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0 Introduction

0 Introduction

These notes are taken from a course in homotopy theory taught by Dr. Nicholas Kuhn at
the University of Virginia in the fall of 2017. The main topics covered include:

� Mapping spaces and their topologies

� Cofibrations and fibrations

� Puppe sequences, Verdier’s lemmas

� The first Whitehead theorem

� lim1 and mapping telescopes

� Standard theorems in homotopy theory, including:

– Blakers-Massey theorem

– Hurewicz theorem

– the second Whitehead theorem

– Freudenthal suspension theorem

� Brown representability and Eilenberg-MacLane spaces

� Steenrod operations

� The Serre spectral sequence.

The companion texts for the course are May’s A Concise Course in Algebraic Topology and
May-Ponto’s follow-up More Concise Algebraic Topology.

Recall that two maps f, g : X → Y between topological spaces are said to be homotopic,
written f ' g, if there exists a continuous map H : X × I → Y (where I = [0, 1]) such that
H0 = f and H1 = g. Then ' is an equivalence relation and we denote the set of equivalence
classes of maps X → Y under ' by [X, Y ].

Lemma 0.0.1. If W
e−→ X

f,g−→ Y
Z−→ are maps and f ' g, then h◦f ' h◦g and f ◦e ' g◦e.

This lemma implies that we may form the homotopy category h(Top) whose objects are
topological spaces and whose Hom sets are [X, Y ]. Similarly, one can define h(Top∗) from the
category Top∗ of pointed topological spaces; the constructions make sense for (reasonable)
subcategories of Top and Top∗. Homotopy theory studies these and related categories using
algebraic topology. For example, the Homotopy Axiom for a homology theory H says that
each Hn factors through h(Top):

Top AbGps

h(Top)

Hn
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0.1 Some Point-Set Topology 0 Introduction

Definition. A homotopy functor on the category of topological spaces is a functor T :
Top→ Sets that factors through the homotopy category h(Top).

Two of the basic problems studied in homotopy theory are:

(a) For a space X, study the functor [X,−] : h(Top)→ Sets. For example, setting X = Sn

and studying [Sn,−] is basically the study of homotopy groups πn(−) = [Sn,−]∗.

(b) For a space Y , study the contravariant functor [−, Y ] : h(Top) → Sets. For example,
H2(X;Z) ∼= [X,CP∞]. Another important example is if Vectn(X) is the set of iso-
morphism classes of n-dimensional vector bundles over X, then there is a space BO(n)
(called a classifying space) such that Vectn(X) ∼= [X,BO(n)].

Homotopy theory also provides methods of calculation that are useful in different areas
of topology, including:

� If a homotopy functor T : h(Top)→ Sets actually takes values in a category with more
algebraic structure, such as AbGps, Rings, Veck, then we can apply algebraic techniques
to study T .

� Long exact sequences allow for efficient computation.

� “Local-to-global” properties allow one to study a characteristic of a space X by study-
ing it on simpler subspaces. For example, the Mayer-Vietoris sequence and van Kam-
pen’s theorem exhibit this type of property. They have a common generalization in
the Blakers-Massey theorem.

� Stable invariants play an important role in homotopy theory. For a simple example,
recall that if ΣX is the suspension of X, then H̃n(X) ∼= H̃n+1(ΣX).

0.1 Some Point-Set Topology

In this section, we review two important concepts from general topology: the compact-open
topology and the category of compactly generated spaces.

Suppose X and Y are topological spaces and define

Y X = {f : X → Y }
C(X, Y ) = {f : X → Y | f is continuous}.

The following construction, due to Ralph Fox (1947), puts a topology on C(X, Y ) with
certain nice formal properties which we will explain afterward.

Definition. Suppose C ⊆ X is compact and U ⊆ Y is open. Define

〈C,U〉 = {f ∈ C(X, Y ) | f(C) ⊆ U}.

Then the compact-open topology on C(X, Y ) is defined to be the topology generated by
the subbasis {〈C,U〉 | C ⊆ X compact, U ⊆ Y open}. We denote the resulting topological
space by Map(X, Y ).
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0.1 Some Point-Set Topology 0 Introduction

Example 0.1.1. IfX is a discrete space, Map(X, Y ) = Y X since all functions are continuous.
In particular, Map(X, Y ) ∼=

∏
x∈X Y with the usual product topology.

Suppose X, Y and Z are sets and F : X × Y → Z is a function. This induces a function
F̂ : X → ZY , F̂ (x)(y) = F (x, y).

Theorem 0.1.2. For any X, Y, Z, the assignment F 7→ F̂ induces a bijection ZX×Y ∼=
(ZY )X .

If X, Y, Z are topological spaces, we can ask about the subsets Map(X × Y, Z) ⊆ ZX×Y

and Map(X,Map(Y, Z)) ⊆ (ZY )X . In particular, we can ask:

(i) if the map ZX×Y → (ZY )X (which is a bijection) induces a map Map(X × Y, Z)→
Map(X,Map(Y, Z)) – if so, it is injective of course;

(ii) whether this map is also a bijection;

(iii) whether the map is continuous;

(iv) and if so, whether it is also a homeomorphism.

Lemma 0.1.3. If F : X × Y → Z is continuous, then for each x ∈ X, F̂ (x) : Y → Z is
continuous.

Proof. F̂ (x) is the composition Y
ix
↪−→ X × Y F−→ Z, where ix : y 7→ (x, y).

Proposition 0.1.4. If F : X × Y → Z is continuous, then F̂ is continuous. In particular,
the assignment F 7→ F̂ restricts to an injection Map(X × Y, Z) ↪→ Map(X,Map(Y, Z)).

Proof. To show F̂ : X → Map(Y, Z) is continuous, i.e. that open sets pull back to open
sets, it suffices to check this on a subbasis. In other words, it suffices to show if C ⊆ X is
compact and U ⊆ Y is open, then F̂−1(〈C,U〉) is open in X. First note that

x ∈ F̂−1(〈C,U〉) ⇐⇒ {x} × C ⊆ F−1(U).

Since C is compact, the tube lemma implies that there is an open neighborhood V of x in X
such that V × C ⊆ F−1(U). That is, V ⊆ F̂−1(〈C,U〉). Therefore F̂−1(〈C,U〉) is open.

It turns out that the converse to this statement, i.e. the surjectivity of the map Map(X×
Y, Z) → Map(X,Map(Y, Z)), only holds with certain extra conditions. For any spaces Y
and Z, let εY,Z : Map(Y, Z) × Y → Z be the evaluation map, εY,Z(f, y) = f(y). Then it’s
easy to check that ε̂Y,Z is the identity on Map(Y, Z).

Lemma 0.1.5. Suppose εY,Z is continuous. Then if F̂ : X → Map(Y, Z) is continuous, so
is F : X × Y → Z.

Proof. F is the composition X × Y F̂×idY−−−−→ Map(Y, Z)× Y
εY,Z−−→ Z and each piece is contin-

uous. Therefore F is continuous.

3



0.1 Some Point-Set Topology 0 Introduction

Proposition 0.1.6. If Y is locally compact and Hausdorff, then for all spaces Z, εY,Z is
continuous.

Corollary 0.1.7. If Y is locally compact and Hausdorff, then the map Map(X × Y, Z) →
Map(X,Map(Y, Z)), F 7→ F̂ is a bijection.

In other words, the functors −×Y and Map(Y,−) are an adjoint pair from the category
Top to itself. Similar proofs to those above give the following easy results using the evaluation
map.

Lemma 0.1.8. If εX×Y,Z is continuous, then Map(X × Y, Z) → Map(X,Map(Y, Z)) is
continuous.

Lemma 0.1.9. If εX,Map(Y,Z) is continuous, then the inverse of Map(X×Y, Z)→ Map(X,Map(Y, Z))
is also continuous.

Lemma 0.1.10. If εX,Y and εX,Z are both continuous, then

Map(Y, Z)×Map(X, Y ) −→ Map(X,Z)

(f, g) 7−→ f ◦ g

is continuous.

Lemma 0.1.11. If εX,Y and εX,Z are continuous, then Map(X, Y × Z) → Map(X, Y ) ×
Map(X,Z) is a homeomorphism.

Corollary 0.1.12. If X and Y are locally compact, Hausdorff spaces, then the map Map(X×
Y, Z)→ Map(X,Map(Y, Z)) is a homeomorphism.

Remark. To explain the prominence of the evaluation maps in these proofs about Map(X, Y ),
one may prove that the compact-open topology is the coarsest topology on C(X, Y ) for which
the evaluation εX,Y : C(X, Y )×X → Y is a continuous map.

In 1967, Steenrod introduced the following class of topological spaces.

Definition. A space X is compactly generated if X is Hausdorff and a subset C ⊆ X is
closed if and only if C ∩K is closed in K for all compact subspaces K ⊆ X.

Example 0.1.13. Every locally compact, Hausdorff space is compactly generated.

Example 0.1.14. If X is metrizable, then X is compactly generated.

Proposition 0.1.15. Let X and Y be Hausdorff spaces. Then

(a) If X is compactly generated, then a map f : X → Y is continuous if and only if f |K
is continuous for all K ⊆ X compact.

(b) If q : X → Y is a quotient map and X is compactly generated, then Y is compactly
generated.

4



0.1 Some Point-Set Topology 0 Introduction

(c) Suppose X =
⋃
Xα has the coherent (direct limit) topology, i.e. C ⊆ X is closed if

and only if C ∩Xα is closed in Xα for all α. Then if each Xα is compactly generated,
so is X.

Remark. There are some inherent failures in restricting to the class of compactly generated
spaces. For example:

� If X and Y are compactly generated, then X × Y is not always compactly generated.
However, if X is compactly generated and Y is locally compact and Hausdorff, then
X × Y is compactly generated.

� If X is compactly generated and A ⊆ X is a subspace, then A need not be compactly
generated. For example, let X = R and A = Q ⊆ R with the subspace topology.
Then R is locally compact and Hausdorff and therefore compactly generated by Ex-
ample 0.1.13, but Q is not compactly generated.

� Even if X and Y are compactly generated, Map(X, Y ) is not always compactly gener-
ated.

Let HTop be the category of Hausdorff topological spaces and let K be the category of
compactly generated spaces. Steenrod defines the following functor between these categories.

Definition. The k-functor is the assignment k : HTop → K sending X to k(X) = X as a
set with the topology given by declaring C ⊆ X to be closed if and only if C ∩K is closed in
K for all compact subspaces K ⊆ X.

Lemma 0.1.16. For any Hausdorff topological space X, k(X) is compactly generated.

Lemma 0.1.17. For all Hausdorff X, the identity on X induces a continuous map X →
k(X).

Theorem 0.1.18. The k-functor k : HTop → K has a left adjoint given by the inclusion
K ↪→ HTop.

To remedy the failures in the above remark, we make the following definitions standard
for spaces in K:

� For a subset A ⊆ X where X ∈ K, we regard A as a subspace of X by viewing
A = k(A). Thus a subspace of a compactly generated space does not in general have
the subspace topology.

� Products in K are given by X ×K Y = k(X × Y ). In the future we will simply write
X × Y .

� The morphisms Hom(X, Y ) = Map(X, Y ) do not in general form a compactly gener-
ated space, so we set HomK(X, Y ) = k(Hom(X, Y ). In the future we will denote this
by Map(X, Y ).

Proposition 0.1.19. For all compactly generated spaces X and Y , the evaluation map
εX,Y : Map(X, Y )×X → Y is continuous.

5



0.2 Based Categories 0 Introduction

In particular, the previous results for εX,Y hold in K, notably the homeomorphism

Map(X × Y, Z)
∼−→ Map(X,Map(Y, Z))

from Corollary 0.1.12.

Remark. Since [0, 1] and any n-simplex ∆n are compactly generated, for any space X,

� X × [0, 1] is compactly generated if X is compactly generated;

� Map(∆n, X) = Map(∆n, k(X)).

Therefore we do not lose any information with the homotopy functors H• or [Y,−], since
H•(k(X)) = H•(X) and [Y, k(X)] = [Y,X].

Example 0.1.20. Let I = [0, 1] and X, Y ∈ K. Then Map(I × X, Y ) = [X, Y ] and
Map(I,Map(X, Y )) coincides with the set of path components of Map(X, Y ). So the bi-
jection in Corollary 0.1.7 identifies [X, Y ] = π0(Map(X, Y )).

0.2 Based Categories

Let Top∗ be the category of based spaces, with objects (X, x0) where X is a topological space
and x0 ∈ X is a point, and with based maps as morphisms:

Map∗(X, Y ) = {f ∈ Map(X, Y ) | f(x0) = y0}.

Note that Map∗(X, Y ) is itself based: the constant map X → Y sending every x ∈ X to y0

is continuous. We say two based maps f, g : (X, x0) → (Y, y0) are based homotopic if there
exists a continuous map H : X × I → Y such that H0 = f,H1 = g and Ht(x0) = y0 for
all t ∈ I. Denote by [X, Y ]∗ the set of based homotopy equivalence classes of based maps
f : X → Y .

Remark. The category of based spaces is related to the ordinary category of topological
spaces as follows. For any space X, let X+ = X

∐
∗ where ∗ is a basepoint disjoint from

X that is both open and closed in X+. Then for any based space Y , [X+, Y ]∗ = [X, Y ].
Further, the natural map π : X+ → X induces a morphism [X, Y ]∗ → [X+, Y ], f 7→ f ◦ π
whenever X, Y are both based.

Lemma 0.2.1. For any topological spaces X, Y and points x0 ∈ X, y0 ∈ Y , there is a pullback
diagram

Map∗(X, Y ) Map(X, Y )

{y0} Y

ex0

where ex0 is the evaluation map f 7→ f(x0).

6



0.2 Based Categories 0 Introduction

Definition. For a collection of based spaces {(Xα, xα)}, their wedge product is the quo-
tient space ∨

Xα =
(∐

Xα

)
/(xα ∼ xβ).

Lemma 0.2.2. Wedge product is a pushout in Top:∐
{xα}

∐
Xα

{∗}
∨
Xα

The notion of products in the based category Top∗ is defined as follows.

Definition. The smash product of two based spaces X, Y ∈ Top∗ is the space

X ∧ Y = (X × Y )/(X ∨ Y ).

In analogy with Corollary 0.1.7, we have:

Proposition 0.2.3. For any based spaces X, Y and Z, the natural map

Map∗(X ∧ Y, Z) −→ Map∗(X,Map∗(Y, Z)), F 7→ F̂

is a bijection.

View the interval I = [0, 1] as a based space with basepoint 0. Using previous notation,
let I+ be the interval with a disjoint basepoint ∗.

Definition. Let f, g : X → Y be two based maps. A based homotopy from f to g is a
based map H : X ∧ I+ → Y satisfying H0 = f and H1 = g.

By Proposition 0.2.3, a based homotopy is equivalent to a map Ĥ : X → Map(I+, Y ).
Each of these definitions coincides with the ‘usual’ notion of based homotopy, i.e. a contin-
uous map H : X × I → Y with H0 = f,H1 = g and Ht(x0) = y0 for every t.

Definition. The cone on a based space X is the smash product CX = X ∧ I.

Definition. The path space on a based space X is the space PX = Map∗(I,X).

Corollary 0.2.4. For any based spaces X, Y , there is a bijection Map∗(CX, Y ) = Map∗(X,PY ).

Proof. Apply Proposition 0.2.3.

Definition. For a based space X, the suspension of X is the smash product ΣX = X ∧S1.

Definition. For a based space X, the loop space of X is the space ΩX = Map∗(S
1, X).

Corollary 0.2.5. For any based spaces X, Y , there is a bijection Map∗(ΣX, Y ) = Map∗(X,ΩY ).

Proof. Apply Proposition 0.2.3.

7



0.3 H-Spaces and Co-H-Spaces 0 Introduction

Lemma 0.2.6. Let X be a based space. Then

(a) The suspension ΣX is a pushout:

X CX

CX ΣX

(b) Dually, the loop space ΩX is a pullback:

ΩX PX

PX X

0.3 H-Spaces and Co-H-Spaces

Suppose S is a set. We say S has a product with unit if there is a basepoint e ∈ S and a set
map m : S×S → S such that m(s, e) = s = m(e, s) for all s ∈ S. We describe the following
situations in Top∗:

(1) For fixed Y , when does [X, Y ] have a natural product with unit?

(2) For fixed X, when does [X, Y ] have a natural product with unit?

By natural, we mean something different in each case. For (1), naturality says that for any
map f : X ′ → X, there is a commutative diagram

[X, Y ]× [X, Y ] [X, Y ]

[X ′, Y ]× [X ′, Y ] [X ′, Y ]

f ∗ × f ∗ f ∗

where f ∗(h) = h ◦ f for any h : X → Y . On the other hand, naturality in situation (2)
means for any map g : Y → Y ′, there is a commutative diagram

[X, Y ]× [X, Y ] [X, Y ]

[X, Y ′]× [X, Y ′] [X, Y ′]

g∗ × g∗ g∗

8



0.3 H-Spaces and Co-H-Spaces 0 Introduction

where g∗(h) = g ◦ h for any h : X → Y .

Example 0.3.1. If Y is a topological group, then every [X, Y ] has a product given by
(fg)(x) = f(x)g(x) for all f, g : X → Y . This is an example of situation (1).

Example 0.3.2. Similarly, when Y = ΩZ is a loop space, [X,ΩZ] has a product given by
concatenation of loops: if α, β : X → ΩZ then (αβ)(x) = α ∗ β(x) where

α ∗ β(x, t) =

{
α(x, 2t), 0 ≤ t ≤ 1

2

β(x, 2t− 1), 1
2
< t ≤ 1.

Fix Y and suppose that for all X, there exists a natural product with unit mX : [X, Y ]×
[X, Y ]→ [X, Y ]. Then for each X, there is a canonical identification [X, Y × Y ] = [X, Y ]×
[X, Y ]. Define m′X to be the resulting map [X, Y × Y ] → [X, Y ]. For the specific case
X = Y × Y , the identity is a distinguished map 1Y×Y ∈ [Y × Y, Y × Y ]. We write m =
m′Y×Y (1Y×Y ) ∈ [Y × Y, Y ].

Lemma 0.3.3. For any X, the diagram

[X, Y × Y ]

[X, Y ]× [X, Y ]

[X, Y ]

m∗

mX

commutes.

Proof. For any h : X → Y × Y , we must show that m∗(h) = m′X(h). Consider the diagram

[X, Y × Y ]

[X, Y ]× [X, Y ] [X, Y ]

[Y × Y, Y ]× [Y × Y, Y ] [Y × Y, Y ]

[Y × Y, Y × Y ]

m∗

mX

h∗ × h∗ h∗

mY×Y

m′Y×Y

Then the bottom triangle commutes by definition of m′Y×Y and the square commutes by
naturality of mX . Moreover, if we take 1Y×Y ∈ [Y × Y, Y × Y ] = [Y × Y, Y ] × [Y × Y, Y ]
and apply h∗ × h∗, we get precisely h ∈ [X, Y × Y ]. Going around the diagram a different
direction, h∗ ◦m′Y×Y (1Y×Y ) = h∗(m) = m ◦ h = m∗(h). So it follows that m′X(h) = m∗(h),
i.e. the top triangle commutes.

9



0.3 H-Spaces and Co-H-Spaces 0 Introduction

The following result says that natural products with unit mX on every [X, Y ] are com-
pletely determined by this product map m : Y × Y → Y .

Proposition 0.3.4. Fix Y . Then mX : [X, Y ] × [X, Y ] → [X, Y ] is a natural product with
unit if and only if the diagram

Y ∨ Y

Y × Y

Y

∇

m

commutes up to homotopy, where ∇ : Y ∨ Y → Y is the ‘fold map’, i.e. the identity on each
component.

Proof. ( =⇒ ) If mX is a product with unit, let π1, π2 : Y × Y → Y be the two coordinate
projections and i1, i2 : Y ↪→ Y × Y the coordinate inclusions. Then by naturality,

mX(π1, π2) ◦ i1 = mX(π1 ◦ i1, π2 ◦ i1) = mX(1, u) = 1

up to homotopy, where u is the unit of mX . Likewise, mX(π1, π2) ◦ i2 = 1 up to homotopy.

It follows that Y ∨ Y ↪→ Y × Y mX(π1,π2)−−−−−−→ Y is homotopic to ∇.
( =⇒) Conversely, suppose m makes the above diagram homotopy commute. Then the

product on [X, Y ] can be written mX(h1, h2) = m ◦ (h1×h2) ◦∆ where ∆ : x 7→ (x, x) is the
usual diagonal map on X. Then for any h : X → Y and the constant map c : X →, x 7→ y0,

mX(c, h)(x) = m ◦ (c× h) ◦∆(x) = m ◦ (c(x), h(x)) = m ◦ (y0, h(x)) ' h(x)

by hypothesis. Similarly mX(h, c) = h so mX is a product with unit. Naturality is a similar
chase.

Definition. We say Y is an H-space if there is a map m : Y ×Y → Y making the diagram

Y ∨ Y

Y × Y

Y

∇

m

commute up to homotopy.

There is a dual notion:

Definition. We say X is a co-H-space if there is a map p : X → X ∨ X making the
diagram

X ∨X

X ×X

X

p

∆

10



0.3 H-Spaces and Co-H-Spaces 0 Introduction

commute up to homotopy.

Proposition 0.3.5. Fix X. Then there is a natural product with unit pY : [X, Y ]× [X, Y ]→
[X, Y ] for all Y if and only if X is a co-H-space.

Proof. Dual to the proof of Proposition 0.3.4.

Lemma 0.3.6. For any space Z, the suspension ΣZ is a co-H-space.

Proof. First, note that S1 is a co-H-space by Proposition 0.3.5, since [S1, Y ] = π1(Y ) admits
a group structure which is natural in Y . More generally, for any X, Y, Z, we have a natural
identification [X ∧ Z, Y ] ∼= [X,Map∗(Z, Y )] so it follows that if X is a co-H-space, then so
is X ∧ Z. In particular, the case X = S1 implies ΣZ is a co-H-space for all Z.

Theorem 0.3.7. Suppose that X is a co-H-space and Y is an H-space. Then the two
associated products on [X, Y ] are, in fact, the same. Moreover, this product is associative
and commutative.

Proof. For any h1, h2 : X → Y , let h1 · h2 = mX(h1, h2) be their product in [X, Y ] coming
from the H-space structure on Y and let h1 ∗ h2 = pY (h1, h2) be their product coming from
the co-H-space structure on X. Consider the diagram

X X ∨X Y ∨ Y

X ×X Y × Y Y

p h1 ∨ h2

∆
∇

h1 × h2
m

By hypothesis, the triangles homotopy commute and of course the square commutes on the
nose. However, from Proposition 0.3.4, the right triangle encodes the product on [X, Y ] via
h1 · h2 = m ◦ (h1 × h2) ◦∆, while the dual version in Proposition 0.3.5 shows that the left
triangle gives h1 ∗ h2 = ∇ ◦ (h1 ∨ h2) ◦ p. Hence h1 · h2 equals h1 ∗ h2 up to homotopy.

To show the product is associative and commutative, we first show that it is a homomor-
phism of sets with product, i.e. for any f, g, h, j ∈ [X, Y ], (fg)(hj) = (fh)(gj). This follows
from the commutative diagram

[X, Y ]× [X, Y ]× [X, Y ]× [X, Y ] [X ∨X, Y ]× [X ∨X, Y ]

[X, Y × Y ]× [X, Y × Y ] [X ∨X, Y ]

[X, Y × Y ] [X, Y ]

(pY ∨ pY ) ◦ flip

mX ×mX mX ∨mX

pY×Y p∗

m∗

11



0.3 H-Spaces and Co-H-Spaces 0 Introduction

Here, flip interchanges the second and third copies of [X, Y ]. The diagram commutes by
naturality of mX , p

Y and the fact that the product structures on [X, Y ] are the same.
Finally, take f, g, h ∈ [X, Y ] and let e be the unit. Then by the above, f(gh) = (fe)(gh) =

(fg)(eh) = (fg)h and fg = (ef)(ge) = (eg)(fe) = gf . Therefore the product is associative
and commutative.

Example 0.3.8. One can show (e.g. using the ring structures on H•(Sn) and H•(Sn×Sn))
that if Sn is an H-space, then n must be odd. In fact:

Theorem 0.3.9 (Adams). Sn is an H-space if and only if n = 1, 3, 7.

12



1 Cofibration and Fibration

1 Cofibration and Fibration

Cofibrations are, in a simple sense, maps i : A → X that are ‘nice inclusions’. To motivate
this, recall that the excision theorem from homology theory says: for a subspace Z ⊆ X and
A ⊆ X such that Z ⊆ Int(A), the inclusion of pairs (X r Z,A r Z) ↪→ (X,A) induces an
isomorphism

H•(X r Z,Ar Z)
∼−→ H•(X,A).

This is equivalent to the Mayer-Vietoris sequence by the following argument. Let B = XrZ
and A ⊆ X such that ArZ = A∩B. Then Z ⊆ Int(A) if and only if Int(A)∪ Int(B) = X,
and if this holds, the excision isomorphism is H•(B,A ∩B)

∼−→ H•(X,A).
The condition A∪B = X even suffices for the Mayer-Vietoris sequence when some ‘nice’

conditions are assumed. One version of ‘nice’ is the condition that (X,A) is a good pair,
sometimes called a collared pair: there exists an open set U ⊆ X such that A ⊆ U ⊆ X and
A ↪→ U is a deformation retract.

One familiar situation arises when X is equal to A with an n-cell attached, or more
explicitly, X is the pushout of the following diagram:

Sn−1 A

Dn X = A ∪f Dn

f

i j

Then the map (Dn, Sn−1) → (X,A) induces an isomorphism H•(D
n, Sn−1)

∼−→ H•(X,A),
and the former is computable so (X,A) is a really nice pair in this case.

A key fact that relates all of these conditions in the above example is that (Dn, Sn−1) is
a collared pair and this implies (X,A) is also a collared pair. This property of passing to
pushouts will be an important characteristic of cofibrations.

1.1 Cofibrations

Definition. A map i : A → X is called a cofibration if it satisfies the homotopy ex-
tension property (abbreviated HEP), which says that given the natural inclusion i0 : A ↪→
A × I, a map h : X → Y and a homotopy K : A × I → Y , there exist a homotopy
H : X × I → Y making the following diagram commute:

A A× I

X X × I

Y

i0

i

K

h

13



1.1 Cofibrations 1 Cofibration and Fibration

Example 1.1.1. Let i : A ↪→ X be an honest embedding and let Y be the subspace
X×{0}∪A× I ⊆ X× I, with h : X ↪→ Y and K : A× I ↪→ Y the usual inclusions. Then if
i : A ↪→ X is a cofibration, this just means the induced map H : X × I → Y is a retraction.
This statement holds even when i : A→ X is any cofibration (though we will see that every
fibration is an inclusion of a closed subspace) and with X × {0} ∪ A × I replaced by the
pushout of the diagram

A A× I

X Y

i0

i

In fact, the converse is true as well:

Lemma 1.1.2. For any i : A→ X, let Y be the pushout of i and the map A ↪→ A×I. Then
the following are equivalent:

(1) i satisfies the HEP.

(2) There exists a map r : X × I → Y which satisfies r ◦ j = idY , where j : Y → X × I
is the map induced by pushout.

Example 1.1.3. The canonical embedding Sn−1 ↪→ Dn is a cofibration since Dn×I retracts
onto Dn × {0} ∪ Sn−1 × I by “punching the can in”. More generally, for any space X, the
natural inclusion X ↪→ CX induces such a retract and hence is a cofibration.

Remark. The homotopy extension property for i : A→ X can be rephrased in the following
way (it is equivalent by Corollary 0.1.12): for any h : X → Y and K̂ : A→ Map(I, Y ), there

is a map Ĥ : X → Map(I, Y ) making the diagram

A Map(I, Y )

X Y

K̂

i e0

h

Ĥ

commute, where e0 is the evaluation map g 7→ g(0).

Lemma 1.1.4. Suppose Z is Hausdorff. Given a pair j : Y → Z and r : Z → Y with
r ◦ j = idY , j is injective and j(Y ) is closed in Z.

Proof. First, r ◦ j restricts to Y
j−→ j(Y )

r−→ Y which is still the identity on Y , hence a
bijection with continuous inverse. It follows that j is a homeomorphism onto j(Y ). To show

the image is closed, let e = j ◦ r : Z
r−→ Y

j−→ Z and consider the map E : Z → Z × Z

14



1.1 Cofibrations 1 Cofibration and Fibration

sending z 7→ (z, e(z)). Also let ∆(Z) ⊆ Z × Z be the usual diagonal subspace. Then
E−1(∆(Z)) = {z ∈ Z | e(z) = z} = j(Y ), but since Z is Hausdorff, ∆(Z) is closed and thus
so is E−1(∆(Z)).

If r, j is such a pair of maps, it now makes sense to call j a closed embedding and r a
retraction (onto Y ). From now on we assume all spaces are Hausdorff.

Proposition 1.1.5. Every cofibration i : A→ X is a closed embedding.

Proof. Let P be the pushout of A→ A× I and A→ X. By Lemma 1.1.4, the induced map
j : P → X × I is a closed embedding. It follows that X × {1} ∪ P → X × {1} is a closed
embedding, but this is precisely i : A→ X.

Proposition 1.1.6. Cofibrations satisfy the following properties:

(a) Suppose Y is the pushout of the following diagram:

A B

X Y

f

i j

Then if i is a cofibration, so is j.

(b) If {iα : Aα → Xα} is a collection of cofibrations, then
∐
iα :

∐
Aα →

∐
Xα is a

cofibration.

(c) The composite of cofibrations is a cofibration.

(d) Suppose A1
i1−→ A2

i2−→ A3
i3−→ · · · is a coherent sequence of cofibrations and A =

lim
←−

(Aj, ij). Then each induced map Aj → A is a cofibration.

Definition. The unbased cone of X is the space CX = (X × I)/(X × {0}).

Proposition 1.1.7. The inclusion i1 : X ↪→ CX, x 7→ (x, 1) is a cofibration.

Proof. Define r : CX × I → CX × {0} ∪X × {1} × I by

r([x, s], t) =

{([
x, 2s

2−t

]
, 0
)
, t < 2− 2s(

[x, 1], 2s−2+t
s

)
, t ≥ 2− 2s.

Then r is a retraction. Apply Lemma 1.1.2.

Thus we can justify the claim in Example 1.1.3.

Corollary 1.1.8. Sn−1 ↪→ Dn is a cofibration for any n.

15



1.1 Cofibrations 1 Cofibration and Fibration

We say (X,A) is a relative CW-complex if X =
⋃
Xn for a sequence of skeleta X0 →

X1 → X2 → · · · and A = X0.

Corollary 1.1.9. If (X,A) is a relative CW-complex, the A ↪→ X is a cofibration.

Proof. By definition, each skeleton Xn is obtained from Xn−1 by attaching n-cells, which
can be viewed as a pushout diagram∐

α

Sn−1
Xn−1

∐
α

Dn
Xn

∐
fα

Then by Corollary 1.1.8, each fα : Sn−1 → Dn is a cofibration, and applying parts of
Proposition 1.1.6 says that:

�

∐
Sn−1 →

∐
Dn is a cofibration by (b);

� Xn−1 → Xn is a cofibration by (a);

� Each Xn → X is a cofibration by (d);

In particular, A = X0 → X is a cofibration.

Proposition 1.1.10. If i : A → X is a cofibration and A is contractible, then the quotient
map X → X/A is a homotopy equivalence.

Proof. Since A is contractible, there is a homotopy K : A × I → A with K0 = idA and K1

constant. Thus since i is a cofibration, H0 : X×{0} → X lifts to a homotopy H : X×I → X
making the following diagram commute:

A× I A

X × I X

K

i

H

This descends to a map H : X/A× I → X/A by the universal property of the quotient map
p : X → X/A. Notice that H1 sends A to a point, so H1 lifts to X:

X × {1} X × I X

X/A× {1} X/A× I X/A

H1

16



1.1 Cofibrations 1 Cofibration and Fibration

Then H is a homotopy idX/A ' p ◦ H1 and H is a homotopy idX ' H1 ◦ q. Hence p is a
homotopy equivalence.

Corollary 1.1.11. Suppose i : A→ X is a cofibration and X ∪CA is the following pushout:

A CA

X X ∪ CA

i j

Then X ∪ CA→ X ∪ CA/CA is a homotopy equivalence.

Proof. It’s easy to see that X∪CA/CA is exactly X/A. Then the previous result applies.

Proposition 1.1.12. Suppose i : A→ X and j : B → Y are cofibrations and X×B∪A×Y
is the pushout of the diagram

A×B A× Y

X ×B X ×B ∪ A× Y

Then the induced map X ×B ∪ A× Y → X × Y is a cofibration.

Definition. For i : A→ X and j : B → Y as above, the map X × B ∪ A× Y → X × Y is
called the pushout product of i and j, written i�j.

Definition. A basepoint x0 ∈ X is nondegenerate if {x0} ↪→ X is a cofibration.

Corollary 1.1.13. If X and Y have nondegenerate basepoints, then the natural inclusion
X ∨ Y → X × Y is a cofibration.

Corollary 1.1.14. Suppose Y is an H-space with nondegenerate basepoint. Then the mul-
tiplication map m : Y × Y → Y from Proposition 0.3.4 makes the diagram

Y ∨ Y

Y × Y

Y

∇

m

commute directly, not just up to homotopy.

Definition. A pair of spaces (X,A) is a neighborhood deformation retract, or NDR
pair, if there exists a pair of maps u : X → I and h : X × I → X satisfying:

(i) u−1(0) = A.

17



1.1 Cofibrations 1 Cofibration and Fibration

(ii) h0 = idX .

(iii) ht|A = idA for all t ∈ I.

(iv) If U = u−1([0, 1)), then ht(U) ⊆ A for all t ∈ I.

Proposition 1.1.15. (X,A) is an NDR pair if and only if A ↪→ X is a cofibration.

Next, suppose we have a pushout diagram

A B

X Y

f

i j

This can be viewed as a map of pairs (X,A) → (Y,B) and there is an induced map on
homology H•(X,A)→ H•(Y,B). We will show that when one of the maps is a cofibration,
the map on homology is actually an isomorphism. We begin with a special case that is
well-known for ’nice pairs’ (X,A).

Lemma 1.1.16. Suppose i : A → X is a cofibration. Then there is an isomorphism
H•(X,A)→ H•(X/A,A/A) = H̃•(X/A).

Proof. Note that X/A can be viewed as a pushout:

A ∗

X X/A

i

Let CA be the cone on A and consider the diagram

H•
(
X ∪ A×

(
1
2
, 1
])

H•(X,A)

H•(X ∪ CA,CA) H•(X/A,A/A)

The top arrow is an isomorphism by the homotopy axiom and the left arrow is an isomorphism
by excision. Further, since i is a cofibration, CA→ X ∪CA is a cofibration and X ∪CA→
X/A is a homotopy equivalence by Corollary 1.1.11. Hence the bottom row is also an
isomorphism, so this proves H•(X,A)→ H•(X/A,A/A) is an isomorphism.

18



1.1 Cofibrations 1 Cofibration and Fibration

Lemma 1.1.17. If

A B

X Y

is a pushout diagram then the induced map X/A→ Y/B is a homeomorphism.

Proof. The pushout of a pushout is a pushout, so the result follows from the diagram

A B ∗

X Y Y/B

Theorem 1.1.18. If i : A→ X is a cofibration, f : A→ B is any map and Y is the pushout
of i and f ,

A B

X Y

f

i j

then the induced map on homology H•(X,A)→ H•(Y,B) is an isomorphism.

Proof. Consider the diagram

H•(X,A) H•(Y,B)

H•(X/A,A/A) H•(Y/B,B/B)

Then the left and right arrows are isomorphisms by Lemma 1.1.16, while the bottom row is
an isomorphism Lemma 1.1.17. Hence H•(X,A)→ H•(Y,B) is an isomorphism.

Fix arbitrary maps i : A→ X and f : A→ B and denote the pushout by P (f):

A B

X P (f)

f

i i(f)
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1.1 Cofibrations 1 Cofibration and Fibration

A natural question to ask is: if f, g : A → B are homotopic, then are P (f) and P (g)
necessarily homotopy equivalent? The answer, as it turns out, is no in general:

Example 1.1.19. Consider the trivial map i : S1 → ∗ and two maps f, g : S1 → D2, where
f is the natural inclusion S1 = ∂D2 and g is a constant map. Then P (f) = S2, while
P (g) = D2 and these are clearly not homotopy equivalent spaces.

Lemma 1.1.20. Let i : A → X be a cofibration and let f : A → B and F : A × I → B be
maps such that F0 = f and

A B

X P (f)

f

i j

f̃

A× I B

X × I P (F )

F

i× 1 J

F̃

are pushout squares. Then the induced map K : P (f) → P (F ) is a homotopy equivalence
under B.

Proof. We have a diagram

A A× I B

X X × I

P (f)

i0 F

f

i i× 1

f̃

F

j

Since i is a cofibration, there exists a map F : X × I → P (f) making the above commute.
Now the right square may be viewed as a pushout diagram:

A× I B

X × I P (F )

P (f)

F

i× 1 J

F̃ j

f̃

r

20



1.1 Cofibrations 1 Cofibration and Fibration

In particular, we get a map r : P (F ) → P (f) which satisfies r ◦K = idP (f). We finish by
showing K ◦ r ' idP (F ). Define a set

U = {0} × I ∪ I × {0} ∪ I × {1} ⊆ I × I.

(As a subset of the square I × I, this set is equal to the union of the bottom, left and right
sides.) Now we have a diagram in which the right square is a pushout:

A× U A× I × I B × I

X × U X × I × I P (F )× I

P (F )

J

H ′
H

Here, the map X×U → P (F ) is defined on X×{0}× I by f̃ × 1, on X× I×{0} by F̃ , and
on X × I ×{1} by K×F . Since i is a cofibration, i× 1 : A× I → X × I is also a cofibration
(this is obvious from the HEP). Therefore the map X × U → P (F ) just described induces
H ′ : X × I × I → P (F ), and since the right square in the diagram above is a pushout, this
induces H : P (F ) × I → P (F ). By construction, H0 = idP (F ) and H1 = K ◦ r so we’re
done.

Theorem 1.1.21. If i : A→ X is a cofibration and f, g : A→ B are homotopic maps, then
P (f) and P (g) are homotopy equivalent under B, i.e. there is a commutative diagram

B

P (f) P (g)

i(f) i(g)

a

b

and homotopies H : P (f)× I → P (f), with H0 = idP (f) and H1 = b◦a; and K : P (g)× I →
P (g), with K0 = idP (g) and K1 = a ◦ b; such that H and K also commute with i(f) and i(g).

Proof. If F : A× I → B is the homotopy, with F0 = f and F1 = g, then Lemma 1.1.20 gives
a diagram

B

P (f) P (F ) P (g)

i(f) i(g)

in which each triangle is a homotopy equivalence under B. Therefore P (f) and P (g) are
homotopy equivalent under B.
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Corollary 1.1.22. Suppose Z is obtained from a space Y by attaching an n-cell via an
attaching map f : Sn−1 → Y which is nullhomotopic. Then Z is homotopy equivalent to
Y ∨ Sn under Y .

Proof. The wedge product Y ∨ Sn and Z = Y ∪f Dn can each be viewed as a pushout:

Sn−1 Y

Dn Y ∪f Dn

f
Sn−1 Y

Dn Y ∨ Sn

c

where c is a constant map, but by hypothesis, f and c are homotopic.

Definition. The homotopy pushout of two maps f : X → Y and g : X → Z is the
pushout P h(f, g) of the diagram

X
∐
X Y

∐
Z

X × I P h(f, g)

f
∐
g

i0 × i1

Corollary 1.1.23. If f, f ′ : X → Y are homotopic and g, g′ : X → Z are homotopic, then
the homotopy pushouts P h(f, g) and P h(f ′, g′) are homotopy equivalent.

Proof. By Proposition 1.1.6(b), i0 × i1 : X × X → X × I is a cofibration so apply Theo-
rem 1.1.21.

Observe that for any maps f : X → Y and g : X → Z, there is a natural map π :
P h(f, g)→ P (f, g) given by the following diagram:

X X × Y

Z P h(f, g)

P (f, g)

f

g

π

In fact, π can be viewed as a quotient map.

Proposition 1.1.24. If either f or g is a cofibration, the induced map π : P h(f, g)→ P (f, g)
is a homotopy equivalence.
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1.2 Cofibration Sequences 1 Cofibration and Fibration

Definition. The mapping cylinder of f : X → Y is the pushout of the diagram

X Y

X × [0, 1] M(f)

f

i1

Theorem 1.1.25. Every map f : X → Y factors through a cofibration f̃ ,

M

X Y

f̃ p

f

such that p is a homotopy equivalence.

Proof. Take M to be the mapping cylinder M(f).

1.2 Cofibration Sequences

Suppose [X, Y ] is the based space of homotopy classes of based maps from X to Y , two
based spaces. Given such a map f : X → Y , there is an induced map

f ∗ : [Y,W ] −→ [X,W ]

g 7−→ g ◦ f

for any W , which is natural in W . Consider the “kernel” of f , i.e. the set

ker f ∗ = {g ∈ [Y,W ] | g ◦ f is nullhomotopic}.

Note that g ◦ f being nullhomotopic is equivalent to the existence of a based homotopy
H : X × I → W such that H0 = c is a constant map and H1 = g ◦ f , which in turn is
equivalent to the existence of H̃ : CX → W such that H̃1 = g ◦ f , i.e. g ◦ f is equal to

X
i1−→ CX

H̃−→ W .
Now let C(f) be the pushout of the diagram

X Y

CX C(f)

f

i1 i(f)
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Then g◦f is nullhomotopic if and only if g factors through i(f) : Y → C(f), i.e. the diagram

X Y

CX C(f)

W

f

i1 i(f)

g

H̃

In other words, [C(f),W ] can be identified with the kernel of f ∗. To be precise:

Lemma 1.2.1. For any f : X → Y and any W , there is an exact sequence of based sets

[C(f),W ]
i(f)∗−−−→ [Y,W ]

f∗−→ [X,W ].

Definition. The set C(f) is called the (homotopy) cofibre of f , or sometimes the map-
ping cone of f .

In analogy with the kernel-cokernel sequence in algebra, one has C(f) ' Y/f(X).

Proposition 1.2.2. Let X and Y be spaces. Then

(a) If f, g : X → Y are homotopic, then C(f) and C(g) are homotopy equivalent under
Y .

(b) If j : A→ X is a cofibration, then C(j) and X/A are homotopic under X.

Proof. (a) follows from the diagram

Y

C(f) C(g)

i(f) i(g)

and Theorem 1.1.21.
(b) likewise follows from the diagram

X

C(j) X/A

i(j)
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Proposition 1.2.3. For any map f : X → Y , there are natural long exact sequences in
reduced homology and cohomology

· · · → H̃n(X)
f∗−→ H̃n(Y )

i(f)∗−−−→ H̃n(C(f))
δ−→ H̃n−1(X)→ · · ·

· · · → Hn(C(f))
i(f)∗−−−→ Hn(Y )

f∗−→ Hn(X)
δ−→ Hn+1(C(f))→ · · ·

Proof. Since i(f) is a cofibration (by Proposition 1.1.6), it is an embedding by Proposi-
tion 1.1.5 so (C(f), Y ) is a pair of spaces and there is a diagram

· · · H̃n(Y ) H̃n(C(f)) Hn(C(f), Y ) H̃n−1(Y ) · · ·

· · · H̃n(X) H̃n(CX) Hn(CX,X) H̃n−1(X) · · ·

f∗ ∼= f∗

where the top row is the long exact sequence for (C(f), Y ), the bottom row is the long
exact sequence for the pair (CX,X), and the vertical column is an isomorphism by The-

orem 1.1.18. Then CX is contractible, so H̃n(CX) = 0 and so by exactness we get an

isomorphism Hn(CX,X)
∼−→ H̃n−1(X). This constructs the desired exact sequence. The

proof for cohomology is analogous.

Consider the second iteration of the cone construction:

X
f−→ Y

i(f)−−→ C(f)
i2(f)−−→ C(i(f)).

Since i(f) is a cofibration, the natural quotient map

q : C(i(f)) −→ C(i(f))/CY = C(f)/Y = CX/X = ΣX

is a homotopy equivalence by Proposition 1.1.10. Let π(f) = q ◦ i2(f) : C(f)→ ΣX.

Lemma 1.2.4. For any map f : X → Y and any space W ,

[ΣX,W ]
π(f)∗−−−→ [C(f),W ]

i(f)∗−−−→ [Y,W ]
f∗−→ [X,W ]

is an exact sequence of sets.

Iterating again, we get a sequence

X Y C(f) C(i(f)) C(i2(f))

ΣX ΣY

f i(f) i2(f)

q

−Σf

where −Σf is the map ΣX = X ∧ S1 → Y ∧ S1 = ΣY induced by z 7→ z̄ on S1. This con-
struction continues inductively, constructing the so-called long exact sequence in homotopy.
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Theorem 1.2.5 (Puppe). For any map f : X → Y and any space W , there is a long exact
sequence of pointed sets which is natural in W :

· · · → [ΣnC(f),W ]→ [ΣnY,W ]→ [ΣnX,W ]→ [Σn−1C(f),W ]→ · · ·

· · · → [ΣC(f),W ]
(Σi(f))∗−−−−→ [ΣY,W ]

(Σf)∗−−−→ [ΣX,W ]
π(f)∗−−−→ [C(f),W ]

i(f)∗−−−→ [Y,W ]
f∗−→ [X,W ].

Corollary 1.2.6. For any f : X → Y and W , there is a natural long exact sequence

· · · → [C(f),ΩnW ]→ [Y,ΩnW ]→ [X,ΩnW ]→ [C(f),Ωn−1W ]→ · · ·
Proof. Apply Corollary 0.2.5.

Proposition 1.2.7. Given a map of pairs

X Y

X ′ Y ′

f

α β

f ′

which commutes up to homotopy, there exists a map γ : C(f)→ C(f ′) and a diagram

X Y C(f) ΣX

X ′ Y ′ C(f ′) ΣX ′

f i(f) π(f)

α β γ Σα

f ′ i(f ′) π(f ′)

in which the middle square commutes and the right square commutes up to homotopy.

Suppose we have a composition X
g−→ Y

f−→ Z. Then up to homotopy equivalence, we can
think of C(g) as Y/g(X) and C(f) as Z/f(Y ), and also C(f ◦ g) as Z/f ◦ g(X). In analogy
with algebra, we might hope to have Z/X homotopy equivalent to (Z/X)/(Y/X), e.g. if we
suppose X ⊆ Y ⊆ Z are subspaces, for simplicity. Indeed, we have:

Proposition 1.2.8. For any maps X
g−→ Y

f−→ Z, the maps C(g)
h−→ C(f ◦ g)→ C(h) induce

a homotopy equivalent between C(f) and C(h).

Proof. This follows from the diagram

X Y C(g)

Z C(f ◦ g)

C(f) C(h)

g

f ◦ g f
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where the top row is the cofibre sequence for g : X → Y , the left column is the cofibre
sequence for f : Y → Z, the diagonal-to-middle row is the cofibre sequence for f ◦g : X → Z
and the right column comes from naturality.

As a result, we can identify C(f) as the cofibre of the map C(g)→ C(f ◦ g).

Proposition 1.2.9. For any based map f : X → Y ,

(a) The group [ΣX,W ] acts on [C(f),W ] via the map π(f)∗ : [ΣX,W ] → [C(f),W ] for
any space W .

(b) π(f)∗ is a map of [ΣX,W ]-sets.

(c) For any maps α, β : C(f)→ W , i(f)∗[α] = i(f)∗[β] if and only if α and β are in the
same orbit of the [ΣX,W ]-action on [C(f),W ].

Recall from Section 0.2 that for a based space X, the space X+ = X
∐
{x0} induces an

equivalence between the based maps [X, Y ]∗ and the unbased maps [X+, Y ] for any Y . This

induces a cofibration sequence S0 → X+
p−→ X → S1. Then for any connected Y , we get an

exact sequence of sets

π1(Y ) = [S1, Y ]∗ → [X, Y ]∗ → [X+, Y ]→ [S0, Y ] = ∗

Corollary 1.2.10. For any based spaces X and Y , π1(Y ) acts on [X, Y ]∗ and the orbits are
in one-to-one correspondence with the unbased homotopy classes of maps X → Y .

Corollary 1.2.11. For any connected space Y , π1(Y ) acts on [S1
+, Y ] by conjugation.

Cofibration sequences have many applications to the study of homotopy groups of spheres,
πk(S

n).

Proposition 1.2.12. For all X and Y , the map d : X ∧ Y → Σ(X ∨ Y ) is nullhomotopic.

Proof. Consider the cofibration sequence

X ∨ Y i−→ X × Y p−→ X ∧ Y d−→ Σ(X ∨ Y )
Σi−→ Σ(X × Y )

Σp−→ Σ(X ∧ Y ).

Then to prove d is nullhomotopic, it is equivalent to prove the map (Σi)∗ : [Σ(X×Y ),W ]→
[Σ(X ∨ Y ),W ] is surjective for any space W . Indeed, this follows from the Puppe sequence

· · · → [Σ(X ∧ Y ),W ]
(Σp)∗−−−→ [Σ(X × Y ),W ]

(Σi)∗−−−→ [Σ(X ∨ Y ),W ]
d∗−→ [X ∧ Y,W ]→ · · ·

To show (Σi)∗ is surjective, note that Σ(X∨Y ) = ΣX∨ΣY , so we can split [Σ(X∨Y ),W ] =

[ΣX,W ] × [ΣY,W ]. If X
iX−→ X × Y πX−→ X are the natural inclusion and projection for X

(and iY , πY are the same for Y ), then (Σi)∗ can be viewed as

(i∗X , i
∗
Y ) : [Σ(X × Y ),W ] −→ [ΣX,W ]× [ΣY,W ].

Consider the diagram of groups
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[Σ(X × Y ),W ]

[ΣX,W ]

[ΣX,W ]× [ΣY,W ]

[ΣY,W ]

(i∗X , i
∗
Y )

π∗X

π∗Y

Then by group theory, (i∗X , i
∗
Y ) is onto.

Example 1.2.13. Let X = Y = Sn and consider the map fn,n : S2n−1 → Sn ∨ Sn which
attaches a 2n-cell to Sn ∨ Sn to form Sn × Sn. If ∇ : Sn ∨ Sn → Sn is the folding map, we
obtain a class [in, in] := [∇ ◦ fn,n] ∈ π2n−1(Sn), called the Whitehead product. Consider the
cofibration sequence

S2n−1 fn,n−−→ Sn ∨ Sn → Sn × Sn → S2n d−→ Σ(Sn ∨ Sn).

Then d = Σfn,n so by Proposition 1.2.12, Σ[in, in] : S2n → Sn+1 is nullhomotopic.
Recall from Example 0.3.8 that Sn may only be an H-space if n is odd (and moreover,

this only happens when n = 1, 3, 7 by Adams’ theorem). Consider the pushout

Sn ∧ Sn Sn

Sn × Sn J

∇

Then by definition of the pushout, there exists an H-space structure m : Sn × Sn → Sn if
and only if there exists a retract r : J → Sn. Composing with the attaching map fn,n, we
get a pushout diagram

S2n−1 Sn

D2n J

[in, in]

so J retracts onto Sn if and only if there exists a map D2n → Sn which induces a nullho-
motopy of [in, in]. In other words, Sn admits an H-space structure precisely when [in, in] is
nullhomotopic. Thus in general, [in, in] ∈ π2n−1(Sn) is not null (e.g. when n is even), but we
showed above that Σ[in, in] = 0 in π2n(Sn+1).

Proposition 1.2.14. There is a homotopy equivalence between Σ(X ∨ Y ∨ (X ∧ Y )) and
Σ(X × Y ).
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Corollary 1.2.15. The exact sequence

0→ [Σ(X ∧ Y ),W ]
(Σp)∗−−−→ [Σ(X × Y ),W ]

(Σi)∗−−−→ [Σ(X ∨ Y ),W ]→ 0

splits.

1.3 Fibrations

In this section we discuss the dual notion to cofibrations. Recall that the homotopy extension
property defining a cofibration i : A→ X can be stated as a lifting problem:

A Map(I, Y )

X Y

i e0

We use this to define fibrations.

Definition. A map p : E → B is a fibration if for any maps h̃ : W → E and H : W × I →
B such that p◦ h̃ = H0, there exists a lift H̃ : W ×I → E of H making the following diagram
commute:

W E

W × I B

h̃

i0 p

H

H̃

Example 1.3.1. It follows from the above diagrams that if i : A ↪→ X is a cofibration,
then for all Z, the adjoint i∗ : Map(X,Z) → Map(A,Z) is a fibration. For example, if
{x0} ↪→ X is the inclusion of a nondegenerate basepoint of X, then the evaluation map
ex0 : Map(X,Z)→ Z is a fibration for every Z.

Example 1.3.2. Given any spaces B and F , the projection B × F → B is a fibration.
Indeed, given a diagram

W B × F

W × I B

(hB, hF )

p

H

H̃
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there is a lift H̃ = (H, h̃F ), where h̃F is the composition W × I → W
hF−→ F .

Example 1.3.3. Suppose p : Y → X is a covering map of (reasonable) spaces. Given a
diagram

W Y

W × I X

h̃

p

H

H̃

withW path-connected (in general, one may define H̃ on each path component), pick w0 ∈ W
and set y0 = h̃(w0) ∈ Y and x0 = p(y0) ∈ X. Then lifting H to H̃ is equivalent to
H∗(π1(W × I, (w0, 0))) ⊆ p∗(π1(Y, y0)) but since (i0)∗ : π1(W,w0) → π1(W × I, (w0, 0))
is induced by a homotopy equivalence and the above square commutes, this inclusion is
guaranteed. Hence p is a fibration and the lift H̃ is always unique. This is not true of a
general fibration.

We will see that every fibration is essentially equivalent to one of these examples.

Definition. A map p : E → B is a (locally trivial) fibre bundle with fibre F if there
is an open cover {Uα} of B and homeomorphisms Uα × F → p−1(Uα) making the following
diagram commute for each Uα:

Uα × F p−1(Uα)

Uα

∼

p

It will follow from a result in Section 1.5 that every fibre bundle is a fibration.

Example 1.3.4. When F is a discrete space, a bundle with fibre F is a covering space.

Proposition 1.3.5. Let p : E → B be a fibration. Then

(a) For any map f : B′ → B, the pullback f ∗p : P → B′,

P E

B′ B

f ∗p p

f

is a fibration.
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(b) For any fibrations {pα : Eα → Bα}, the product
∏
pα :

∏
Eα →

∏
Bα is a fibration.

(c) If p′ : E ′ → E is a fibration, then p ◦ p′ : E ′ → B is also a fibration.

(d) The induced map p∗ : Map(X,E)→ Map(X,B) is a fibration for all X.

Proof. Dual to the proof of Proposition 1.1.6.

Theorem 1.3.6. Suppose B is path-connected and p : E → B is a fibration. Then

(1) All of the fibres Ex := p−1(x) are homotopy equivalent.

(2) Every choice of path α in B from x to y determines a homotopy class of homotopy
equivalences α∗ : Ex → Ey depending only on the homotopy class of α rel endpoints.

(3) Under the above, concatenation of paths corresponds to composition of homotopy equiv-
alences. In other words, there is a well-defined homomorphism of groups

π1(B, x) −→ {homotopy classes of self homotopy equivalences of Ex}
[α] 7−→ (α−1)∗.

Proof. Take a path α from x to y in B. Then the inclusion Ex ↪→ E induces the following
diagram:

Ex × {0} E

Ex × [0, 1] B

p

G

G̃

where G(e, t) = α(t) for all t ∈ [0, 1]. Since p is a fibration, we get a lift G̃. At t = 0,

G̃0 : Ex × {0} → E is just the inclusion of the fibre Ex ↪→ E. On the other hand, for any t,

p◦ G̃t is the constant map at α(t) so in particular at t = 1, G̃1 gives a map Ex → Eα(1) = Ey.

Set α∗ = [G̃1]. To check α∗ is well-defined, suppose α′ : [0, 1]→ B is another path homotopic
rel endpoints to α. Set H = α′ ◦ proj[0,1] where proj[0,1] : Ex × [0, 1] → [0, 1] is the second
coordinate projection. Then using the homotopy lifting property on the diagram

Ex × {0} E

Ex × [0, 1] B

p

H

H̃

we get a map H̃ : Ex× [0, 1]→ E and, as above, a map H̃1 : Ex → Ey. One then constructs

a homotopy from G̃ → H̃ using that α ' α′ rel endpoints; this then induces a homotopy
G̃1 → H̃1. Hence α∗ is well-defined and (2) is proved.
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It is clear that for paths α, β in B such that β(0) = α(1), we have (α ∗ β)∗ = β∗ ◦ α∗.
Thus when β = α−1, β∗ ◦α∗ = (cx)∗, where cx is the constant path at x. Since (cx)∗ = [idEx ],
we have that β∗ = (α−1)∗ is a homotopy inverse of α∗. Hence α∗ is a homotopy equivalence,
so using path-connectedness we see that all fibres are homotopy equivalent, proving (1).

Finally, it is routine to prove the homotopy classes of homotopy equivalences Ex → Ex
form a group under composition. Then for (3), the above shows that (α ∗ β)∗ = β∗ ◦ α∗ and
the trivial class goes to the homotopy class of the identity map Ex → Ex, so [α] 7→ (α−1)∗ is
a homomorphism.

As with cofibrations, there is a notion of fibration in the based category Top∗. For a
based space (X, x0), let

PX = {α : I → X | α(0) = x0}

denote the (based) path space of X, as in Section 0.2.

Lemma 1.3.7. For any X, PX is contractible.

Proof. This follows easily from the fact that I = [0, 1] is contractible.

Lemma 1.3.8. For any X, the endpoint map PX → X,α 7→ α(1) is a fibration.

Proof. To prove p satisfies the homotopy lifting property, we need to complete the following
diagram for any space W :

W × {0} PY

W × I Y

g

p

H

H̃

For w ∈ W , g(w) ∈ PY is a map such that p ◦ g(w) = H(w, 0). That is, g(w) is a path
ending at the starting point of the homotopy H(w,−). To lift, just continue this path by
defining

H̃(w, s)(t) =

{
g(a)((1 + s)t), 0 ≤ t ≤ 1

1+s

H(a, (1 + s)t− 1), 1
1+s

< t ≤ 1.

Then H̃ is continuous, H̃(w, 0) = w(a) and p ◦ H̃(w, s)(−) = H̃(w, s)(1) = H(w, s). Hence
p : PY → Y is a fibration.

Notice that the fibres of the endpoint fibration p : PY → Y are, up to homotopy, the
loop space ΩY .

Definition. A map of fibrations between p : E → B and p′ : E ′ → B′ is a pair of maps
f : B → B′ and f̃ : E → E ′ making the following diagram commute:
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E E ′

B B′

f̃

p p′

f

Definition. A fibre homotopy between maps of fibrations (f0, f̃0) and (f1, f̃1) is a pair of

homotopies (H, H̃) such that H is a homotopy f0 → f1, H̃ is a homotopy f̃0 → f̃1 and the
following diagram commutes:

E × I E ′

B × I B′

H̃

p× id p′

H

Two fibrations p : E → B and q : E ′ → B over the same base are said to be fibre homotopy
equivalent if there exist maps of fibrations

E E ′

B

f

g

p q

such that f ◦ g and g ◦ f are fibre homotopic to the identity.

We next make rigorous the idea that ‘every map is a fibration’ (up to homotopy), just
as Theorem 1.1.25 showed that every map was a cofibration up to homotopy. Suppose
f : X → Y is continuous.

Definition. The mapping path space of f is the pullback fibration Pf := f ∗(Y I) along the
starting point fibration q : Y I → Y, α 7→ α(0). That is, Pf = {(x, α) ∈ X×Y I | α(0) = f(x)}
and there is a commutative diagram

Pf Y I

X Y

f ∗q q

Definition. The mapping path fibration of f : X → Y is the map pf : Pf → Y given by
p(x, α) = α(1), that is, the restriction of the endpoint fibration.
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Theorem 1.3.9. For any continuous f : X → Y ,

(1) There is a homotopy equivalence h : X → Pf such that the diagram

X Y

Pf

f

h pf

commutes.

(2) pf : Pf → Y is a fibration.

(3) If f is a fibration, then h is a fibre homotopy equivalence.

Proof. (1) Define h(x) = (x, cf(x)) where cf(x) is the constant path (in Y ) at f(x). Then the
projection π : Pf → X is obviously a homotopy inverse to h, since π ◦h(x) = π(x, cf(x)) = x;
and h ◦ π ' id via F ((x, α), s) = (x, αs), where αs(t) = α(st).

(2) We must complete the following diagram for any space A:

A× {0} Pf

A× [0, 1] Y

g

pf

H

H̃

For a ∈ A, we have g(a) = (g1(a), g2(a)) where g1(a) ∈ X and g2(a) is a path in Y starting
at f(g1(a)) and ending at H(a, 0). Continue this path to get the desired lift by setting

H̃(a, s)(t) = (g1(a), H̃2(a, s)(t)), where

H̃2(a, s)(t) =

{
g2(a)((1 + s)t), 0 ≤ t ≤ 1

1+s

H(a, (1 + s)t− 1), 1
1+s

< t ≤ 1.

(3) Note that π : Pf → X is not a fibration map a priori. To fix this, define γ : Pf×I → Y
by γ(x, α, t) = α(t). Then we have a diagram

Pf × {0} X

Pf × I Y

π

f

γ

γ̃

which commutes by definition of Pf , so there exists a lift γ̃ since f is a fibration. Define
g : Pf → X by g(x, α) = γ̃(x, α, 1). Then the diagram
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Pf X

Y

g

h
pf f

commutes by construction and g is a fibre homotopy inverse of f .

1.4 Fibration Sequences

Recall that in Section 1.2, we constructed a cofibre C(f) for every map f : X → Y such
that the sequence X → Y → C(f) induced an exact sequence of sets [C(f),W ]→ [Y,W ]→
[X,W ] for every W . Analogously, we define:

Definition. The homotopy fibre F (f) of a map f : Y → X is the pullback of the diagram

F (f) PX

Y X

p(f) p

f

Explicitly, F (f) = {(y, α) | y ∈ Y, α : I → X,α(0) = x0, α(1) = f(y)} where x0 is the
basepoint of X.

Proposition 1.4.1. For all f : Y → X and spaces W ,

[W,F (f)]
p(f)∗−−−→ [W,Y ]

f∗−→ [W,X]

is an exact sequence of sets.

Proof. Dual to Lemma 1.2.1.

Recall (Proposition 1.2.2) that if i : A ↪→ X is a cofibration, then C(i) → X/A is a
homotopy equivalence. There is a dual notion for fibrations. Suppose p : Y → X is a
fibration and let F = p−1(x0) be the fibre of a basepoint x0 ∈ X. Then there is a diagram

F F (p) Y

{x0} X

p

where F → F (p) is the map y 7→ (y, cx0) for the constant map cx0 at x0.
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Proposition 1.4.2. If p : Y → X is a fibration, then F = p−1(x0) → F (p) is a homotopy
equivalence.

Lemma 1.4.3. For any map f : Y → X, p(f) : F (f)→ Y is a fibration.

Thus we can continue to build our homotopy sequence as in Section 1.2:

· · · ΩY F (p(f)) F (f) Y X

p(f)−1(cy0) = ΩX

p2(f) p(f) f

' i(f)

Theorem 1.4.4 (Puppe Fibration Sequence). For any map f : Y → X, there is a long
exact sequence of sets for any W :

· · · → [W,ΩF (f)]→ [W,ΩY ]→ [W,ΩX]→ [W,F (f)]→ [W,Y ]→ [W,X].

Corollary 1.4.5. Suppose p : E → B is a based fibration with fibre F = p−1(b0). Then

· · · → ΩF → ΩE → ΩB → F → E → B

is a sequence of fibrations in which every map (but the last) is an inclusion of a fibre in a
fibration. Moreover, for any W there is a long exact sequence of sets

· · · → [W,ΩF ]→ [W,ΩE]→ [W,ΩB]→ [W,F ]→ [W,E]→ [W,B].

Corollary 1.4.6 (Homotopy Long Exact Sequence). For any based fibration p : E → B
with homotopy fibre F , there is a long exact sequence of groups

· · · → π2(F )→ π2(E)→ π2(B)→ π1(F )→ π1(E)→ π1(B)→ π0(F )→ π0(E)→ π0(B).

Corollary 1.4.7. If p : Y → X is a covering map, then p∗ : πn(Y ) → πn(X) is an
isomorphism for all n > 1.

Proof. For any covering space, the fibre F ↪→ Y is a discrete set, so πn(F ) = 0 for all n > 0.
Apply the long exact sequence of homotopy groups.

Corollary 1.4.8. For any spaces B,F and any n ≥ 0, there is an isomorphism πn(B×F ) ∼=
πn(B)× πn(F ).

Proof. Apply the long exact sequence to the trivial fibration F ↪→ B × F → B.
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1.5 Fibrations and Bundles

In this section we prove that every fibre bundle is a fibration.

Definition. A map p : E → B is a local fibration if there exists an open cover {Uα} of B
such that each p−1(Uα)→ Uα is a fibration.

Theorem 1.5.1 (Local-to-Global). If B is a paracompact space then any local fibration
p : E → B is a fibration.

Proof. (Sketch) Given a diagram

X × {0} E

X × I B

H̃0

p

H

H̃

we want to construct an extension H̃ of H̃0. Assume {Uα} is a cover such that p is a fibration
on each p−1(Uα). Since B is paracompact, there exists a partition of unity {ϕα} subordinate
to the Uα. We may assume {Uα} is countable, so that we have U1, U2, . . . For each n ≥ 1,
set τn = ϕ1 + . . .+ ϕn; also set τ0 = 0. Now define

Xn = {(x, t) ∈ X × I | t ≤ τn(x)}.

Then X0 = X × {0} and we have a chain of subspaces

X0 ⊆ X1 ⊆ X2 ⊆ · · · ⊆
∞⋃
n=1

Xn = X × I.

Set H̃0 = H0. We construct an extension H̃n : Xn → E for each n inductively. Given H̃n−1,
consider the map s : X × I → X × I given by (x, t) 7→ (x,min(τn−1(x) + t, 1)).

s τn−1

E
H̃n−1

We may restrict to an open set Vn ⊆ X × I such that H ◦ s(Vn) ⊆ Un. Then the fibration
property on Un gives a lift K : Vn → E in the following diagram:

Vn ∩X × {0} Γ(τn) E

Vn X × I X × I B

p

s

K
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where Γ(τn) is the graph of τn. Then define the extension H̃n : Xn → E by

H̃n(x, t) =

{
H̃n−1(x, t), if (x, t) ∈ Xn−1

K(x, t), if (x, t) ∈ Xn rXn−1.

It is easy to check that H̃n has the desired properties, so we are done by induction.

Recall that p : E → B is a (locally trivial) fibre bundle with fibre F if there exists an
open cover {Uα} of B and homeomorphisms

Uα × F p−1(Uα)

Uα

∼

p

Corollary 1.5.2. Every fibre bundle is a fibration.

Proof. Each Uα × F → Uα is a fibration by Example 1.3.2, so p is a local fibration. Apply
Theorem 1.5.1.

Example 1.5.3. If G is a discrete group acting freely and properly discontinuously on a
space X and H is any subgroup of G, then X/H → X/G is a covering map. Conversely,
when Y is a nice enough space and X is its universal cover, then G = π1(Y ) acts freely and
properly discontinuously on X and every cover of X has the form X/H → X/G = Y for some
subgroup H ≤ G. One might hope that a similar result would hold if G is a group object in
a different category. For example, if G is a Lie group acting smoothly, freely and properly
discontinuously on a manifold M , then for all closed subgroups H ≤ G, M/H → M/G is a
fibre bundle with fibre G/H.

Example 1.5.4. View S2n+1 as the set of unit vectors in Cn+1 and let S1 be the circle group
of complex numbers with modulus 1. Then S1 acts freely and properly discontinuously on
S2n+1 via λ(x0, . . . , xn) = (λx0, . . . , λxn) for any λ ∈ S1. This determines a fibration

S1 → S2n+1 → CP n.

In particular, when n = 1, we get the Hopf fibration S1 → S3 → S2 = CP 1. Applying
Corollary 1.4.6, we get the following information:

πn(S3) ∼= πn(S2) for n ≥ 3

and π2(S2) ∼= π1(S1) ∼= Z.

A vector bundle is a fibre bundle p : E → B in which each fibre p−1(b) is a (real) vector
space of dimension n and the local trivializations of the bundle, hi : Ui × Rn → p−1(Ui),
induce vector space isomorphisms

{x} × Rn hi−→ p−1(x)
h−1
j−−→ {x} × Rn

whenever x ∈ Ui ∩ Uj. We say two vector bundles E
p−→ B and E ′

p′−→ B are isomorphic if
there is a homeomorphism over B
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E E ′

B

h

p p′

inducing linear isomorphisms on each fibre. A bundle is called trivial if it is isomorphic to a
product bundle of the form B × Rn → B.

Example 1.5.5. The tangent bundle to a smooth manifold is a vector bundle TM → M
whose fibres are the tangent spaces TxM at each x ∈M .

For a map f : B′ → B and any bundle p : E → B, we define the pullback bundle
f ∗p : f ∗E → B′ by setting f ∗E = {(x, y) ∈ B′ × E | f(x) = p(y)} and taking f ∗p to be the
natural projection.

For a fixed space B, let Vectn(B) be the set of all isomorphism classes of n-dimensional
vector bundles on B.

Theorem 1.5.6. For any n,

(1) Vectn(−) is a contravariant functor under pullback.

(2) If f, g : X → B are homotopic maps, then f ∗E and g∗E are homotopy equivalent for
any bundle E → B.

That is, Vectn(−) is a homotopy functor, so it factors through the homotopy category:
Vectn(−) : h(Top)op → Sets.

Example 1.5.7. Recall that for a smooth n-manifold M , a map f : M → R` is an immersion
if dxf : TxM → R` is a one-to-one linear map for all x ∈ M . An important problem in
geometric topology is to find the smallest ` so that there exists an immersion f : M → R`.

Let Grn(R`) be the nth Grassmannian of R` and set

Grn = Grn(R∞) =
∞⋃
`=1

Grn(R`).

Then one can define a canonical bundle γn` : En(R`) → Grn(R`) by En(R`) = {(V, v) ∈
Grn(R`) × R` | v ∈ V }. This extends to a so-called universal bundle γn : En → Grn which
has the property that for all paracompact spaces X,

[X,Grn] −→ Vectn(X)

f 7−→ f ∗En

is an isomorphism. Now if f : M → R` is an immersion, there is a natural map

τf : M −→ Grn(R`)

x 7−→ dxf(TxM)

such that TM ∼= τ ∗fEn(R`) as bundles over M . It turns out that if an immersion f : M → R∞
exists, the homotopy class of τf is independent of f . Let τM denote the homotopy class of
τf for any immersion f : M → R∞.

Suppose M admits an immersion f : M → R` for some `. Then the diagram
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M

Grn(R`)

Grn

τf

τM

i`

commutes up to homotopy. Applying Z/2Z-cohomology, we get

H•(M ;Z/2Z)

H•(Grn(R`);Z/2Z)

H•(Grn;Z/2Z)

τ ∗f

τ ∗M

i∗`

which implies ker i∗` ⊆ ker τ ∗M . In fact, the converse holds as well, so M admits an immersion
into R` if and only if ker i∗` ⊆ ker τ ∗M . This provides us with an algebraic obstruction to check
rather than a topological one.

1.6 Serre Fibrations

Consider the defining diagram for a map p : E → B to be a fibration:

X × {0} E

X × I B

i p

Some nice features of the map i are that it’s both a cofibration and a homotopy equivalence.
This generalizes as follows.

Theorem 1.6.1 (Strøm). Suppose i : A→ X is a cofibration, p : E → B is a fibration and
there is a pair of maps

A E

X B

f0

i p

f1

f

Then if either i or p is a homotopy equivalence, there exists an f : X → E making the
diagram commute.
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1.6 Serre Fibrations 1 Cofibration and Fibration

To prove Strøm’s theorem, we need:

Lemma 1.6.2. If i : A → X is a cofibration and a homotopy equivalence, then there are
maps r : X → A, s : X → X × I and H : X × I → X making the diagram

A A

X

X × I

X X

id

i i

id

i r

s H

commute.

Proof. Since i is a cofibration, by Lemma 1.1.2 there exists a u : X → I such that u−1(0) = A.
One can modify this to give a deformation retract r : X → A together with a homotopy
H ′ : X × I → X satisfying H ′0 = i ◦ r,H ′1 = idX and H ′t|A = idA for all t ∈ I. Define
s : X → X × I by s(x) = (x, u(x)) and H : X × I → X by

H(x, t) =

{
H ′
(
x, t

u(x)

)
, if t < u(x)

H ′(x, 1), if t ≥ u(x).

Then r, s and H make the diagram commute by construction, but we must check H is
continuous. Let C = {(x, t) ∈ X × I | t ≤ u(x)}. Then we may write H ′ as the composition

X×I K−→ C
H|C−−→ X, where K(x, t) = (x, tu(x)), and since H ′ and K are continuous, so must

be H.

Proof of Strøm’s Theorem. Suppose i is a homotopy equivalence. Then Lemma 1.6.2 gives
maps r, s,H and a diagram:

A A

X

X × I

X X

E

B

id

i

id

i r

s H

f0

p

f1

f̃0
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1.6 Serre Fibrations 1 Cofibration and Fibration

Letting f = s ◦ f̃0 gives the desired lift. The proof when p is a homotopy equivalence is
similar.

The following is a useful variant on fibrations defined by Serre.

Definition. A map p : E → B is a Serre fibration if the diagram

Dk × {0} E

Dk × I B

p

can be completed for any disk Dk.

A fibration in the usual sense is sometimes referred to as a Hurewicz fibration to dis-
tinguish from Serre fibrations. The following is an analogy of Strøm’s theorem for Serre
fibrations.

Theorem 1.6.3. Suppose i : A → X is a relative CW-complex, p : E → B is a Serre
fibration and there is a pair of maps

A E

X B

f0

i p

f1

f

Then if either i or p is a weak homotopy equivalence, there exists an f : X → E making the
diagram commute.
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2 Cellular Theory

2.1 Relative CW-Complexes

Recall that X is a CW-complex if there is a chain of subspaces X0 ⊆ X1 ⊆ X2 ⊆ · · · such
that X =

⋃∞
n=0 Xn, X0 is discrete and, inductively, each Xn is the pushout of∐

Sn−1 Xn−1

∐
Dn Xn

Definition. A pair of spaces (X,A) is a relative CW-pair if there is a chain of subspaces

A =: X−1 ⊆ X0 ⊆ X1 ⊆ X2 ⊆ · · ·

such that X =
⋃∞
n=0 Xn and, inductively, each Xn is the pushout of∐

Sn−1 Xn−1

∐
Dn Xn

where S−1 = ∅.

Definition. A subcomplex of a CW-complex X is a subspace A ⊆ X and a CW-structure
A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆

⋃∞
n=0 An = A such that for each cell Dn → A, the composition

Dn → A ↪→ X is a cell of X.

In other words, a subcomplex of a CW-complex is just a union of some collection of cells
of the CW-complex. If A ⊆ X is a subcomplex, then (X,A) is a relative CW-pair.

Recall that a map f : X → Y between CW-complexes is cellular if f(Xn) ⊆ Yn for all n.
The following results are basic.

Lemma 2.1.1. If (X,A) is a relative CW-pair then X/A is a CW-complex with a 0-cell
corresponding to A and an n-cell for each relative n-cell of (X,A).

Lemma 2.1.2. Suppose {Xi} are CW-complexes with specified 0-cells xi ∈ Xi. Then X =∨
Xi is a CW-complex and each Xi ⊆ X is a subcomplex.

Lemma 2.1.3. Suppose A ⊆ X is a subcomplex, Y is a CW-complex and f : A → Y is
a cellular map. Then the pushout Y ∪f X is a CW-complex having Y as a subcomplex.
Moreover, (Y ∪f A)/Y ∼= X/A as CW-complexes.
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2.2 Whitehead’s First Theorem 2 Cellular Theory

Lemma 2.1.4. If X0 → X1 → X2 → · · · is a sequence of CW-complexes in which each
Xi → Xi+1 is an inclusion of a subcomplex, then X = lim

←−
Xi is a CW-complex having each

Xi as a subcomplex.

Lemma 2.1.5. If X and Y are CW-complexes, then X × Y with the product topology is a
CW-complex with an n-cell σ × τ for each p-cell σ ⊂ X and q-cell τ ⊂ Y , where p+ q = n.

Example 2.1.6. For any CW-complex X, the product X × I is a CW-complex containing
a subcomplex X × {0, 1} = X

∐
X

2.2 Whitehead’s First Theorem

Definition. Let (X, x) and (Y, y) be based space. A based map f : X → Y is a weak
equivalence if f∗ : π0(X) → π0(Y ) is a bijection and f∗ : πk(X, x) → πk(Y, y) is an
isomorphism for all k ≥ 1.

Whitehead’s theorem says that any weak equivalence between CW-complexes is a homo-
topy equivalence. To prove this, we need some technical results that are useful in their own
right.

Lemma 2.2.1. If f : X → Y is a weak equivalence and F (f) is its homotopy fibre, then
πk(F (f)) = 0 for all k.

Proof. Apply the homotopy long exact sequence (Corollary 1.4.6).

For a map f : X → Y with homotopy fibre F = F (f), we make the following observations:

� Any map Sn−1 → F corresponds to a diagram

Sn−1 X

Dn Y

g

i f

h

which commutes. This gives a natural description of πn−1(F ).

� The map πn(Y ) → πn−1(F ) in the long exact sequence of homotopy groups (Corol-
lary 1.4.6) corresponds to the map sending the class of h̄ : Sn → Y to the class of
πn−1(F ) represented by the diagram

Sn−1 X

Dn Y

c

i f

h
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2.2 Whitehead’s First Theorem 2 Cellular Theory

where c = cx is constant and h is Dn → Dn/Sn−1 = Sn
h̄−→ Y . In a similar manner,

πn−1(F )→ πn−1(X) corresponds to sending a diagram

Sn−1 X

Dn Y

g

i f

h

to the class [g].

� πn−1(F ) = 0 is equivalent to completing such a diagram to a diagram

Sn−1 X

CSn−1

CDn

Dn Y

g

i f

h

G

H

This is stated slightly differently in the following lemma.

Lemma 2.2.2. Suppose f : X → Y is a map with homotopy fibre F . Then πn−1(F ) = 0 if
and only if each diagram

Sn−1 × {1} X

Sn−1 × I ∪Dn ∪ {0} Y

g

f

h

can be completed to a diagram
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2.2 Whitehead’s First Theorem 2 Cellular Theory

Sn−1 × {1} X

Dn × {1}

Dn × I

Sn−1 × I ∪Dn × {0} Y

g

f

h

G

H

Proof. For any disk we have a homeomorphism CDn ∼= Dn × I which sends the cone point
to the center of Dn × {1}, Dn to Sn−1 × I ∪ Dn × {0}, Sn−1 to Sn−1 × {1} and CSn−1 to
Dn × {1}. Thus the statement follows from the last observation above.

This generalizes to the so-called homotopy extension and lifting property, or HELP for
short.

Theorem 2.2.3 (Homotopy Extension and Lifting Property). Suppose (X,A) is a relative
CW-pair and f : Y → Z is a weak equivalence. Then every diagram

A× {1} Y

A× I ∪X ∪ {0} Z

g

f

h

can be completed to a diagram

A× {1} Y

X × {1}

X × I

A× I ∪X × {0} Z

g

f

h

G

H

Proof. We construct Gn : Xn × {1} → Y and Hn : Xn × I → Z inductively. The base case
is trivial, and for the inductive step, one can extend cell-by-cell using Lemma 2.2.2 applied
to the diagram
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2.2 Whitehead’s First Theorem 2 Cellular Theory

Xn−1 × {1} Y

Xn × {1}

Xn × I

Xn−1 × I ∪Xn × {0} Z

Gn−1

f

Hn−1 ∪ h

Gn

Hn

Lemma 2.2.4. For any weak equivalence f : Y → Z and any CW-complex X, the induced
map f∗ : [X, Y ]→ [X,Z] is a bijection.

Proof. For surjectivity, consider the relative CW-pair (X,∅). Then for every h : X → Z
there is a diagram

∗ Y

X × {1}

X × I

X × {0} Z

f

h

G

H

By HELP, there is a map G : X = X ×{1} → Y and a homotopy H : X × I → Z satisfying
H0 = h and H1 = f ◦ G. Therefore [h] = f∗[G]. Similarly, we can show injectivity by
analyzing the relative CW-pair (X × I,X × {0, 1}) using HELP.

Theorem 2.2.5 (First Whitehead Theorem). If f : X → Y is a weak equivalence between
CW-complexes, then f is a homotopy equivalence.

Proof. Take X = Z. Then by Lemma 2.2.4 there is a map g : Z → Y which is unique up
to homotopy and satisfies f ◦ g ' 1Z . On the other hand, letting X = Y and applying
Lemma 2.2.4 shows that f∗ : [Y, Y ]→ [Y, Z] is a bijection, so

f∗[g ◦ f ] = [f ◦ (g ◦ f)] = [(f ◦ g) ◦ f ] = [idZ ◦ f ] = [f ] = f∗[idY ].

Hence g ◦ f ' idY so f is a homotopy equivalence with homotopy inverse g.

Corollary 2.2.6. If X is a CW-complex such that πk(X) = 0 for every k, then X is
contractible.

Proof. Apply Whitehead’s theorem to the map X → ∗.
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3 Higher Homotopy Groups

In this chapter we study the homotopy groups πn(X) = [Sn, X]. Recall that πn(X) is a
group if n ≥ 1 and is abelian if n ≥ 2.

When (X,A) is a pair of based spaces, the inclusion A→ X has homotopy fibre F which
can be interpreted as the relative path space P (X,A) = {γ : I → X | γ(0) = x0, γ(1) ∈ A}.

Definition. For a pair (X,A), the nth relative homotopy group is πn(X,A) := πn−1(P (X,A)).

It follows Corollary 0.2.5 that πn(X,A) = πn−1(P (X,A)) = . . . = π0(Ωn−1P (X,A)). In
particular, πn(X,A) is a group if n ≥ 2 and an abelian group if n ≥ 3.

Remark. The relative homotopy groups may equivalently be defined by homotopy classes
of maps of pairs πn(X,A) = [(Dn, Sn−1), (X,A)].

Proposition 3.0.1. For all pairs (X,A), there is a long exact sequence

· · · → πn(A)→ πn(X)→ πn(X,A)→ πn−1(A)→ · · ·

Proof. This is just Corollary 1.4.6.

3.1 n-Connectedness

In the last chapter, we defined a weak equivalence to be a map f : X → Y which induces an
isomorphism πk(X) → πk(Y ) for all k. In this section, we give a bounded version of weak
equivalence which satisfies an analogue of Whitehead’s theorem.

Definition. A space X is n-connected if πk(X) = 0 for all k ≤ n. We interpret 0-
connected to mean that X is path-connected.

Example 3.1.1. Saying a space is 1-connected is the same as saying it is simply connected.

Definition. A map f : X → Y is an n-equivalence, or is an n-connected map, if the
homotopy fibre F (f) is (n− 1)-connected.

Lemma 3.1.2. For a map f : X → Y with homotopy fibre F = F (f), the following are
equivalent:

(1) F is (n− 1)-connected, i.e. f is n-connected.

(2) The induced map f∗ : πk(X)→ πk(Y ) is an isomorphism for all k < n and is surjective
for k = n.

(3) (Y, f(X)) is an n-connected pair, i.e. πk(Y, f(X)) = 0 for all k ≤ n.

Proof. (1) ⇐⇒ (2) follows from the homotopy long exact sequence in Corollary 1.4.6.
(2) ⇐⇒ (3) follows from Proposition 3.0.1.
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3.1 n-Connectedness 3 Higher Homotopy Groups

Theorem 3.1.3 (Whitehead). If f : Y → Z is n-connected then for any CW-complex X,
the induced map f∗ : [X, Y ] → [X,Z] is an isomorphism if n < dimX and is surjective if
n = dimX.

Proof. This follows from the proof of Lemma 2.2.4.

Corollary 3.1.4. If X and Y are CW-complexes of dimensions dimX, dimY < n and
f : X → Y is an n-equivalence, then f is a homotopy equivalence.

Suppose X and Y are CW-complexes with n-skeleta Xn and Yn, respectively. Recall that
the nth cellular chain group of X is defined as Ccell

n (X) = Hn(Xn, Xn−1). If f : X → Y is a
cellular map, then there is an induced map

f∗ : Ccell
• (X) −→ Ccell

• (Y )

but this need not be true for general f . However, the cellular approximation theorem says
that an arbitrary map f : X → Y is homotopic to a cellular map, and any two cellular maps
that are homotopic are in fact homotopic via a cellular homotopy. We generalize this in the
theorem below, after the following lemma.

Lemma 3.1.5. If Z is obtained from Y by attaching cells of dimension greater than n, then
πk(Z, Y ) = 0 for all k ≤ n, i.e. (Z, Y ) is n-connected.

Proof. (Sketch) We can reduce to the case of attaching a single cell, Z = Y ∪α Dr for an
attaching map α : Sr−1 → Y , where r ≥ n + 1. Then by the remark in the introduction,
πn(Z, Y ) corresponds to pairs of maps

Sn−1 Y

Dn Y ∪Dr

The result then follows using simplicial (or smooth) approximation, Sard’s theorem to bound
the image of the pair and then a retraction of pairs.

Theorem 3.1.6. Suppose f : (X,A) → (Y,B) is a map of relative CW-pairs. Then f is
homotopic rel A to a cellular map of pairs.

Proof. Assume X0 is equal to the union of A and some discrete set of points, and likewise
for B ⊆ Y0, so that there are sequences of subcomplexes A ⊆ X0 ⊆ X1 ⊆ · · · ⊆ X and
B ⊆ Y0 ⊆ Y1 ⊆ · · · ⊆ Y . By induction, we may assume there is a map gn−1 : Xn−1 → Yn−1

and a homotopy H : Xn−1× I → Y such that H0 = f and H1 = gn−1. Consider the diagram

49
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Xn−1 × {1} Yn−1

Xn × {1}

Xn × I

Xn−1 × I ∪Xn × {0} Y

gn−1

H ∪ f

gn

H̃

By HELP (Theorem 2.2.3), there exist maps gn : Xn = Xn×{1} → Yn−1 and H̃ : Xn×I → Y
completing the diagram as shown, as long as πk(Y, Yn) = 0 for all k ≤ n. However, by

Lemma 3.1.5 this holds. Thus gn and H̃ extend gn−1 and H to the n-skeleton. By induction,
we can extend to all of (X,A).

3.2 The Blakers-Massey Theorem

Consider the homotopy groups as functors

πn : Top× Top −→ Groups

(X,A) 7−→ πn(X,A).

It is known that πn(−,−) are homotopy functors, and by Proposition 3.0.1 we know there
is a long exact sequence · · · → πn(A) → πn(X) → πn(X,A) → πn−1(A) → · · · for any pair
(X,A). These are almost all of the Eilenberg-Steenrod axioms for a homology theory (that
πn satisfies the dimension axiom is obvious), but excision is missing. In fact, excision fails
in general as the following example shows.

Example 3.2.1. We know that πk(S
1) = Z if k = 1 and is 0 otherwise. If the excision axiom

held for homotopy groups, then the embedding S1 ↪→ S2 would imply πk+1(S2) ∼= πk(S
1) for

all k, but this is false since e.g. π3(S2) 6= 0 by Example 1.2.13.

However, the Seifert-van Kampen theorem gives an excision-type result when the spaces
involved satisfy certain conditions (path-connected with contractible intersection). The
Blakers-Massey theorem generalizes this considerably.

Theorem 3.2.2 (Blakers-Massey). Suppose A,B ⊆ X are subsets and m,n ≥ 0 are integers
such that either m ≥ 1 or n ≥ 1. If (A,A∩B) is an m-connected pair and (B,A∩B) is an
n-connected pair, then the map of pairs (A,A ∩B)→ (A ∪B,B) is (m+ n)-connected.

Proof. See May (called the Homotopy Excision Theorem) or tom Dieck.

Corollary 3.2.3. For A,B ⊆ X such that (A,A ∩ B) is m-connected and (B,A ∩ B) is
n-connected, there is a long exact sequence

0→ πm+n(A ∩B)→ πm+n(A)⊕ πm+n(B)→ πm+n(A ∪B)→ πm+n−1(A ∩B)→ · · ·

50
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Example 3.2.4. Let X be a space and consider the suspension diagram

X CX

CX ΣX

Then (CX,X) is m-connected if and only if X is (m− 1)-connected. This means that if X
is (m − 1)-connected, the map πk(CX,X) → πk(ΣX,CX) is an isomorphism for k < 2m
and is surjective for k = 2m, by Theorem 3.2.2. But since CX is contractible, the long exact
sequence implies πk(CX,X) ∼= πk−1(X) and πk(ΣX,CX) ∼= πk(ΣX) for all k. In fact, the
resulting isomorphism πk−1(X) → πk(ΣX) is just the map induced by suspension, which
proves the following important result.

Corollary 3.2.5 (Freudenthal Suspension Theorem). Suppose X is (m−1)-connected. Then
the suspension functor Σ : X → ΣX induces πk−1(X) → πk(ΣX) which is an isomorphism
for k < 2m and a surjection for k = 2m.

Note that the map πk(X)→ πk+1(ΣX) ∼= πk(ΩΣX) induced by X → ΩΣX is the adjoint
to the identity id : ΣX → ΣX.

Corollary 3.2.6. If X is (n− 1)-connected, then the map [K,X]→ [ΣK,ΣX] is a bijection
if K is a CW-complex of dimension less than 2n−1 and is a surjection if K is a CW-complex
of dimension equal to 2n− 1.

Proof. Apply Freudenthal’s suspension theorem and Whitehead’s theorem (2.2.5).

Corollary 3.2.7. Let n ≥ 1. Then πk(S
n) = 0 if k < n and πn(Sn) ∼= Z.

Proof. This is true for n = 1 by standard computations. To induct, assume Sn is (n − 1)-
connected. Then by Freudenthal’s suspension theorem, πk(S

n) → πk+1(Sn+1) is an iso-
morphism for all k < 2n − 1 and is surjective for k = 2n − 1. This directly implies both
statements.

Corollary 3.2.8. The map πn(Sn)→ Hn(Sn) is an isomorphism for all n ≥ 1.

Corollary 3.2.9. The Hopf map H : π3(S2)→ Z is an isomorphism.

Proof. By Example 1.5.4, π3(S2) ∼= π3(S3) but Corollary 3.2.7 shows that π3(S3) ∼= Z.

Corollary 3.2.10. The Whitehead product [i2, i2] (see Example 1.2.13) is homotopic to
2η : S3 → S2.

Proof. This follows from the previous corollary and the fact that the Hopf map takes [i2, i2]
to 2 ∈ Z.

More generally, if
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C B

A X

is an “excisive pair”, e.g. C = A ∩B and X = Int(A) ∪ Int(B) as in the situation above, or
the diagram is a pushout of CW-complexes, or the diagram is a homotopy pushout, then we
have a similar statement.

Theorem 3.2.11. If ((A,C), (X,B)) is an excisive pair, (A,C) is m-connected and (B,C)
is n-connected, then the map of pairs (A,C)→ (X,B) is an (m+ n)-equivalence.

Example 3.2.12. X = A ∨B fits into a pushout diagram

∗ B

A A ∨B

If A is m-connected and B is n-connected, the long exact sequence

· · · → πk(B)→ πk(A ∨B)→ πk(A ∨B,B)→ πk−1(B)→ · · ·

is split by the map induced by the retraction r : A∨B → B. This implies that πk(A∨B) ∼=
πk(B)⊕ πk(A∨B,B) for all k. On the other hand, Corollary 1.4.8 shows that πk(A×B) ∼=
πk(A)⊕ πk(B) for all k ≥ 2, so by the Blakers-Massey theorem (3.2.2 or 3.2.11), we get an
isomorphism πk(A) ∼= πk(A∨B,B) for all k ≤ m+n. In particular, πk(A∨B)→ πk(A×B)
is an isomorphism for all k ≤ m+ n.

If A is a CW-complex obtained by gluing cells of dimension at least m to a 0-cell ∗, and
B is the same thing with dimension at least n, then A×B can be viewed as A∨B together
with cells glued on of dimension at least m+ n. Thus the Blakers-Massey theorem in some
way measures the difference between the product and wedge product of two spaces (at least
up to homotopy).

Corollary 3.2.13. Let i : A→ X be a map. If A is m-connected and (X,A) is n-connected,
then (X,A)→ (X/A, ∗) is an (m+ n+ 1)-equivalence.

Proof. By Theorem 1.1.25 and Proposition 1.2.2(b), C(i) is homotopy equivalent to X/A.
Consider the diagram

A CA

X C(i)

∗

X/A
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Since A is m-connected, (CA,A) is (m + 1)-connected. Thus two applications of Theo-
rem 3.2.11 give the result.

For a map f : Y → Z, we constructed a homotopy fibre F (f) and a homotopy cofibre
C(f), giving a sequence F (f)→ Y → Z → C(f). These can be compared via the diagram

ΩZ F (f) Y Z

ΩC(f) ΩC(f) ∗ C(f)

f

in which the right square commutes up to homotopy and there is an interesting map F (f)→
ΩC(f) filling in the middle square.

Corollary 3.2.14. If Y is m-connected and f : Y → Z is an n-equivalence, then the above
map F (f)→ ΩC(f) is an (m+ n)-equivalence.

Proof. There is a diagram

Y CY

Mf C(f)

where Mf is the mapping cylinder of f . Then by Corollary 3.2.13, πk(Mf , Y )→ πk(C(f)) is
an isomorphism for k < m+n+1 and is surjective for k = m+n+1. But by Theorem 1.1.25
and Lemma 3.1.2, πk(Mf , Y ) ∼= πk(Z, Y ) ∼= πk−1(F (f)), so the result follows.

Example 3.2.15. By Freudenthal’s suspension theorem (Corollary 3.2.5), the suspension
functor induces a sequence

Z ∼= π3(S2)� π4(S3)
∼−→ π5(S4)

∼=−→ · · ·
where π3(S2) = 〈η〉 for the Hopf fibration η (by Corollary 3.2.9). Since Σ[i2, i2] is nullhomo-
topic (Example 1.2.13), Corollary 3.2.10 implies that 2η lies in the kernel of π3(S2)→ π4(S3).
Thus π4(S3) (and all subsequent πn+1(Sn) groups) is either 0 or Z/2Z according to whether
Ση is null or not.

Consider the cofibration sequence S3 η−→ S2 → C(η) = CP 2. Note that x generates
H2(CP 2;Z) if and only if x2 generates H4(CP 2;Z) – which would imply H(η) = 1. With
mod 2 coefficients, we can apply the Steenrod square

Sq2 : Hn(X;Z/2Z) −→ Hn+2(X;Z/2Z)

which, usefully, commutes with suspension. Thus if η were nullhomotopic, we would have
C(Ση) homotopy equivalent to S3 ∨ S5 but we know that C(Ση) ∼= ΣC(η) = ΣCP 2. By
naturality of Sq2, if C(Ση) were indeed homotopic to S3 ∨ S5, the map

Sq2 : H3(C(Ση);Z/2Z) −→ H5(C(Ση);Z/2Z)

would be 0. However, in the commutative diagram
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H3(ΣCP 2;Z/2Z) H5(ΣCP 2;Z/2Z)

H2(CP 2;Z/2Z) H4(CP 2;Z/2Z)

Sq2

∼= ∼=
Sq2

the columns are isomorphisms (a classic corollary of the Mayer-Vietoris sequence) and
the bottom row is an isomorphism since Sq2(x) = x2 6= 0 when x is the generator of
H2(CP 2;Z/2Z). This proves:

Theorem 3.2.16. For n ≥ 3, πn+1(Sn) ∼= Z/2Z.

Here is a reformulation of the Blakers-Massey theorem (either Theorem 3.2.2 or 3.2.11).
Suppose

C B

A X

g

f

is a homotopy pushout (as in Section 1.1). Form the homotopy pullback

P B

A X

k `

This determines a map h : C → P which completes the diagram

C

P B

A X

h

f

g

Theorem 3.2.17. For A,B,C,X, P as above, if f : C → A is an m-equivalence and
g : C → B is an n-equivalence, then h : C → P is an (m+ n− 1)-equivalence.

Proof. We prove that the statement is equivalent to Theorem 3.2.11. Taking homotopy fibres
of f, k and `, we get a diagram
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F (f) F (k) F (`)

C P B

A A X

'

f k `

where F (k) → F (`) is a homotopy equivalence since the lower right square is a homotopy
pullback. Applying the long exact sequence in homotopy (Corollary 1.4.6) to the left and
middle columns gives us a diagram

...
...

πr(A) πr(A)

πr−1(F (f)) πr−1(F (k))

πr−1(C) πr−1(P )

πr−1(A) πr−1(A)

...
...

α

β

By the Five Lemma, α is an isomorphism for r < m + n and is surjective for r = m + n
precisely when β is the same. Finally, it’s easy to see that this property for α is equivalent
to Theorem 3.2.11 and the property for β is equivalent to the statement of the theorem.

A second reformulation of the Blakers-Massey theorem makes the analogy with the exci-
sion theorem for homology more apparent.

Lemma 3.2.18. Suppose we have a map of long exact sequences of groups
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· · · A′n B′n C ′n A′n−1 · · ·

· · · An Bn Cn An−1 · · ·

α β γ α

such that γ : C ′• → C• is an isomorphism. Then there is a long exact sequence

· · · → A′n → B′n ⊕ An → Bn → A′n−1 → · · ·

Example 3.2.19. Using the long exact sequences of the pairs (A,A ∩ B) and (B,A ∪ B),
with γ the excision isomorphism, one obtains the Mayer-Vietoris sequence. (In fact, excision
and Mayer-Vietoris are equivalent.)

Theorem 3.2.20. If

P B

A X

is a homotopy pullback, then there is a long exact sequence

· · · → πr(P )→ πr(B)⊕ πr(A)→ πr(X)→ πr−1(P )→ · · ·

Corollary 3.2.21. If

C B

A X

g

f

is a homotopy pushout such that f is an m-equivalence and g is an n-equivalence, then there
is a long exact sequence

πm+n−1(C)→ πm+n−1(B)⊕ πm+n−1(A)→ πm+n−1(X)→ πm+n−2(C)→ · · ·

3.3 The Hurewicz Theorem

Let (X, x0) be a based space and take α : Sn → X. This induces a map on homology groups
α∗ : H•(S

n)→ H•(X). We know that Hn(Sn) ∼= Z; fix a generator un ∈ Hn(Sn). Then the
assignment α 7→ α∗(un) determines a well-defined map

hX : πn(X, x0) −→ Hn(X)

called the Hurewicz map.
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Lemma 3.3.1. The Hurewicz map induces a natural transformation

h : πn(−) −→ Hn(−)

of functors of groups for every n ≥ 1.

In particular, each hX : πn(X, x0) → Hn(X) is a group homomorphism. From algebraic
topology, we know that hX : π1(X, x0)→ H1(X) is surjective with kernel [π1(X, x0), π1(X, x0)],
so that H1(X) ∼= π1(X, x0)ab. When n ≥ 2, we will prove that h is an isomorphism in certain
degrees.

First, we need the following technical result, called the CW Resolution Theorem, or
sometimes the CW Approximation Theorem.

Theorem 3.3.2 (CW Resolution). For every space X, there is a CW-complex K and a weak
equivalence g : K → X. Furthermore, if X is (n − 1)-connected (n ≥ 1), then such a K
exists consisting of one 0-cell and all other cells of dimension n or higher.

Proof. (Sketch) We construct the CW-complex K =
⋃∞
n=0Kn and maps gn : Kn → X

inductively, such that gn is an n-equivalence. We may suppose X is path-connected, or
repeat the subsequent process on each path component. Let K0 be a point and g0 : K0 ↪→ X
the inclusion of any basepoint. Inductively, suppose K0 ⊂ K1 ⊂ · · · ⊂ Kn and gr : Kr → X
have been constructed for 0 ≤ r ≤ n so that gr is an r-equivalence. Consider ker(gn)∗, the
kernel of the induced map (gn)∗ : πn(Kn)→ πn(X). We may choose maps {fα : Sn → Kn}α
generating ker(gn)∗ which are the attaching maps for the n-skeleton: ∨fα :

∨
α S

n → Kn.
Let K ′n+1 be the pushout of the diagram

∨
α S

n Kn

∨
αD

n+1 K ′n+1

∨fα

Then composing with gn, we get a map g′n+1 : K ′n+1 → X completing the diagram

∨
α S

n Kn

∨
αD

n+1 K ′n+1

X

∨fα

gn

g′n+1

Since {fα} were chosen to generate ker(gn)∗, we can factor (gn)∗ through a surjection and
g′n+1:
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ker(gn)∗ πn(Kn) πn(X)

πn(K ′n+1)

(gn)∗

(g′n+1)∗

It follows that g′n+1 is an isomorphism. Finally, (g′n+1)∗ : πn+1(K ′n+1) → πn+1(X) is not
guaranteed to be onto, but we remedy this by setting Kn+1 =

∨
α S

n ∨ K ′n+1 and defining
gn+1 : Kn+1 → X by gn ◦ ∨fα on

∨
α S

n and g′n+1 on K ′n+1. By construction, gn+1 is an
(n+ 1)-equivalence so we are done by induction.

Lemma 3.3.3. If n > 1 then πn (
∨
α S

n) ∼=
⊕

α Z.

Proof. There is a natural map

⊕
α

Z ∼=
⊕
α

πn(Sn)→ πn

(∨
α

Sn

)
induced by the αth inclusion Sn ↪→

∨
α S

n on each copy of Sn. For an arbitrary space
X, consider the wedge Y = X ∨ Sn. By Example 3.2.12, the above sequence restricts
to an isomorphism πn(Y ) ∼= πn(X) ⊕ πn(Sn), so inductively (or passing to the colimit),
πn (
∨
α S

n) ∼=
⊕

α Z.

Theorem 3.3.4 (Hurewicz). Suppose X is simply connected. Then the conditions

(1) πk(X) = 0 for all k < n

(2) Hk(X) = 0 for all k < n

are equivalent, and when either holds, the Hurewicz map h : πn(X)→ Hn(X) is an isomor-
phism and h : πn+1(X)→ Hn+1(X) is surjective.

Proof. Suppose (1) =⇒ (2) holds (for any n) and implies that h : πn(X) → Hn(X) is an
isomorphism (for any n such that the conditions hold). We deduce (2) =⇒ (1) from this
assumption. Suppose (1) is false, so there is a smallest m < n such that πm(X) 6= 0. Then
πk(X) = 0 for k < m, so h : πm(X) → Hm(X) is an isomorphism by hypothesis, but then
Hm(X) 6= 0, a contradiction. Hence (2) =⇒ (1) holds in the presence of the assumption at
the beginning, so it’s enough to show that implication is always valid.

Assume πk(X) = 0 for all k < n. By Theorem 3.3.2, we may assume X = Xn+1 is the
cofibre of attaching ∨fα :

∨
α S

n →
∨
αD

n+1 along
∨
α S

n ⊆
∨
αD

n+1. That is, X is the
pushout of the diagram ∨

α S
n

∨
α S

n

∨
αD

n+1 X

∨fα

58



3.3 The Hurewicz Theorem 3 Higher Homotopy Groups

Applying πn and Hn, we get a commutative diagram (since h is natural by Lemma 3.3.1):

πn (
∨
α S

n) πn (
∨
α S

n) πn(X)

Hn (
∨
α S

n) Hn (
∨
α S

n) Hn(X) 0

j

h h h

Note that the left and middle vertical arrows are isomorphisms by Lemma 3.3.3. Thus it
remains to show j is onto and apply the Five Lemma to see that h : πn(X)→ Hn(X) is an
isomorphism. In the long exact sequence in relative homotopy,

· · · → πn+1

(
X,
∨
α

Sn

)
→ πn

(∨
α

Sn

)
j−→ πn(X)→ πn

(
X,
∨
α

Sn

)
→ · · ·

we have πn (X,
∨
α S

n) ∼= πn (
∨
αD

n+1,
∨
α S

n) = 0 by Corollary 3.2.21 but the latter is 0
by definition of the relative homotopy group. Hence j is onto, so h : πn(X) → Hn(X) as
desired. A similar proof shows that (2) holds, so we are done.

Corollary 3.3.5 (Relative Hurewicz Theorem). For any pair (X,A), the conditions

(1) πk(X,A) = 0 for all k < n

(2) Hk(X,A) = 0 for all k < n

are equivalent, and when either holds, the relative Hurewicz map h : πn(X,A) → Hn(X,A)
is an isomorphism and h : πn+1(X,A)→ Hn+1(X,A) is surjective.

Proof. Up to homotopy equivalence, we may assumeA ↪→ X is a cofibration (Theorem 1.1.25).
Consider the commutative diagram

πk(X,A) Hk(X,A)

πk(X/A) Hk(X/A)

h

h

The vertical arrows are isomorphisms by Corollary 3.2.13 and Lemma 1.1.16, respectively.
The corollary then follows from the ordinary Hurewicz theorem.

Corollary 3.3.6 (Second Whitehead Theorem). Suppose X and Y are simply connected
CW-complexes and f : X → Y is any map. Then f∗ : πn(X)→ πn(Y ) is an isomorphism if
and only if f∗ : Hn(X)→ Hn(Y ) is an isomorphism.

Proof. Replacing Y by the mapping cylinder Mf , we may assume f is a cofibration (The-
orem 1.1.25). In particular, f is an inclusion by Proposition 1.1.5. Then f inducing an
isomorphism on πn is equivalent to πn(Y,X) = 0, and likewise f inducing an isomorphism
on Hn is equivalent to Hn(Y,X) = 0. Hence the result follows from the relative Hurewicz
theorem.
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For each space X, fix a choice of a CW-complex ΓX and a resolution gX : ΓX → X by
Theorem 3.3.2. Then for any map f : X → Y , there is a diagram

ΓX ΓY

X Y

gX gY

f

Then by the first Whitehead theorem (Theorem 2.2.5), (gY )∗ : [ΓX,ΓY ] → [ΓX, Y ] is a
bijection, so there exists a map Γf : ΓX → ΓY which makes the diagram above commute
up to homotopy. Such a Γf is unique up to homotopy, so in fact we have defined a functor

Γ : h(Top) −→ h(Top)

X −→ ΓX

(X
f−→ Y ) (ΓX

Γf−→ ΓY ).

Corollary 3.3.7. If f : X → Y is a weak equivalence then f∗ : H•(X) → H•(Y ) is an
isomorphism.

Proof. By the above, we may transfer the question to ΓX → ΓY , and then the result follows
from the second Whitehead theorem (Corollary 3.3.6).

3.4 Brown Representability

Let Top∗ and Set∗ be the categories of based topological spaces and based sets, respectively.
Each space Y ∈ Top∗ defines a contravariant functor

hY : Top∗ −→ Set∗

X 7−→ [X, Y ].

Definition. A contravariant functor F : Top∗ → Set∗ is said to be representable if it is
naturally isomorphic to hY for some Y ∈ Top∗.

Remark. Suppose F ∼= hY . By Yoneda’s lemma, any bijection [X, Y ] ∼= F (X) must be of
the form f 7→ f ∗(u) for some u ∈ F (Y ), where f ∗ is the pullback in Set∗.

The most obvious question is: what conditions on a functor F : Top∗ → Set∗ guarantee
that F is representable? Certainly the following conditions are necessary:

� F must be a homotopy functor, i.e. if f and g are homotopic maps then F (f) = F (g).

� For any collection of based spaces {Xα}, the natural map F (
∨
Xα)→

∏
F (Xα) must

be a bijection.
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3.4 Brown Representability 3 Higher Homotopy Groups

� F must satisfy some type of Mayer-Vietoris principle, like the Blakers-Massey theorem
for homotopy groups.

The Brown representability theorem shows that in fact, these conditions are sufficient as
well.

Theorem 3.4.1 (Brown Representability). Suppose F : Top∗ → Set∗ is a contravariant
functor satisfying:

(1) F is a homotopy functor.

(2) For any {Xα}, F (
∨
Xα)→

∏
F (Xα) is bijective.

(3) For any homotopy pushout

C B

A P

the corresponding diagram

F (P )

F (A)×F (C) F (B) F (B)

F (A) F (C)

α

is a weak pullback, i.e. α is onto. (Here, F (A) ×F (C) F (B) is the fibre product of
F (A) and F (B) over F (C).)

Then F is representable.

To prove this, we need the following lemma.

Lemma 3.4.2. Suppose F is a functor satisfying the above conditions. Given any CW-
complex Z and an element z ∈ F (Z), there exists a CW-complex Y , a map i : Y → Z and
some u ∈ F (Y ) such that Y is obtained from Z by attaching cells and i∗(u) = z. Moreover,
the map

θu : πn(Y ) −→ F (Sn)

f 7−→ f ∗(u)

is a bijection for every n.
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Proof. We construct Y as the direct limit of a sequence Z
i−→ Y0

i0−→ Y1
i1−→ Y2

i2−→ · · · , along
with elements uk ∈ F (Yk) such that

(i) For each k, (ik)∗(uk+1) = uk and (ik ◦ · · · ◦ i0)∗(uk+1) = z.

(ii) The induced maps (ik)∗ : [Sn, Yk]→ [Sn, Yk+1] are compatible with the θuk :

[Sn, Y0] [Sn, Y1] [Sn, Y2] · · ·

F (Sn)

(i0)∗ (i1)∗

θu0 θu1 θu2

and each θuk is onto with ker θuk ⊆ ker(ik)∗.

Given these properties, condition (3) will imply for Y = lim
−→

Yk that there exists u ∈ F (Y )

with u|Yk = uk for each k. Thus the map [Sn, Y ] = lim
−→

[Sn, Yk]
θu−→ F (Sn) will be a bijection.

To construct the sequence Y0 → Y1 → · · · , start with

Y0 = Z ∨
∨
n≥0

∨
x∈F (Sn)

Sn.

Then by condition (2),

F (Y0) = F (Z)×
∏
n≥0

∏
x∈F (Sn)

F (Sn)

so we may choose u0 ∈ F (Y0) to be the element corresponding to (z, x, x, x, . . .) in the above
product. Inductively, given Yk and uk ∈ F (Yk), let Yk+1 be the following pushout:∨

n≥0

∨
f∈ker θuk

Sn
Yk

∨
n≥0

∨
f∈ker θuk

Dn+1

Yk+1

By condition (3), we get a commutative diagram

[Sn, Yk] [Sn, Yk+1]

F (Sn)

(ik)∗

θuk θuk+1

so we are done by induction.
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Proof of Brown Representability. Apply Lemma 3.4.2 to Z = ∗ to produce a space Y and
u ∈ F (Y ) such that θu : πn(Y ) → F (Sn) is an isomorphism for all n. We claim that
θu : [X, Y ] → F (X), f 7→ f ∗(u) is an isomorphism for all X, and hence induces a natural
isomorphism hY ∼= F .

To show θu is onto, pick x ∈ F (X). Then applying F to the diagram

∗ X

Y X ∨ Y

and using condition (2) on F gives a commutative diagram in Set∗:

F (∗) F (X)

F (Y ) F (X)× F (Y )

Then for Z = X ∨Y and z = (x, u) ∈ F (X)×F (Y ) = F (X ∨Y ), Lemma 3.4.2 gives a space
Y ′, a map i : X ∨ Y → Y ′ and u′ ∈ F (Y ′) satisfying i∗(u′) = (x, u) and an isomorphism

θu′ : πn(Y ′) → F (Sn) for all n. Note that the composition k : Y → X ∨ Y i−→ Y ′ is then a
weak homotopy equivalence, so the diagram

[X, Y ′] [X, Y ]

F (X)

k∗

θu′ θu

commutes and hence k∗ is a bijection. Hence there is some f ∈ [X, Y ] such that θu(f) = x.
To prove θu is one-to-one, suppose θu(f) = x = θu(g) for f, g : X → Y . Then we have a

pushout

X ∨X X × I

Y P

i0 ∨ i1

f ∨ g β

α

By condition (3), there exists z ∈ F (P ) such that α∗(z) = u and β∗(z) = x. Applying
Lemma 3.4.2 to Z = P and this z, we get Y ′, u′ ∈ F (Y ′) and i : P → Y ′ such that
i∗(u′) = z. Hence (i ◦ α)∗(u′) = u, so i ◦ α is a homotopy equivalence Y → P → Y ′; denote
by q its homotopy inverse Y ′ → Y . Then H = q ◦ β : X × I → Y ′ → Y is a homotopy from
f to g, so θu is one-to-one. This completes the proof.
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Example 3.4.3. Let F be the functor assigning X to F (X) = Vectn(X), the set of n-
dimensional vector bundles over X up to isomorphism. Then Vectn is a homotopy functor
(Theorem 1.5.6) and it’s easy to prove it satsifies the product condition. Moreover, the
weak pullback condition can be seen by extending bundles over unions. Hence by Brown
representability, there is some space Gn for each n such that Vectn(X) ∼= [X,Gn] for all X.
In fact, we saw in Example 1.5.7 that Gn may be taken to be the nth infinite Grassmannian,
Grn =

⋃∞
`=1 Grn(R`).

3.5 Eilenberg-Maclane Spaces

Let G be an abelian group and fix n ≥ 0. Consider the cohomology functor with coefficients
in G:

H̃n(−;G) : Top∗ −→ Set∗

X 7−→ H̃n(X;G).

Then H̃n(−;G) satisfies the three conditions in the Brown representability theorem (3.4.1),

so there exists a space K(G, n) such that H̃n(−;G) is naturally isomorphic to hK(G,n), i.e.

there is a class u ∈ H̃n(K(G, n);G) such that θu : [X,K(G, n)] → H̃n(X;G) is a bijection
for all X.

Definition. Such a space K(G, n) is called an Eilenberg-Maclane space of type (G, n),

and the class u ∈ H̃n(K(G, n);G) is called a fundamental class.

Proposition 3.5.1. For any Eilenberg-Maclane space K(G, n) and any k ≥ 0,

πk(K(G, n)) =

{
G, k = n

0, k 6= n.

Proof. This follows from Lemma 3.4.2: πk(K(G, n)) ∼= H̃n(Sn).

Proposition 3.5.2. For any abelian group G and natural number n, an Eilenberg-Maclane
space K(G, n) is unique up to homotopy equivalence.

Proof. Suppose K is another space satisfying πn(K) = G and πk(K) = 0 for k 6= n. Then
by the Hurewicz theorem (3.3.4), Hn(K;G) = G and Hn−1(K;G) = 0. By the universal
coefficient theorem, Hn(K;G) ∼= Hom(G,G) so we may choose u ∈ Hn(K;G) corresponding
to the identity 1G ∈ Hom(G,G). Then θu : πk(K)→ Hn(Sk;G) is an isomorphism for all k,
so it follows from Lemma 3.4.2 that θu : [X,K]→ Hn(X;G) is an isomorphism for all spaces
X. Hence hK ∼= hK(G,n) as functors, so by Yoneda’s lemma, K is homotopy equivalent to
K(G, n)

Corollary 3.5.3. Every Eilenberg-Maclane space is an H-space.

Proof. By Brown representability (Theorem 3.4.1), [−, K(G, n)] ∼= H̃n(−;G) is a functor
Top∗ → AbGps, so by Proposition 0.3.4, K(G, n) is an H-space.
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Corollary 3.5.4. For every abelian group G and n ≥ 0, there is a natural isomorphism

H̃n(−;G) ∼= H̃n+1(Σ−;G).

Proof. For every spaceX, we have H̃n(X;G) ∼= [X,K(G, n)] and H̃n+1(ΣX;G) ∼= [ΣX,K(G, n+
1)] by Brown representability (Theorem 3.4.1). Also, [ΣX,K(G, n+ 1)] = [X,ΩK(G, n+ 1)]
by Corollary 0.2.5 and K(G, n) → ΩK(G, n + 1) is a homotopy equivalence by uniqueness

of Eilenberg-Maclane spaces. Hence H̃n(X;G) ∼= H̃n+1(ΣX;G) and this isomorphism is
natural since each isomorphism above is natural.

Example 3.5.5. Let G = Z. For n = 0, 1, 2, we have:

K(Z, 0) = Z
K(Z, 1) = S1

K(Z, 2) = CP∞.

Each of these can be verified by computing the ordinary cohomology groups of the spaces
on the right, and noting that K(G, n) is unique up to homotopy equivalence (Prop. 3.5.2).
In particular, the identification K(Z, 2) = CP∞ is borne out by an isomorphism

[X,CP∞] −→ H2(X;Z)

L 7−→ c1(L)

which sends a line bundle L over X (this is the complex version of Example 3.4.3) to the
first Chern class c1(L) of the bundle.

Example 3.5.6. For G = Z/2Z, we have K(Z/2Z, 1) = RP∞, again by computing the
homology groups of Z/2Z. Here, the representability is encoded by the isomorphism

[X,RP∞] −→ H1(X;Z/2Z)

L 7−→ ω1(L)

where L is a line bundle (again, see Example 3.4.3) and ω1(L) is the first Stiefel-Whitney
class of L.

Theorem 3.5.7. For any two abelian groups G and G′ and any n ≥ 0, there are bijections

[K(G, n), K(G′, n)]∗ ←→ [K(G, n), K(G′, n)]←→ Hom(G,G′).

Proof. Send a map f : K(G, n) → K(G′, n) to the induced map f∗ : πn(K(G, n)) →
πn(K(G′, n)) which by definition is a map G → G′. Then by the universal coefficient
theorem,

[K(G, n), K(G′, n)] ∼= H̃n(K(G, n);G′) ∼= Hom(Hn(K(G, n);Z), G′) = Hom(G,G′).
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Definition. For integers n,m and abelian groups G,G′, a cohomology operation of type
(n,G,m,G′) is a natural transformation

θ : Hn(−;G) −→ Hm(−;G′).

Suppose θ is a cohomology operation. Then applying it to the fundamental class of
K(G, n) determines a class θ(u) ∈ H̃m(K(G, n);G′) = [K(G, n), K(G′,m)]. Further, if
O(n,G,m,G′) represents the set of all cohomology operations of this type, then evaluation
on u induces a bijection

O(n,G,m,G′)←→ H̃m(K(G, n);G′) = [K(G, n), K(G′,m)].

Example 3.5.8. It’s easy to compute K(Z/2Z, 1) = RP∞ by considering the CW-structure
of RP∞. One can in fact prove that H•(RP∞;Z/2Z) ∼= Z/2Z[x], the polynomial ring in one
variable with Z/2Z-coefficients generated by the fundamental class x ∈ H1(RP∞;Z/2Z). It
turns out that x2 ∈ H2(RP∞;Z/2Z) represents the “Steenrod square” cohomology operation,

H1(X;Z/2Z) −→ H2(X;Z/2Z)

α 7−→ α2 = α ∪ α.

3.6 Infinite Symmetric Products

Recall that a monoid in a (tensor) category (with unit ∗) is an object X with distinguished
morphism m : X ⊗ X → X and e : ∗ → X satisfying the usual associativity and identity
axioms of a set monoid.

Definition. Let (X, x0) be a based space. The James construction on X, J(X), is the
free monoid in Top∗ generated by X. Explicitly,

J(X) :=
∞∐
n=1

Xn/ ∼

where (x1, . . . , xk, x0, xk+1, . . . , xn−1) ∈ Xn is equivalent to (x1, . . . , xk, xk+1, . . . , xn−1) ∈
Xn−1. The monoidal structure J(X)× J(X)→ J(X) is induced by identifying Xm ×Xn =
Xm+n, which is obviously associative.

The James construction is universal in the following sense.

Proposition 3.6.1. If M is a monoid in Top∗ and f : X →M is any map of based spaces,
then there is a unique map f̄ : J(X)→M making the diagram commute:

X M

J(X)

f

f̄
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For any X, J(X) has a natural filtration

X = J1X ⊆ J2X ⊆ J3X ⊆ · · ·

where JnX =
∐n

m=1X
m/ ∼. (We actually saw J = J2X in Example 1.2.13, where X = Sn.)

Moreover, for each n ≥ 2,
JnX/Jn−1X ∼= X ∧ · · · ∧X︸ ︷︷ ︸

n

.

Recall that the identity map X → X induces, by adjointness, a natural map X →
ΩΣX which makes ΩΣX into an H-space – that is, ΩΣX is an “associative monoid up to
homotopy”, but may not be truly associative. It turns out that one can replace ΩΣX with
a space to which it is homotopy equivalent and that is itself an associative monoid in Top∗.
Then by Proposition 3.6.1, there is a morphism J(X) → ΩΣX commuting with the maps
X → J(X) and X → ΩΣX.

Theorem 3.6.2 (James). If X is path-connected, then J(X)→ ΩΣX is a homotopy equiv-
alence.

By the Freudenthal suspension theorem (3.2.5), the map X → ΩΣX induces a map
πn(X)→ πn+1(ΣX), so James’ theorem allows us to view this as a map πn(X)→ πn(J(X)).
Then the filtration of J(X) makes this map between fundamental groups easier to study.

In their 1958 paper Quasifaserungen und Unendliche Symmetrische Produkte, Dold and
Thom gave a similar construction to James’ construction.

Definition. For a based space (X, x0), the infinite symmetric product on X is the free
commutative monoid SP∞(X) in Top∗ generated by X. Explicitly,

SP∞(X) :=
∞∐
n=1

Xn/ ≈

where ≈ is the equivalence relation generated by ∼ from the James construction as well as
(x1, . . . , xn) ≈ (xσ(1), . . . , xσ(n)) for every element σ of the symmetric group Σn.

Again, SP∞(X) has a natural filtration

X = SP 1(X) ⊆ SP 2(X) ⊆ SP 3(X) ⊆ · · ·

where SP n(X) = Xn/Σn; this is sometimes called the nth symmetric product of X. Here,
we also have

SP n(X)/SP n−1(X) ∼= (X ∧ · · · ∧X)/Σn.

Example 3.6.3. For any n ≥ 2, SP 2(S2) ∼= CP n.

Example 3.6.4. For each n ≥ 1, SP n(C) = Cn/Σn, but notice that Cn/Σn
∼= Cn via the

isomorphism [z1, . . . , zn] 7→ (a0, . . . , an−1), where
∏n

i=1(z − zi) =
∑n

j=0 ajz
j. One can also

compute that SP n(Cr {0}) ∼= (Cr {0})× Cn−1.

Lemma 3.6.5. Let SP∞ : Top∗ → Top∗ be the assignment X 7→ SP∞(X). Then
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(1) SP∞ is a functor.

(2) If f, g : X → Y are homotopic then SP∞(f) and SP∞(g) are homotopic.

(3) The map S1 → SP∞(S1) is a homotopy equivalence.

(4) SP∞ takes homotopy pushout squares to homotopy pullback squares.

Theorem 3.6.6 (Dold-Thom). There is a natural isomorphism πn(SP∞(X)) ∼= H̃n(X) for
all based spaces X.

Corollary 3.6.7. For each n ≥ 1, SP∞(Sn) = K(Z, n).

It turns out that the natural inclusion X ↪→ SP∞(X) induces the Hurewicz map (Sec-
tion 3.3)

h : πn(X) −→ πn(SP∞) ∼= H̃n(X).

This allows one to filter h using the filtration on SP∞ and study it in more detail.

Definition. Let A be an abelian group and n ≥ 0 be an integer. A Moore space of type
(A, n) is a space M(A, n) which satisfies

H̃k(M(A, n);Z) =

{
A, k = n

0, k 6= n.

Example 3.6.8. For each n ≥ 0, M(Z, n) = Sn and by additivity, M(Zk, n) =
∧
k S

n.

Example 3.6.9. M(Z/2Z, 1) = RP 2 and in general, M(Z/2Z, n) = Σn−1RP 2.

Moore spaces may be viewed as an analogue of Eilenberg-Maclane spaces. This is made
precise in the following lemma.

Lemma 3.6.10. For any abelian group A and any integer n ≥ 0, SP∞(M(A, n)) = K(A, n).

Theorem 3.6.11. If M is any commutative monoid in Top∗, then M is homotopy equivalent
to the infinite product of Eilenberg-Maclane spaces

∞∏
n=1

K(πn(M), n).

In particular, SP∞(X) =
∏∞

n=1K
(
H̃n(X), n

)
.

Proof. (Sketch) For each n, there is a map fn : M(πn(M), n) → M which induces an
isomorphism on πn. Since M is a monoid, this extends to a map f̄n completing the following
diagram:

M(πn(M), n) M

SP∞(M(πn(M), n))

fn

f̄n
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Taking infinite products gives us a map

∞∏
n=1

SP∞(M(πn(M), n))→ SP∞

(
∞∨
n=1

M(πn(M), n)

) ∨
f̄n−−→M

which induces an isomorphism on homotopy groups. Now apply Lemma 3.6.10 and White-
head’s first theorem (2.2.5) to get a homotopy equivalence

∏∞
n=1K(πn(M), n)→M .
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4 Algebraic Constructions

4.1 The Derived Functor lim1

Let (An, αn) be a direct system of abelian groups. Then the direct limit, lim
−→

An, can be

defined explicitly as the coequalizer of the following pair of maps:

∞⊕
n=1

An

∞⊕
n=1

An lim
−→

An

⊕
αn

id

In fact, the direct limit (also sometimes called a colimit and written colimAn) fits into a
short exact sequence:

0→
∞⊕
n=1

An

⊕
(1−αn)−−−−−→

∞⊕
n=1

An −→ lim
−→

An → 0. (1)

That is, lim
−→

An can be written down explicitly as a cokernel:

lim
−→

An =

(
∞⊕
n=1

An

)
/{x− αn(x) | x ∈ An}.

Reversing the arrows, for an inverse system of abelian groups (An, αn), the inverse limit
lim
←−

An, also referred to as the (projective) limit, can be defined as the equalizer of the

following pair of maps:

∞∏
n=1

An

∞∏
n=1

Anlim
←−

An

∏
αn

id

In contrast with the direct limit, however, the inverse limit does not always fit into a short
exact sequence like (1). In general, lim

−→
is a left exact functor, that is, there is always an

exact sequence

0→ lim
←−

An →
∞∏
n=1

An

∏
(1−αn)−−−−−→

∞∏
n=1

An,

but the sequence may not be exact on the right. Instead, there is a (right) derived functor
which repairs the failure of exactness.

Definition. For an inverse system of abelian groups (An, αn), lim1An is defined to be the
cokernel of the map

∏
(1− αn) :

∏∞
n=1 An →

∏∞
n=1 An.

Lemma 4.1.1. There is an exact sequence of abelian groups

0→ lim
←−

An →
∞∏
n=1

An

∏
(1−αn)−−−−−→

∞∏
n=1

An → lim1An → 0.
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Lemma 4.1.2. For an inverse system (An, αn),

(a) If every αn is an epimorphism, then lim1An = 0.

(b) If every αn = 0, then lim1An = 0.

Proposition 4.1.3. Let (An, αn), (Bn, βn), (Cn, γn) be inverse systems of abelian groups and
0→ An → Bn → Cn → 0 a short exact sequence of inverse systems. Then there is an exact
sequence

0→ lim
←−

An → lim
←−

Bn → lim
←−

Cn → lim1An → lim1Bn → lim1Cn → 0.

Proof. Use Lemma 4.1.1 and the Snake Lemma.

Example 4.1.4. For a prime integer p, the p-adic integers Zp can be defined in many ways,
but one of the definitions is as the limit of an inverse system:

Zp = lim{Z/pZ← Z/p2Z← Z/p3Z← · · · }.

Consider the short exact sequence of inverse systems

...
...

...

0 Z Z Z/p3Z 0

0 Z Z Z/p2Z 0

0 Z Z Z/pZ 0

p3

p2

p

p

p

id

id

Applying Proposition 4.1.3 and Lemma 4.1.2, we get an exact sequence

0→ lim{Z p←− Z p←− · · · } → Z→ Zp → lim1{Z p←− Z p←− · · · } → 0→ 0→ 0.

In particular, since Z→ Zp is injective, we get

lim{Z p←− Z p←− · · · } = 0 and lim1{Z p←− Z p←− · · · } ∼= Zp/Z.

This shows that in general, lim1 need not vanish.

Example 4.1.5. The profinite completion of the integers Ẑ is the limit of the inverse system
{Z/nZ}n≥2 partially ordered by Z/nZ→ Z/mZ if m | n. One can show that Ẑ is the limit
of a linearly ordered sequence:

Ẑ = lim{Z/2Z← Z/6Z← Z/24Z← Z/120Z← · · · }.

Then a similar proof as in Example 4.1.4 shows that lim1{Z 2←− Z 3←− Z 4←− · · · } = Ẑ/Z.
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The following demonstrates the interaction between lim
−→

and the derived functors of Hom

and lim
←−

.

Proposition 4.1.6. Suppose (An, αn) is a direct system of flat abelian groups. Then for all
B, (Hom(An, B), α∗n) is an inverse system of abelian groups and there is an isomorphism

lim1 Hom(An, B) ∼= Ext1
(

lim
−→

An, B
)
.

Proof. Set A = lim
−→

An. Applying Hom(−, B) to the short exact sequence (1), we get a long

exact sequence in Ext groups:

0→ Hom(A,B)→ Hom

(
∞⊕
n=1

An, B

)
→ Hom

(
∞⊕
n=1

An, B

)

→ Ext1(A,B)→ Ext1

(
∞⊕
n=1

An, B

)
→ Ext1

(
∞⊕
n=1

An, B

)
→ · · ·

Note that Hom(A,B) = Hom
(

lim
−→

An, B
)
∼= lim
←−

Hom(An, B), Hom (
⊕

An, B) ∼=
∏

Hom(An, B)

and Ext1 (
⊕

An, B) ∼=
∏

Ext1(An, B). Moreover, by the flatness assumption Ext1(An, B) =
0 for all n. Hence the sequence above becomes

0→ lim
←−

Hom(An, B)→
∞∏
n=1

Hom(An, B)→
∞∏
n=1

Hom(An, B)→ Ext1(A,B)→ 0.

Thus Lemma 4.1.1 shows that Ext1(A,B) ∼= lim1 Hom(An, B).

Example 4.1.7. It’s easy to see that Q = lim{Z 2−→ Z 3−→ Z 4−→ · · · }. Then by Proposi-
tion 4.1.6,

Ext1(Q,Z) ∼= lim1{Hom(Z,Z)
2−→ Hom(Z,Z)

3−→ · · · }

= lim1{Z 2−→ Z 3−→ · · · }
= Ẑ/Z,

using Example 4.1.5.

Definition. Let (An, αn) be an inverse system of abelian groups and for each j > n, write
αjn = αnαn+1 · · ·αj−1 : Aj → An. Set Ajn = imαjn. Then (An, αn) is said to satisfy the
Mittag-Leffler condition if for each n, there exists an N such that Ajn = ANn for all
j > N , that is, if the sequences of images of αjn eventually stabilize.

Example 4.1.8. The Mittag-Leffler condition clearly holds for (An, αn) when every αn is
an epimorphism, or when all the An are finite abelian groups. We saw in Lemma 4.1.2 that
in the former case, lim1An vanishes. The following theorem generalizes this to all inverse
systems satisfying the Mittag-Leffler condition.

Theorem 4.1.9. For an inverse system of abelian groups (An, αn), either

(1) (An, αn) satisfies the Mittag-Leffler condition and lim1An = 0; or

(2) lim1An is an uncountable divisible group.
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4.2 Mapping Telescopes

Definition. For a pair of maps f, g : X → Y , the homotopy coequalizer (or mapping
torus) of f and g is the homotopy pushout T (f, g) of the maps f ∨ g : X ∨ X → Y and
∇ : X ∨X → Y , where ∇ is the ‘fold map’ of Proposition 0.3.4. Explicitly,

(X ∨X)
∐

(X ∨X) Y
∐
Y

X ∨X × I T (f, g)

(f ∨ g)
∐
∇

i0 × i1

Definition. Let (Xn, fn) be a direct system of topological spaces. Then the mapping tele-
scope (or homotopy colimit) of (Xn, fn) is the homotopy coequalizer Tel(Xn) of the maps∨
fn :

∨
Xn →

∨
Xn and id :

∨
Xn →

∨
Xn.

Proposition 4.2.1. For any direct system (Xn, fn) of spaces, the mapping telescope can be
written as a union of subspaces

Y1 ⊆ Y2 ⊆ Y3 ⊆ · · · ⊆
∞⋃
n=1

Yn = Tel(Xn)

such that there are deformation retractions Yn → Xn compatible with the fn. In particular,
there is a weak equivalence

Tel(Xn)→ lim
−→

Xn.

Proposition 4.2.2. Let (Xn, fn) be a direct system and Z any space. Then

[Tel(Xn), Z] −→ lim
−→

[Xn, Z]

is a surjective map of pointed sets with kernel lim1 [ΣXn, Z].

Proposition 4.2.3. If each fn : Xn → Xn+1 is a cofibration, then the map Tel(Xn)→ lim
−→

Xn

is a homotopy equivalence.

We now give an application of telescopes to phantom maps, using the properties of lim1

studied in Section 4.1.

Definition. For a CW-complex X =
⋃∞
n=1Xn, a map f : X → Y is called a phantom

map if f |Xn is nullhomotopic for every n ≥ 1.

A priori, it is not clear if such maps even exist in general. However, one has:

Corollary 4.2.4. Let X be a CW-complex. Then the set of homotopy classes of phantom
maps X → Y is naturally isomorphic to lim1 [ΣXn, Y ].

Proof. This follows from Propositions 4.2.2 and 4.2.3.
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The following example, due to Gray, shows that there are uncountably many phantom
maps CP∞ → S3.

Example 4.2.5. (Gray) Let X = CP∞ =
⋃∞
n=1 CP n and Y = S3, so that Y is a topological

group, in particular an H-space, and therefore each [ΣCP n, S3] is an abelian group by
Theorem 0.3.7. Then Corollary 4.2.4 identifies lim1 [ΣCP n, S3] as the subgroup of phantom
maps in [CP∞, S3]. We claim that this is a finitely generated group. Consider the cofibration
sequence

S2n+1 → CP n → CP n+1 → S2n+2 → ΣCP n → ΣCP n+1 → S2n+3 → · · ·

Applying [−, S3] gives a sequence of abelian groups

· · · → π2n+3(S3)→ [ΣCP n+1, S3]→ [ΣCP n, S3]→ π2n+2(S3)→ · · · (2)

which is exact by Theorem 1.2.5. We will prove in Section 4.6 that πn(S3) is a finite group
for all n > 3. Assuming this, the long exact sequence above and induction on n imply that
each [ΣCP n, S3] is finitely generated.

To show that there are uncountably many phantom maps CP∞ → S3, our goal is to prove
that the inverse system [ΣCP n, S3] does not satisfy the Mittag-Leffler condition and apply
Theorem 4.1.9. In fact, we will show that for each n, there is a map gn : ΣCP n → S3 that does
not extend to a map ΣCP∞ → S3. Suppose gn : ΣCP n → S3 has been constructed; let dn be
its degree on the bottom cell of ΣCP n. Consider the composition S2n+2 → ΣCP n gn−→ S3; let
its order in the finite group π2n+3(S3) be denoted a. Then we have a commutative diagram

S2n+2 ΣCP n ΣCP n+1

S2n+2 ΣCP n S3

γ

γ gn

a a gn+1

(Here, a : ΣCP n → ΣCP n is the map induced on ΣCP n = S1 ∧ CP n by the degree a map
on S1.) Note that by definition, a annihilates gn ◦ γ along the bottom row, so gn ◦ γ ◦ a
is nullhomotopic. By commutativity, so is gn ◦ a ◦ γ, i.e. γ∗(gn ◦ a) = 0 in π2n+2(S3).
Now exactness of sequence (1) implies that there is some gn+1 ∈ [CP n+1, S3] mapping to
gn ◦ a. By construction, the degree of gn+1 on the bottom cell of ΣCP n+1 is adn. This
shows that for each n, there is a map gn : ΣCP n → S3 which is not nullhomotopic as a map
ΣCP 2 ↪→ ΣCP 3 → S3.

In general, let g : ΣCP∞ → S3 be any map, say of degree m on the bottom cell ΣCP 2.
Let p be a prime not dividing m and let

P : Hn(X;Z/pZ) −→ Hn+2(p−1)(X;Z/pZ)

denote the mod p Steenrod operation for a space X, constructed for any p in a similar
fashion to the p = 2 case. As with mod 2 Steenrod operations, P is the pth power map
on degree 2 homology and commutes with the suspension isomorphism σ : Hn(X;Z/pZ)→
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Hn+1(X;Z/pZ) in every dimension n. For X = CP∞, we have H•(CP∞;Z/pZ) ∼= Z/pZ[y]
for a generator y ∈ H2(CP∞;Z/pZ). Then P(y) = yp 6= 0, so if x is a generator in
H3(CP∞;Z/pZ), we have P(x) = P(σy) = σP(y) = σyp 6= 0. The composite ΣCP 2 ↪→
ΣCP∞ → S3 induces a map on cohomology,

Z/pZ = H3(S3;Z/pZ)
g∗−→ H3(ΣCP∞;Z/pZ)

∼−→ H3(S3;Z/pZ) = Z/pZ

which is just given by multiplication by a unit in Z/pZ, so it is an isomorphism. In particular,
if x ∈ im g∗ then the above shows P(x) ∈ im g∗ ⊆ H2p+1(ΣCP∞;Z/pZ) which is 0 for p

large enough, contradicting P(x) 6= 0. Thus m = 0, meaning ΣCP 2 ↪→ ΣCP∞ g−→ S3 is
nullhomotopic for any map g.

Altogether, this proves that our constructed maps gn : ΣCP n → S3 do not extend to
all of ΣCP∞, so Theorem 4.1.9 implies that lim1[ΣCP n, S3] is an uncountable (divisible
abelian) group. Hence by Corollary 4.2.4, we have shown:

Corollary 4.2.6. There are an uncountable number of phantom maps ΣCP∞ → S3.

4.3 Postnikov Towers

Cellular theory and CW-complexes are constructed from the building blocks Sn, n ≥ 0, using
attachments coming from pushout diagrams:∨

Sn Xn

∨
Dn+1 Xn+1

In this setting, Xn+1 is the homotopy cofibre of
∨
Sn → Xn and this gives a nice space

X = lim
−→

Xn.

There is a dual construction in which each Xn is (homotopy equivalent to) an Eilenberg-
Maclane space K(A, n) for some group A and such that Xn+1 is the homotopy fibre of a
map Xn → K(A, n + 2). In fact, every ‘nice’ space X is of the form X = lim

←−
Xn for such a

sequence of Xn. Explicitly:

Theorem 4.3.1. Suppose X is simply connected. Then there exists a sequence of spaces
X2 ← X3 ← X4 ← · · · and maps fi : X → Xi such that each Xn → Xn−1 is a fibration,
X2 = K(π2(X), 2) and there is a commutative diagram
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X

X2 X3 X4 · · ·

K(π3(X), 4) K(π4(X), 5) K(π5(X), 6)

f2 f3 f4

k2 k3 k4

Moreover, each fn induces an isomorphism πk(X) → πk(Xn) for k ≤ n, πk(Xn) = 0 for
k > n and each Xn+1 → Xn → K(πn+1(X), n+ 2) is a fibration sequence.

Note that each map kn : Xn → K(πn+1(X), n + 2) may be viewed as a class kn ∈
Hn+2(Xn; πn+1(X)).

Proof. Assume inductively that X2, . . . , Xn and the associated maps have been constructed.
The idea in constructing the Xn+1 is to “kill off” the higher homotopy groups of X. Let
Pn+1 : Top∗ → Top∗ be the functor sending a space X to the cofibre of ∧f :

∧
f S

n+1 → X,

where the wedge product is over all f ∈ Map(Sn+1, X). Then for each X ∈ Top∗, Pn+1(X)
is a pushout: ∨

f∈Map(Sn+1,X)

Sn+1

X

∨
f∈Map(Sn+1,X)

Dn+2

Pn+1(X)

Then the Blakers-Massey theorem (3.2.11) implies πn+1(Pn+1(X)) = 0 and πi(X)→ πi(Pn+1(X))
is an isomorphism for i ≤ n. Thus the direct limit

Xn+1 = lim
−→

(X → Pn+1(X)→ Pn+2(Pn+1(X))→ · · · )

is well-defined. This gives a map fn+1 : X → Xn+1. We now want to show that kn+1 is
defined:

kn+1 : Xn+1 → K(πn+2(X), n+ 3).

By the comment preceding this proof, such a kn is an element of Hn+2(Xn; πn+1(X)). By
the long exact sequence in homotopy for the pair (Xn, Xn+1),

πi(Xn, Xn+1) =

{
πn+1(X), i = n+ 2

0, i 6= n+ 2.
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When X is simply connected, the relative Hurewicz theorem (Corollary 3.3.5) implies

Hn+2(Xn, Xn+1) ∼= πn+1(X).

By the universal coefficient theorem, Hn+2(Xn, Xn+1; πn+1(X)) ∼= Hom(πn+1(X), πn+1(X))
so there is an element u ∈ Hn+2(Xn, Xn+1; πn+1(X)) corresponding to the identity 1πn+1(X) ∈
Hom(πn+1(X), πn+1(X)). Take kn+1 to be the image of u under the map

Hn+2(Xn, Xn+1; πn+1(X)) −→ Hn+2(Xn; πn+1(X))

in the long exact sequence for (Xn, Xn+1). One now checks that the desired properties of
Xn+1 and kn+1 are met.

Corollary 4.3.2. If X2 ← X3 ← · · · is the Postnikov tower of X, then Xn+1 is the pullback
along kn of the path space fibration over K(πn+1(X), n+2). In particular, we have a fibration
sequence

K(πn+1(X), n+ 1)→ Xn+1 → Xn
kn−→ K(πn+1(X), n+ 2).

Definition. For X simply connected, a tower X2 ← X3 ← · · · as in the theorem is called a
Postnikov tower for X.

Proposition 4.3.3. For space X, let X2 ← X3 ← · · · be its Postnikov tower and call X〈n〉
the fibre of the map fn : X → Xn. Then

(1) The assignment X 7→ (X2 ← X3 ← · · · ) is a functor on the homotopy category
h(Top∗).

(2) For each n ≥ 2, X〈n〉 is an n-connected cover of X.

Suppose X and Y are spaces, with X simply connected, and X = lim
←−

Xn is a Postnikov

tower for X. Given a map gn : Y → Xn for some n, a natural question to ask is when gn
lifts to some gn+1:

Y

Xn+1

Xn K(πn+1(X), n+ 2)

gn+1

gn kn

By obstruction theory, there exists such a lift gn+1 precisely when kngn is trivial inHn+2(Y ; πn+1(X)).

Example 4.3.4. If Y is a CW-complex with only even-degree cells and π2n+1(X) = 0 for
all n, then kngn = 0 will always hold in homology, so such a map gn : Y → Xn will in fact
lift to g : Y → X.

Proposition 4.3.5. Suppose Y is a CW-complex with only even degree cells and π2n+1(X) =
0 for all n. Then for any g2 ∈ H2(Y ; π2(X)), there exists a map g : Y → X inducing g2 on
degree 2 cohomology.
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Example 4.3.6. This holds when Y = CP∞,ΩS3 or G/T for G a compact Lie group with
maximal torus T , for a few examples.

Example 4.3.7. Let X = BU be the universal classifying space for complex vector bundles.
Then by Bott periodicity, πn(BU) = Z when n is even and πn(BU) is torsion when n is odd,
so Proposition 4.3.5 applies. In particular, any g2 ∈ H2(Y ; πn(BU)) is induced by a map
g : Y → BU .

4.4 Goodwillie Towers

Recall that the infinite symmetric product functor SP∞ : Top∗ → Top∗ takes homotopy
pushout squares to homotopy pullback squares (this is Lemma 3.6.5). Also, the Dold-Thom
theorem (3.6.6) shows that the collection of functors πn(SP∞(−)) satisfies the axioms of a
homology theory.

Definition. A homotopy functor F : Top∗ → Top∗ is linear (or polynomial of degree 1)
if F takes pushouts to pullbacks.

Example 4.4.1. Note that, contrary to what the terminology might suggest, the identity
functor is not a linear functor.

Theorem 4.4.2. For every functor F : Top∗ → Top∗, there is a natural transformation
F → P1F where P1F is a linear functor.

Goodwillie used this theorem as a jumping off point to define “higher degree polynomial
functors”

P1F ← P2F ← P3F ← · · ·

that are compatible with the natural transformations F → Pn. Moreover, he showed that
for each X, the homotopy cofibres Qn(X),

F (X)

P1F (X) P2F (X) P3F (X) · · ·

Q1(X) Q2(X) Q3(X)

are infinite loop spaces.
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4.5 Localization of a Topological Space

Let A be a finitely generated abelian group. Then A can be written

A = Ap1 ⊕ Ap2 ⊕ · · · ⊕ Apk ⊕ Zr

where r ∈ N, p1, . . . , pk are prime integers and Api is a Sylow pi-subgroup of A. For each
prime p dividing the order of Ators, Ap may be viewed as the localization of A at the prime
p: Ap = A ⊗Z Z(p), where Z(p) =

{
a
b

: p - b
}
⊆ Q. The goal of topological localization is to

find a space X(p) for each prime p satisfying

πn(X(p)) = πn(X)⊕Z Z(p)

for each n ≥ 2. It will even follow that

H•(X(p)) = H•(X)⊕ Z(p).

Let T be a set of prime numbers in Z and define the localization at T :

ZT :=
{m
n
∈ Q : (p, n) = 1 for all p ∈ T

}
.

Example 4.5.1. Some important examples of localizations at sets of primes are:

Z∅ = Q, ZSpecZ = Z, Z{p} = Z(p).

(Here, SpecZ denotes the set of all prime integers.)

Fix a set of primes T .

Definition. An abelian group A is said to be T -local if A is a ZT -module, i.e. if for all
p 6∈ T , multiplication by p gives an isomorphism A→ A.

Example 4.5.2. When T = ∅, so ZT = Q, we call a T -local abelian group a rational abelian
group. When T = {p} consists of a single prime, T -local groups are called p-local for short.

Definition. For any abelian group A, the localization of A at T is the ZT -module AT =
A⊗Z ZT .

Lemma 4.5.3. For all sets of primes T and abelian groups A,

(a) AT is T -local and the induced map A→ AT is universal with respect to T -local abelian
groups.

(b) The map A→ AT is an isomorphism if and only if A is T -local.

(c) The functor (·)T : AbGps → AbGps which sends A 7→ AT is exact. (Equivalently, ZT
is flat.)

(d) If 0→ A→ B → C → 0 is a short exact sequence of abelian groups then B is T -local
if and only if A and C are both T -local.
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This has the following topological consequences.

Lemma 4.5.4. For any space X, the homology ring H̃•(X) is T -local if and only if for all

p 6∈ T , H̃•(X;Z/pZ) = 0.

Proof. By the homology axioms, the short exact sequence 0→ Z p−→ Z→ Z/pZ→ 0 induces
a long exact sequence

· · · → H̃n(X;Z)
p−→ H̃n(X;Z)→ H̃n(X;Z/pZ)→ H̃n−1(X;Z)→ · · ·

which implies the result.

Proposition 4.5.5. Assume F → E
q−→ B is a fibration such that π1(F ), π1(E) and π1(B)

are all abelian. For any X, let π•(X) =
⊕

n≥1 πn(X). Then

(1) If two of π•(F ), π•(E), π•(B) are T -local, then so is the third.

(2) Suppose π1(B) acts trivially on H•(F ). If two of H̃•(F ), H̃•(E), H̃•(B) are T -local,
then so is the third.

Proof. (1) Apply the long exact sequence in homotopy (Corollary 1.4.6) and induct, using
the Five Lemma.

(2) Consider the morphism of fibrations

F E B

∗ B B

q

q id

id

The Serre spectral sequence implies that q∗ : H̃•(E;Z/pZ)→ H̃•(B;Z/pZ) is an isomorphism

if and only if H̃•(F ;Z/pZ) = 0. Thus for any prime p 6∈ T , if two of the following hold:

� H̃•(F ;Z/pZ) = 0

� H̃•(E;Z/pZ) = 0

� H̃•(B;Z/pZ) = 0

then the third holds as well. Thus Lemma 4.5.4 implies statement (2).

We call a space simple if π1(X) is abelian and acts trivially on π•(X).

Theorem 4.5.6. Let X be a simple space. Then the following are equivalent for every set
of primes T :

(a) π•(X) is T -local.

(b) H̃•(X) is T -local.
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Proof. (Sketch) First consider X = K(A, 1) for an abelian group A. Then π1(X) = A =
H1(X) and πk(X) = 0 for k 6= 1, so (b) =⇒ (a). Conversely, if π•(X) = π1(X) = A is
T -local, we may assume A is the T -localization of a finitely generated abelian group. Using
the Künneth formula, we may individually consider the cases A = ZT and A = (Z/qkZ)T
for q prime. In the latter case, if q 6∈ T then A = 0 so (a) =⇒ (b) is trivial. If q ∈ T ,
A = Z/qkZ and we have

H̃n(K(Z/qkZ, 1);Z) =

{
Z/qkZ, if n is odd

0, if n is even.

Therefore H̃•(X) is T -local in all cases. If A = ZT , we have

K(ZT , 1) = Tel(S1 p1−→ S1 p2−→ S1 p3−→ · · · ),

the mapping telescope (see Section 4.2) of the sequence S1 p1−→ S1 p2−→ S1 p3−→ · · · where
p1, p2, p3, . . . are the primes outside T , repeated infinitely often. In particular,

Hk(K(ZT , 1);Z) =

{
ZT , k = 1

0, k ≥ 2.

Hence (a) =⇒ (b) for all X = K(A, 1).
Next, suppose X = K(A, n) for n ≥ 2. Then we have a fibration sequence

K(A, n− 1)→ K(A, n)

(since ΩK(A, n) = K(A, n−1) and PK(A, n) = ∗), so the equivalence of (a) and (b) follows
from Proposition 4.5.5 and induction. Finally, suppose X is an arbitrary simple space. Then
by Theorem 4.3.1, there is a Postnikov tower

X

· · · Xn−1 Xn · · ·

K(πn(X), n+ 1) K(πn+1(X), n+ 2)

Assuming (a) holds for X, Proposition 4.5.5 implies (a) also holds for each K(πn(X), n+ 1).
Thus by the special case above, (b) also holds for each K(πn(X), n + 1). By induction
and Proposition 4.5.5, (b) also holds for each Xn. Now by the property of Postnikov towers
(Theorem 4.3.1), πk(X)→ πk(Xn) is an isomorphism for k ≤ n and hence Hk(X)→ Hk(Xn)
is an isomorphism for k ≤ n. This shows that (b) holds for X.

Conversely, suppose (b) holds for X. There exists a simply connected cover X̃ → X →
K(π1(X), 1) – e.g. take X̃ to be the homotopy fibre of X → K(π1(X), X), which is simply
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connected by Lemma 3.1.2. Then by assumption, H1(X) is T -local, so π1(X) is also T -local.
By the special case above, H•(K(π1(X), 1)) is T -local, which implies by Proposition 4.5.5

that (b) holds for X̃. Thus by the Hurewicz theorem (3.3.4), π2(X̃) ∼= H2(X̃) is T -local.

Now induct, using an (n + 1)-connected cover X̃n → X → Xn−1 and the same argument.
This proves (b) =⇒ (a) holds for all X.

Definition. A space X is T -local if π•(X) is T -local, or equivalently, if H̃•(X) is T -local.

Theorem 4.5.7. Suppose ` : X → X ′ is a map between simple spaces. Then the following
are equivalent:

(a) `∗ : π•(X)→ π•(X
′) agrees with T -localization.

(b) `∗ : H•(X)→ H•(X
′) agrees with T -localization.

Further, if these conditions hold then ` is the universal map from X to a T -local space.
Explicitly, if f : X → Y is any map to a T -local space Y , then there exists a map h : X ′ → Y
which is unique up to homotopy and makes the following diagram commute:

X X ′

Y

`

f h

Definition. Such a map ` : X → X ′ is called a T -localization of X.

Theorem 4.5.8. T -localizations exist for every simple space X.

Proof. (Sketch) One starts by verifying that K(πn(X), n + 1) → K(πn(X)T , n + 1) is a
T -localization. Then induct using the Postnikov tower for X.

Corollary 4.5.9 (T -Hurewicz Theorem). Suppose X is a simply connected space and T is
a set of primes. Then the conditions

(1) πk(X)⊗ ZT = 0 for all k < n

(2) Hk(X;ZT ) = 0 for all k < n

are equivalent, and when either holds, πn(X)⊗ ZT ∼= Hn(X;ZT ).

Proof. By Theorem 4.5.8, there exists a space XT with πn(XT ) = πn(X) ⊗ ZT . Then the
result follows from the ordinary Hurewicz theorem (3.3.4).

Definition. A map f : X → Y is called a T -equivalence if the induced map f∗ : H•(X;ZT )→
H•(Y ;ZT ) is an isomorphism.

Let WT be the collection of all T -equivalences in the category Top. In the same way that
we construct the homotopy category h(Top) by inverting all homotopy equivalences in Top,
we can form the category TopT = Top[W−1

T ] by formally inverting all T -equivalences in Top.
We will denote the Hom sets in this category by HomT (X, Y ).
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Proposition 4.5.10. For all spaces X and Y with T -localizations XT and YT , respectively,
there is a bijection HomT (X, Y ) ∼= [XT , YT ] which is natural in each variable.

This says that the T -localization functor X 7→ XT factors through the “T -local category”
TopT . This generalizes in the following way. Given a generalized homology theory E•, call
f : X → Y an E-equivalence if f∗ : E•(X)→ E•(Y ) is an isomorphism.

Theorem 4.5.11 (Bousfield Localization). For every generalized homology theory E•, there
exists a functor LE : Top→ Top and morphisms ηX : X → LEX for each X ∈ Top such that

(1) LE(X) is an E-local space.

(2) There is a natural bijection HomE(X, Y ) ∼= [LEX,LEY ].

Example 4.5.12. If E•(−) = H•(−;Z/pZ), then LE is called the p-completion functor.

Example 4.5.13. If E•(X) = K•(X) is the complex K-theory for all X, then LK is more

exotic. For instance, since K̃•(K(Z/2Z, 2)) = 0, it follows that LK(K(Z/2Z, 2)) = ∗.

4.6 Rational Localization

In this section, we study the localization of spaces at the set T = ∅. In this case, ZT = Q and
we call T -localization rational localization. Analogously, T -local abelian groups are rational
abelian groups, T -local spaces are rational spaces and the canonical map ` : X → X0 := XT

is called the rationalization of X. A T -equivalence f : X → Y will be called a rational
equivalence. By Theorem 4.5.8, if ` : X → X0 is the rationalization of X, we have

πn(X0) ∼= πn(X)⊗Q and Hn(X0;Z) ∼= Hn(X;Q)

for all n. Thus rationalization can be understood as the removal of torsion in homotopy and
homology groups. The remaining features of homotopy theory are still of immense interest.
For example, let SnQ := (Sn)0 be the rationalization of the n-sphere, called the nth rational
homotopy sphere.

Proposition 4.6.1. For each n ≥ 0,

H̃k(S
n;Q) =

{
Q, if k = n,

0, if k 6= n.

Proof. Immediate from the universal coefficient theorem.

Proposition 4.6.2. For every n, Hn(K(Z, n);Q) ∼= Q. Moreover, if x ∈ Hn(K(Z, n);Q) is
a generator, then

(1) If n is odd, then H•(K(Z, n);Q) is an exterior algebra
∧

[x].

(2) If n is even, then H•(K(Z, n);Q) is a polynomial algebra Q[x].
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Proof. (Sketch) By Proposition 3.5.1, we have isomorphisms

πn(K(Z, n)) ∼= [Sn, K(Z, n)] ∼= H̃n(Sn) ∼= Z

so take a map f : Sn → K(Z, n) which generates πn(K(Z, n)). By Corollary 4.5.9, the
induced map

f ∗ : Hn(K(Z, n);Q) −→ Hn(Sn;Q)

is an isomorphism, and by Proposition 4.6.1, Hn(Sn;Z) ∼= Q.
We now prove (1) and (2) by induction. For n = 1, K(Z, 1) = S1 by Example 3.5.5 and

H•(S1;Q) is an exterior algebra on x ∈ H1(S1;Q) by Proposition 4.6.1. For n = 2, we have
K(Z, 2) = CP∞ by Example 3.5.5 and it is known that H•(CP∞;Q) ∼= Q[x]. One then
inducts using the Serre spectral sequence.

Theorem 4.6.3. Let Sn be the n-sphere. Then

(1) If n is odd, then πk(S
n) is finite for all k 6= n.

(2) If n is even, then πk(S
n) is finite for all k 6= n, 2n− 1 and π2n−1(Sn) ∼= Z⊕ T for T

a finite abelian group.

Proof. (1) By (1) of Proposition 4.6.2, H•(K(Z, n);Q) is an exterior algebra on x ∈ Hn(K(Z, n);Q),
but so is Hn(Sn;Q) by Proposition 4.6.1. Moreover, as in the proof of Proposition 4.6.2, a
map f : Sn → K(Z, n) generating πn(K(Z, n)) induces an isomorphism f ∗ : Hn(K(Z, n);Q)→
Hn(Sn;Q), so it follows that f ∗ : H•(K(Z, n);Q)→ H•(Sn;Q) is an isomorphism of graded
algebras. In particular, f is a rational homotopy equivalence in the sense of the previous
section, so combining Whitehead’s second theorem (Corollary 3.3.6) with the base change
functor −⊗Q (which is exact since Q is flat), we get that

f∗ : π•(S
n)⊗Q −→ π•(K(Z, n))⊗Q

is an isomorphism. Consequently, πn(Sn)⊗Q ∼= Q and πk(S
n)⊗Q = 0 for all k 6= n. Since

each πk(S
n) is finitely generated, this shows πk(S

n) is finite for all k 6= n.
(2) Again let x ∈ Hn(K(Z, n);Q) be a generator so that by (2) of Proposition 4.6.2,

H•(K(Z, n);Q) ∼= Q[x]. Consider x2 ∈ H2n(K(Z, n)) = [K(Z, n), K(Z, 2n)]. Then x2

determines a map K(Z, n) → K(Z, 2n) with homotopy fibre F . Let f : Sn → K(Z, n)
generate πn(K(Z, n)) as above. By Proposition 3.5.1, πn(K(Z, 2n)) = 0 so f factors through
a map Sn → F :

F K(Z, n) K(Z, 2n)

Sn

x2

g f

Applying the long exact sequence in homotopy (Corollary 1.4.6) to the fibration sequence
F → K(Z, n)→ K(Z, 2n), we get πk(F ) = 0 for k 6= n, 2n− 1 and πn(F ) ∼= π2n−1(F ) ∼= Z.
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Thus g∗ : πn(Sn) → πn(F ) is an isomorphism so by the local Hurewicz theorem (Corol-
lary 4.5.9), g∗ : Hn(F ;Q)→ Hn(Sn;Q) is also an isomorphism. But H•(K(Z, n);Q) ∼= Q[x]
and H•(K(Z, 2n);Q) ∼= Q[x2], so it follows that H•(F ;Q) ∼= Q[x]/(x2), i.e. exactly the
same as H•(Sn;Q). Thus g is a rational homotopy equivalence and the proof finishes as
before.

Corollary 4.6.4. The natural map SnQ → K(Q, n) is a rational homotopy equivalence if n
is odd and has homotopy fibre K(Q, 2n− 1) if n is even.

A rational space X is of finite type if H•(X;Q) is a finite dimensional Q-vector space.
We have the following general structure theorem for rational H-spaces.

Theorem 4.6.5. Every rational H-space X of finite type is a product of rational Eilenberg-
Maclane spaces

∏
n≥1K(πn(X), n).
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5 Stable Homotopy Theory

Recall that Freudenthal’s suspension theorem (Corollary 3.2.5) says that ifX is a d-dimensional
CW-complex and Y is (n− 1)-connected, then the suspension map

Σ : [X, Y ] −→ [ΣX,ΣY ]

is a bijection for d < 2n− 1 and a surjection for d = 2n− 1. This implies that the sequence
[X, Y ], [ΣX,ΣY ], [Σ2X,Σ2Y ], . . . eventually stabilizes. This is the jumping off point for a
theory of “stable” homotopy theory, in which topological spaces are replaced with more
general objects called spectra and the homotopy category h(Top) is upgraded to a stable
homotopy category. There are various approaches throughout the history of homotopy theory
to the problem of building a useful stable category. We describe one of the first approaches
in Section 5.1 before introducing the modern version in Section 5.2.

5.1 The Spanier-Whitehead Category

In this section we describe the Spanier-Whitehead category SW. The objects of SW are all
finite CW-complexes X and we define the morphisms by

HomSW(X, Y ) = lim
−→

[ΣnX,ΣnY ].

Freudenthal’s suspension theorem implies – as in the introduction – that the sequence
[ΣnX,ΣnY ] stabilizes, so it’s equivalent to write HomSW(X, Y ) = [ΣNX,ΣNY ] for some
large enough N ∈ N.

Lemma 5.1.1. Let X and Y be finite CW-complexes. Then

(a) The suspension functor induces a bijection HomSW(X, Y )
∼−→ HomSW(ΣX,ΣY ).

(b) HomSW(X, Y ) is an abelian group.

(c) For any morphisms f, g, h in SW,

(f + g) ◦ h = f ◦ h+ g ◦ h and h ◦ (f + g) = h ◦ f + h ◦ g.

In particular, SW is an additive category.

Proof. (a) and (c) are obvious. For (b), we may take N ≥ 2 in the alternate description
HomSW(X, Y ) = [ΣNX,ΣNY ], so that [ΣNX,ΣNY ] = [ΣN−1X,ΩΣNY ], ΣN−1X is a co-H-
space, ΩΣNY is an H-space and the result is implied by Theorem 0.3.7.

Next, we introduce some new objects to our stable category. For each finite CW-complex
X and each n ≥ 1, we let Σ−nX denote the nth formal ‘desuspension’ of X, with

HomSW(Σ
−nX,Σ−mY ) = [ΣN−nX,ΣN−mY ]

for large enough N ∈ N. Now for every finite CW-complex X we have suspensions ΣnX for
every integer n ∈ Z. This defines a desuspension functor Σ−1 : SW→ SW, X 7→ Σ−1X.
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Example 5.1.2. In SW, there are now spheres in ‘negative dimensions’: S−n = Σ−nS0.

Proposition 5.1.3. Σ : SW→ SW, X 7→ ΣX is an equivalence of categories with inverse Σ−1.

Take a map f : X → Y and form the cofibration sequence

X
f−→ Y

g−→ C(f)
h−→ ΣX → · · ·

Then by Theorem 1.2.5, for each W there is a long exact sequence

[X,W ]
f∗←− [Y,W ]

g∗←− [C(f),W ]
h∗←− [ΣX,W ]← · · ·

In the Spanier-Whitehead category, this becomes a long exact sequence of abelian groups :

HomSW(X,W )← HomSW(Y,W )← HomSW(C(f),W )← HomSW(ΣX,W )← · · ·

What’s amazing is that cofibration sequences also induce covariant exact sequences in SW.

Lemma 5.1.4. For a map f : X → Y of finite CW-complexes and any finite CW-complex
W ,

HomSW(W,X)
f∗−→ HomSW(W,Y )

g∗−→ HomSW(W,C(f))

is an exact sequence.

Proof. It’s clear that g∗ ◦ f∗ = 0. Suppose g∗(α) = 0 for α ∈ HomSW(W,Y ). Viewing this as
the following diagram, we want to find some β : W → X such that f∗(β) = α:

W ∗ ΣW ΣW

X Y C(f) ΣX ΣY

α β′ Σα

f g h Σf

β

By Proposition 1.2.7, there exists a map β′ : ΣW → ΣX making the two right squares in
the diagram commute, but by Freudenthal’s suspension theorem, [W,X] → [ΣW,ΣX] is a
bijection so β′ = Σβ for some β : W → X. By commutativity, f∗(β) = α so we are done.

As a result, homotopy cofibre sequences in SW are the same as homotopy fibre sequences.
In technical language, this says that SW is a triangulated category, i.e. an additive category
C with an isomorphism Σ : C → C and distinguished triangles

X Y

Z
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inducing long exact sequences in HomC(W,−) and HomC(−,W ) for any W ∈ C (plus a few
other other axioms).

Fix X ∈ SW and for each Z ∈ SW and n ∈ Z, write Xn(Z) = HomSW(Σ
n, Z). This defines

a collection of covariant functors Xn(−) : SW→ AbGps. Similarly, fixing Y ∈ SW and defining
Y n(Z) = HomSW(Z,Σ

nY ) gives a collection of contravariant functors Y n(−) : SW→ AbGps.

Proposition 5.1.5. For each X, Y ∈ SW, X•(−) is a homology theory and Y •(−) is a
generalized cohomology theory.

It turns out that SW may be embedded as a full subcategory of a category S in which these
functors X•(−) and Y •(−) are representable. We will describe this category in Section 5.2.

Let X, Y ∈ SW, n,m ∈ Z and define a smash product in SW by

ΣmX ∧ ΣnY := Σm+n(X ∧ Y ).

We let S denote the 0-sphere S0 as an object of SW. An additive category C with a product
∧ is symmetric monoidal (or a tensor category) if ∧ is associative, commutative and unital.

Proposition 5.1.6. The Spanier-Whitehead category SW is a symmetric monoidal category
with respect to the smash product ∧ and the unit S.

Proposition 5.1.7. Given Y, Z ∈ SW, there is a unique element F (Y, Z) ∈ SW satisfying the
following properties:

(a) There is an evaluation map µY,Z : F (Y, Z) ∧ Y → Z.

(b) F (Y,−) and − ∧ Y are adjoint in the sense that for all X ∈ SW,

HomSW(X,F (Y, Z))
−∧Y−−−→ HomSW(X ∧ Y, F (Y, Z) ∧ Y )

µY,Z−−→ HomSW(X ∧ Y, Z)

is an isomorphism.

Definition. The Spanier-Whitehead dual of an object X ∈ SW is D(X) := F (X,S).
This comes equipped with an evaluation map µX : D(X) ∧X → S.

Suppose we are given D(X) ∈ SW for each X ∈ SW and natural morphisms µX : D(X) ∧
X → S. Then for any Y, Z ∈ SW, the isomorphism

Z ∧D(Y ) ∧ Y 1Z∧µY−−−−→ Z ∧ S

is adjoint to
Z ∧D(Y ) −→ F (Y, Z).

Hence we can take F (Y, Z) := Z ∧D(Y ) as the definition of F .

Example 5.1.8. For any n ∈ N, Sn ∧ S−n → S0 is an isomorphism, showing that D(Sn) =
S−n.

Lemma 5.1.9. For all X ∈ SW, the natural map X → D(D(X)) is a homotopy equivalence.
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Theorem 5.1.10 (Atiyah). Let M be a smooth, compact n-manifold with no boundary and
suppose M ⊆ RN . Let ν(M) ⊆ RN be its normal bundle and let t(M) be the one-point
compactification of ν(M), called the Thom space. Then

t(M) ∼= ΣND(M ∧ S0) ∼= D(M) ∧ SN

in the Spanier-Whitehead category.

Remark. When ν(M) = 0, we say M is a framed manifold (this happens e.g. if M is
parallelizable). If M is framed, t(M) = ΣN(M ∧ S0) so M is in some sense self-dual in SW.

5.2 The Homotopy Category of Spectra

In this section we define a notion of ‘topological spectra’ with which we describe stable
homotopy theory.

Example 5.2.1. The object S ∈ SW is called the sphere spectrum.

Definition. The abelian group πSn = HomSW(S
n,S) is called the nth stable homotopy

group of the sphere spectrum. More generally, πSn (X) = HomSW(S
n, X) is the nth stable

homotopy group of X.

Lemma 5.2.2. For any maps f : Sm → S0 and g : Sn → S0, the maps

Sm+n f∧g−−→ S0 and Sm+n Σnf−−→ Sn
g−→ S0

are the same.

Proposition 5.2.3. πS• =
⊕

n∈Z π
S
n is a graded commutative ring. Moreover, for any X ∈

SW, the group πS• (X) =
⊕

n∈Z π
S
n (X) is a πSn -module.

This defines a functor πS• : SW → πS• -Mod. There are many interesting open questions in
stable homotopy theory related to the stable homotopy group πS• and the modules πS• (X).

Conjecture 5.2.4 (Freyd). Suppose f : X → Y is a morphism in SW such that f∗ : πS• (X)→
πS• (Y ) is the zero map. Then f is nullhomotopic.

We now define the homotopy category of spectra S, a generalization of the Spanier-
Whitehead category. The objects of S are sequences of based topological spaces X =
(X0, X1, X2, . . .) together with maps σn : Xn → ΩXn+1, or equivalently by adjointness,
maps σ̂n : ΣXn → Xn+1. The morphisms are a little more delicate to define. A strict map
in S is a map f : X → Y consisting of based maps fn : Xn → Yn for each n such that the
diagrams

Xn ΩXn+1

Yn ΩYn+1

fn Ωfn+1
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commute. It turns out that these strict maps are not enough to fully study the homotopy
theory of spectra. We will add more morphisms in a moment.

Definition. For a spectrum X ∈ S, define the homotopy group

πn(X) = lim
−→

πn+k(Xk)

where the maps πn+k(Xk)→ πn+k+1(Xk+1) are induced by suspension (see Corollary 0.2.5).

Proposition 5.2.5. πn : S → AbGps is a functor.

Definition. A strict map f : X → Y is a weak equivalence if the induced map f∗ :
πn(X)→ πn(Y) is an isomorphism for all n.

It turns out that πn(X) = πn(Tel(X0
σ0−→ ΩX1

Ωσ1−−→ Ω2X2 → · · · )) where Tel denotes
the mapping telescope of the given loop sequence (see Section 4.2). The advantage of this
perspective is that Tel(X0 → ΩX1 → Ω2X2 → · · · ) is an actual topological space. This
suggests the following modification to our collection of morphisms in S.

Definition. For a spectrum X ∈ S, the Ω-spectrum associated to X is the spectrum
Xf = (Xf

0 , X
f
1 , X

f
2 , . . .) where

Xf
n := Tel(Xn

σn−→ ΩXn+1
Ωσn+1−−−−→ Ω2Xn+2 → · · · ).

Now define the set of morphisms between two spectra X,Y ∈ S by:

[X,Y]S := {strict maps g : X→ Yf}/ ∼

where ∼ is the homotopy equivalence relation. Thus we have fully defined the category S.

Lemma 5.2.6. For every X ∈ S, there is a weak equivalence X→ Xf in S.

Example 5.2.7. [Suspension spectra] For each based space Z, we define an associated
spectrum Σ∞Z by

(Σ∞Z)n = ΣnZ and σ̂n : Σ(ΣnZ)→ Σn+1Z.

This defines a functor Σ∞ : h(Top∗) → S such that the image of the subcategory CW ⊆
h(Top∗) of finite CW-complexes lands in SW∗, the category of (based) formal suspensions
ΣnX, itself a subcategory of S via Z 7→ Σ∞Z. On the other hand, we can define a ‘looping
functor’

Ω∞ : S −→ h(Top∗)

X 7−→ Ω∞X := Xf
0 .

Then (Σ∞,Ω∞) are an adjoint pair. An interesting object in stable homotopy theory is
Ω∞Σ∞Z = lim

−→
ΩnΣnZ. Note that for any based spaces Z,W ,

[Σ∞Z,Σ∞W ]S = [Z,Ω∞Σ∞W ]S = lim
−→

[Z,ΩnΣnW ].
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Example 5.2.8. For each spectrum Y = (Yn
σn−→ ΩYn+1), define the functors

Yn : Top∗ −→ AbGps

Z 7−→ [Z, Yn]Top∗ = [Σ∞Z,ΣnY ]S .

Then Y• is a generalized cohomology theory that captures the functors Y • from Section 5.1
when Y = Σ∞Z is an Ω-spectrum. In the category S, these cohomology theories Y• are
now represented by spectra Y.

Theorem 5.2.9 (Brown Representability for Spectra). For any (reduced) generalized coho-
mology theory E• : Top∗ → AbGps, there exist spaces En ∈ Top∗ such that En(Z) ∼= [Z,En]∗
for all based spaces Z and there are isomorphisms En(Z)

∼−→ En+1(ΣZ) induced by a homo-
topy equivalence En → ΩEn+1.

In particular, these En form a spectrum and we have:

Corollary 5.2.10. There is a bijective correspondence between (reduced) generalized coho-

mology theories and Ω-spectra given by sending E• to (E0
σ0−→ ΩE1

Ωσ1−−→ Ω2E2 → · · · ).
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