if } t \geq u(x)\end{cases}
$$

Then $r, s$ and $H$ make the diagram commute by construction, but we must check $H$ is continuous. Let $C=\{(x, t) \in X \times I \mid t \leq u(x)\}$. Then we may write $H^{\prime}$ as the composition $X \times I \xrightarrow{K} C \xrightarrow{\left.H\right|_{C}} X$, where $K(x, t)=(x, t u(x))$, and since $H^{\prime}$ and $K$ are continuous, so must be $H$.

Proof of Strøm's Theorem. Suppose $i$ is a homotopy equivalence. Then Lemma 1.6.2 gives maps $r, s, H$ and a diagram:


Letting $f=s \circ \tilde{f}_{0}$ gives the desired lift. The proof when $p$ is a homotopy equivalence is similar.

The following is a useful variant on fibrations defined by Serre.
Definition. A map $p: E \rightarrow B$ is a Serre fibration if the diagram

can be completed for any disk $D^{k}$.
A fibration in the usual sense is sometimes referred to as a Hurewicz fibration to distinguish from Serre fibrations. The following is an analogy of Strøm's theorem for Serre fibrations.

Theorem 1.6.3. Suppose $i: A \rightarrow X$ is a relative $C W$-complex, $p: E \rightarrow B$ is a Serre fibration and there is a pair of maps


Then if either $i$ or $p$ is a weak homotopy equivalence, there exists an $f: X \rightarrow E$ making the diagram commute.

## 2 Cellular Theory

### 2.1 Relative CW-Complexes

Recall that $X$ is a CW-complex if there is a chain of subspaces $X_{0} \subseteq X_{1} \subseteq X_{2} \subseteq \cdots$ such that $X=\bigcup_{n=0}^{\infty} X_{n}, X_{0}$ is discrete and, inductively, each $X_{n}$ is the pushout of


Definition. A pair of spaces $(X, A)$ is a relative CW-pair if there is a chain of subspaces

$$
A=: X_{-1} \subseteq X_{0} \subseteq X_{1} \subseteq X_{2} \subseteq \cdots
$$

such that $X=\bigcup_{n=0}^{\infty} X_{n}$ and, inductively, each $X_{n}$ is the pushout of

where $S^{-1}=\varnothing$.
Definition. $A$ subcomplex of a $C W$-complex $X$ is a subspace $A \subseteq X$ and a $C W$-structure $A_{0} \subseteq A_{1} \subseteq A_{2} \subseteq \cdots \subseteq \bigcup_{n=0}^{\infty} A_{n}=A$ such that for each cell $D^{n} \rightarrow A$, the composition $D^{n} \rightarrow A \hookrightarrow X$ is a cell of $X$.

In other words, a subcomplex of a CW-complex is just a union of some collection of cells of the CW-complex. If $A \subseteq X$ is a subcomplex, then $(X, A)$ is a relative CW-pair.

Recall that a map $f: X \rightarrow Y$ between CW-complexes is cellular if $f\left(X_{n}\right) \subseteq Y_{n}$ for all $n$. The following results are basic.

Lemma 2.1.1. If $(X, A)$ is a relative $C W$-pair then $X / A$ is a $C W$-complex with a 0 -cell corresponding to $A$ and an $n$-cell for each relative $n$-cell of $(X, A)$.

Lemma 2.1.2. Suppose $\left\{X_{i}\right\}$ are $C W$-complexes with specified 0 -cells $x_{i} \in X_{i}$. Then $X=$ $\bigvee X_{i}$ is a $C W$-complex and each $X_{i} \subseteq X$ is a subcomplex.

Lemma 2.1.3. Suppose $A \subseteq X$ is a subcomplex, $Y$ is a $C W$-complex and $f: A \rightarrow Y$ is a cellular map. Then the pushout $Y \cup_{f} X$ is a $C W$-complex having $Y$ as a subcomplex. Moreover, $\left(Y \cup_{f} A\right) / Y \cong X / A$ as $C W$-complexes.

Lemma 2.1.4. If $X_{0} \rightarrow X_{1} \rightarrow X_{2} \rightarrow \cdots$ is a sequence of $C W$-complexes in which each $X_{i} \rightarrow X_{i+1}$ is an inclusion of a subcomplex, then $X=\underset{\longleftarrow}{\lim X_{i} \text { is a } C W \text {-complex having each }}$ $X_{i}$ as a subcomplex.

Lemma 2.1.5. If $X$ and $Y$ are $C W$-complexes, then $X \times Y$ with the product topology is a $C W$-complex with an $n$-cell $\sigma \times \tau$ for each $p$-cell $\sigma \subset X$ and $q$-cell $\tau \subset Y$, where $p+q=n$.

Example 2.1.6. For any CW-complex $X$, the product $X \times I$ is a CW-complex containing a subcomplex $X \times\{0,1\}=X \coprod X$

### 2.2 Whitehead's First Theorem

Definition. Let $(X, x)$ and $(Y, y)$ be based space. A based map $f: X \rightarrow Y$ is a weak equivalence if $f_{*}: \pi_{0}(X) \rightarrow \pi_{0}(Y)$ is a bijection and $f_{*}: \pi_{k}(X, x) \rightarrow \pi_{k}(Y, y)$ is an isomorphism for all $k \geq 1$.

Whitehead's theorem says that any weak equivalence between CW-complexes is a homotopy equivalence. To prove this, we need some technical results that are useful in their own right.

Lemma 2.2.1. If $f: X \rightarrow Y$ is a weak equivalence and $F(f)$ is its homotopy fibre, then $\pi_{k}(F(f))=0$ for all $k$.

Proof. Apply the homotopy long exact sequence (Corollary 1.4.6).
For a map $f: X \rightarrow Y$ with homotopy fibre $F=F(f)$, we make the following observations:

- Any map $S^{n-1} \rightarrow F$ corresponds to a diagram

which commutes. This gives a natural description of $\pi_{n-1}(F)$.
- The map $\pi_{n}(Y) \rightarrow \pi_{n-1}(F)$ in the long exact sequence of homotopy groups (Corollary 1.4.6) corresponds to the map sending the class of $\bar{h}: S^{n} \rightarrow Y$ to the class of $\pi_{n-1}(F)$ represented by the diagram

where $c=c_{x}$ is constant and $h$ is $D^{n} \rightarrow D^{n} / S^{n-1}=S^{n} \xrightarrow{\bar{h}} Y$. In a similar manner, $\pi_{n-1}(F) \rightarrow \pi_{n-1}(X)$ corresponds to sending a diagram

to the class $[g]$.
- $\pi_{n-1}(F)=0$ is equivalent to completing such a diagram to a diagram


This is stated slightly differently in the following lemma.
Lemma 2.2.2. Suppose $f: X \rightarrow Y$ is a map with homotopy fibre $F$. Then $\pi_{n-1}(F)=0$ if and only if each diagram

can be completed to a diagram


Proof. For any disk we have a homeomorphism $C D^{n} \cong D^{n} \times I$ which sends the cone point to the center of $D^{n} \times\{1\}, D^{n}$ to $S^{n-1} \times I \cup D^{n} \times\{0\}, S^{n-1}$ to $S^{n-1} \times\{1\}$ and $C S^{n-1}$ to $D^{n} \times\{1\}$. Thus the statement follows from the last observation above.

This generalizes to the so-called homotopy extension and lifting property, or HELP for short.

Theorem 2.2.3 (Homotopy Extension and Lifting Property). Suppose ( $X, A$ ) is a relative $C W$-pair and $f: Y \rightarrow Z$ is a weak equivalence. Then every diagram

can be completed to a diagram


Proof. We construct $G_{n}: X_{n} \times\{1\} \rightarrow Y$ and $H_{n}: X_{n} \times I \rightarrow Z$ inductively. The base case is trivial, and for the inductive step, one can extend cell-by-cell using Lemma 2.2.2 applied to the diagram


Lemma 2.2.4. For any weak equivalence $f: Y \rightarrow Z$ and any $C W$-complex $X$, the induced map $f_{*}:[X, Y] \rightarrow[X, Z]$ is a bijection.

Proof. For surjectivity, consider the relative CW-pair ( $X, \varnothing$ ). Then for every $h: X \rightarrow Z$ there is a diagram


By HELP, there is a map $G: X=X \times\{1\} \rightarrow Y$ and a homotopy $H: X \times I \rightarrow Z$ satisfying $H_{0}=h$ and $H_{1}=f \circ G$. Therefore $[h]=f_{*}[G]$. Similarly, we can show injectivity by analyzing the relative CW-pair $(X \times I, X \times\{0,1\})$ using HELP.

Theorem 2.2.5 (First Whitehead Theorem). If $f: X \rightarrow Y$ is a weak equivalence between $C W$-complexes, then $f$ is a homotopy equivalence.

Proof. Take $X=Z$. Then by Lemma 2.2.4 there is a map $g: Z \rightarrow Y$ which is unique up to homotopy and satisfies $f \circ g \simeq 1_{Z}$. On the other hand, letting $X=Y$ and applying Lemma 2.2.4 shows that $f_{*}:[Y, Y] \rightarrow[Y, Z]$ is a bijection, so

$$
f_{*}[g \circ f]=[f \circ(g \circ f)]=[(f \circ g) \circ f]=\left[i d_{Z} \circ f\right]=[f]=f_{*}\left[i d_{Y}\right] .
$$

Hence $g \circ f \simeq i d_{Y}$ so $f$ is a homotopy equivalence with homotopy inverse $g$.
Corollary 2.2.6. If $X$ is a $C W$-complex such that $\pi_{k}(X)=0$ for every $k$, then $X$ is contractible.

Proof. Apply Whitehead's theorem to the map $X \rightarrow *$.

## 3 Higher Homotopy Groups

In this chapter we study the homotopy groups $\pi_{n}(X)=\left[S^{n}, X\right]$. Recall that $\pi_{n}(X)$ is a group if $n \geq 1$ and is abelian if $n \geq 2$.

When $(X, A)$ is a pair of based spaces, the inclusion $A \rightarrow X$ has homotopy fibre $F$ which can be interpreted as the relative path space $P(X, A)=\left\{\gamma: I \rightarrow X \mid \gamma(0)=x_{0}, \gamma(1) \in A\right\}$.

Definition. For a pair $(X, A)$, the $n$th relative homotopy group is $\pi_{n}(X, A):=\pi_{n-1}(P(X, A))$.
It follows Corollary 0.2 .5 that $\pi_{n}(X, A)=\pi_{n-1}(P(X, A))=\ldots=\pi_{0}\left(\Omega^{n-1} P(X, A)\right)$. In particular, $\pi_{n}(X, A)$ is a group if $n \geq 2$ and an abelian group if $n \geq 3$.

Remark. The relative homotopy groups may equivalently be defined by homotopy classes of maps of pairs $\pi_{n}(X, A)=\left[\left(D^{n}, S^{n-1}\right),(X, A)\right]$.

Proposition 3.0.1. For all pairs $(X, A)$, there is a long exact sequence

$$
\cdots \rightarrow \pi_{n}(A) \rightarrow \pi_{n}(X) \rightarrow \pi_{n}(X, A) \rightarrow \pi_{n-1}(A) \rightarrow \cdots
$$

Proof. This is just Corollary 1.4.6.

## $3.1 n$-Connectedness

In the last chapter, we defined a weak equivalence to be a map $f: X \rightarrow Y$ which induces an isomorphism $\pi_{k}(X) \rightarrow \pi_{k}(Y)$ for all $k$. In this section, we give a bounded version of weak equivalence which satisfies an analogue of Whitehead's theorem.

Definition. A space $X$ is $n$-connected if $\pi_{k}(X)=0$ for all $k \leq n$. We interpret 0 connected to mean that $X$ is path-connected.

Example 3.1.1. Saying a space is 1 -connected is the same as saying it is simply connected.
Definition. A map $f: X \rightarrow Y$ is an $n$-equivalence, or is an $n$-connected map, if the homotopy fibre $F(f)$ is $(n-1)$-connected.

Lemma 3.1.2. For a map $f: X \rightarrow Y$ with homotopy fibre $F=F(f)$, the following are equivalent:
(1) $F$ is $(n-1)$-connected, i.e. $f$ is $n$-connected.
(2) The induced map $f_{*}: \pi_{k}(X) \rightarrow \pi_{k}(Y)$ is an isomorphism for all $k<n$ and is surjective for $k=n$.
(3) $(Y, f(X))$ is an $n$-connected pair, i.e. $\pi_{k}(Y, f(X))=0$ for all $k \leq n$.

Proof. (1) $\Longleftrightarrow(2)$ follows from the homotopy long exact sequence in Corollary 1.4.6.
$(2) \Longleftrightarrow(3)$ follows from Proposition 3.0.1.

Theorem 3.1.3 (Whitehead). If $f: Y \rightarrow Z$ is n-connected then for any $C W$-complex $X$, the induced map $f_{*}:[X, Y] \rightarrow[X, Z]$ is an isomorphism if $n<\operatorname{dim} X$ and is surjective if $n=\operatorname{dim} X$.

Proof. This follows from the proof of Lemma 2.2.4.
Corollary 3.1.4. If $X$ and $Y$ are $C W$-complexes of dimensions $\operatorname{dim} X, \operatorname{dim} Y<n$ and $f: X \rightarrow Y$ is an n-equivalence, then $f$ is a homotopy equivalence.

Suppose $X$ and $Y$ are CW-complexes with $n$-skeleta $X_{n}$ and $Y_{n}$, respectively. Recall that the $n$th cellular chain group of $X$ is defined as $C_{n}^{\text {cell }}(X)=H_{n}\left(X_{n}, X_{n-1}\right)$. If $f: X \rightarrow Y$ is a cellular map, then there is an induced map

$$
f_{*}: C_{\bullet}^{\text {cell }}(X) \longrightarrow C_{\bullet}^{\text {cell }}(Y)
$$

but this need not be true for general $f$. However, the cellular approximation theorem says that an arbitrary map $f: X \rightarrow Y$ is homotopic to a cellular map, and any two cellular maps that are homotopic are in fact homotopic via a cellular homotopy. We generalize this in the theorem below, after the following lemma.

Lemma 3.1.5. If $Z$ is obtained from $Y$ by attaching cells of dimension greater than $n$, then $\pi_{k}(Z, Y)=0$ for all $k \leq n$, i.e. $(Z, Y)$ is $n$-connected.

Proof. (Sketch) We can reduce to the case of attaching a single cell, $Z=Y \cup_{\alpha} D^{r}$ for an attaching map $\alpha: S^{r-1} \rightarrow Y$, where $r \geq n+1$. Then by the remark in the introduction, $\pi_{n}(Z, Y)$ corresponds to pairs of maps


The result then follows using simplicial (or smooth) approximation, Sard's theorem to bound the image of the pair and then a retraction of pairs.

Theorem 3.1.6. Suppose $f:(X, A) \rightarrow(Y, B)$ is a map of relative $C W$-pairs. Then $f$ is homotopic rel $A$ to a cellular map of pairs.

Proof. Assume $X_{0}$ is equal to the union of $A$ and some discrete set of points, and likewise for $B \subseteq Y_{0}$, so that there are sequences of subcomplexes $A \subseteq X_{0} \subseteq X_{1} \subseteq \cdots \subseteq X$ and $B \subseteq Y_{0} \subseteq Y_{1} \subseteq \cdots \subseteq Y$. By induction, we may assume there is a map $g_{n-1}: X_{n-1} \rightarrow Y_{n-1}$ and a homotopy $H: X_{n-1} \times I \rightarrow Y$ such that $H_{0}=f$ and $H_{1}=g_{n-1}$. Consider the diagram


By HELP (Theorem 2.2.3), there exist maps $g_{n}: X_{n}=X_{n} \times\{1\} \rightarrow Y_{n-1}$ and $\widetilde{H}: X_{n} \times I \rightarrow Y$ completing the diagram as shown, as long as $\pi_{k}\left(Y, Y_{n}\right)=0$ for all $k \leq n$. However, by Lemma 3.1.5 this holds. Thus $g_{n}$ and $\widetilde{H}$ extend $g_{n-1}$ and $H$ to the $n$-skeleton. By induction, we can extend to all of $(X, A)$.

### 3.2 The Blakers-Massey Theorem

Consider the homotopy groups as functors

$$
\begin{aligned}
\pi_{n}: \text { Top } \times \text { Top } & \longrightarrow \text { Groups } \\
(X, A) & \longmapsto \pi_{n}(X, A) .
\end{aligned}
$$

It is known that $\pi_{n}(-,-)$ are homotopy functors, and by Proposition 3.0.1 we know there is a long exact sequence $\cdots \rightarrow \pi_{n}(A) \rightarrow \pi_{n}(X) \rightarrow \pi_{n}(X, A) \rightarrow \pi_{n-1}(A) \rightarrow \cdots$ for any pair $(X, A)$. These are almost all of the Eilenberg-Steenrod axioms for a homology theory (that $\pi_{n}$ satisfies the dimension axiom is obvious), but excision is missing. In fact, excision fails in general as the following example shows.

Example 3.2.1. We know that $\pi_{k}\left(S^{1}\right)=\mathbb{Z}$ if $k=1$ and is 0 otherwise. If the excision axiom held for homotopy groups, then the embedding $S^{1} \hookrightarrow S^{2}$ would imply $\pi_{k+1}\left(S^{2}\right) \cong \pi_{k}\left(S^{1}\right)$ for all $k$, but this is false since e.g. $\pi_{3}\left(S^{2}\right) \neq 0$ by Example 1.2.13.

However, the Seifert-van Kampen theorem gives an excision-type result when the spaces involved satisfy certain conditions (path-connected with contractible intersection). The Blakers-Massey theorem generalizes this considerably.

Theorem 3.2.2 (Blakers-Massey). Suppose $A, B \subseteq X$ are subsets and $m, n \geq 0$ are integers such that either $m \geq 1$ or $n \geq 1$. If $(A, A \cap B)$ is an $m$-connected pair and $(B, A \cap B)$ is an $n$-connected pair, then the map of pairs $(A, A \cap B) \rightarrow(A \cup B, B)$ is $(m+n)$-connected.

Proof. See May (called the Homotopy Excision Theorem) or tom Dieck.
Corollary 3.2.3. For $A, B \subseteq X$ such that $(A, A \cap B)$ is m-connected and $(B, A \cap B)$ is $n$-connected, there is a long exact sequence

$$
0 \rightarrow \pi_{m+n}(A \cap B) \rightarrow \pi_{m+n}(A) \oplus \pi_{m+n}(B) \rightarrow \pi_{m+n}(A \cup B) \rightarrow \pi_{m+n-1}(A \cap B) \rightarrow \cdots
$$

Example 3.2.4. Let $X$ be a space and consider the suspension diagram


Then $(C X, X)$ is $m$-connected if and only if $X$ is $(m-1)$-connected. This means that if $X$ is $(m-1)$-connected, the map $\pi_{k}(C X, X) \rightarrow \pi_{k}(\Sigma X, C X)$ is an isomorphism for $k<2 m$ and is surjective for $k=2 m$, by Theorem 3.2.2. But since $C X$ is contractible, the long exact sequence implies $\pi_{k}(C X, X) \cong \pi_{k-1}(X)$ and $\pi_{k}(\Sigma X, C X) \cong \pi_{k}(\Sigma X)$ for all $k$. In fact, the resulting isomorphism $\pi_{k-1}(X) \rightarrow \pi_{k}(\Sigma X)$ is just the map induced by suspension, which proves the following important result.

Corollary 3.2.5 (Freudenthal Suspension Theorem). Suppose $X$ is $(m-1)$-connected. Then the suspension functor $\Sigma: X \rightarrow \Sigma X$ induces $\pi_{k-1}(X) \rightarrow \pi_{k}(\Sigma X)$ which is an isomorphism for $k<2 m$ and a surjection for $k=2 m$.

Note that the map $\pi_{k}(X) \rightarrow \pi_{k+1}(\Sigma X) \cong \pi_{k}(\Omega \Sigma X)$ induced by $X \rightarrow \Omega \Sigma X$ is the adjoint to the identity id : $\Sigma X \rightarrow \Sigma X$.

Corollary 3.2.6. If $X$ is $(n-1)$-connected, then the map $[K, X] \rightarrow[\Sigma K, \Sigma X]$ is a bijection if $K$ is a $C W$-complex of dimension less than $2 n-1$ and is a surjection if $K$ is a $C W$-complex of dimension equal to $2 n-1$.

Proof. Apply Freudenthal's suspension theorem and Whitehead's theorem (2.2.5).
Corollary 3.2.7. Let $n \geq 1$. Then $\pi_{k}\left(S^{n}\right)=0$ if $k<n$ and $\pi_{n}\left(S^{n}\right) \cong \mathbb{Z}$.
Proof. This is true for $n=1$ by standard computations. To induct, assume $S^{n}$ is $(n-1)$ connected. Then by Freudenthal's suspension theorem, $\pi_{k}\left(S^{n}\right) \rightarrow \pi_{k+1}\left(S^{n+1}\right)$ is an isomorphism for all $k<2 n-1$ and is surjective for $k=2 n-1$. This directly implies both statements.

Corollary 3.2.8. The map $\pi_{n}\left(S^{n}\right) \rightarrow H_{n}\left(S^{n}\right)$ is an isomorphism for all $n \geq 1$.
Corollary 3.2.9. The Hopf map $\mathcal{H}: \pi_{3}\left(S^{2}\right) \rightarrow \mathbb{Z}$ is an isomorphism.
Proof. By Example 1.5.4, $\pi_{3}\left(S^{2}\right) \cong \pi_{3}\left(S^{3}\right)$ but Corollary 3.2.7 shows that $\pi_{3}\left(S^{3}\right) \cong \mathbb{Z}$.
Corollary 3.2.10. The Whitehead product $\left[i_{2}, i_{2}\right]$ (see Example 1.2.13) is homotopic to $2 \eta: S^{3} \rightarrow S^{2}$.

Proof. This follows from the previous corollary and the fact that the Hopf map takes $\left[i_{2}, i_{2}\right]$ to $2 \in \mathbb{Z}$.

More generally, if

is an "excisive pair", e.g. $C=A \cap B$ and $X=\operatorname{Int}(A) \cup \operatorname{Int}(B)$ as in the situation above, or the diagram is a pushout of CW-complexes, or the diagram is a homotopy pushout, then we have a similar statement.

Theorem 3.2.11. If $((A, C),(X, B))$ is an excisive pair, $(A, C)$ is m-connected and $(B, C)$ is n-connected, then the map of pairs $(A, C) \rightarrow(X, B)$ is an $(m+n)$-equivalence.

Example 3.2.12. $X=A \vee B$ fits into a pushout diagram


If $A$ is $m$-connected and $B$ is $n$-connected, the long exact sequence

$$
\cdots \rightarrow \pi_{k}(B) \rightarrow \pi_{k}(A \vee B) \rightarrow \pi_{k}(A \vee B, B) \rightarrow \pi_{k-1}(B) \rightarrow \cdots
$$

is split by the map induced by the retraction $r: A \vee B \rightarrow B$. This implies that $\pi_{k}(A \vee B) \cong$ $\pi_{k}(B) \oplus \pi_{k}(A \vee B, B)$ for all $k$. On the other hand, Corollary 1.4.8 shows that $\pi_{k}(A \times B) \cong$ $\pi_{k}(A) \oplus \pi_{k}(B)$ for all $k \geq 2$, so by the Blakers-Massey theorem (3.2.2 or 3.2.11), we get an isomorphism $\pi_{k}(A) \cong \pi_{k}(A \vee B, B)$ for all $k \leq m+n$. In particular, $\pi_{k}(A \vee B) \rightarrow \pi_{k}(A \times B)$ is an isomorphism for all $k \leq m+n$.

If $A$ is a CW-complex obtained by gluing cells of dimension at least $m$ to a 0 -cell $*$, and $B$ is the same thing with dimension at least $n$, then $A \times B$ can be viewed as $A \vee B$ together with cells glued on of dimension at least $m+n$. Thus the Blakers-Massey theorem in some way measures the difference between the product and wedge product of two spaces (at least up to homotopy).

Corollary 3.2.13. Let $i: A \rightarrow X$ be a map. If $A$ is m-connected and $(X, A)$ is $n$-connected, then $(X, A) \rightarrow(X / A, *)$ is an $(m+n+1)$-equivalence.

Proof. By Theorem 1.1.25 and Proposition 1.2.2(b), $C(i)$ is homotopy equivalent to $X / A$. Consider the diagram


Since $A$ is $m$-connected, $(C A, A)$ is $(m+1)$-connected. Thus two applications of Theorem 3.2.11 give the result.

For a map $f: Y \rightarrow Z$, we constructed a homotopy fibre $F(f)$ and a homotopy cofibre $C(f)$, giving a sequence $F(f) \rightarrow Y \rightarrow Z \rightarrow C(f)$. These can be compared via the diagram

in which the right square commutes up to homotopy and there is an interesting map $F(f) \rightarrow$ $\Omega C(f)$ filling in the middle square.
Corollary 3.2.14. If $Y$ is m-connected and $f: Y \rightarrow Z$ is an $n$-equivalence, then the above map $F(f) \rightarrow \Omega C(f)$ is an $(m+n)$-equivalence.
Proof. There is a diagram

where $M_{f}$ is the mapping cylinder of $f$. Then by Corollary 3.2.13, $\pi_{k}\left(M_{f}, Y\right) \rightarrow \pi_{k}(C(f))$ is an isomorphism for $k<m+n+1$ and is surjective for $k=m+n+1$. But by Theorem 1.1.25 and Lemma 3.1.2, $\pi_{k}\left(M_{f}, Y\right) \cong \pi_{k}(Z, Y) \cong \pi_{k-1}(F(f))$, so the result follows.
Example 3.2.15. By Freudenthal's suspension theorem (Corollary 3.2.5), the suspension functor induces a sequence

$$
\mathbb{Z} \cong \pi_{3}\left(S^{2}\right) \rightarrow \pi_{4}\left(S^{3}\right) \xrightarrow{\sim} \pi_{5}\left(S^{4}\right) \xrightarrow{\cong} \cdots
$$

where $\pi_{3}\left(S^{2}\right)=\langle\eta\rangle$ for the Hopf fibration $\eta$ (by Corollary 3.2.9). Since $\Sigma\left[i_{2}, i_{2}\right]$ is nullhomotopic (Example 1.2.13), Corollary 3.2.10 implies that $2 \eta$ lies in the kernel of $\pi_{3}\left(S^{2}\right) \rightarrow \pi_{4}\left(S^{3}\right)$. Thus $\pi_{4}\left(S^{3}\right)$ (and all subsequent $\pi_{n+1}\left(S^{n}\right)$ groups) is either 0 or $\mathbb{Z} / 2 \mathbb{Z}$ according to whether $\Sigma \eta$ is null or not.

Consider the cofibration sequence $S^{3} \xrightarrow{\eta} S^{2} \rightarrow C(\eta)=\mathbb{C} P^{2}$. Note that $x$ generates $H^{2}\left(\mathbb{C} P^{2} ; \mathbb{Z}\right)$ if and only if $x^{2}$ generates $H^{4}\left(\mathbb{C} P^{2} ; \mathbb{Z}\right)$ - which would imply $\mathcal{H}(\eta)=1$. With $\bmod 2$ coefficients, we can apply the Steenrod square

$$
\mathrm{Sq}^{2}: H^{n}(X ; \mathbb{Z} / 2 \mathbb{Z}) \longrightarrow H^{n+2}(X ; \mathbb{Z} / 2 \mathbb{Z})
$$

which, usefully, commutes with suspension. Thus if $\eta$ were nullhomotopic, we would have $C(\Sigma \eta)$ homotopy equivalent to $S^{3} \vee S^{5}$ but we know that $C(\Sigma \eta) \cong \Sigma C(\eta)=\Sigma \mathbb{C} P^{2}$. By naturality of $\mathrm{Sq}^{2}$, if $C(\Sigma \eta)$ were indeed homotopic to $S^{3} \vee S^{5}$, the map

$$
\mathrm{Sq}^{2}: H^{3}(C(\Sigma \eta) ; \mathbb{Z} / 2 \mathbb{Z}) \longrightarrow H^{5}(C(\Sigma \eta) ; \mathbb{Z} / 2 \mathbb{Z})
$$

would be 0 . However, in the commutative diagram

the columns are isomorphisms (a classic corollary of the Mayer-Vietoris sequence) and the bottom row is an isomorphism since $\mathrm{Sq}^{2}(x)=x^{2} \neq 0$ when $x$ is the generator of $H^{2}\left(\mathbb{C} P^{2} ; \mathbb{Z} / 2 \mathbb{Z}\right)$. This proves:

Theorem 3.2.16. For $n \geq 3, \pi_{n+1}\left(S^{n}\right) \cong \mathbb{Z} / 2 \mathbb{Z}$.
Here is a reformulation of the Blakers-Massey theorem (either Theorem 3.2.2 or 3.2.11). Suppose

is a homotopy pushout (as in Section 1.1). Form the homotopy pullback


This determines a map $h: C \rightarrow P$ which completes the diagram


Theorem 3.2.17. For $A, B, C, X, P$ as above, if $f: C \rightarrow A$ is an m-equivalence and $g: C \rightarrow B$ is an n-equivalence, then $h: C \rightarrow P$ is an $(m+n-1)$-equivalence.

Proof. We prove that the statement is equivalent to Theorem 3.2.11. Taking homotopy fibres of $f, k$ and $\ell$, we get a diagram

where $F(k) \rightarrow F(\ell)$ is a homotopy equivalence since the lower right square is a homotopy pullback. Applying the long exact sequence in homotopy (Corollary 1.4.6) to the left and middle columns gives us a diagram


By the Five Lemma, $\alpha$ is an isomorphism for $r<m+n$ and is surjective for $r=m+n$ precisely when $\beta$ is the same. Finally, it's easy to see that this property for $\alpha$ is equivalent to Theorem 3.2.11 and the property for $\beta$ is equivalent to the statement of the theorem.

A second reformulation of the Blakers-Massey theorem makes the analogy with the excision theorem for homology more apparent.

Lemma 3.2.18. Suppose we have a map of long exact sequences of groups

such that $\gamma: C_{\bullet}^{\prime} \rightarrow C_{\bullet}$ is an isomorphism. Then there is a long exact sequence

$$
\cdots \rightarrow A_{n}^{\prime} \rightarrow B_{n}^{\prime} \oplus A_{n} \rightarrow B_{n} \rightarrow A_{n-1}^{\prime} \rightarrow \cdots
$$

Example 3.2.19. Using the long exact sequences of the pairs $(A, A \cap B)$ and $(B, A \cup B)$, with $\gamma$ the excision isomorphism, one obtains the Mayer-Vietoris sequence. (In fact, excision and Mayer-Vietoris are equivalent.)

Theorem 3.2.20. If

is a homotopy pullback, then there is a long exact sequence

$$
\cdots \rightarrow \pi_{r}(P) \rightarrow \pi_{r}(B) \oplus \pi_{r}(A) \rightarrow \pi_{r}(X) \rightarrow \pi_{r-1}(P) \rightarrow \cdots
$$

Corollary 3.2.21. If

is a homotopy pushout such that $f$ is an m-equivalence and $g$ is an $n$-equivalence, then there is a long exact sequence

$$
\pi_{m+n-1}(C) \rightarrow \pi_{m+n-1}(B) \oplus \pi_{m+n-1}(A) \rightarrow \pi_{m+n-1}(X) \rightarrow \pi_{m+n-2}(C) \rightarrow \cdots
$$

### 3.3 The Hurewicz Theorem

Let $\left(X, x_{0}\right)$ be a based space and take $\alpha: S^{n} \rightarrow X$. This induces a map on homology groups $\alpha_{*}: H_{\bullet}\left(S^{n}\right) \rightarrow H_{\bullet}(X)$. We know that $H_{n}\left(S^{n}\right) \cong \mathbb{Z}$; fix a generator $u_{n} \in H_{n}\left(S^{n}\right)$. Then the assignment $\alpha \mapsto \alpha_{*}\left(u_{n}\right)$ determines a well-defined map

$$
h_{X}: \pi_{n}\left(X, x_{0}\right) \longrightarrow H_{n}(X)
$$

called the Hurewicz map.

Lemma 3.3.1. The Hurewicz map induces a natural transformation

$$
h: \pi_{n}(-) \longrightarrow H_{n}(-)
$$

of functors of groups for every $n \geq 1$.
In particular, each $h_{X}: \pi_{n}\left(X, x_{0}\right) \rightarrow H_{n}(X)$ is a group homomorphism. From algebraic topology, we know that $h_{X}: \pi_{1}\left(X, x_{0}\right) \rightarrow H_{1}(X)$ is surjective with kernel $\left[\pi_{1}\left(X, x_{0}\right), \pi_{1}\left(X, x_{0}\right)\right]$, so that $H_{1}(X) \cong \pi_{1}\left(X, x_{0}\right)^{a b}$. When $n \geq 2$, we will prove that $h$ is an isomorphism in certain degrees.

First, we need the following technical result, called the CW Resolution Theorem, or sometimes the CW Approximation Theorem.

Theorem 3.3.2 (CW Resolution). For every space $X$, there is a CW-complex $K$ and a weak equivalence $g: K \rightarrow X$. Furthermore, if $X$ is $(n-1)$-connected ( $n \geq 1$ ), then such a $K$ exists consisting of one 0 -cell and all other cells of dimension $n$ or higher.

Proof. (Sketch) We construct the CW-complex $K=\bigcup_{n=0}^{\infty} K_{n}$ and maps $g_{n}: K_{n} \rightarrow X$ inductively, such that $g_{n}$ is an $n$-equivalence. We may suppose $X$ is path-connected, or repeat the subsequent process on each path component. Let $K_{0}$ be a point and $g_{0}: K_{0} \hookrightarrow X$ the inclusion of any basepoint. Inductively, suppose $K_{0} \subset K_{1} \subset \cdots \subset K_{n}$ and $g_{r}: K_{r} \rightarrow X$ have been constructed for $0 \leq r \leq n$ so that $g_{r}$ is an $r$-equivalence. Consider $\operatorname{ker}\left(g_{n}\right)_{*}$, the kernel of the induced map $\left(g_{n}\right)_{*}: \pi_{n}\left(K_{n}\right) \rightarrow \pi_{n}(X)$. We may choose maps $\left\{f_{\alpha}: S^{n} \rightarrow K_{n}\right\}_{\alpha}$ generating $\operatorname{ker}\left(g_{n}\right)_{*}$ which are the attaching maps for the $n$-skeleton: $\vee f_{\alpha}: \bigvee_{\alpha} S^{n} \rightarrow K_{n}$. Let $K_{n+1}^{\prime}$ be the pushout of the diagram


Then composing with $g_{n}$, we get a map $g_{n+1}^{\prime}: K_{n+1}^{\prime} \rightarrow X$ completing the diagram


Since $\left\{f_{\alpha}\right\}$ were chosen to generate $\operatorname{ker}\left(g_{n}\right)_{*}$, we can factor $\left(g_{n}\right)_{*}$ through a surjection and $g_{n+1}^{\prime}$ :

$$
\operatorname{ker}\left(g_{n}\right)_{*} \longrightarrow \pi_{n}\left(K_{n}\right) \xrightarrow{\left(g_{n}\right)_{*}} \pi_{n}(X)
$$

It follows that $g_{n+1}^{\prime}$ is an isomorphism. Finally, $\left(g_{n+1}^{\prime}\right)_{*}: \pi_{n+1}\left(K_{n+1}^{\prime}\right) \rightarrow \pi_{n+1}(X)$ is not guaranteed to be onto, but we remedy this by setting $K_{n+1}=\bigvee_{\alpha} S^{n} \vee K_{n+1}^{\prime}$ and defining $g_{n+1}: K_{n+1} \rightarrow X$ by $g_{n} \circ \vee f_{\alpha}$ on $\bigvee_{\alpha} S^{n}$ and $g_{n+1}^{\prime}$ on $K_{n+1}^{\prime}$. By construction, $g_{n+1}$ is an $(n+1)$-equivalence so we are done by induction.

Lemma 3.3.3. If $n>1$ then $\pi_{n}\left(\bigvee_{\alpha} S^{n}\right) \cong \bigoplus_{\alpha} \mathbb{Z}$.
Proof. There is a natural map

$$
\bigoplus_{\alpha} \mathbb{Z} \cong \bigoplus_{\alpha} \pi_{n}\left(S^{n}\right) \rightarrow \pi_{n}\left(\bigvee_{\alpha} S^{n}\right)
$$

induced by the $\alpha$ th inclusion $S^{n} \hookrightarrow \bigvee_{\alpha} S^{n}$ on each copy of $S^{n}$. For an arbitrary space $X$, consider the wedge $Y=X \vee S^{n}$. By Example 3.2.12, the above sequence restricts to an isomorphism $\pi_{n}(Y) \cong \pi_{n}(X) \oplus \pi_{n}\left(S^{n}\right)$, so inductively (or passing to the colimit), $\pi_{n}\left(\bigvee_{\alpha} S^{n}\right) \cong \bigoplus_{\alpha} \mathbb{Z}$.

Theorem 3.3.4 (Hurewicz). Suppose $X$ is simply connected. Then the conditions
(1) $\pi_{k}(X)=0$ for all $k<n$
(2) $H_{k}(X)=0$ for all $k<n$
are equivalent, and when either holds, the Hurewicz map $h: \pi_{n}(X) \rightarrow H_{n}(X)$ is an isomorphism and $h: \pi_{n+1}(X) \rightarrow H_{n+1}(X)$ is surjective.

Proof. Suppose (1) $\Longrightarrow(2)$ holds (for any $n$ ) and implies that $h: \pi_{n}(X) \rightarrow H_{n}(X)$ is an isomorphism (for any $n$ such that the conditions hold). We deduce $(2) \Longrightarrow$ (1) from this assumption. Suppose (1) is false, so there is a smallest $m<n$ such that $\pi_{m}(X) \neq 0$. Then $\pi_{k}(X)=0$ for $k<m$, so $h: \pi_{m}(X) \rightarrow H_{m}(X)$ is an isomorphism by hypothesis, but then $H_{m}(X) \neq 0$, a contradiction. Hence $(2) \Longrightarrow$ (1) holds in the presence of the assumption at the beginning, so it's enough to show that implication is always valid.

Assume $\pi_{k}(X)=0$ for all $k<n$. By Theorem 3.3.2, we may assume $X=X_{n+1}$ is the cofibre of attaching $\vee f_{\alpha}: \bigvee_{\alpha} S^{n} \rightarrow \bigvee_{\alpha} D^{n+1}$ along $\bigvee_{\alpha} S^{n} \subseteq \bigvee_{\alpha} D^{n+1}$. That is, $X$ is the pushout of the diagram


Applying $\pi_{n}$ and $H_{n}$, we get a commutative diagram (since $h$ is natural by Lemma 3.3.1):


Note that the left and middle vertical arrows are isomorphisms by Lemma 3.3.3. Thus it remains to show $j$ is onto and apply the Five Lemma to see that $h: \pi_{n}(X) \rightarrow H_{n}(X)$ is an isomorphism. In the long exact sequence in relative homotopy,

$$
\cdots \rightarrow \pi_{n+1}\left(X, \bigvee_{\alpha} S^{n}\right) \rightarrow \pi_{n}\left(\bigvee_{\alpha} S^{n}\right) \stackrel{j}{\rightarrow} \pi_{n}(X) \rightarrow \pi_{n}\left(X, \bigvee_{\alpha} S^{n}\right) \rightarrow \cdots
$$

we have $\pi_{n}\left(X, \bigvee_{\alpha} S^{n}\right) \cong \pi_{n}\left(\bigvee_{\alpha} D^{n+1}, \bigvee_{\alpha} S^{n}\right)=0$ by Corollary 3.2.21 but the latter is 0 by definition of the relative homotopy group. Hence $j$ is onto, so $h: \pi_{n}(X) \rightarrow H_{n}(X)$ as desired. A similar proof shows that (2) holds, so we are done.

Corollary 3.3.5 (Relative Hurewicz Theorem). For any pair $(X, A)$, the conditions
(1) $\pi_{k}(X, A)=0$ for all $k<n$
(2) $H_{k}(X, A)=0$ for all $k<n$
are equivalent, and when either holds, the relative Hurewicz map $h: \pi_{n}(X, A) \rightarrow H_{n}(X, A)$ is an isomorphism and $h: \pi_{n+1}(X, A) \rightarrow H_{n+1}(X, A)$ is surjective.

Proof. Up to homotopy equivalence, we may assume $A \hookrightarrow X$ is a cofibration (Theorem 1.1.25). Consider the commutative diagram


The vertical arrows are isomorphisms by Corollary 3.2.13 and Lemma 1.1.16, respectively. The corollary then follows from the ordinary Hurewicz theorem.

Corollary 3.3.6 (Second Whitehead Theorem). Suppose $X$ and $Y$ are simply connected $C W$-complexes and $f: X \rightarrow Y$ is any map. Then $f_{*}: \pi_{n}(X) \rightarrow \pi_{n}(Y)$ is an isomorphism if and only if $f_{*}: H_{n}(X) \rightarrow H_{n}(Y)$ is an isomorphism.

Proof. Replacing $Y$ by the mapping cylinder $M_{f}$, we may assume $f$ is a cofibration (Theorem 1.1.25). In particular, $f$ is an inclusion by Proposition 1.1.5. Then $f$ inducing an isomorphism on $\pi_{n}$ is equivalent to $\pi_{n}(Y, X)=0$, and likewise $f$ inducing an isomorphism on $H_{n}$ is equivalent to $H_{n}(Y, X)=0$. Hence the result follows from the relative Hurewicz theorem.

For each space $X$, fix a choice of a CW-complex $\Gamma X$ and a resolution $g_{X}: \Gamma X \rightarrow X$ by Theorem 3.3.2. Then for any map $f: X \rightarrow Y$, there is a diagram


Then by the first Whitehead theorem (Theorem 2.2.5), $\left(g_{Y}\right)_{*}:[\Gamma X, \Gamma Y] \rightarrow[\Gamma X, Y]$ is a bijection, so there exists a map $\Gamma f: \Gamma X \rightarrow \Gamma Y$ which makes the diagram above commute up to homotopy. Such a $\Gamma f$ is unique up to homotopy, so in fact we have defined a functor

$$
\begin{aligned}
\Gamma: h(\mathrm{Top}) & \longrightarrow h(\text { Top }) \\
X & \longrightarrow \Gamma X \\
(X \xrightarrow{f} Y) & \rightsquigarrow(\Gamma X \xrightarrow{\Gamma f} \Gamma Y) .
\end{aligned}
$$

Corollary 3.3.7. If $f: X \rightarrow Y$ is a weak equivalence then $f_{*}: H_{\bullet}(X) \rightarrow H_{\bullet}(Y)$ is an isomorphism.

Proof. By the above, we may transfer the question to $\Gamma X \rightarrow \Gamma Y$, and then the result follows from the second Whitehead theorem (Corollary 3.3.6).

### 3.4 Brown Representability

Let $\mathrm{Top}_{*}$ and $\mathrm{Set}_{*}$ be the categories of based topological spaces and based sets, respectively. Each space $Y \in \mathrm{Top}_{*}$ defines a contravariant functor

$$
\begin{aligned}
h_{Y}: \mathrm{Top}_{*} & \longrightarrow \mathrm{Set}_{*} \\
X & \longmapsto[X, Y] .
\end{aligned}
$$

Definition. A contravariant functor $F: \mathrm{Top}_{*} \rightarrow \mathrm{Set}_{*}$ is said to be representable if it is naturally isomorphic to $h_{Y}$ for some $Y \in \mathrm{Top}_{*}$.

Remark. Suppose $F \cong h_{Y}$. By Yoneda's lemma, any bijection $[X, Y] \cong F(X)$ must be of the form $f \mapsto f^{*}(u)$ for some $u \in F(Y)$, where $f^{*}$ is the pullback in $\operatorname{Set}_{*}$.

The most obvious question is: what conditions on a functor $F: \mathrm{Top}_{*} \rightarrow \operatorname{Set}_{*}$ guarantee that $F$ is representable? Certainly the following conditions are necessary:

- $F$ must be a homotopy functor, i.e. if $f$ and $g$ are homotopic maps then $F(f)=F(g)$.
- For any collection of based spaces $\left\{X_{\alpha}\right\}$, the natural map $F\left(\bigvee X_{\alpha}\right) \rightarrow \prod F\left(X_{\alpha}\right)$ must be a bijection.
- $F$ must satisfy some type of Mayer-Vietoris principle, like the Blakers-Massey theorem for homotopy groups.

The Brown representability theorem shows that in fact, these conditions are sufficient as well.

Theorem 3.4.1 (Brown Representability). Suppose $F: \mathrm{Top}_{*} \rightarrow \operatorname{Set}_{*}$ is a contravariant functor satisfying:
(1) $F$ is a homotopy functor.
(2) For any $\left\{X_{\alpha}\right\}, F\left(\bigvee X_{\alpha}\right) \rightarrow \prod F\left(X_{\alpha}\right)$ is bijective.
(3) For any homotopy pushout

the corresponding diagram

is a weak pullback, i.e. $\alpha$ is onto. (Here, $F(A) \times{ }_{F(C)} F(B)$ is the fibre product of $F(A)$ and $F(B)$ over $F(C)$.)

Then $F$ is representable.
To prove this, we need the following lemma.
Lemma 3.4.2. Suppose $F$ is a functor satisfying the above conditions. Given any $C W$ complex $Z$ and an element $z \in F(Z)$, there exists a $C W$-complex $Y$, a map $i: Y \rightarrow Z$ and some $u \in F(Y)$ such that $Y$ is obtained from $Z$ by attaching cells and $i^{*}(u)=z$. Moreover, the map

$$
\begin{aligned}
\theta_{u}: \pi_{n}(Y) & \longrightarrow F\left(S^{n}\right) \\
f & \longmapsto f^{*}(u)
\end{aligned}
$$

is a bijection for every $n$.

Proof. We construct $Y$ as the direct limit of a sequence $Z \xrightarrow{i} Y_{0} \xrightarrow{i_{0}} Y_{1} \xrightarrow{i_{1}} Y_{2} \xrightarrow{i_{2}} \cdots$, along with elements $u_{k} \in F\left(Y_{k}\right)$ such that
(i) For each $k,\left(i_{k}\right)_{*}\left(u_{k+1}\right)=u_{k}$ and $\left(i_{k} \circ \cdots \circ i_{0}\right)^{*}\left(u_{k+1}\right)=z$.
(ii) The induced maps $\left(i_{k}\right)_{*}:\left[S^{n}, Y_{k}\right] \rightarrow\left[S^{n}, Y_{k+1}\right]$ are compatible with the $\theta_{u_{k}}$ :

$$
\left[S^{n}, Y_{0}\right] \xrightarrow{\left(i_{0}\right)_{*}}\left[S^{n}, Y_{1}\right] \xrightarrow{\left(i_{1}\right)_{*}}\left[S^{n}, Y_{2}\right] \longrightarrow \cdots
$$

and each $\theta_{u_{k}}$ is onto with $\operatorname{ker} \theta_{u_{k}} \subseteq \operatorname{ker}\left(i_{k}\right)_{*}$.
Given these properties, condition (3) will imply for $Y=\underset{\longrightarrow}{\lim } Y_{k}$ that there exists $u \in F(Y)$ with $\left.u\right|_{Y_{k}}=u_{k}$ for each $k$. Thus the map $\left[S^{n}, Y\right]=\underset{\longrightarrow}{\lim }\left[S^{n}, Y_{k}\right] \xrightarrow{\theta_{u}} F\left(S^{n}\right)$ will be a bijection. To construct the sequence $Y_{0} \rightarrow Y_{1} \rightarrow \cdots$, start with

$$
Y_{0}=Z \vee \bigvee_{n \geq 0} \bigvee_{x \in F\left(S^{n}\right)} S^{n} .
$$

Then by condition (2),

$$
F\left(Y_{0}\right)=F(Z) \times \prod_{n \geq 0} \prod_{x \in F\left(S^{n}\right)} F\left(S^{n}\right)
$$

so we may choose $u_{0} \in F\left(Y_{0}\right)$ to be the element corresponding to $(z, x, x, x, \ldots)$ in the above product. Inductively, given $Y_{k}$ and $u_{k} \in F\left(Y_{k}\right)$, let $Y_{k+1}$ be the following pushout:


By condition (3), we get a commutative diagram

so we are done by induction.

Proof of Brown Representability. Apply Lemma 3.4.2 to $Z=*$ to produce a space $Y$ and $u \in F(Y)$ such that $\theta_{u}: \pi_{n}(Y) \rightarrow F\left(S^{n}\right)$ is an isomorphism for all $n$. We claim that $\theta_{u}:[X, Y] \rightarrow F(X), f \mapsto f^{*}(u)$ is an isomorphism for all $X$, and hence induces a natural isomorphism $h_{Y} \cong F$.

To show $\theta_{u}$ is onto, pick $x \in F(X)$. Then applying $F$ to the diagram

and using condition (2) on $F$ gives a commutative diagram in $\operatorname{Set}_{*}$ :


Then for $Z=X \vee Y$ and $z=(x, u) \in F(X) \times F(Y)=F(X \vee Y)$, Lemma 3.4.2 gives a space $Y^{\prime}$, a map $i: X \vee Y \rightarrow Y^{\prime}$ and $u^{\prime} \in F\left(Y^{\prime}\right)$ satisfying $i^{*}\left(u^{\prime}\right)=(x, u)$ and an isomorphism $\theta_{u^{\prime}}: \pi_{n}\left(Y^{\prime}\right) \rightarrow F\left(S^{n}\right)$ for all $n$. Note that the composition $k: Y \rightarrow X \vee Y \xrightarrow{i} Y^{\prime}$ is then a weak homotopy equivalence, so the diagram

commutes and hence $k^{*}$ is a bijection. Hence there is some $f \in[X, Y]$ such that $\theta_{u}(f)=x$.
To prove $\theta_{u}$ is one-to-one, suppose $\theta_{u}(f)=x=\theta_{u}(g)$ for $f, g: X \rightarrow Y$. Then we have a pushout


By condition (3), there exists $z \in F(P)$ such that $\alpha^{*}(z)=u$ and $\beta^{*}(z)=x$. Applying Lemma 3.4.2 to $Z=P$ and this $z$, we get $Y^{\prime}, u^{\prime} \in F\left(Y^{\prime}\right)$ and $i: P \rightarrow Y^{\prime}$ such that $i^{*}\left(u^{\prime}\right)=z$. Hence $(i \circ \alpha)^{*}\left(u^{\prime}\right)=u$, so $i \circ \alpha$ is a homotopy equivalence $Y \rightarrow P \rightarrow Y^{\prime}$; denote by $q$ its homotopy inverse $Y^{\prime} \rightarrow Y$. Then $H=q \circ \beta: X \times I \rightarrow Y^{\prime} \rightarrow Y$ is a homotopy from $f$ to $g$, so $\theta_{u}$ is one-to-one. This completes the proof.

Example 3.4.3. Let $F$ be the functor assigning $X$ to $F(X)=\operatorname{Vect}_{n}(X)$, the set of $n$ dimensional vector bundles over $X$ up to isomorphism. Then $\operatorname{Vect}_{n}$ is a homotopy functor (Theorem 1.5.6) and it's easy to prove it satsifies the product condition. Moreover, the weak pullback condition can be seen by extending bundles over unions. Hence by Brown representability, there is some space $G_{n}$ for each $n$ such that $\operatorname{Vect}_{n}(X) \cong\left[X, G_{n}\right]$ for all $X$. In fact, we saw in Example 1.5.7 that $G_{n}$ may be taken to be the $n$th infinite Grassmannian, $\mathrm{Gr}_{n}=\bigcup_{\ell=1}^{\infty} \operatorname{Gr}_{n}\left(\mathbb{R}^{\ell}\right)$.

### 3.5 Eilenberg-Maclane Spaces

Let $G$ be an abelian group and fix $n \geq 0$. Consider the cohomology functor with coefficients in $G$ :

$$
\begin{aligned}
\widetilde{H}^{n}(-; G): \operatorname{Top}_{*} & \longrightarrow \operatorname{Set}_{*} \\
X & \longmapsto \widetilde{H}^{n}(X ; G) .
\end{aligned}
$$

Then $\widetilde{H}^{n}(-; G)$ satisfies the three conditions in the Brown representability theorem (3.4.1), so there exists a space $K(G, n)$ such that $\widetilde{H}^{n}(-; G)$ is naturally isomorphic to $h_{K(G, n)}$, i.e. there is a class $u \in \widetilde{H}^{n}(K(G, n) ; G)$ such that $\theta_{u}:[X, K(G, n)] \rightarrow \widetilde{H}^{n}(X ; G)$ is a bijection for all $X$.

Definition. Such a space $K(G, n)$ is called an Eilenberg-Maclane space of type ( $G, n$ ), and the class $u \in \widetilde{H}^{n}(K(G, n) ; G)$ is called $a$ fundamental class.

Proposition 3.5.1. For any Eilenberg-Maclane space $K(G, n)$ and any $k \geq 0$,

$$
\pi_{k}(K(G, n))= \begin{cases}G, & k=n \\ 0, & k \neq n\end{cases}
$$

Proof. This follows from Lemma 3.4.2: $\pi_{k}(K(G, n)) \cong \widetilde{H}^{n}\left(S^{n}\right)$.
Proposition 3.5.2. For any abelian group $G$ and natural number n, an Eilenberg-Maclane space $K(G, n)$ is unique up to homotopy equivalence.

Proof. Suppose $K$ is another space satisfying $\pi_{n}(K)=G$ and $\pi_{k}(K)=0$ for $k \neq n$. Then by the Hurewicz theorem (3.3.4), $H_{n}(K ; G)=G$ and $H_{n-1}(K ; G)=0$. By the universal coefficient theorem, $H^{n}(K ; G) \cong \operatorname{Hom}(G, G)$ so we may choose $u \in H^{n}(K ; G)$ corresponding to the identity $1_{G} \in \operatorname{Hom}(G, G)$. Then $\theta_{u}: \pi_{k}(K) \rightarrow H^{n}\left(S^{k} ; G\right)$ is an isomorphism for all $k$, so it follows from Lemma 3.4.2 that $\theta_{u}:[X, K] \rightarrow H^{n}(X ; G)$ is an isomorphism for all spaces $X$. Hence $h_{K} \cong h_{K(G, n)}$ as functors, so by Yoneda's lemma, $K$ is homotopy equivalent to $K(G, n)$

Corollary 3.5.3. Every Eilenberg-Maclane space is an H-space.
Proof. By Brown representability (Theorem 3.4.1), $[-, K(G, n)] \cong \widetilde{H}^{n}(-; G)$ is a functor $\mathrm{Top}_{*} \rightarrow \mathrm{AbGps}$, so by Proposition 0.3.4, $K(G, n)$ is an $H$-space.

Corollary 3.5.4. For every abelian group $G$ and $n \geq 0$, there is a natural isomorphism

$$
\widetilde{H}^{n}(-; G) \cong \widetilde{H}^{n+1}(\Sigma-; G)
$$

Proof. For every space $X$, we have $\widetilde{H}^{n}(X ; G) \cong[X, K(G, n)]$ and $\widetilde{H}^{n+1}(\Sigma X ; G) \cong[\Sigma X, K(G, n+$ 1)] by Brown representability (Theorem 3.4.1). Also, $[\Sigma X, K(G, n+1)]=[X, \Omega K(G, n+1)]$ by Corollary 0.2.5 and $K(G, n) \rightarrow \Omega K(G, n+1)$ is a homotopy equivalence by uniqueness of Eilenberg-Maclane spaces. Hence $\widetilde{H}^{n}(X ; G) \cong \widetilde{H}^{n+1}(\Sigma X ; G)$ and this isomorphism is natural since each isomorphism above is natural.

Example 3.5.5. Let $G=\mathbb{Z}$. For $n=0,1,2$, we have:

$$
\begin{aligned}
& K(\mathbb{Z}, 0)=\mathbb{Z} \\
& K(\mathbb{Z}, 1)=S^{1} \\
& K(\mathbb{Z}, 2)=\mathbb{C} P^{\infty} .
\end{aligned}
$$

Each of these can be verified by computing the ordinary cohomology groups of the spaces on the right, and noting that $K(G, n)$ is unique up to homotopy equivalence (Prop. 3.5.2). In particular, the identification $K(\mathbb{Z}, 2)=\mathbb{C} P^{\infty}$ is borne out by an isomorphism

$$
\begin{aligned}
{\left[X, \mathbb{C} P^{\infty}\right] } & \longrightarrow H^{2}(X ; \mathbb{Z}) \\
L & \longmapsto c_{1}(L)
\end{aligned}
$$

which sends a line bundle $L$ over $X$ (this is the complex version of Example 3.4.3) to the first Chern class $c_{1}(L)$ of the bundle.

Example 3.5.6. For $G=\mathbb{Z} / 2 \mathbb{Z}$, we have $K(\mathbb{Z} / 2 \mathbb{Z}, 1)=\mathbb{R} P^{\infty}$, again by computing the homology groups of $\mathbb{Z} / 2 \mathbb{Z}$. Here, the representability is encoded by the isomorphism

$$
\begin{aligned}
{\left[X, \mathbb{R} P^{\infty}\right] } & \longrightarrow H^{1}(X ; \mathbb{Z} / 2 \mathbb{Z}) \\
L & \longmapsto \omega_{1}(L)
\end{aligned}
$$

where $L$ is a line bundle (again, see Example 3.4.3) and $\omega_{1}(L)$ is the first Stiefel-Whitney class of $L$.

Theorem 3.5.7. For any two abelian groups $G$ and $G^{\prime}$ and any $n \geq 0$, there are bijections

$$
\left[K(G, n), K\left(G^{\prime}, n\right)\right]_{*} \longleftrightarrow\left[K(G, n), K\left(G^{\prime}, n\right)\right] \longleftrightarrow \operatorname{Hom}\left(G, G^{\prime}\right)
$$

Proof. Send a map $f: K(G, n) \rightarrow K\left(G^{\prime}, n\right)$ to the induced map $f_{*}: \pi_{n}(K(G, n)) \rightarrow$ $\pi_{n}\left(K\left(G^{\prime}, n\right)\right)$ which by definition is a map $G \rightarrow G^{\prime}$. Then by the universal coefficient theorem,

$$
\left[K(G, n), K\left(G^{\prime}, n\right)\right] \cong \widetilde{H}^{n}\left(K(G, n) ; G^{\prime}\right) \cong \operatorname{Hom}\left(H_{n}(K(G, n) ; \mathbb{Z}), G^{\prime}\right)=\operatorname{Hom}\left(G, G^{\prime}\right)
$$

Definition. For integers $n, m$ and abelian groups $G, G^{\prime}$, a cohomology operation of type ( $n, G, m, G^{\prime}$ ) is a natural transformation

$$
\theta: H^{n}(-; G) \longrightarrow H^{m}\left(-; G^{\prime}\right)
$$

Suppose $\theta$ is a cohomology operation. Then applying it to the fundamental class of $K(G, n)$ determines a class $\theta(u) \in \widetilde{H}^{m}\left(K(G, n) ; G^{\prime}\right)=\left[K(G, n), K\left(G^{\prime}, m\right)\right]$. Further, if $O\left(n, G, m, G^{\prime}\right)$ represents the set of all cohomology operations of this type, then evaluation on $u$ induces a bijection

$$
O\left(n, G, m, G^{\prime}\right) \longleftrightarrow \widetilde{H}^{m}\left(K(G, n) ; G^{\prime}\right)=\left[K(G, n), K\left(G^{\prime}, m\right)\right]
$$

Example 3.5.8. It's easy to compute $K(\mathbb{Z} / 2 \mathbb{Z}, 1)=\mathbb{R} P^{\infty}$ by considering the CW-structure of $\mathbb{R} P^{\infty}$. One can in fact prove that $H^{\bullet}\left(\mathbb{R} P^{\infty} ; \mathbb{Z} / 2 \mathbb{Z}\right) \cong \mathbb{Z} / 2 \mathbb{Z}[x]$, the polynomial ring in one variable with $\mathbb{Z} / 2 \mathbb{Z}$-coefficients generated by the fundamental class $x \in H^{1}\left(\mathbb{R} P^{\infty} ; \mathbb{Z} / 2 \mathbb{Z}\right)$. It turns out that $x^{2} \in H^{2}\left(\mathbb{R} P^{\infty} ; \mathbb{Z} / 2 \mathbb{Z}\right)$ represents the "Steenrod square" cohomology operation,

$$
\begin{aligned}
H^{1}(X ; \mathbb{Z} / 2 \mathbb{Z}) & \longrightarrow H^{2}(X ; \mathbb{Z} / 2 \mathbb{Z}) \\
& \longmapsto \alpha^{2}=\alpha \cup \alpha
\end{aligned}
$$

### 3.6 Infinite Symmetric Products

Recall that a monoid in a (tensor) category (with unit *) is an object $X$ with distinguished morphism $m: X \otimes X \rightarrow X$ and $e: * \rightarrow X$ satisfying the usual associativity and identity axioms of a set monoid.

Definition. Let $\left(X, x_{0}\right)$ be a based space. The James construction on $X, J(X)$, is the free monoid in Top ${ }_{*}$ generated by $X$. Explicitly,

$$
J(X):=\coprod_{n=1}^{\infty} X^{n} / \sim
$$

where $\left(x_{1}, \ldots, x_{k}, x_{0}, x_{k+1}, \ldots, x_{n-1}\right) \in X^{n}$ is equivalent to $\left(x_{1}, \ldots, x_{k}, x_{k+1}, \ldots, x_{n-1}\right) \in$ $X^{n-1}$. The monoidal structure $J(X) \times J(X) \rightarrow J(X)$ is induced by identifying $X^{m} \times X^{n}=$ $X^{m+n}$, which is obviously associative.

The James construction is universal in the following sense.
Proposition 3.6.1. If $M$ is a monoid in $\mathrm{Top}_{*}$ and $f: X \rightarrow M$ is any map of based spaces, then there is a unique map $\bar{f}: J(X) \rightarrow M$ making the diagram commute:


For any $X, J(X)$ has a natural filtration

$$
X=J_{1} X \subseteq J_{2} X \subseteq J_{3} X \subseteq \cdots
$$

where $J_{n} X=\coprod_{m=1}^{n} X^{m} / \sim$. (We actually saw $J=J_{2} X$ in Example 1.2.13, where $X=S^{n}$.) Moreover, for each $n \geq 2$,

$$
J_{n} X / J_{n-1} X \cong \underbrace{X \wedge \cdots \wedge X}_{n}
$$

Recall that the identity map $X \rightarrow X$ induces, by adjointness, a natural map $X \rightarrow$ $\Omega \Sigma X$ which makes $\Omega \Sigma X$ into an $H$-space - that is, $\Omega \Sigma X$ is an "associative monoid up to homotopy", but may not be truly associative. It turns out that one can replace $\Omega \Sigma X$ with a space to which it is homotopy equivalent and that is itself an associative monoid in $\mathrm{Top}_{*}$. Then by Proposition 3.6.1, there is a morphism $J(X) \rightarrow \Omega \Sigma X$ commuting with the maps $X \rightarrow J(X)$ and $X \rightarrow \Omega \Sigma X$.

Theorem 3.6.2 (James). If $X$ is path-connected, then $J(X) \rightarrow \Omega \Sigma X$ is a homotopy equivalence.

By the Freudenthal suspension theorem (3.2.5), the map $X \rightarrow \Omega \Sigma X$ induces a map $\pi_{n}(X) \rightarrow \pi_{n+1}(\Sigma X)$, so James' theorem allows us to view this as a map $\pi_{n}(X) \rightarrow \pi_{n}(J(X))$. Then the filtration of $J(X)$ makes this map between fundamental groups easier to study.

In their 1958 paper Quasifaserungen und Unendliche Symmetrische Produkte, Dold and Thom gave a similar construction to James' construction.

Definition. For a based space $\left(X, x_{0}\right)$, the infinite symmetric product on $X$ is the free commutative monoid $S P^{\infty}(X)$ in $\mathrm{Top}_{*}$ generated by X. Explicitly,

$$
S P^{\infty}(X):=\coprod_{n=1}^{\infty} X^{n} / \approx
$$

where $\approx$ is the equivalence relation generated by $\sim$ from the James construction as well as $\left(x_{1}, \ldots, x_{n}\right) \approx\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)$ for every element $\sigma$ of the symmetric group $\Sigma_{n}$.

Again, $S P^{\infty}(X)$ has a natural filtration

$$
X=S P^{1}(X) \subseteq S P^{2}(X) \subseteq S P^{3}(X) \subseteq \cdots
$$

where $S P^{n}(X)=X^{n} / \Sigma_{n}$; this is sometimes called the $n$th symmetric product of $X$. Here, we also have

$$
S P^{n}(X) / S P^{n-1}(X) \cong(X \wedge \cdots \wedge X) / \Sigma_{n}
$$

Example 3.6.3. For any $n \geq 2, S P^{2}\left(S^{2}\right) \cong \mathbb{C} P^{n}$.
Example 3.6.4. For each $n \geq 1, S P^{n}(\mathbb{C})=\mathbb{C}^{n} / \Sigma_{n}$, but notice that $\mathbb{C}^{n} / \Sigma_{n} \cong \mathbb{C}^{n}$ via the isomorphism $\left[z_{1}, \ldots, z_{n}\right] \mapsto\left(a_{0}, \ldots, a_{n-1}\right)$, where $\prod_{i=1}^{n}\left(z-z_{i}\right)=\sum_{j=0}^{n} a_{j} z^{j}$. One can also compute that $S P^{n}(\mathbb{C} \backslash\{0\}) \cong(\mathbb{C} \backslash\{0\}) \times \mathbb{C}^{n-1}$.

Lemma 3.6.5. Let $S P^{\infty}: \mathrm{Top}_{*} \rightarrow \mathrm{Top}_{*}$ be the assignment $X \mapsto S P^{\infty}(X)$. Then
(1) $S P^{\infty}$ is a functor.
(2) If $f, g: X \rightarrow Y$ are homotopic then $S P^{\infty}(f)$ and $S P^{\infty}(g)$ are homotopic.
(3) The map $S^{1} \rightarrow S P^{\infty}\left(S^{1}\right)$ is a homotopy equivalence.
(4) $S P^{\infty}$ takes homotopy pushout squares to homotopy pullback squares.

Theorem 3.6.6 (Dold-Thom). There is a natural isomorphism $\pi_{n}\left(S P^{\infty}(X)\right) \cong \widetilde{H}_{n}(X)$ for all based spaces $X$.

Corollary 3.6.7. For each $n \geq 1, S P^{\infty}\left(S^{n}\right)=K(\mathbb{Z}, n)$.
It turns out that the natural inclusion $X \hookrightarrow S P^{\infty}(X)$ induces the Hurewicz map (Section 3.3)

$$
h: \pi_{n}(X) \longrightarrow \pi_{n}\left(S P^{\infty}\right) \cong \widetilde{H}_{n}(X)
$$

This allows one to filter $h$ using the filtration on $S P^{\infty}$ and study it in more detail.
Definition. Let $A$ be an abelian group and $n \geq 0$ be an integer. A Moore space of type $(A, n)$ is a space $M(A, n)$ which satisfies

$$
\widetilde{H}_{k}(M(A, n) ; \mathbb{Z})= \begin{cases}A, & k=n \\ 0, & k \neq n\end{cases}
$$

Example 3.6.8. For each $n \geq 0, M(\mathbb{Z}, n)=S^{n}$ and by additivity, $M\left(\mathbb{Z}^{k}, n\right)=\bigwedge_{k} S^{n}$.
Example 3.6.9. $M(\mathbb{Z} / 2 \mathbb{Z}, 1)=\mathbb{R} P^{2}$ and in general, $M(\mathbb{Z} / 2 \mathbb{Z}, n)=\Sigma^{n-1} \mathbb{R} P^{2}$.
Moore spaces may be viewed as an analogue of Eilenberg-Maclane spaces. This is made precise in the following lemma.

Lemma 3.6.10. For any abelian group $A$ and any integer $n \geq 0, S P^{\infty}(M(A, n))=K(A, n)$.
Theorem 3.6.11. If $M$ is any commutative monoid in $\mathrm{Top}_{*}$, then $M$ is homotopy equivalent to the infinite product of Eilenberg-Maclane spaces

$$
\prod_{n=1}^{\infty} K\left(\pi_{n}(M), n\right)
$$

In particular, $S P^{\infty}(X)=\prod_{n=1}^{\infty} K\left(\widetilde{H}_{n}(X), n\right)$.
Proof. (Sketch) For each $n$, there is a map $f_{n}: M\left(\pi_{n}(M), n\right) \rightarrow M$ which induces an isomorphism on $\pi_{n}$. Since $M$ is a monoid, this extends to a map $\bar{f}_{n}$ completing the following diagram:


Taking infinite products gives us a map

$$
\prod_{n=1}^{\infty} S P^{\infty}\left(M\left(\pi_{n}(M), n\right)\right) \rightarrow S P^{\infty}\left(\bigvee_{n=1}^{\infty} M\left(\pi_{n}(M), n\right)\right) \xrightarrow{\bigvee \bar{f}_{n}} M
$$

which induces an isomorphism on homotopy groups. Now apply Lemma 3.6.10 and Whitehead's first theorem (2.2.5) to get a homotopy equivalence $\prod_{n=1}^{\infty} K\left(\pi_{n}(M), n\right) \rightarrow M$.

## 4 Algebraic Constructions

### 4.1 The Derived Functor lim $^{1}$

Let $\left(A_{n}, \alpha_{n}\right)$ be a direct system of abelian groups. Then the direct limit, $\underset{\rightarrow}{\lim } A_{n}$, can be defined explicitly as the coequalizer of the following pair of maps:

$$
\bigoplus_{n=1}^{\infty} A_{n} \xrightarrow[\mathrm{id}]{\xrightarrow{\bigoplus \alpha_{n}}} \bigoplus_{n=1}^{\infty} A_{n} \longrightarrow \underset{\longrightarrow}{\lim } A_{n}
$$

In fact, the direct limit (also sometimes called a colimit and written colim $A_{n}$ ) fits into a short exact sequence:

$$
\begin{equation*}
0 \rightarrow \bigoplus_{n=1}^{\infty} A_{n} \xrightarrow{\oplus\left(1-\alpha_{n}\right)} \bigoplus_{n=1}^{\infty} A_{n} \rightarrow \underset{\longrightarrow}{\lim } A_{n} \rightarrow 0 \tag{1}
\end{equation*}
$$

That is, $\underset{\longrightarrow}{\lim } A_{n}$ can be written down explicitly as a cokernel:

$$
\lim _{\longrightarrow} A_{n}=\left(\bigoplus_{n=1}^{\infty} A_{n}\right) /\left\{x-\alpha_{n}(x) \mid x \in A_{n}\right\} .
$$

Reversing the arrows, for an inverse system of abelian groups $\left(A_{n}, \alpha_{n}\right)$, the inverse limit $\lim _{\leftarrow} A_{n}$, also referred to as the (projective) limit, can be defined as the equalizer of the following pair of maps:

$$
\lim _{\leftarrow} A_{n} \longrightarrow \prod_{n=1}^{\infty} A_{n} \xrightarrow[\mathrm{id}]{\prod \alpha_{n}} \prod_{n=1}^{\infty} A_{n}
$$

In contrast with the direct limit, however, the inverse limit does not always fit into a short exact sequence like (1). In general, $\underset{\longrightarrow}{\lim }$ is a left exact functor, that is, there is always an exact sequence

$$
0 \rightarrow \lim _{\leftarrow} A_{n} \rightarrow \prod_{n=1}^{\infty} A_{n} \xrightarrow{\Pi\left(1-\alpha_{n}\right)} \prod_{n=1}^{\infty} A_{n},
$$

but the sequence may not be exact on the right. Instead, there is a (right) derived functor which repairs the failure of exactness.

Definition. For an inverse system of abelian groups $\left(A_{n}, \alpha_{n}\right), \lim ^{1} A_{n}$ is defined to be the cokernel of the map $\Pi\left(1-\alpha_{n}\right): \prod_{n=1}^{\infty} A_{n} \rightarrow \prod_{n=1}^{\infty} A_{n}$.
Lemma 4.1.1. There is an exact sequence of abelian groups

$$
0 \rightarrow \lim _{\leftarrow} A_{n} \rightarrow \prod_{n=1}^{\infty} A_{n} \xrightarrow{\prod\left(1-\alpha_{n}\right)} \prod_{n=1}^{\infty} A_{n} \rightarrow \lim ^{1} A_{n} \rightarrow 0
$$

Lemma 4.1.2. For an inverse system $\left(A_{n}, \alpha_{n}\right)$,
(a) If every $\alpha_{n}$ is an epimorphism, then $\lim ^{1} A_{n}=0$.
(b) If every $\alpha_{n}=0$, then $\lim ^{1} A_{n}=0$.

Proposition 4.1.3. Let $\left(A_{n}, \alpha_{n}\right),\left(B_{n}, \beta_{n}\right),\left(C_{n}, \gamma_{n}\right)$ be inverse systems of abelian groups and $0 \rightarrow A_{n} \rightarrow B_{n} \rightarrow C_{n} \rightarrow 0$ a short exact sequence of inverse systems. Then there is an exact sequence

$$
0 \rightarrow \lim _{\leftarrow} A_{n} \rightarrow \lim _{\leftarrow} B_{n} \rightarrow \lim _{\leftarrow} C_{n} \rightarrow \lim ^{1} A_{n} \rightarrow \lim ^{1} B_{n} \rightarrow \lim ^{1} C_{n} \rightarrow 0 .
$$

Proof. Use Lemma 4.1.1 and the Snake Lemma.
Example 4.1.4. For a prime integer $p$, the $p$-adic integers $\mathbb{Z}_{p}$ can be defined in many ways, but one of the definitions is as the limit of an inverse system:

$$
\mathbb{Z}_{p}=\lim \left\{\mathbb{Z} / p \mathbb{Z} \leftarrow \mathbb{Z} / p^{2} \mathbb{Z} \leftarrow \mathbb{Z} / p^{3} \mathbb{Z} \leftarrow \cdots\right\} .
$$

Consider the short exact sequence of inverse systems


Applying Proposition 4.1.3 and Lemma 4.1.2, we get an exact sequence

$$
0 \rightarrow \lim \{\mathbb{Z} \stackrel{p}{\leftarrow} \mathbb{Z} \stackrel{p}{\leftarrow} \cdots\} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z}_{p} \rightarrow \lim ^{1}\{Z \stackrel{p}{\leftarrow} \mathbb{Z} \stackrel{p}{\leftarrow} \cdots\} \rightarrow 0 \rightarrow 0 \rightarrow 0
$$

In particular, since $\mathbb{Z} \rightarrow \mathbb{Z}_{p}$ is injective, we get

$$
\lim \{\mathbb{Z} \stackrel{p}{\leftarrow} \mathbb{Z} \stackrel{p}{\leftarrow} \cdots\}=0 \quad \text { and } \quad \lim ^{1}\{\mathbb{Z} \stackrel{p}{\leftarrow} \mathbb{Z} \stackrel{p}{\leftarrow} \cdots\} \cong \mathbb{Z}_{p} / \mathbb{Z} .
$$

This shows that in general, lim ${ }^{1}$ need not vanish.
Example 4.1.5. The profinite completion of the integers $\widehat{\mathbb{Z}}$ is the limit of the inverse system $\{\mathbb{Z} / n \mathbb{Z}\}_{n \geq 2}$ partially ordered by $\mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$ if $m \mid n$. One can show that $\widehat{\mathbb{Z}}$ is the limit of a linearly ordered sequence:

$$
\widehat{\mathbb{Z}}=\lim \{\mathbb{Z} / 2 \mathbb{Z} \leftarrow \mathbb{Z} / 6 \mathbb{Z} \leftarrow \mathbb{Z} / 24 \mathbb{Z} \leftarrow \mathbb{Z} / 120 \mathbb{Z} \leftarrow \cdots\}
$$

Then a similar proof as in Example 4.1.4 shows that $\lim ^{1}\{\mathbb{Z} \stackrel{2}{\leftarrow} \mathbb{Z} \stackrel{3}{\leftarrow} \mathbb{Z} \stackrel{4}{\leftarrow} \cdots\}=\widehat{\mathbb{Z}} / \mathbb{Z}$.

The following demonstrates the interaction between $\lim$ and the derived functors of Hom and $\underset{\leftarrow}{\lim }$.
Proposition 4.1.6. Suppose $\left(A_{n}, \alpha_{n}\right)$ is a direct system of flat abelian groups. Then for all $B$, $\left(\operatorname{Hom}\left(A_{n}, B\right), \alpha_{n}^{*}\right)$ is an inverse system of abelian groups and there is an isomorphism

$$
\lim ^{1} \operatorname{Hom}\left(A_{n}, B\right) \cong \operatorname{Ext}^{1}\left(\underset{\longrightarrow}{\lim } A_{n}, B\right)
$$

Proof. Set $A=\underset{\longrightarrow}{\lim } A_{n}$. Applying $\operatorname{Hom}(-, B)$ to the short exact sequence (1), we get a long exact sequence in Ext groups:

$$
\begin{aligned}
0 & \rightarrow \operatorname{Hom}(A, B) \rightarrow \operatorname{Hom}\left(\bigoplus_{n=1}^{\infty} A_{n}, B\right) \rightarrow \operatorname{Hom}\left(\bigoplus_{n=1}^{\infty} A_{n}, B\right) \\
& \rightarrow \operatorname{Ext}^{1}(A, B) \rightarrow \operatorname{Ext}^{1}\left(\bigoplus_{n=1}^{\infty} A_{n}, B\right) \rightarrow \operatorname{Ext}^{1}\left(\bigoplus_{n=1}^{\infty} A_{n}, B\right) \rightarrow \cdots
\end{aligned}
$$

Note that $\operatorname{Hom}(A, B)=\operatorname{Hom}\left(\underset{\longrightarrow}{\lim } A_{n}, B\right) \cong \underset{\leftarrow}{\lim } \operatorname{Hom}\left(A_{n}, B\right), \operatorname{Hom}\left(\bigoplus A_{n}, B\right) \cong \Pi \operatorname{Hom}\left(A_{n}, B\right)$ and $\operatorname{Ext}^{1}\left(\bigoplus A_{n}, B\right) \cong \prod \operatorname{Ext}^{1}\left(A_{n}, B\right)$. Moreover, by the flatness assumption $\operatorname{Ext}^{1}\left(A_{n}, B\right)=$ 0 for all $n$. Hence the sequence above becomes

$$
0 \rightarrow \lim _{\leftarrow} \operatorname{Hom}\left(A_{n}, B\right) \rightarrow \prod_{n=1}^{\infty} \operatorname{Hom}\left(A_{n}, B\right) \rightarrow \prod_{n=1}^{\infty} \operatorname{Hom}\left(A_{n}, B\right) \rightarrow \operatorname{Ext}^{1}(A, B) \rightarrow 0
$$

Thus Lemma 4.1.1 shows that $\operatorname{Ext}^{1}(A, B) \cong \lim ^{1} \operatorname{Hom}\left(A_{n}, B\right)$.
Example 4.1.7. It's easy to see that $\mathbb{Q}=\lim \{\mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{3} \mathbb{Z} \xrightarrow{4} \cdots\}$. Then by Proposition 4.1.6,

$$
\begin{aligned}
\operatorname{Ext}^{1}(\mathbb{Q}, \mathbb{Z}) & \cong \lim ^{1}\{\operatorname{Hom}(\mathbb{Z}, \mathbb{Z}) \xrightarrow{2} \operatorname{Hom}(\mathbb{Z}, \mathbb{Z}) \xrightarrow{3} \cdots\} \\
& =\lim ^{1}\{\mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{3} \cdots\} \\
& =\widehat{\mathbb{Z}} / \mathbb{Z}
\end{aligned}
$$

using Example 4.1.5.
Definition. Let $\left(A_{n}, \alpha_{n}\right)$ be an inverse system of abelian groups and for each $j>n$, write $\alpha_{n}^{j}=\alpha_{n} \alpha_{n+1} \cdots \alpha_{j-1}: A_{j} \rightarrow A_{n}$. Set $A_{n}^{j}=\operatorname{im} \alpha_{n}^{j}$. Then $\left(A_{n}, \alpha_{n}\right)$ is said to satisfy the Mittag-Leffler condition if for each $n$, there exists an $N$ such that $A_{n}^{j}=A_{n}^{N}$ for all $j>N$, that is, if the sequences of images of $\alpha_{n}^{j}$ eventually stabilize.
Example 4.1.8. The Mittag-Leffler condition clearly holds for $\left(A_{n}, \alpha_{n}\right)$ when every $\alpha_{n}$ is an epimorphism, or when all the $A_{n}$ are finite abelian groups. We saw in Lemma 4.1.2 that in the former case, $\lim ^{1} A_{n}$ vanishes. The following theorem generalizes this to all inverse systems satisfying the Mittag-Leffler condition.
Theorem 4.1.9. For an inverse system of abelian groups $\left(A_{n}, \alpha_{n}\right)$, either
(1) $\left(A_{n}, \alpha_{n}\right)$ satisfies the Mittag-Leffler condition and $\lim ^{1} A_{n}=0$; or
(2) $\lim ^{1} A_{n}$ is an uncountable divisible group.

### 4.2 Mapping Telescopes

Definition. For a pair of maps $f, g: X \rightarrow Y$, the homotopy coequalizer (or mapping torus) of $f$ and $g$ is the homotopy pushout $T(f, g)$ of the maps $f \vee g: X \vee X \rightarrow Y$ and $\nabla: X \vee X \rightarrow Y$, where $\nabla$ is the 'fold map' of Proposition 0.3.4. Explicitly,


Definition. Let $\left(X_{n}, f_{n}\right)$ be a direct system of topological spaces. Then the mapping telescope (or homotopy colimit) of $\left(X_{n}, f_{n}\right)$ is the homotopy coequalizer $\operatorname{Tel}\left(X_{n}\right)$ of the maps $\bigvee f_{n}: \bigvee X_{n} \rightarrow \bigvee X_{n}$ and id $: \bigvee X_{n} \rightarrow \bigvee X_{n}$.

Proposition 4.2.1. For any direct system $\left(X_{n}, f_{n}\right)$ of spaces, the mapping telescope can be written as a union of subspaces

$$
Y_{1} \subseteq Y_{2} \subseteq Y_{3} \subseteq \cdots \subseteq \bigcup_{n=1}^{\infty} Y_{n}=\operatorname{Tel}\left(X_{n}\right)
$$

such that there are deformation retractions $Y_{n} \rightarrow X_{n}$ compatible with the $f_{n}$. In particular, there is a weak equivalence

$$
\operatorname{Tel}\left(X_{n}\right) \rightarrow \underset{\longrightarrow}{\lim } X_{n} .
$$

Proposition 4.2.2. Let $\left(X_{n}, f_{n}\right)$ be a direct system and $Z$ any space. Then

$$
\left[\operatorname{Tel}\left(X_{n}\right), Z\right] \longrightarrow \xrightarrow{\lim }\left[X_{n}, Z\right]
$$

is a surjective map of pointed sets with kernel $\lim ^{1}\left[\Sigma X_{n}, Z\right]$.
Proposition 4.2.3. If each $f_{n}: X_{n} \rightarrow X_{n+1}$ is a cofibration, then the map $\operatorname{Tel}\left(X_{n}\right) \rightarrow \underset{\longrightarrow}{\lim } X_{n}$ is a homotopy equivalence.

We now give an application of telescopes to phantom maps, using the properties of $\lim ^{1}$ studied in Section 4.1.

Definition. For a $C W$-complex $X=\bigcup_{n=1}^{\infty} X_{n}$, a map $f: X \rightarrow Y$ is called a phantom $\operatorname{map}$ if $\left.f\right|_{X_{n}}$ is nullhomotopic for every $n \geq 1$.

A priori, it is not clear if such maps even exist in general. However, one has:
Corollary 4.2.4. Let $X$ be a $C W$-complex. Then the set of homotopy classes of phantom maps $X \rightarrow Y$ is naturally isomorphic to $\lim ^{1}\left[\Sigma X_{n}, Y\right]$.

Proof. This follows from Propositions 4.2.2 and 4.2.3.

The following example, due to Gray, shows that there are uncountably many phantom maps $\mathbb{C} P^{\infty} \rightarrow S^{3}$.

Example 4.2.5. (Gray) Let $X=\mathbb{C} P^{\infty}=\bigcup_{n=1}^{\infty} \mathbb{C} P^{n}$ and $Y=S^{3}$, so that $Y$ is a topological group, in particular an $H$-space, and therefore each [ $\Sigma \mathbb{C} P^{n}, S^{3}$ ] is an abelian group by Theorem 0.3.7. Then Corollary 4.2.4 identifies $\lim ^{1}\left[\Sigma \mathbb{C} P^{n}, S^{3}\right]$ as the subgroup of phantom maps in $\left[\mathbb{C} P^{\infty}, S^{3}\right]$. We claim that this is a finitely generated group. Consider the cofibration sequence

$$
S^{2 n+1} \rightarrow \mathbb{C} P^{n} \rightarrow \mathbb{C} P^{n+1} \rightarrow S^{2 n+2} \rightarrow \Sigma \mathbb{C} P^{n} \rightarrow \Sigma \mathbb{C} P^{n+1} \rightarrow S^{2 n+3} \rightarrow \cdots
$$

Applying $\left[-, S^{3}\right]$ gives a sequence of abelian groups

$$
\begin{equation*}
\cdots \rightarrow \pi_{2 n+3}\left(S^{3}\right) \rightarrow\left[\Sigma \mathbb{C} P^{n+1}, S^{3}\right] \rightarrow\left[\Sigma \mathbb{C} P^{n}, S^{3}\right] \rightarrow \pi_{2 n+2}\left(S^{3}\right) \rightarrow \cdots \tag{2}
\end{equation*}
$$

which is exact by Theorem 1.2.5. We will prove in Section 4.6 that $\pi_{n}\left(S^{3}\right)$ is a finite group for all $n>3$. Assuming this, the long exact sequence above and induction on $n$ imply that each $\left[\Sigma \mathbb{C} P^{n}, S^{3}\right]$ is finitely generated.

To show that there are uncountably many phantom maps $\mathbb{C} P^{\infty} \rightarrow S^{3}$, our goal is to prove that the inverse system $\left[\Sigma \mathbb{C} P^{n}, S^{3}\right]$ does not satisfy the Mittag-Leffler condition and apply Theorem 4.1.9. In fact, we will show that for each $n$, there is a map $g_{n}: \Sigma \mathbb{C} P^{n} \rightarrow S^{3}$ that does not extend to a map $\Sigma \mathbb{C} P^{\infty} \rightarrow S^{3}$. Suppose $g_{n}: \Sigma \mathbb{C} P^{n} \rightarrow S^{3}$ has been constructed; let $d_{n}$ be its degree on the bottom cell of $\Sigma \mathbb{C} P^{n}$. Consider the composition $S^{2 n+2} \rightarrow \Sigma \mathbb{C} P^{n} \xrightarrow{g_{n}} S^{3}$; let its order in the finite group $\pi_{2 n+3}\left(S^{3}\right)$ be denoted $a$. Then we have a commutative diagram

(Here, $a: \Sigma \mathbb{C} P^{n} \rightarrow \Sigma \mathbb{C} P^{n}$ is the map induced on $\Sigma \mathbb{C} P^{n}=S^{1} \wedge \mathbb{C} P^{n}$ by the degree $a$ map on $S^{1}$.) Note that by definition, $a$ annihilates $g_{n} \circ \gamma$ along the bottom row, so $g_{n} \circ \gamma \circ a$ is nullhomotopic. By commutativity, so is $g_{n} \circ a \circ \gamma$, i.e. $\gamma_{*}\left(g_{n} \circ a\right)=0$ in $\pi_{2 n+2}\left(S^{3}\right)$. Now exactness of sequence (1) implies that there is some $g_{n+1} \in\left[\mathbb{C} P^{n+1}, S^{3}\right]$ mapping to $g_{n} \circ a$. By construction, the degree of $g_{n+1}$ on the bottom cell of $\Sigma \mathbb{C} P^{n+1}$ is $a d_{n}$. This shows that for each $n$, there is a map $g_{n}: \Sigma \mathbb{C} P^{n} \rightarrow S^{3}$ which is not nullhomotopic as a map $\Sigma \mathbb{C} P^{2} \hookrightarrow \Sigma \mathbb{C} P^{3} \rightarrow S^{3}$.

In general, let $g: \Sigma \mathbb{C} P^{\infty} \rightarrow S^{3}$ be any map, say of degree $m$ on the bottom cell $\Sigma \mathbb{C} P^{2}$. Let $p$ be a prime not dividing $m$ and let

$$
\mathcal{P}: H^{n}(X ; \mathbb{Z} / p \mathbb{Z}) \longrightarrow H^{n+2(p-1)}(X ; \mathbb{Z} / p \mathbb{Z})
$$

denote the mod $p$ Steenrod operation for a space $X$, constructed for any $p$ in a similar fashion to the $p=2$ case. As with mod 2 Steenrod operations, $\mathcal{P}$ is the $p$ th power map on degree 2 homology and commutes with the suspension isomorphism $\sigma: H^{n}(X ; \mathbb{Z} / p \mathbb{Z}) \rightarrow$
$H^{n+1}(X ; \mathbb{Z} / p \mathbb{Z})$ in every dimension $n$. For $X=\mathbb{C} P^{\infty}$, we have $H^{\bullet}\left(\mathbb{C} P^{\infty} ; \mathbb{Z} / p \mathbb{Z}\right) \cong \mathbb{Z} / p \mathbb{Z}[y]$ for a generator $y \in H^{2}\left(\mathbb{C} P^{\infty} ; \mathbb{Z} / p \mathbb{Z}\right)$. Then $\mathcal{P}(y)=y^{p} \neq 0$, so if $x$ is a generator in $H^{3}\left(\mathbb{C} P^{\infty} ; \mathbb{Z} / p \mathbb{Z}\right)$, we have $\mathcal{P}(x)=\mathcal{P}(\sigma y)=\sigma \mathcal{P}(y)=\sigma y^{p} \neq 0$. The composite $\Sigma \mathbb{C} P^{2} \hookrightarrow$ $\Sigma \mathbb{C} P^{\infty} \rightarrow S^{3}$ induces a map on cohomology,

$$
\mathbb{Z} / p \mathbb{Z}=H^{3}\left(S^{3} ; \mathbb{Z} / p \mathbb{Z}\right) \xrightarrow{g^{*}} H^{3}\left(\Sigma \mathbb{C} P^{\infty} ; \mathbb{Z} / p \mathbb{Z}\right) \xrightarrow{\sim} H^{3}\left(S^{3} ; \mathbb{Z} / p \mathbb{Z}\right)=\mathbb{Z} / p \mathbb{Z}
$$

which is just given by multiplication by a unit in $\mathbb{Z} / p \mathbb{Z}$, so it is an isomorphism. In particular, if $x \in \operatorname{im} g^{*}$ then the above shows $\mathcal{P}(x) \in \operatorname{im} g^{*} \subseteq H^{2 p+1}\left(\Sigma \mathbb{C} P^{\infty} ; \mathbb{Z} / p \mathbb{Z}\right)$ which is 0 for $p$ large enough, contradicting $\mathcal{P}(x) \neq 0$. Thus $m=0$, meaning $\Sigma \mathbb{C} P^{2} \hookrightarrow \Sigma \mathbb{C} P^{\infty} \xrightarrow{g} S^{3}$ is nullhomotopic for any map $g$.

Altogether, this proves that our constructed maps $g_{n}: \Sigma \mathbb{C} P^{n} \rightarrow S^{3}$ do not extend to all of $\Sigma \mathbb{C} P^{\infty}$, so Theorem 4.1.9 implies that $\lim ^{1}\left[\Sigma \mathbb{C} P^{n}, S^{3}\right]$ is an uncountable (divisible abelian) group. Hence by Corollary 4.2.4, we have shown:

Corollary 4.2.6. There are an uncountable number of phantom maps $\Sigma \mathbb{C} P^{\infty} \rightarrow S^{3}$.

### 4.3 Postnikov Towers

Cellular theory and CW-complexes are constructed from the building blocks $S^{n}, n \geq 0$, using attachments coming from pushout diagrams:


In this setting, $X_{n+1}$ is the homotopy cofibre of $\bigvee S^{n} \rightarrow X_{n}$ and this gives a nice space $X=\underset{\longrightarrow}{\lim } X_{n}$.

There is a dual construction in which each $X_{n}$ is (homotopy equivalent to) an EilenbergMaclane space $K(A, n)$ for some group $A$ and such that $X_{n+1}$ is the homotopy fibre of a map $X_{n} \rightarrow K(A, n+2)$. In fact, every 'nice' space $X$ is of the form $X=\lim _{\leftarrow} X_{n}$ for such a sequence of $X_{n}$. Explicitly:

Theorem 4.3.1. Suppose $X$ is simply connected. Then there exists a sequence of spaces $X_{2} \leftarrow X_{3} \leftarrow X_{4} \leftarrow \cdots$ and maps $f_{i}: X \rightarrow X_{i}$ such that each $X_{n} \rightarrow X_{n-1}$ is a fibration, $X_{2}=K\left(\pi_{2}(X), 2\right)$ and there is a commutative diagram


Moreover, each $f_{n}$ induces an isomorphism $\pi_{k}(X) \rightarrow \pi_{k}\left(X_{n}\right)$ for $k \leq n, \pi_{k}\left(X_{n}\right)=0$ for $k>n$ and each $X_{n+1} \rightarrow X_{n} \rightarrow K\left(\pi_{n+1}(X), n+2\right)$ is a fibration sequence.

Note that each map $k_{n}: X_{n} \rightarrow K\left(\pi_{n+1}(X), n+2\right)$ may be viewed as a class $k_{n} \in$ $H^{n+2}\left(X_{n} ; \pi_{n+1}(X)\right)$.

Proof. Assume inductively that $X_{2}, \ldots, X_{n}$ and the associated maps have been constructed. The idea in constructing the $X_{n+1}$ is to "kill off" the higher homotopy groups of $X$. Let $\mathcal{P}_{n+1}: \mathrm{Top}_{*} \rightarrow \mathrm{Top}_{*}$ be the functor sending a space $X$ to the cofibre of $\wedge f: \bigwedge_{f} S^{n+1} \rightarrow X$, where the wedge product is over all $f \in \operatorname{Map}\left(S^{n+1}, X\right)$. Then for each $X \in \operatorname{Top}_{*}, \mathcal{P}_{n+1}(X)$ is a pushout:


Then the Blakers-Massey theorem (3.2.11) implies $\pi_{n+1}\left(\mathcal{P}_{n+1}(X)\right)=0$ and $\pi_{i}(X) \rightarrow \pi_{i}\left(\mathcal{P}_{n+1}(X)\right)$ is an isomorphism for $i \leq n$. Thus the direct limit

$$
X_{n+1}=\lim _{\longrightarrow}\left(X \rightarrow \mathcal{P}_{n+1}(X) \rightarrow \mathcal{P}_{n+2}\left(\mathcal{P}_{n+1}(X)\right) \rightarrow \cdots\right)
$$

is well-defined. This gives a map $f_{n+1}: X \rightarrow X_{n+1}$. We now want to show that $k_{n+1}$ is defined:

$$
k_{n+1}: X_{n+1} \rightarrow K\left(\pi_{n+2}(X), n+3\right) .
$$

By the comment preceding this proof, such a $k_{n}$ is an element of $H^{n+2}\left(X_{n} ; \pi_{n+1}(X)\right)$. By the long exact sequence in homotopy for the pair ( $X_{n}, X_{n+1}$ ),

$$
\pi_{i}\left(X_{n}, X_{n+1}\right)= \begin{cases}\pi_{n+1}(X), & i=n+2 \\ 0, & i \neq n+2\end{cases}
$$

When $X$ is simply connected, the relative Hurewicz theorem (Corollary 3.3.5) implies

$$
H_{n+2}\left(X_{n}, X_{n+1}\right) \cong \pi_{n+1}(X)
$$

By the universal coefficient theorem, $H^{n+2}\left(X_{n}, X_{n+1} ; \pi_{n+1}(X)\right) \cong \operatorname{Hom}\left(\pi_{n+1}(X), \pi_{n+1}(X)\right)$ so there is an element $u \in H^{n+2}\left(X_{n}, X_{n+1} ; \pi_{n+1}(X)\right)$ corresponding to the identity $1_{\pi_{n+1}(X)} \in$ $\operatorname{Hom}\left(\pi_{n+1}(X), \pi_{n+1}(X)\right)$. Take $k_{n+1}$ to be the image of $u$ under the map

$$
H^{n+2}\left(X_{n}, X_{n+1} ; \pi_{n+1}(X)\right) \longrightarrow H^{n+2}\left(X_{n} ; \pi_{n+1}(X)\right)
$$

in the long exact sequence for $\left(X_{n}, X_{n+1}\right)$. One now checks that the desired properties of $X_{n+1}$ and $k_{n+1}$ are met.

Corollary 4.3.2. If $X_{2} \leftarrow X_{3} \leftarrow \cdots$ is the Postnikov tower of $X$, then $X_{n+1}$ is the pullback along $k_{n}$ of the path space fibration over $K\left(\pi_{n+1}(X), n+2\right)$. In particular, we have a fibration sequence

$$
K\left(\pi_{n+1}(X), n+1\right) \rightarrow X_{n+1} \rightarrow X_{n} \xrightarrow{k_{n}} K\left(\pi_{n+1}(X), n+2\right) .
$$

Definition. For $X$ simply connected, a tower $X_{2} \leftarrow X_{3} \leftarrow \cdots$ as in the theorem is called a Postnikov tower for $X$.

Proposition 4.3.3. For space $X$, let $X_{2} \leftarrow X_{3} \leftarrow \cdots$ be its Postnikov tower and call $X\langle n\rangle$ the fibre of the map $f_{n}: X \rightarrow X_{n}$. Then
(1) The assignment $X \mapsto\left(X_{2} \leftarrow X_{3} \leftarrow \cdots\right)$ is a functor on the homotopy category $h\left(\mathrm{Top}_{*}\right)$.
(2) For each $n \geq 2, X\langle n\rangle$ is an $n$-connected cover of $X$.

Suppose $X$ and $Y$ are spaces, with $X$ simply connected, and $X=\underset{\leftarrow}{\lim } X_{n}$ is a Postnikov tower for $X$. Given a map $g_{n}: Y \rightarrow X_{n}$ for some $n$, a natural question to ask is when $g_{n}$ lifts to some $g_{n+1}$ :


By obstruction theory, there exists such a lift $g_{n+1}$ precisely when $k_{n} g_{n}$ is trivial in $H^{n+2}\left(Y ; \pi_{n+1}(X)\right)$.
Example 4.3.4. If $Y$ is a CW-complex with only even-degree cells and $\pi_{2 n+1}(X)=0$ for all $n$, then $k_{n} g_{n}=0$ will always hold in homology, so such a map $g_{n}: Y \rightarrow X_{n}$ will in fact lift to $g: Y \rightarrow X$.

Proposition 4.3.5. Suppose $Y$ is a $C W$-complex with only even degree cells and $\pi_{2 n+1}(X)=$ 0 for all $n$. Then for any $g_{2} \in H^{2}\left(Y ; \pi_{2}(X)\right)$, there exists a map $g: Y \rightarrow X$ inducing $g_{2}$ on degree 2 cohomology.

Example 4.3.6. This holds when $Y=\mathbb{C} P^{\infty}, \Omega S^{3}$ or $G / T$ for $G$ a compact Lie group with maximal torus $T$, for a few examples.

Example 4.3.7. Let $X=B U$ be the universal classifying space for complex vector bundles. Then by Bott periodicity, $\pi_{n}(B U)=\mathbb{Z}$ when $n$ is even and $\pi_{n}(B U)$ is torsion when $n$ is odd, so Proposition 4.3 .5 applies. In particular, any $g_{2} \in H^{2}\left(Y ; \pi_{n}(B U)\right)$ is induced by a map $g: Y \rightarrow B U$.

### 4.4 Goodwillie Towers

Recall that the infinite symmetric product functor $S P^{\infty}: \mathrm{Top}_{*} \rightarrow$ Top $_{*}$ takes homotopy pushout squares to homotopy pullback squares (this is Lemma 3.6.5). Also, the Dold-Thom theorem (3.6.6) shows that the collection of functors $\pi_{n}\left(S P^{\infty}(-)\right)$ satisfies the axioms of a homology theory.

Definition. A homotopy functor $F: \mathrm{Top}_{*} \rightarrow \mathrm{Top}_{*}$ is linear (or polynomial of degree 1) if F takes pushouts to pullbacks.

Example 4.4.1. Note that, contrary to what the terminology might suggest, the identity functor is not a linear functor.

Theorem 4.4.2. For every functor $F: \mathrm{Top}_{*} \rightarrow \mathrm{Top}_{*}$, there is a natural transformation $F \rightarrow P_{1} F$ where $P_{1} F$ is a linear functor.

Goodwillie used this theorem as a jumping off point to define "higher degree polynomial functors"

$$
P_{1} F \leftarrow P_{2} F \leftarrow P_{3} F \leftarrow \cdots
$$

that are compatible with the natural transformations $F \rightarrow P_{n}$. Moreover, he showed that for each $X$, the homotopy cofibres $Q_{n}(X)$,

are infinite loop spaces.

### 4.5 Localization of a Topological Space

Let $A$ be a finitely generated abelian group. Then $A$ can be written

$$
A=A_{p_{1}} \oplus A_{p_{2}} \oplus \cdots \oplus A_{p_{k}} \oplus \mathbb{Z}^{r}
$$

where $r \in \mathbb{N}, p_{1}, \ldots, p_{k}$ are prime integers and $A_{p_{i}}$ is a Sylow $p_{i}$-subgroup of $A$. For each prime $p$ dividing the order of $A_{\text {tors }}, A_{p}$ may be viewed as the localization of $A$ at the prime $p: A_{p}=A \otimes_{\mathbb{Z}} \mathbb{Z}_{(p)}$, where $\mathbb{Z}_{(p)}=\left\{\frac{a}{b}: p \nmid b\right\} \subseteq \mathbb{Q}$. The goal of topological localization is to find a space $X_{(p)}$ for each prime $p$ satisfying

$$
\pi_{n}\left(X_{(p)}\right)=\pi_{n}(X) \oplus_{\mathbb{Z}} \mathbb{Z}_{(p)}
$$

for each $n \geq 2$. It will even follow that

$$
H_{\bullet}\left(X_{(p)}\right)=H_{\bullet}(X) \oplus \mathbb{Z}_{(p)} .
$$

Let $T$ be a set of prime numbers in $\mathbb{Z}$ and define the localization at $T$ :

$$
\mathbb{Z}_{T}:=\left\{\frac{m}{n} \in \mathbb{Q}:(p, n)=1 \text { for all } p \in T\right\} .
$$

Example 4.5.1. Some important examples of localizations at sets of primes are:

$$
\mathbb{Z}_{\varnothing}=\mathbb{Q}, \quad \mathbb{Z}_{\text {Spec } \mathbb{Z}}=\mathbb{Z}, \quad \mathbb{Z}_{\{p\}}=\mathbb{Z}_{(p)}
$$

(Here, Spec $\mathbb{Z}$ denotes the set of all prime integers.)
Fix a set of primes $T$.
Definition. An abelian group $A$ is said to be $T$-local if $A$ is a $\mathbb{Z}_{T}$-module, i.e. if for all $p \notin T$, multiplication by $p$ gives an isomorphism $A \rightarrow A$.

Example 4.5.2. When $T=\varnothing$, so $\mathbb{Z}_{T}=\mathbb{Q}$, we call a $T$-local abelian group a rational abelian group. When $T=\{p\}$ consists of a single prime, $T$-local groups are called $p$-local for short.

Definition. For any abelian group $A$, the localization of $A$ at $T$ is the $\mathbb{Z}_{T}$-module $A_{T}=$ $A \otimes_{\mathbb{Z}} \mathbb{Z}_{T}$.

Lemma 4.5.3. For all sets of primes $T$ and abelian groups $A$,
(a) $A_{T}$ is $T$-local and the induced map $A \rightarrow A_{T}$ is universal with respect to $T$-local abelian groups.
(b) The map $A \rightarrow A_{T}$ is an isomorphism if and only if $A$ is $T$-local.
(c) The functor $(\cdot)^{T}$ : AbGps $\rightarrow$ AbGps which sends $A \mapsto A_{T}$ is exact. (Equivalently, $\mathbb{Z}_{T}$ is flat.)
(d) If $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is a short exact sequence of abelian groups then $B$ is $T$-local if and only if $A$ and $C$ are both $T$-local.

This has the following topological consequences.
Lemma 4.5.4. For any space $X$, the homology ring $\widetilde{H}_{\bullet}(X)$ is $T$-local if and only if for all $p \notin T, \widetilde{H} \cdot(X ; \mathbb{Z} / p \mathbb{Z})=0$.

Proof. By the homology axioms, the short exact sequence $0 \rightarrow \mathbb{Z} \xrightarrow{p} \mathbb{Z} \rightarrow \mathbb{Z} / p \mathbb{Z} \rightarrow 0$ induces a long exact sequence

$$
\cdots \rightarrow \widetilde{H}_{n}(X ; \mathbb{Z}) \xrightarrow{p} \widetilde{H}_{n}(X ; \mathbb{Z}) \rightarrow \widetilde{H}_{n}(X ; \mathbb{Z} / p \mathbb{Z}) \rightarrow \widetilde{H}_{n-1}(X ; \mathbb{Z}) \rightarrow \cdots
$$

which implies the result.
Proposition 4.5.5. Assume $F \rightarrow E \xrightarrow{q} B$ is a fibration such that $\pi_{1}(F), \pi_{1}(E)$ and $\pi_{1}(B)$ are all abelian. For any $X$, let $\pi_{\bullet}(X)=\bigoplus_{n \geq 1} \pi_{n}(X)$. Then
(1) If two of $\pi_{\bullet}(F), \pi_{\bullet}(E), \pi_{\bullet}(B)$ are T-local, then so is the third.
(2) Suppose $\pi_{1}(B)$ acts trivially on $H_{\bullet}(F)$. If two of $\widetilde{H}_{\bullet}(F), \widetilde{H}_{\bullet}(E), \widetilde{H}_{\bullet}(B)$ are $T$-local, then so is the third.

Proof. (1) Apply the long exact sequence in homotopy (Corollary 1.4.6) and induct, using the Five Lemma.
(2) Consider the morphism of fibrations


The Serre spectral sequence implies that $q_{*}: \widetilde{H}_{\bullet}(E ; \mathbb{Z} / p \mathbb{Z}) \rightarrow \widetilde{H}_{\bullet}(B ; \mathbb{Z} / p \mathbb{Z})$ is an isomorphism if and only if $\widetilde{H}_{\bullet}(F ; \mathbb{Z} / p \mathbb{Z})=0$. Thus for any prime $p \notin T$, if two of the following hold:

- $\widetilde{H}_{\bullet}(F ; \mathbb{Z} / p \mathbb{Z})=0$
- $\widetilde{H}_{\bullet}(E ; \mathbb{Z} / p \mathbb{Z})=0$
- $\widetilde{H}_{\bullet}(B ; \mathbb{Z} / p \mathbb{Z})=0$
then the third holds as well. Thus Lemma 4.5.4 implies statement (2).
We call a space simple if $\pi_{1}(X)$ is abelian and acts trivially on $\pi_{\bullet}(X)$.
Theorem 4.5.6. Let $X$ be a simple space. Then the following are equivalent for every set of primes $T$ :
(a) $\pi_{\bullet}(X)$ is $T$-local.
(b) $\widetilde{H}_{\bullet}(X)$ is $T$-local.

Proof. (Sketch) First consider $X=K(A, 1)$ for an abelian group $A$. Then $\pi_{1}(X)=A=$ $H_{1}(X)$ and $\pi_{k}(X)=0$ for $k \neq 1$, so $(\mathrm{b}) \Longrightarrow(\mathrm{a})$. Conversely, if $\pi_{\bullet}(X)=\pi_{1}(X)=A$ is $T$-local, we may assume $A$ is the $T$-localization of a finitely generated abelian group. Using the Künneth formula, we may individually consider the cases $A=\mathbb{Z}_{T}$ and $A=\left(\mathbb{Z} / q^{k} \mathbb{Z}\right)_{T}$ for $q$ prime. In the latter case, if $q \notin T$ then $A=0$ so (a) $\Longrightarrow$ (b) is trivial. If $q \in T$, $A=\mathbb{Z} / q^{k} \mathbb{Z}$ and we have

$$
\widetilde{H}_{n}\left(K\left(\mathbb{Z} / q^{k} \mathbb{Z}, 1\right) ; \mathbb{Z}\right)= \begin{cases}\mathbb{Z} / q^{k} \mathbb{Z}, & \text { if } n \text { is odd } \\ 0, & \text { if } n \text { is even }\end{cases}
$$

Therefore $\widetilde{H}_{\bullet}(X)$ is $T$-local in all cases. If $A=\mathbb{Z}_{T}$, we have

$$
K\left(\mathbb{Z}_{T}, 1\right)=\operatorname{Tel}\left(S^{1} \xrightarrow{p_{1}} S^{1} \xrightarrow{p_{2}} S^{1} \xrightarrow{p_{3}} \cdots\right),
$$

the mapping telescope (see Section 4.2) of the sequence $S^{1} \xrightarrow{p_{1}} S^{1} \xrightarrow{p_{2}} S^{1} \xrightarrow{p_{3}} \cdots$ where $p_{1}, p_{2}, p_{3}, \ldots$ are the primes outside $T$, repeated infinitely often. In particular,

$$
H_{k}\left(K\left(\mathbb{Z}_{T}, 1\right) ; \mathbb{Z}\right)= \begin{cases}\mathbb{Z}_{T}, & k=1 \\ 0, & k \geq 2\end{cases}
$$

Hence $(\mathrm{a}) \Longrightarrow(\mathrm{b})$ for all $X=K(A, 1)$.
Next, suppose $X=K(A, n)$ for $n \geq 2$. Then we have a fibration sequence

$$
K(A, n-1) \rightarrow K(A, n)
$$

(since $\Omega K(A, n)=K(A, n-1)$ and $P K(A, n)=*$ ), so the equivalence of (a) and (b) follows from Proposition 4.5.5 and induction. Finally, suppose $X$ is an arbitrary simple space. Then by Theorem 4.3.1, there is a Postnikov tower


Assuming (a) holds for $X$, Proposition 4.5.5 implies (a) also holds for each $K\left(\pi_{n}(X), n+1\right)$. Thus by the special case above, (b) also holds for each $K\left(\pi_{n}(X), n+1\right)$. By induction and Proposition 4.5.5, (b) also holds for each $X_{n}$. Now by the property of Postnikov towers (Theorem 4.3.1), $\pi_{k}(X) \rightarrow \pi_{k}\left(X_{n}\right)$ is an isomorphism for $k \leq n$ and hence $H_{k}(X) \rightarrow H_{k}\left(X_{n}\right)$ is an isomorphism for $k \leq n$. This shows that (b) holds for $X$.

Conversely, suppose (b) holds for $X$. There exists a simply connected cover $\widetilde{X} \rightarrow X \rightarrow$ $K\left(\pi_{1}(X), 1\right)$ - e.g. take $\widetilde{X}$ to be the homotopy fibre of $X \rightarrow K\left(\pi_{1}(X), X\right)$, which is simply
connected by Lemma 3.1.2. Then by assumption, $H_{1}(X)$ is $T$-local, so $\pi_{1}(X)$ is also $T$-local. By the special case above, $H_{\bullet}\left(K\left(\pi_{1}(X), 1\right)\right)$ is $T$-local, which implies by Proposition 4.5.5 that (b) holds for $\widetilde{X}$. Thus by the Hurewicz theorem (3.3.4), $\pi_{2}(\widetilde{X}) \cong H_{2}(\widetilde{X})$ is $T$-local. Now induct, using an $(n+1)$-connected cover $\widetilde{X}^{n} \rightarrow X \rightarrow X_{n-1}$ and the same argument. This proves $(\mathrm{b}) \Longrightarrow(\mathrm{a})$ holds for all $X$.
Definition. A space $X$ is $T$-local if $\pi_{\bullet}(X)$ is T-local, or equivalently, if $\widetilde{H}_{\bullet}(X)$ is $T$-local.
Theorem 4.5.7. Suppose $\ell: X \rightarrow X^{\prime}$ is a map between simple spaces. Then the following are equivalent:
(a) $\ell_{*}: \pi_{\bullet}(X) \rightarrow \pi_{\bullet}\left(X^{\prime}\right)$ agrees with $T$-localization.
(b) $\ell_{*}: H_{\bullet}(X) \rightarrow H_{\bullet}\left(X^{\prime}\right)$ agrees with $T$-localization.

Further, if these conditions hold then $\ell$ is the universal map from $X$ to a T-local space. Explicitly, if $f: X \rightarrow Y$ is any map to a T-local space $Y$, then there exists a map $h: X^{\prime} \rightarrow Y$ which is unique up to homotopy and makes the following diagram commute:


Definition. Such a map $\ell: X \rightarrow X^{\prime}$ is called a T-localization of $X$.
Theorem 4.5.8. $T$-localizations exist for every simple space $X$.
Proof. (Sketch) One starts by verifying that $K\left(\pi_{n}(X), n+1\right) \rightarrow K\left(\pi_{n}(X)_{T}, n+1\right)$ is a $T$-localization. Then induct using the Postnikov tower for $X$.

Corollary 4.5.9 (T-Hurewicz Theorem). Suppose $X$ is a simply connected space and $T$ is a set of primes. Then the conditions
(1) $\pi_{k}(X) \otimes \mathbb{Z}_{T}=0$ for all $k<n$
(2) $H_{k}\left(X ; \mathbb{Z}_{T}\right)=0$ for all $k<n$
are equivalent, and when either holds, $\pi_{n}(X) \otimes \mathbb{Z}_{T} \cong H_{n}\left(X ; \mathbb{Z}_{T}\right)$.
Proof. By Theorem 4.5.8, there exists a space $X_{T}$ with $\pi_{n}\left(X_{T}\right)=\pi_{n}(X) \otimes \mathbb{Z}_{T}$. Then the result follows from the ordinary Hurewicz theorem (3.3.4).

Definition. A map $f: X \rightarrow Y$ is called a $T$-equivalence if the induced map $f_{*}: H_{\bullet}\left(X ; \mathbb{Z}_{T}\right) \rightarrow$ $H_{\bullet}\left(Y ; \mathbb{Z}_{T}\right)$ is an isomorphism.

Let $W_{T}$ be the collection of all $T$-equivalences in the category Top. In the same way that we construct the homotopy category $h(\mathrm{Top})$ by inverting all homotopy equivalences in Top, we can form the category $\mathrm{Top}_{T}=\operatorname{Top}\left[W_{T}^{-1}\right]$ by formally inverting all $T$-equivalences in Top. We will denote the Hom sets in this category by $\operatorname{Hom}_{T}(X, Y)$.

Proposition 4.5.10. For all spaces $X$ and $Y$ with $T$-localizations $X_{T}$ and $Y_{T}$, respectively, there is a bijection $\operatorname{Hom}_{T}(X, Y) \cong\left[X_{T}, Y_{T}\right]$ which is natural in each variable.

This says that the $T$-localization functor $X \mapsto X_{T}$ factors through the " $T$-local category" $\mathrm{Top}_{T}$. This generalizes in the following way. Given a generalized homology theory $E_{\bullet}$, call $f: X \rightarrow Y$ an $E$-equivalence if $f_{*}: E_{\bullet}(X) \rightarrow E_{\bullet}(Y)$ is an isomorphism.

Theorem 4.5.11 (Bousfield Localization). For every generalized homology theory E., there exists a functor $L_{E}:$ Top $\rightarrow$ Top and morphisms $\eta_{X}: X \rightarrow L_{E} X$ for each $X \in$ Top such that
(1) $L_{E}(X)$ is an E-local space.
(2) There is a natural bijection $\operatorname{Hom}_{E}(X, Y) \cong\left[L_{E} X, L_{E} Y\right]$.

Example 4.5.12. If $E_{\bullet}(-)=H_{\bullet}(-; \mathbb{Z} / p \mathbb{Z})$, then $L_{E}$ is called the $p$-completion functor.
Example 4.5.13. If $E_{\bullet}(X)=K_{\bullet}(X)$ is the complex $K$-theory for all $X$, then $L_{K}$ is more exotic. For instance, since $\widetilde{K}_{\bullet}(K(\mathbb{Z} / 2 \mathbb{Z}, 2))=0$, it follows that $L_{K}(K(\mathbb{Z} / 2 \mathbb{Z}, 2))=*$.

### 4.6 Rational Localization

In this section, we study the localization of spaces at the set $T=\varnothing$. In this case, $\mathbb{Z}_{T}=\mathbb{Q}$ and we call $T$-localization rational localization. Analogously, $T$-local abelian groups are rational abelian groups, $T$-local spaces are rational spaces and the canonical map $\ell: X \rightarrow X_{0}:=X_{T}$ is called the rationalization of $X$. A $T$-equivalence $f: X \rightarrow Y$ will be called a rational equivalence. By Theorem 4.5.8, if $\ell: X \rightarrow X_{0}$ is the rationalization of $X$, we have

$$
\pi_{n}\left(X_{0}\right) \cong \pi_{n}(X) \otimes \mathbb{Q} \quad \text { and } \quad H_{n}\left(X_{0} ; \mathbb{Z}\right) \cong H_{n}(X ; \mathbb{Q})
$$

for all $n$. Thus rationalization can be understood as the removal of torsion in homotopy and homology groups. The remaining features of homotopy theory are still of immense interest. For example, let $S_{\mathbb{Q}}^{n}:=\left(S^{n}\right)_{0}$ be the rationalization of the $n$-sphere, called the $n$th rational homotopy sphere.

Proposition 4.6.1. For each $n \geq 0$,

$$
\widetilde{H}_{k}\left(S^{n} ; \mathbb{Q}\right)= \begin{cases}\mathbb{Q}, & \text { if } k=n \\ 0, & \text { if } k \neq n\end{cases}
$$

Proof. Immediate from the universal coefficient theorem.
Proposition 4.6.2. For every $n$, $H^{n}(K(\mathbb{Z}, n) ; \mathbb{Q}) \cong \mathbb{Q}$. Moreover, if $x \in H^{n}(K(\mathbb{Z}, n) ; \mathbb{Q})$ is a generator, then
(1) If $n$ is odd, then $H^{\bullet}(K(\mathbb{Z}, n) ; \mathbb{Q})$ is an exterior algebra $\bigwedge[x]$.
(2) If $n$ is even, then $H^{\bullet}(K(\mathbb{Z}, n) ; \mathbb{Q})$ is a polynomial algebra $\mathbb{Q}[x]$.

Proof. (Sketch) By Proposition 3.5.1, we have isomorphisms

$$
\pi_{n}(K(\mathbb{Z}, n)) \cong\left[S^{n}, K(\mathbb{Z}, n)\right] \cong \widetilde{H}^{n}\left(S^{n}\right) \cong \mathbb{Z}
$$

so take a map $f: S^{n} \rightarrow K(\mathbb{Z}, n)$ which generates $\pi_{n}(K(\mathbb{Z}, n))$. By Corollary 4.5.9, the induced map

$$
f^{*}: H^{n}(K(\mathbb{Z}, n) ; \mathbb{Q}) \longrightarrow H^{n}\left(S^{n} ; \mathbb{Q}\right)
$$

is an isomorphism, and by Proposition 4.6.1, $H^{n}\left(S^{n} ; \mathbb{Z}\right) \cong \mathbb{Q}$.
We now prove (1) and (2) by induction. For $n=1, K(\mathbb{Z}, 1)=S^{1}$ by Example 3.5.5 and $H^{\bullet}\left(S^{1} ; \mathbb{Q}\right)$ is an exterior algebra on $x \in H^{1}\left(S^{1} ; \mathbb{Q}\right)$ by Proposition 4.6.1. For $n=2$, we have $K(\mathbb{Z}, 2)=\mathbb{C} P^{\infty}$ by Example 3.5.5 and it is known that $H^{\bullet}\left(\mathbb{C} P^{\infty} ; \mathbb{Q}\right) \cong \mathbb{Q}[x]$. One then inducts using the Serre spectral sequence.

Theorem 4.6.3. Let $S^{n}$ be the $n$-sphere. Then
(1) If $n$ is odd, then $\pi_{k}\left(S^{n}\right)$ is finite for all $k \neq n$.
(2) If $n$ is even, then $\pi_{k}\left(S^{n}\right)$ is finite for all $k \neq n, 2 n-1$ and $\pi_{2 n-1}\left(S^{n}\right) \cong \mathbb{Z} \oplus T$ for $T$ a finite abelian group.

Proof. (1) By (1) of Proposition 4.6.2, $H^{\bullet}(K(\mathbb{Z}, n) ; \mathbb{Q})$ is an exterior algebra on $x \in H^{n}(K(\mathbb{Z}, n) ; \mathbb{Q})$, but so is $H^{n}\left(S^{n} ; \mathbb{Q}\right)$ by Proposition 4.6.1. Moreover, as in the proof of Proposition 4.6.2, a $\operatorname{map} f: S^{n} \rightarrow K(\mathbb{Z}, n)$ generating $\pi_{n}(K(\mathbb{Z}, n))$ induces an isomorphism $f^{*}: H^{n}(K(\mathbb{Z}, n) ; \mathbb{Q}) \rightarrow$ $H^{n}\left(S^{n} ; \mathbb{Q}\right)$, so it follows that $f^{*}: H^{\bullet}(K(\mathbb{Z}, n) ; \mathbb{Q}) \rightarrow H^{\bullet}\left(S^{n} ; \mathbb{Q}\right)$ is an isomorphism of graded algebras. In particular, $f$ is a rational homotopy equivalence in the sense of the previous section, so combining Whitehead's second theorem (Corollary 3.3.6) with the base change functor $-\otimes \mathbb{Q}$ (which is exact since $\mathbb{Q}$ is flat), we get that

$$
f_{*}: \pi_{\bullet}\left(S^{n}\right) \otimes \mathbb{Q} \longrightarrow \pi_{\bullet}(K(\mathbb{Z}, n)) \otimes \mathbb{Q}
$$

is an isomorphism. Consequently, $\pi_{n}\left(S^{n}\right) \otimes \mathbb{Q} \cong \mathbb{Q}$ and $\pi_{k}\left(S^{n}\right) \otimes \mathbb{Q}=0$ for all $k \neq n$. Since each $\pi_{k}\left(S^{n}\right)$ is finitely generated, this shows $\pi_{k}\left(S^{n}\right)$ is finite for all $k \neq n$.
(2) Again let $x \in H^{n}(K(\mathbb{Z}, n) ; Q)$ be a generator so that by (2) of Proposition 4.6.2, $H^{\bullet}(K(\mathbb{Z}, n) ; \mathbb{Q}) \cong \mathbb{Q}[x]$. Consider $x^{2} \in H^{2 n}(K(\mathbb{Z}, n))=[K(\mathbb{Z}, n), K(\mathbb{Z}, 2 n)]$. Then $x^{2}$ determines a map $K(\mathbb{Z}, n) \rightarrow K(\mathbb{Z}, 2 n)$ with homotopy fibre $F$. Let $f: S^{n} \rightarrow K(\mathbb{Z}, n)$ generate $\pi_{n}(K(\mathbb{Z}, n))$ as above. By Proposition 3.5.1, $\pi_{n}(K(\mathbb{Z}, 2 n))=0$ so $f$ factors through a map $S^{n} \rightarrow F$ :


Applying the long exact sequence in homotopy (Corollary 1.4.6) to the fibration sequence $F \rightarrow K(\mathbb{Z}, n) \rightarrow K(\mathbb{Z}, 2 n)$, we get $\pi_{k}(F)=0$ for $k \neq n, 2 n-1$ and $\pi_{n}(F) \cong \pi_{2 n-1}(F) \cong \mathbb{Z}$.

Thus $g_{*}: \pi_{n}\left(S^{n}\right) \rightarrow \pi_{n}(F)$ is an isomorphism so by the local Hurewicz theorem (Corollary 4.5.9), $g^{*}: H^{n}(F ; \mathbb{Q}) \rightarrow H^{n}\left(S^{n} ; \mathbb{Q}\right)$ is also an isomorphism. But $H^{\bullet}(K(\mathbb{Z}, n) ; \mathbb{Q}) \cong \mathbb{Q}[x]$ and $H^{\bullet}(K(\mathbb{Z}, 2 n) ; \mathbb{Q}) \cong \mathbb{Q}\left[x^{2}\right]$, so it follows that $H^{\bullet}(F ; \mathbb{Q}) \cong \mathbb{Q}[x] /\left(x^{2}\right)$, i.e. exactly the same as $H^{\bullet}\left(S^{n} ; \mathbb{Q}\right)$. Thus $g$ is a rational homotopy equivalence and the proof finishes as before.

Corollary 4.6.4. The natural map $S_{\mathbb{Q}}^{n} \rightarrow K(\mathbb{Q}, n)$ is a rational homotopy equivalence if $n$ is odd and has homotopy fibre $K(\mathbb{Q}, 2 n-1)$ if $n$ is even.

A rational space $X$ is of finite type if $H_{\bullet}(X ; \mathbb{Q})$ is a finite dimensional $\mathbb{Q}$-vector space. We have the following general structure theorem for rational $H$-spaces.

Theorem 4.6.5. Every rational $H$-space $X$ of finite type is a product of rational EilenbergMaclane spaces $\prod_{n \geq 1} K\left(\pi_{n}(X), n\right)$.

## 5 Stable Homotopy Theory

Recall that Freudenthal's suspension theorem (Corollary 3.2.5) says that if $X$ is a $d$-dimensional CW-complex and $Y$ is $(n-1)$-connected, then the suspension map

$$
\Sigma:[X, Y] \longrightarrow[\Sigma X, \Sigma Y]
$$

is a bijection for $d<2 n-1$ and a surjection for $d=2 n-1$. This implies that the sequence $[X, Y],[\Sigma X, \Sigma Y],\left[\Sigma^{2} X, \Sigma^{2} Y\right], \ldots$ eventually stabilizes. This is the jumping off point for a theory of "stable" homotopy theory, in which topological spaces are replaced with more general objects called spectra and the homotopy category $h(\mathrm{Top})$ is upgraded to a stable homotopy category. There are various approaches throughout the history of homotopy theory to the problem of building a useful stable category. We describe one of the first approaches in Section 5.1 before introducing the modern version in Section 5.2.

### 5.1 The Spanier-Whitehead Category

In this section we describe the Spanier-Whitehead category SW. The objects of SW are all finite CW-complexes $X$ and we define the morphisms by

$$
\operatorname{Hom}_{\mathrm{SW}}(X, Y)=\underset{\longrightarrow}{\lim }\left[\Sigma^{n} X, \Sigma^{n} Y\right] .
$$

Freudenthal's suspension theorem implies - as in the introduction - that the sequence $\left[\Sigma^{n} X, \Sigma^{n} Y\right.$ ] stabilizes, so it's equivalent to write $\operatorname{Hom}_{\mathrm{SW}}(X, Y)=\left[\Sigma^{N} X, \Sigma^{N} Y\right]$ for some large enough $N \in \mathbb{N}$.

Lemma 5.1.1. Let $X$ and $Y$ be finite $C W$-complexes. Then
(a) The suspension functor induces a bijection $\operatorname{Hom}_{\mathrm{SW}}(X, Y) \xrightarrow{\sim} \operatorname{Hom}_{\mathrm{SW}}(\Sigma X, \Sigma Y)$.
(b) $\operatorname{Hom}_{\mathrm{SW}}(X, Y)$ is an abelian group.
(c) For any morphisms $f, g, h$ in SW ,

$$
(f+g) \circ h=f \circ h+g \circ h \quad \text { and } \quad h \circ(f+g)=h \circ f+h \circ g .
$$

In particular, SW is an additive category.
Proof. (a) and (c) are obvious. For (b), we may take $N \geq 2$ in the alternate description $\operatorname{Hom}_{\mathrm{sw}}(X, Y)=\left[\Sigma^{N} X, \Sigma^{N} Y\right]$, so that $\left[\Sigma^{N} X, \Sigma^{N} Y\right]=\left[\Sigma^{N-1} X, \Omega \Sigma^{N} Y\right], \Sigma^{N-1} X$ is a co- $H-$ space, $\Omega \Sigma^{N} Y$ is an $H$-space and the result is implied by Theorem 0.3.7.

Next, we introduce some new objects to our stable category. For each finite CW-complex $X$ and each $n \geq 1$, we let $\Sigma^{-n} X$ denote the $n$th formal 'desuspension' of $X$, with

$$
\operatorname{Hom}_{\mathrm{SW}}\left(\Sigma^{-n} X, \Sigma^{-m} Y\right)=\left[\Sigma^{N-n} X, \Sigma^{N-m} Y\right]
$$

for large enough $N \in \mathbb{N}$. Now for every finite CW-complex $X$ we have suspensions $\Sigma^{n} X$ for every integer $n \in \mathbb{Z}$. This defines a desuspension functor $\Sigma^{-1}: \mathrm{SW} \rightarrow \mathrm{SW}, X \mapsto \Sigma^{-1} X$.

Example 5.1.2. In SW, there are now spheres in 'negative dimensions': $S^{-n}=\Sigma^{-n} S^{0}$.
Proposition 5.1.3. $\Sigma: \mathrm{SW} \rightarrow \mathrm{SW}, X \mapsto \Sigma X$ is an equivalence of categories with inverse $\Sigma^{-1}$.
Take a map $f: X \rightarrow Y$ and form the cofibration sequence

$$
X \xrightarrow{f} Y \xrightarrow{g} C(f) \xrightarrow{h} \Sigma X \rightarrow \cdots
$$

Then by Theorem 1.2.5, for each $W$ there is a long exact sequence

$$
[X, W] \stackrel{f^{*}}{\leftarrow}[Y, W] \stackrel{g^{g^{*}}}{\leftarrow}[C(f), W] \stackrel{h^{*}}{\leftarrow}[\Sigma X, W] \leftarrow \cdots
$$

In the Spanier-Whitehead category, this becomes a long exact sequence of abelian groups:

$$
\operatorname{Hom}_{\mathrm{SW}}(X, W) \leftarrow \operatorname{Hom}_{\mathrm{SW}}(Y, W) \leftarrow \operatorname{Hom}_{\mathrm{SW}}(C(f), W) \leftarrow \operatorname{Hom}_{\mathrm{SW}}(\Sigma X, W) \leftarrow \cdots
$$

What's amazing is that cofibration sequences also induce covariant exact sequences in SW.
Lemma 5.1.4. For a map $f: X \rightarrow Y$ of finite $C W$-complexes and any finite $C W$-complex $W$,

$$
\operatorname{Hom}_{\mathrm{SW}}(W, X) \xrightarrow{f_{*}} \operatorname{Hom}_{\mathrm{SW}}(W, Y) \xrightarrow{g_{*}} \operatorname{Hom}_{\mathrm{SW}}(W, C(f))
$$

is an exact sequence.
Proof. It's clear that $g_{*} \circ f_{*}=0$. Suppose $g_{*}(\alpha)=0$ for $\alpha \in \operatorname{Hom}_{\mathrm{SW}}(W, Y)$. Viewing this as the following diagram, we want to find some $\beta: W \rightarrow X$ such that $f_{*}(\beta)=\alpha$ :


By Proposition 1.2.7, there exists a map $\beta^{\prime}: \Sigma W \rightarrow \Sigma X$ making the two right squares in the diagram commute, but by Freudenthal's suspension theorem, $[W, X] \rightarrow[\Sigma W, \Sigma X]$ is a bijection so $\beta^{\prime}=\Sigma \beta$ for some $\beta: W \rightarrow X$. By commutativity, $f_{*}(\beta)=\alpha$ so we are done.

As a result, homotopy cofibre sequences in SW are the same as homotopy fibre sequences. In technical language, this says that SW is a triangulated category, i.e. an additive category $\mathcal{C}$ with an isomorphism $\Sigma: \mathcal{C} \rightarrow \mathcal{C}$ and distinguished triangles

inducing long exact sequences in $\operatorname{Hom}_{\mathcal{C}}(W,-)$ and $\operatorname{Hom}_{\mathcal{C}}(-, W)$ for any $W \in \mathcal{C}$ (plus a few other other axioms).

Fix $X \in \mathrm{SW}$ and for each $Z \in \mathrm{SW}$ and $n \in \mathbb{Z}$, write $X_{n}(Z)=\operatorname{Hom}_{\mathrm{SW}}\left(\Sigma^{n}, Z\right)$. This defines a collection of covariant functors $X_{n}(-): \mathrm{SW} \rightarrow$ AbGps. Similarly, fixing $Y \in \mathrm{SW}$ and defining $Y^{n}(Z)=\operatorname{Hom}_{\mathrm{SW}}\left(Z, \Sigma^{n} Y\right)$ gives a collection of contravariant functors $Y^{n}(-): \mathrm{SW} \rightarrow \mathrm{AbGps}$.

Proposition 5.1.5. For each $X, Y \in \mathrm{SW}, X_{\bullet}(-)$ is a homology theory and $Y^{\bullet}(-)$ is a generalized cohomology theory.

It turns out that SW may be embedded as a full subcategory of a category $\mathcal{S}$ in which these functors $X_{\bullet}(-)$ and $Y^{\bullet}(-)$ are representable. We will describe this category in Section 5.2.

Let $X, Y \in \mathrm{SW}, n, m \in \mathbb{Z}$ and define a smash product in SW by

$$
\Sigma^{m} X \wedge \Sigma^{n} Y:=\Sigma^{m+n}(X \wedge Y)
$$

We let $\mathbf{S}$ denote the 0 -sphere $S^{0}$ as an object of $\operatorname{SW}$. An additive category $\mathcal{C}$ with a product $\wedge$ is symmetric monoidal (or a tensor category) if $\wedge$ is associative, commutative and unital.

Proposition 5.1.6. The Spanier-Whitehead category SW is a symmetric monoidal category with respect to the smash product $\wedge$ and the unit $\mathbf{S}$.

Proposition 5.1.7. Given $Y, Z \in \mathrm{SW}$, there is a unique element $F(Y, Z) \in \mathrm{SW}$ satisfying the following properties:
(a) There is an evaluation map $\mu_{Y, Z}: F(Y, Z) \wedge Y \rightarrow Z$.
(b) $F(Y,-)$ and $-\wedge Y$ are adjoint in the sense that for all $X \in \mathrm{SW}$,

$$
\operatorname{Hom}_{\mathrm{SW}}(X, F(Y, Z)) \xrightarrow{-\wedge Y} \operatorname{Hom}_{\mathrm{SW}}(X \wedge Y, F(Y, Z) \wedge Y) \xrightarrow{\mu_{Y, Z}} \operatorname{Hom}_{\mathrm{SW}}(X \wedge Y, Z)
$$

is an isomorphism.
Definition. The Spanier-Whitehead dual of an object $X \in \operatorname{SW}$ is $D(X):=F(X, \mathbf{S})$. This comes equipped with an evaluation map $\mu_{X}: D(X) \wedge X \rightarrow \mathbf{S}$.

Suppose we are given $D(X) \in \mathrm{SW}$ for each $X \in \mathrm{SW}$ and natural morphisms $\mu_{X}: D(X) \wedge$ $X \rightarrow \mathbf{S}$. Then for any $Y, Z \in \mathrm{SW}$, the isomorphism

$$
Z \wedge D(Y) \wedge Y \xrightarrow{1_{Z} \wedge \mu_{Y}} Z \wedge \mathbf{S}
$$

is adjoint to

$$
Z \wedge D(Y) \longrightarrow F(Y, Z)
$$

Hence we can take $F(Y, Z):=Z \wedge D(Y)$ as the definition of $F$.
Example 5.1.8. For any $n \in \mathbb{N}, S^{n} \wedge S^{-n} \rightarrow S^{0}$ is an isomorphism, showing that $D\left(S^{n}\right)=$ $S^{-n}$.

Lemma 5.1.9. For all $X \in \mathrm{SW}$, the natural map $X \rightarrow D(D(X))$ is a homotopy equivalence.

Theorem 5.1.10 (Atiyah). Let $M$ be a smooth, compact n-manifold with no boundary and suppose $M \subseteq \mathbb{R}^{N}$. Let $\nu(M) \subseteq \mathbb{R}^{N}$ be its normal bundle and let $t(M)$ be the one-point compactification of $\nu(M)$, called the Thom space. Then

$$
t(M) \cong \Sigma^{N} D\left(M \wedge S^{0}\right) \cong D(M) \wedge S^{N}
$$

in the Spanier-Whitehead category.
Remark. When $\nu(M)=0$, we say $M$ is a framed manifold (this happens e.g. if $M$ is parallelizable). If $M$ is framed, $t(M)=\Sigma^{N}\left(M \wedge S^{0}\right)$ so $M$ is in some sense self-dual in SW.

### 5.2 The Homotopy Category of Spectra

In this section we define a notion of 'topological spectra' with which we describe stable homotopy theory.

Example 5.2.1. The object $\mathrm{S} \in \mathrm{SW}$ is called the sphere spectrum.
Definition. The abelian group $\pi_{n}^{S}=\operatorname{Hom}_{\mathrm{SW}}\left(S^{n}, \mathbf{S}\right)$ is called the $n$th stable homotopy group of the sphere spectrum. More generally, $\pi_{n}^{S}(X)=\operatorname{Hom}_{\mathrm{SW}}\left(S^{n}, X\right)$ is the $n$th stable homotopy group of $X$.

Lemma 5.2.2. For any maps $f: S^{m} \rightarrow S^{0}$ and $g: S^{n} \rightarrow S^{0}$, the maps

$$
S^{m+n} \xrightarrow{f \wedge g} S^{0} \quad \text { and } \quad S^{m+n} \xrightarrow{\Sigma^{n} f} S^{n} \xrightarrow{g} S^{0}
$$

are the same.
Proposition 5.2.3. $\pi_{\bullet}^{S}=\bigoplus_{n \in \mathbb{Z}} \pi_{n}^{S}$ is a graded commutative ring. Moreover, for any $X \in$ SW, the group $\pi_{\bullet}^{S}(X)=\bigoplus_{n \in \mathbb{Z}} \pi_{n}^{S}(X)$ is a $\pi_{n}^{S}$-module.

This defines a functor $\pi_{\bullet}^{S}: \mathrm{SW} \rightarrow \pi_{\bullet}^{S}$-Mod. There are many interesting open questions in stable homotopy theory related to the stable homotopy group $\pi_{\bullet}^{S}$ and the modules $\pi_{\bullet}^{S}(X)$.
Conjecture 5.2.4 (Freyd). Suppose $f: X \rightarrow Y$ is a morphism in SW such that $f_{*}: \pi_{\bullet}^{S}(X) \rightarrow$ $\pi_{\bullet}^{S}(Y)$ is the zero map. Then $f$ is nullhomotopic.

We now define the homotopy category of spectra $\mathcal{S}$, a generalization of the SpanierWhitehead category. The objects of $\mathcal{S}$ are sequences of based topological spaces $\mathbf{X}=$ $\left(X_{0}, X_{1}, X_{2}, \ldots\right)$ together with maps $\sigma_{n}: X_{n} \rightarrow \Omega X_{n+1}$, or equivalently by adjointness, maps $\hat{\sigma}_{n}: \Sigma X_{n} \rightarrow X_{n+1}$. The morphisms are a little more delicate to define. A strict map in $\mathcal{S}$ is a map $f: \mathbf{X} \rightarrow \mathbf{Y}$ consisting of based maps $f_{n}: X_{n} \rightarrow Y_{n}$ for each $n$ such that the diagrams

commute. It turns out that these strict maps are not enough to fully study the homotopy theory of spectra. We will add more morphisms in a moment.

Definition. For a spectrum $\mathbf{X} \in \mathcal{S}$, define the homotopy group

$$
\pi_{n}(\mathbf{X})=\underset{\longrightarrow}{\lim } \pi_{n+k}\left(X_{k}\right)
$$

where the maps $\pi_{n+k}\left(X_{k}\right) \rightarrow \pi_{n+k+1}\left(X_{k+1}\right)$ are induced by suspension (see Corollary 0.2.5).
Proposition 5.2.5. $\pi_{n}: \mathcal{S} \rightarrow \mathrm{AbGps}$ is a functor.
Definition. A strict map $f: \mathbf{X} \rightarrow \mathbf{Y}$ is a weak equivalence if the induced map $f_{*}$ : $\pi_{n}(\mathbf{X}) \rightarrow \pi_{n}(\mathbf{Y})$ is an isomorphism for all $n$.

It turns out that $\pi_{n}(\mathbf{X})=\pi_{n}\left(\operatorname{Tel}\left(X_{0} \xrightarrow{\sigma_{0}} \Omega X_{1} \xrightarrow{\Omega \sigma_{1}} \Omega^{2} X_{2} \rightarrow \cdots\right)\right)$ where Tel denotes the mapping telescope of the given loop sequence (see Section 4.2). The advantage of this perspective is that $\operatorname{Tel}\left(X_{0} \rightarrow \Omega X_{1} \rightarrow \Omega^{2} X_{2} \rightarrow \cdots\right)$ is an actual topological space. This suggests the following modification to our collection of morphisms in $\mathcal{S}$.

Definition. For a spectrum $\mathbf{X} \in \mathcal{S}$, the $\Omega$-spectrum associated to $\mathbf{X}$ is the spectrum $\mathbf{X}^{f}=\left(X_{0}^{f}, X_{1}^{f}, X_{2}^{f}, \ldots\right)$ where

$$
X_{n}^{f}:=\operatorname{Tel}\left(X_{n} \xrightarrow{\sigma_{n}} \Omega X_{n+1} \xrightarrow{\Omega \sigma_{n+1}} \Omega^{2} X_{n+2} \rightarrow \cdots\right) .
$$

Now define the set of morphisms between two spectra $\mathbf{X}, \mathbf{Y} \in \mathcal{S}$ by:

$$
[\mathbf{X}, \mathbf{Y}]_{\mathcal{S}}:=\left\{\text { strict maps } g: \mathbf{X} \rightarrow \mathbf{Y}^{f}\right\} / \sim
$$

where $\sim$ is the homotopy equivalence relation. Thus we have fully defined the category $\mathcal{S}$.
Lemma 5.2.6. For every $\mathbf{X} \in \mathcal{S}$, there is a weak equivalence $\mathbf{X} \rightarrow \mathbf{X}^{f}$ in $\mathcal{S}$.
Example 5.2.7. [Suspension spectra] For each based space $Z$, we define an associated spectrum $\Sigma^{\infty} Z$ by

$$
\left(\Sigma^{\infty} Z\right)_{n}=\Sigma^{n} Z \quad \text { and } \quad \hat{\sigma}_{n}: \Sigma\left(\Sigma^{n} Z\right) \rightarrow \Sigma^{n+1} Z
$$

This defines a functor $\Sigma^{\infty}: h\left(\mathrm{Top}_{*}\right) \rightarrow \mathcal{S}$ such that the image of the subcategory CW $\subseteq$ $h\left(\mathrm{Top}_{*}\right)$ of finite CW-complexes lands in $\mathrm{SW}_{*}$, the category of (based) formal suspensions $\Sigma^{n} X$, itself a subcategory of $\mathcal{S}$ via $Z \mapsto \Sigma^{\infty} Z$. On the other hand, we can define a 'looping functor'

$$
\begin{aligned}
\Omega^{\infty}: \mathcal{S} & \longrightarrow h\left(\mathrm{Top}_{*}\right) \\
\mathbf{X} & \longmapsto \Omega^{\infty} \mathbf{X}:=X_{0}^{f}
\end{aligned}
$$

Then $\left(\Sigma^{\infty}, \Omega^{\infty}\right)$ are an adjoint pair. An interesting object in stable homotopy theory is $\Omega^{\infty} \Sigma^{\infty} Z=\underset{\longrightarrow}{\lim } \Omega^{n} \Sigma^{n} Z$. Note that for any based spaces $Z, W$,

$$
\left[\Sigma^{\infty} Z, \Sigma^{\infty} W\right]_{\mathcal{S}}=\left[Z, \Omega^{\infty} \Sigma^{\infty} W\right]_{\mathcal{S}}=\underset{\longrightarrow}{\lim \left[Z, \Omega^{n} \Sigma^{n} W\right] . . . . . ~}
$$

Example 5.2.8. For each spectrum $\mathbf{Y}=\left(Y_{n} \xrightarrow{\sigma_{n}} \Omega Y_{n+1}\right)$, define the functors

$$
\begin{aligned}
\mathrm{Y}^{n}: \mathrm{Top}_{*} & \longrightarrow \mathrm{AbGps} \\
Z & \longmapsto\left[Z, Y_{n}\right]_{\mathrm{Top}_{*}}=\left[\Sigma^{\infty} Z, \Sigma^{n} Y\right]_{\mathcal{S}} .
\end{aligned}
$$

Then $\mathbf{Y}^{\bullet}$ is a generalized cohomology theory that captures the functors $Y^{\bullet}$ from Section 5.1 when $\mathbf{Y}=\Sigma^{\infty} Z$ is an $\Omega$-spectrum. In the category $\mathcal{S}$, these cohomology theories $\mathbf{Y}^{\bullet}$ are now represented by spectra $\mathbf{Y}$.

Theorem 5.2.9 (Brown Representability for Spectra). For any (reduced) generalized cohomology theory $E^{\bullet}: \mathrm{Top}_{*} \rightarrow$ AbGps, there exist spaces $E_{n} \in \operatorname{Top}_{*}$ such that $E^{n}(Z) \cong\left[Z, E_{n}\right]_{*}$ for all based spaces $Z$ and there are isomorphisms $E^{n}(Z) \xrightarrow{\sim} E^{n+1}(\Sigma Z)$ induced by a homotopy equivalence $E_{n} \rightarrow \Omega E_{n+1}$.

In particular, these $E_{n}$ form a spectrum and we have:
Corollary 5.2.10. There is a bijective correspondence between (reduced) generalized cohomology theories and $\Omega$-spectra given by sending $E^{\bullet}$ to $\left(E_{0} \xrightarrow{\sigma_{0}} \Omega E_{1} \xrightarrow{\Omega \sigma_{1}} \Omega^{2} E_{2} \rightarrow \cdots\right)$.

