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Chapter 1

Introduction

The notes in Part I were compiled from a semester of lectures at Wake Forest University
by Dr. Sarah Raynor. The primary text for the course is Ross’s Elementary Analysis: The
Theory of Calculus. In the introduction, we develop an axiomatic presentation for the real
numbers. Subsequent chapters explore sequences, continuity, functions and finally a rigorous
study of single-variable calculus.

1



1.1. The Natural Numbers Chapter 1. Introduction

1.1 The Natural Numbers

The following notation is standard.

N = {1, 2, 3, 4, . . .} the natural numbers
Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} the integers

Q =
{
p
q
| p, q ∈ Z, q 6= 0

}
the rational numbers

R ? the real numbers

Note that N ⊂ Z ⊂ Q ⊂ R. We begin with a short axiomatic presentation of the natural
numbers N. The five axioms below are called the Peano Axioms.

(1) There is a special element 1 ∈ N, so N is nonempty.

(2) Every element of N has a successor which is also in N. For n ∈ N, its successor is
denoted n+ 1.

(3) 1 is not the successor of any element of N.

(4) Suppose S ⊆ N is a subset. If 1 ∈ S and for all n ∈ S, n+ 1 ∈ S as well, then S = N.
This is called the Axiom of Induction.

(5) If the successors of some m,n ∈ N are the same, then m and n are the same. In other
words, m+ 1 = n+ 1 =⇒ m = n.

Remark. Any set that satisfies all five Peano Axioms is isomorphic to the natural numbers.

2



1.2. The Rational Numbers Chapter 1. Introduction

1.2 The Rational Numbers

Q is the arithmetic completion of N, i.e. the rationals are closed under +,−,× and ÷.
However, there are issues with Q. For example, try finding roots of the polynomial x2−2 = 0.
The only solutions are x = ±

√
2, but it turns out that these are not rational numbers:

Theorem 1.2.1.
√

2 is irrational.

Proof. Suppose x2 = 2 and x ∈ Q. Then x = p
q

for some p, q ∈ Z, q 6= 0. We may assume p
and q have no common factors, i.e. p

q
is reduced. Consider

x2 =
p2

q2
= 2 =⇒ p2 = 2q2.

Then p2 is even, so p must be even, i.e. there is some integer k such that p = 2k. This means
p2 = 4k2 = 2q2 =⇒ q2 = 2k2. Thus q2 is even, so q is even. This shows that 2 is a common
factor of p and q, which contradicts our assumption. Hence

√
2 is irrational.

So it’s clear that the rational numbers are missing some ‘stuff’ that should be there.

Definition. A number x is algebaic if there are integers a0, a1, . . . , an, with an 6= 0 and
n ≥ 1, such that anx

n + an−1x
n−1 + . . .+ a1x+ a0 = 0.

Example 1.2.2.
√

2 is algebraic since it is a root of x2 − 2 = 0. Is
√

2 +
√

2 algebraic? To

see that it is, let x =
√

2 +
√

2 and consider

x2 = 2 +
√

2

(x2 − 2)2 = 2

x4 − 4x2 + 2 = 0.

So a4 = 1, a2 = −4 and a0 = 2 shows that x is algebraic.

Proposition 1.2.3. Every rational number is algebraic.

Proof. Let x = p
q

for p, q ∈ Z and q 6= 0. We can rewrite this as qx − p = 0 so x is
algebraic.

The converse is false: note that every algebraic number is rational (see
√

2 above).

Definition. The algebraic completion of Q is the set Q of all algebraic numbers.

Theorem 1.2.4 (Rational Roots Theorem). Let r ∈ Q with r = p
q

such that p and q have

no common factors. If anr
n + . . .+ a1r + a0 = 0 with n ≥ 1, an 6= 0 and a0 6= 0, then q | an

and p | a0.

3



1.2. The Rational Numbers Chapter 1. Introduction

Proof. Plug in:

an

(
p

q

)n
+ . . .+ a1

p

q
+ a0 = 0

anp
n + . . .+ a1pq

n−1 + a0q
n = 0 · qn = 0

anp
n = −an−1p

n−1q − . . .− a1pq
n−1 − a0q

n.

Since q divides everything on the right, q must be a factor of anp
n. But q and p share no

common factors, so q divides an. Likewise p divides a0.

Example 1.2.5. The rational roots theorem is particularly effective for showing that a
polynomial has no rational roots. For example, consider x4− 4x2 + 2 = 0. Note that a0 = 2
and a4 = 1, so all possible rational roots are ±1,±2. But none of these are roots, so all roots
of x4 − 4x2 + 2 are irrational.

Are all real numbers algebraic? In other words, does Q = R? It turns out that the answer
is no. Examples include π, e, sin(1), etc. but these are hard to prove. In fact, it wasn’t until
1844 that Liouville proved the existence of such numbers, called transcendental numbers.
It has since been shown that Q is a subset of the complex numbers C. This means that not
all real numbers are algebraic and not all algebraic numbers are real.

Next we detail an axiomatic presentation of the rationals, similar to the Peano Axioms in
Section 1.1. First, there are special numbers 0, 1 ∈ Q with 0 6= 1, so Q is nonempty. Define
the binary operations +, · : Q×Q→ Q that satisfy the following axioms for all a, b, c ∈ Q:

(1) (a+ b) + c = a+ (b+ c) (additive associativity).

(2) a+ b = b+ a (additive commutativity).

(3) a+ 0 = a (additive identity).

(4) For every a there exists an element −a such that a+ (−a) = 0 (additive inverse).

(5) a(bc) = (ab)c (multiplicative associativity).

(6) ab = ba (multiplicative commutativity).

(7) a · 1 = a (multiplicative identity).

(8) For every a there exists an element 1
a

such that a · 1
a

= 1 (multiplicative inverse).

(9) a(b+ c) = ab+ ac (distribution).

Any set that satisfies (1) – (9) is called a field. Q is an example of a field, however this set
of axioms is not a unique presentation of Q.

Proposition 1.2.6. Some algebraic rules regarding a, b, c ∈ Q are:

(a) If a+ c = b+ c then a = b.

(b) a · 0 = 0.

4



1.2. The Rational Numbers Chapter 1. Introduction

(c) (−a)b = −(ab).

(d) (−a)(−b) = ab.

(e) If ac = bc and c 6= 0 then a = b.

(f) If ab = 0 then either a = 0 or b = 0.

Proof. All of these may be proven from axioms (1) – (9). We will prove (a), (b) and (e) and
leave the rest for exercise.

(a) If a+ c = b+ c for a, b, c ∈ Q then

(a+ c) + (−c) = (b+ c) + (−c)
a+ (c+−c) = b+ (c+−c) by axiom (1)

a+ 0 = b+ 0 by axiom (4)

a = b by axiom (3).

(b) Take a ∈ Q and consider a · 0. By axiom (3) we can write 0 + 0 = 0, so a · 0 =
a(0 + 0) =⇒ a · 0 = a · 0 + a · 0 by axiom (9). By axiom (4), there exists an element
−(a · 0) ∈ Q such that (a · 0) +−(a · 0) = 0, so

0 = a · 0 +−(a · 0) = (a · 0 + a · 0) +−(a · 0)

= a · 0 + (a · 0 +−(a · 0)) by association

= a · 0 + 0 by additive inverse

= a · 0 by additive identity.

(e) Let a, b, c ∈ Q with c 6= 0 and suppose ac = bc. Then there exists some element 1
c
∈ Q

such that c · 1
c

= 1. Then

(ac) · 1

c
= (bc) · 1

c

a

(
c · 1

c

)
= b

(
c · 1

c

)
by association

a · 1 = b · 1 by multiplicative inverse

a = b by multiplicative identity.

To further develop the rational numbers, we state the five Order Axioms: for a, b, c ∈ Q,
we have

(10) Either a ≤ b or b ≤ a (comparability).

(11) If a ≤ b and b ≤ a then a = b (antisymmetry).

(12) If a ≤ b and b ≤ c then a ≤ c (transitivity).

(13) If a ≤ b then a+ c ≤ b+ c.

5



1.2. The Rational Numbers Chapter 1. Introduction

(14) If a ≤ b and c ≥ 0 then ac ≤ bc.

Note that (10) – (12) endow Q with a total ordering, so that the 14 axioms together mean
that Q is a totally ordered field. There are other examples of ordered fields, such as R.

Example 1.2.7. C is not an ordered field: 3 + i
?

≤ 2 + 2i — these can’t be ordered.

Proposition 1.2.8. Some properties of an ordered field:

(g) If a ≤ b then −b ≤ −a.

(h) If a ≤ b and c ≤ 0 then bc ≤ ac.

(i) If a ≥ 0 and b ≥ 0 then ab ≥ 0.

(j) a2 ≥ 0 for all a.

(k) 0 < 1.

(l) If a > 0 then 1
a
> 0.

(m) If 0 < a < b then 0 < 1
b
< 1

a
.

Proof. As before, these can all be shown using the Order Axioms, as well as the first 9 axioms
where necessary. We will show (i) – (k).

(i) Let a, b ∈ Q with a, b ≥ 0. Then a · b ≥ 0 · b, and Proposition 1.2.6(b) says that
b · 0 = 0, so ab ≥ 0.

(j) If a ≥ 0 then this is implied by (i). On the other hand, if a < 0 then 0 · a ≤ a · a by
(8). Thus 0 ≤ a2.

(k) By (j) we have 0 ≤ 12. And by multiplicative identity, 1 · 1 = 1. Thus 0 ≤ 1, and
since they are not equal, 0 < 1.

Definition. For a rational number a, we define the absolute value of a to be

|a| =

{
a a ≥ 0

−a a < 0.

Definition. For any two rational numbers a, b, we define the distance from a to b as
d(a, b) = |b− a|.

Theorem 1.2.9. Let a, b ∈ Q. Then

(1) |a| ≥ 0.

(2) |ab| = |a| |b|.

(3) |a+ b| ≤ |a|+ |b| (the triangle inequality).

6



1.2. The Rational Numbers Chapter 1. Introduction

Proof. (1) Suppose a ≥ 0. Then |a| = a ≥ 0. Conversely, if a < 0 we have |a| = −a and by
Proposition 1.2.8(g), −a > −0 = 0. Hence |a| ≥ 0 in all cases.

(2) There are three cases. First suppose a, b ≥ 0. Then ab ≥ 0·0 = 0, so |ab| = ab = |a| |b|
by definition. Next suppose a ≥ 0 and b < 0. Then ab ≤ a·0 = 0 by axiom (14) and property
(b). So |ab| = −ab. Then we have

|a| |b| = a(−b) by property (c)

= (−b)a by multiplicative commutativity

= −(ba) by (c) again

= −(ab) by commutativity again

= −ab = |ab|.

The case when a < 0 and b ≥ 0 is identical. Finally, suppose a, b < 0. Then ab ≥ 0 · 0 = 0
by properties (h) and (b), so |ab| = ab. And by (d) we have |a| |b| = (−a)(−b) = ab, so in
all cases |ab| = |a| |b|.

(3) If a and b are either both positive or both negative, the proof is trivial. The interesting
cases are when a and b have different signs. Suppose without loss of generality that a ≥ 0
and b < 0. If a+ b ≥ 0 then

|a+ b| = a+ b ≤ a+ 0 by axiom (13)

= a by additive identity

= |a| since a ≥ 0

≤ |a|+ |b| since |a|, |b| ≥ 0.

On the other hand, if a+ b ≤ 0 then

|a+ b| = −(a+ b) = (−1)(a+ b) by property (c)

= (−1)a+ (−1)b by distribution

= −a+−b by (c) again

≤ 0 +−b because − a ≤ 0

= −b by additive identity

= |b| ≤ |a|+ |b|.

Remark. As a corollary to the triangle inequality, we have |a− c| ≤ |a− b|+ |b− c| for all
a, b, c ∈ Q.

7
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1.3 The Real Numbers

In this section we give an axiomatic presentation of R. The real numbers satisfy all 14 axioms
presented in the last section, but one additional axiom is needed to single out R from among
all ordered fields. Before stating this axiom, we need some definitions.

Definition. If S is a nonempty subset S ⊆ R and s ∈ S such that s ≥ t for all t ∈ S, then
s is the maximum of S. The minimum of S is defined similarly.

Examples.

1 Consider a finite set such as S = {1, 2, 3, 4, 5}. The max is 5 and the min is 1.

2 For a closed interval [a, b] = {x ∈ R | a ≤ x ≤ b}, the max is b and the min is a.
For a half-open interval (a, b] = {x ∈ R | a < x ≤ b}, the max is b but this has no
minimum. Finally, an open interval (a, b) = {x ∈ R | a < x < b} has neither a max
nor a min.

3 The natural numbers N have a minimum value at 1, but N does not have a maximum.

4 The set
{

1, 1
2
, 1

3
, 1

4
, . . . , 1

n
, . . .

}
has a maximum value of 1, but has no minimum value

because the elements get closer and closer to 0, but 0 is not in the set.

Definition. If S ⊆ R is a nonempty subset, then M is an upper bound of S if for all
s ∈ S, s ≤M . In this case we say S is bounded above.

Definition. Similarly, m is a lower bound if for all s ∈ S, s ≥ m, in which case S is said
to be bounded below.

Remark. If S is bounded above and below, we simply say that S is bounded. For example,
in 4 above, the set

{
1, 1

2
, 1

3
, 1

4
, . . .

}
is bounded: above by 1 and below by 0.

Definition. If S ⊆ R is bounded above, a number r is the supremum of S if r is an upper
bound of S, and r is greater than or equal to any other upper bound of S. In other words, r
is the least upper bound.

Definition. Similarly, if S is bounded below, r is the infimum of S if r is the greatest lower
bound of S.

Proposition 1.3.1. If S has a maximum value, then supS = maxS.

Proof. If s = maxS then s ≥ t for all t ∈ S. So s is an upper bound. If ` is any other upper
bound, then ` ≥ s because s ∈ S. Thus s is the supremum of S.

Proposition 1.3.2. If S has a supremum, it is unique.

Proof omitted.
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1.3. The Real Numbers Chapter 1. Introduction

The Completeness Axiom. Every nonempty subset S ⊆ R which is bounded above has a
supremum in R.

The real numbers are the unique set that satisfies all 15 axioms presented so far (axioms
(1) – (9), the Order Axioms and the Completeness Axiom).

Example 1.3.3. Consider S = {x ∈ Q | x2 ≤ 2}. S is nonempty since for example 0, 1 ∈ S.
S is also bounded above: e.g. 4 ≥ x for all x ∈ S. However S does not have a supremum
in Q. To prove this, take any upper bound of S that is a rational number, say p

q
. Then

p2

q2
≥ 2, but since

√
2 is not rational, p2

q2
> 2. Thus there’s a gap between p2

q2
and 2, and

we can always find a slightly smaller rational that’s greater than 2. On the other hand, the
Completeness Axiom states that S has a supremum in R. In other words, there is some
smallest real number whose square is at least 2, which implies the existence of

√
2.

The Completeness Axiom allows one to fill in all the gaps in Q. Another way of saying
this is that R has no gaps: it is complete. In fact, every real number r can be represented
as the supremum of the set {x ∈ Q | x ≤ r}. For example, π = sup{x ∈ Q | x ≤ π} =
{3, 3.1, 3.14, 3.141, . . .}.

Corollary 1.3.4. Every nonempty subset S ⊆ R which is bounded below has an infimum in
R.

Proof. Let S be such a set and define T = {−x | x ∈ S}. Then T is nonempty since S is
nonempty. Say c is a lower bound of S. Then −c is an upper bound of T by property (g). By
the Completeness Axiom, T has a supremum in R, say t. We claim −t is the infimum of S.
Since t is an upper bound of T , then as above, −t is a lower bound of S. Let ` be any lower
bound of S. Then −` is an upper bound of T and since t = supT , t ≥ −`. By (g) again,
−t ≥ −(−`) = ` so −t is the greatest lower bound of S. In particular, inf S exists.

Theorem 1.3.5 (The Archimedean Property). For every r ∈ R, there is a natural number
n such that n > r. Furthermore, for every r > 0 there exists an n ∈ N such that 1

n
< r.

Proof. Suppose r ∈ R such that n ≤ r for all n ∈ N. Then r is an upper bound for N, so by
Completeness, N has a supremum, say m. Because m is the least upper bound, m− 1 is not
an upper bound of N, so there is some n ∈ N such that n > m− 1. By the Peano Axioms,
n + 1 ∈ N and n + 1 > m − 1 + 1 = m, but this shows that m is not an upper bound, a
contradiction. Hence for every r ∈ R, there exists a natural number such that n > r.

To obtain the second statement, use the first part with 1
r

and the Order Axioms.

Theorem 1.3.6 (Density of the Rationals in the Reals). For every a, b ∈ R such that a < b,
there exists a rational number r such that a < r < b.

Proof. Since b−a > 0, by the Archimedean Property there is some n ∈ N such that b−a > 1
n
.

This can be written (b − a)n > 1 =⇒ bn > 1 + an. By the Archimedean Property again,
there is some k > max{|an|, |bn|}. Let S = {m ∈ Z | −k ≤ m ≤ k and an < m}. S is
bounded and nonempty (e.g. k ∈ S). In particular, S is bounded below so it has an infimum,
say p. Since p is the greatest lower bound of S, p + 1 is not a lower bound of S, so there is
some j ∈ S such that j < p+ 1. And since j ∈ S, we have p ≤ j < p+ 1. By construction,

9



1.3. The Real Numbers Chapter 1. Introduction

an is also a lower bound of S, so an ≤ p ≤ j < p+ 1. This implies j − 1 < p =⇒ j − 1 6∈ S
so j − 1 ≤ an ≤ j, and j < bn − 1 =⇒ j + 1 < bn. Thus an < j + 1 < bn. If we let
m = j + 1, this gives us a < m

n
< b.

10
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1.4 A Note About Infinity

Positive and negative infinity are not real numbers. They cannot be added, subtracted,
multiplied or divided with each other or with real numbers. However, they are useful in
inequalities:

� −∞ < x < +∞ for all real numbers x. In other words, (−∞,∞) = R.

� [a,∞) = {x ∈ R | a ≤ x <∞}.

� (−∞, b) = {x ∈ R | −∞ < x < b}.

We may rewrite the Completeness Axiom to say that any any nonempty subset S ⊆ R has
a supremum, where if S is not bounded above, we denote supS = +∞. Likewise, if S is not
bounded below then inf S = −∞. For example, the natural numbers are not bounded above
so supN = +∞.

11
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2.1 Sequences

Definition. A sequence of real numbers is a function a : N→ R.

In general terms, a sequence is just a list of numbers. Normally we write the function val-
ues: (a1, a2, a3, . . . , an, . . .). Order matters in this notation, so a sequence is an ordered list.
Repeats are allowed, so a sequence is not a set.

Examples.

1 Consider the sequence (an) defined by an = (−1)n. This can be written (−1, 1,−1, 1, . . .).
As a set, this would just be {−1, 1}, which is not the same as (an). Thus the domain
of a allows us to keep track of where we are in the sequence.

2 Consider an =
1

n2
. The first five values are 1, 1

4
, 1

9
, 1

16
and 1

25
.

3 Consider the sequence (bn) =
(
3,−3

2
, 3

4
,−3

8
, . . .

)
. In function notation, this can be

written bn =
3(−1)n−1

2n−1
.

4 The function cn = cos
(
nπ
3

)
generates

(
1
2
,−1

2
,−1,−1

2
, 1

2
, 1, . . .

)
.

5 dn = n1/n generates
(
1,
√

2, 3
√

3, 4
√

4, . . .
)
.

Definition. We say a sequence (sn) converges to L ∈ R, denoted (sn)→ L or lim
n→∞

sn = L,

if for every ε > 0 there exists some N ∈ N such that for all n > N , |sn − L| < ε.

Example 2.1.1. sn =
1

n2

We claim lim
n→∞

sn = 0. Some valid N for various choices of ε are:

ε = 0.1 N = 4
ε = 0.01 N = 11
ε = 0.0004 N = 51.

In general we need a formula for how N relates to ε. In other words, given ε, find N such

that
1

n2
< ε whenever n > N . In fact, this is true if

1

N2
< ε, and we can solve for N =

1√
ε

.

We are now ready to prove the claim.

Proof. Let ε > 0 be given. Let N be any natural number greater than
1√
ε

, which exists

since N is not bounded above. Also let n > N be given and consider

|sn − L| =
∣∣∣∣ 1

n2
− 0

∣∣∣∣ =
1

n2
.

Since n > N ,
1

n2
<

1

N2
. And by our choice of N ,

1

N2
<

1(
1√
ε

)2 = ε =⇒ 1

n2
< ε. Hence

lim
n→∞

sn = 0 as claimed.

13



2.1. Sequences Chapter 2. Sequences and Series

Example 2.1.2. sn =
3n+ 1

7n− 4

We claim that lim
n→∞

sn =
3

7
. To prove this, we can do some scratchwork like before:∣∣∣∣3n+ 1

7n− 4
− 3

7

∣∣∣∣ =

∣∣∣∣7(3n+ 1)− 3(7n− 4)

7(7n− 4)

∣∣∣∣ =
19

49n− 28
< ε

=⇒ 19 < ε(49n− 28)

= 49εn− 28ε

=⇒ n >
19 + 28ε

49ε

so we have found a good choice for N . Now for the proof.

Proof. Let ε > 0, let N be any natural number greater than
19 + 28ε

49ε
, and let n > N be

given as well. Consider

∣∣∣∣3n+ 1

7n− 4
− 3

7

∣∣∣∣ =
19

49n− 28
. Since n > N > 1, 49n− 28 > 49N − 28,

so
19

49n− 28
<

19

49N − 28
. This gives us

19

49n− 28
<

19

49
(

19+28ε
49ε

)
− 28

=
19

19
ε

+ 28− 28
=

19
19
ε

= ε.

Thus for all n > N , |sn − L| < ε, so
3n+ 1

7n− 4
→ 3

7
as claimed.

Example 2.1.3. Find lim
n→∞

n

n2 + 1
.

The limit should be 0 by examination. Consider∣∣∣∣ n

n2 + 1
− 0

∣∣∣∣ =
n

n2 + 1
<

n

n2
=

1

n

so we should choose n > 1
ε

to make the limit small.

Proof. Let ε > 0 be given, let N be any natural number > 1
ε

and let n > N . Consider∣∣∣∣ n

n2 + 1
− 0

∣∣∣∣ =
n

n2 + 1
. By the Archimedean Property, 1

n
< 1

N
< ε. Then

n

n2 + 1
<

n

n2
=

1

n
<

1

N
< ε.

Thus lim
n→∞

n

n2 + 1
= 0.

Example 2.1.4. Compute lim
n→∞

(√
n2 + n− n

)
.
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2.1. Sequences Chapter 2. Sequences and Series

First, (√
n2 + n− n

)
=

(√
n2 + n− n

) (√
n2 + n+ n

)(√
n2 + n+ n

)
=

n2 + n− n2

√
n2 + n+ n

=
n√

n2 + n+ n
−→ 1

2
.

So the limit should be 1
2
. Now consider∣∣∣∣√n2 + n− n− 1

2

∣∣∣∣ =

∣∣∣∣ n√
n2 + n+ n

− 1

2

∣∣∣∣
=

∣∣∣∣∣2n−
√
n2 + n− n

2
√
n2 + n+ 2n

∣∣∣∣∣
=

∣∣∣∣∣ n−
√
n2 + n

2
(√

n2 + n+ n
) · n+

√
n2 + n

n+
√
n2 + n

∣∣∣∣∣
=

∣∣∣∣∣ n2 − n2 − n
2
(√

n2 + n+ n
)2

∣∣∣∣∣
=

∣∣∣∣∣ −n
2
(√

n2 + n+ n
)2

∣∣∣∣∣
<

∣∣∣∣−n2n2

∣∣∣∣ =
n

2n2
=

1

2n
.

Then letting n > 1
2ε

will make this limit small.

Proof. Let ε > 0 be given, let N > 1
2ε

and let n > N . Consider∣∣∣∣√n2 + n− n− 1

2

∣∣∣∣ =

∣∣∣∣∣ −n
2
(√

n2 + n+ n
)2

∣∣∣∣∣ < n

2n2
=

1

2n
<

1

2N
<

1

2
(

1
2ε

) = ε.

Therefore lim
n→∞

(√
n2 + n− n

)
= 1

2
as claimed.

Example 2.1.5. Show that lim
n→∞

(−1)n does not exist.

To do this, we must negate the definition of convergence, i.e. show that there is some ε > 0
such that for all N ∈ N there is some n > N such that |(−1)n − L| ≥ ε for every possible
L ∈ R. Given such an L, for every n, |(−1)n − L| equals either |1 − L| or | − 1 − L|. But
we get to choose ε and n, say ε = 1

2
so that |1− L| < ε and | − 1− L| < ε. By the triangle

inequality,

2 = |1− (−1)| ≤ |1− L|+ |L− (−1)| = |1− L|+ | − 1− L| < ε+ ε = 1
2

+ 1
2

= 1,

which implies 2 < 1, a clear contradiction. We will use this strategy in the proof below.

15



2.1. Sequences Chapter 2. Sequences and Series

Proof. Suppose (−1)n → L for some L ∈ R. Then for every ε > 0 there is some N ∈ N such
that |(−1)n−L| < ε for all n > N . In particular, if ε = 1

2
we can choose N such that for all

n > N , |(−1)n − L| < ε. Let n1, n2 > N be chosen such that sn1 = 1 and sn2 = −1. Then
|sn1 − L| < ε =⇒ |1− L| < 1

2
and likewise |sn2 − L| < ε =⇒ | − 1− L| < 1

2
. But then

|1− (−1)| ≤ |1− L|+ |L− (−1)|
2 < 1

2
+ 1

2
= 1,

a contradiction. Therefore the sequence has no limit (does not converge).

Proposition 2.1.6. If sn → s, then
√
sn →

√
s for all sn ≥ 0.

Proof sketch: Consider

√
sn −

√
s

1
·
√
sn +

√
s

√
sn +

√
s

=
sn − s√
sn +

√
s
≤ sn − s√

s

since sn ≥ 0. Moreover, sn → s by hypothesis so for every ε > 0 there is some N ∈ N such

that |sn − s| < ε
√
s whenever n > N . Then we have |

√
sn −

√
s| ≤ |sn − s|√

s
<
ε
√
s√
s

= ε.
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2.2 Basic Limit Theorems

Theorem 2.2.1. Convergent sequences are bounded.

Proof. Suppose (sn)→ s. Then given any ε > 0, there is an N ∈ N such that for all n > N ,
|sn − s| < ε. By the triangle inequality, |sn| − |s| < |sn − s| < ε. In particular, if ε = 1 then
|sn| < |s| + 1 (for n > N). Let M = max{|s1|, |s2|, . . . , |sN |, |s| + 1}. Then |sn| < M for all
n, so (sn) is bounded.

Theorem 2.2.2. If (sn) converges to s, then for any k ∈ R, (ksn) converges to ks.

Proof. Assume k ∈ R is nonzero; otherwise the proof is easy. Suppose (sn) → s. Then for
any ε > 0, there is some N ∈ N such that for all n > N , |sn − s| < ε. In particular, there is

some N such that |sn − s| <
ε

|k|
whenever n > N . Then for all n > N , we have

|sn − s| <
ε

|k|
|k| |sn − s| < ε

|ksn − ks| < ε.

Hence (ksn) converges to ks.

Theorem 2.2.3. If (sn) converges to s and (tn) converges to t, then (sn + tn) converges to
s+ t.

Proof. Let (sn) → s and (tn) → t. Then given ε > 0, there exist N1, N2 ∈ N such that
|sn − s| < ε

2
when n > N1 and |tn − t| < ε

2
when n > N2. Let N = max{N1, N2}. Then

for all n > N , the triangle inequality gives us |(sn + tn) − (s + t)| = |(sn − s) + (tn − t)| ≤
|sn − s|+ |tn − t| < ε

2
+ ε

2
= ε. Hence (sn + tn)→ s+ t.

Theorem 2.2.4. If (sn)→ s and (tn)→ t, then (sntn)→ st.

Proof. Let (sn)→ s and (tn)→ t. Then given any ε > 0 there is some N1 such that for all

n > N1, |sn− s| <
ε

2|t|+ 1
– we choose the denominator as 2|t|+ 1 to avoid the |t| = 0 case.

Likewise, there is some N2 such that for all n > N2, |tn − t| <
ε

2M
, where M > |sn| for all

n – this is possible since (sn) is bounded. Note that |sntn − st| = |sntn − snt + snt − st| ≤
|sn| |tn − t|+ |t| |sn − s|, and for all n > max{N1, N2},

|sn| |tn − t|+ |t| |sn − s| < |sn|
ε

2M
+ |t| ε

2|t|+ 1

< |sn|
ε

2|sn|
+
(
|t|+ 1

2

) ε

2|t|+ 1

=
ε

2
+
ε

2
= ε.

Therefore (sntn)→ st.
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Theorem 2.2.5. If (sn)→ s 6= 0 and for all n, sn 6= 0, then
(

1
sn

)
→ 1

s
.

Proof. Let (sn) be as stated. Then given ε > 0, there is some N ∈ N such that for all n > N ,
|sn − s| < ε|s|m, where m > 0 is a value such that |sn| > m (by the Archimedean Property,
since (sn) 6→ 0). Thus we have∣∣∣∣ 1

sn
− 1

s

∣∣∣∣ ≤ |s− sn||s| |sn|
<
|sn − s|
|s|m

<
ε|s|m
|s|m

= ε

so
(

1
sn

)
→ 1

s
.

Proposition 2.2.6. The following are some useful limit properties to know:

(a) If p > 0 then lim
n→∞

1

np
= 0.

(b) If |a| < 1 then lim
n→∞

an = 0.

(c) lim
n→∞

n1/n = 1.

(d) If a > 0 then lim
n→∞

a1/n = 1.

Proof. (a) We want to show that

∣∣∣∣ 1

np
− 0

∣∣∣∣ < ε, i.e. n >
1
p
√
ε

. Let ε > 0 be given, let N >
1
p
√
ε

and let n > N . Then

∣∣∣∣ 1

np
− 0

∣∣∣∣ =
1

np
<

1

Np
<

1(
1
p√ε

)p = ε. Hence

(
1

np

)
→ 0 as claimed.

(b) Let |a| < 1. Then there is some b > 0 such that |a| = 1

1 + b
, which implies

|a|n =
1

(1 + b)n
<

1

1 + bn

by the binomial theorem. Now let ε > 0, N >
1

εb
and n > N . Then we have

|an| < 1

1 + bn
<

1

bn
<

1

bN
<

1

b
(

1
εb

) = ε.

So (an)→ 0 as claimed.
(c) omitted.
(d) First suppose a ≥ 1. Then for all n > a, 1 ≤ a1/n ≤ n1/n, so by (c),

lim
n→∞

1 = lim
n→∞

n1/n = 1.

Moreover, by the Squeeze Theorem, lim
n→∞

a1/n = 1. On the other hand, suppose a < 1. Then

1
a
> 1 and by the first case, lim

n→∞

(
1

a

)1/n

= 1. By Theorem 2.2.5,

lim
n→∞

1(
1
a

)1/n
=

1

lim
n→∞

(
1

a

)1/n
=

1

1
= 1.
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Thus lim
n→∞

a1/n = 1 for all a > 0.

Example 2.2.7. lim
n→∞

n3 + 6n2 + 7

4n3 + 3n− 4
=

1

4
.

Proof. Using the results in this section, we have

lim
n→∞

n3 + 6n2 + 7

4n3 + 3n− 4
= lim

n→∞

1 + 6
n

+ 7
n3

4 + 3
n2 − 4

n3

=
lim
(
1 + 6

n
+ 7

n3

)
lim
(
4 + 3

n2 − 4
n3

) (Theorem 2.2.5)

=
lim 1 + lim 6

n
+ lim 7

n3

lim 4 + lim 3
n2 − lim 4

n3

(Theorem 2.2.3)

=
lim 1 + 6 lim 1

n
+ 7 lim 1

n3

lim 4 + 3 lim 1
n2 − 4 lim 1

n3

(Theorem 2.2.2)

=
1 + 6(0) + 7(0)

4 + 3(0)− 4(0)
=

1

4
(Proposition 2.2.6(a))

as claimed.

Example 2.2.8. Calculate lim
n→∞

n+ 5

n2 + 1
.

By the limit theorems,

lim
n→∞

n+ 5

n2 + 1
= lim

n→∞

1
n

+ 5
n2

1 + 1
n2

=
lim 1

n
+ 5 lim 1

n2

lim 1 + lim 1
n2

=
0 + 5(0)

1 + 0
= 0.

Definition. A sequence (sn) is said to diverge to +∞ if for every M > 0 there is some
N ∈ N such that for all n > N , sn > M . Likewise, (sn) diverges to −∞ if for every m < 0
there is some N ∈ N such that for all n > N , sn < m.

Example 2.2.9.
n2 + 1

n+ 5
diverges to +∞.

Note that
n2 + 1

n+ 5
> M if

n2

n+ 5
> M , and for n > 5, 2n > n+ 5. This means

n2

2n
=
n

2
> M ,

so we should choose n > 2M .

Proof. Let M > 0 be given, choose N ∈ N such that N > 2M , and let n > N . Then
n2 + 1

n+ 5
>

n2

n+ 5
and since n > 5, 2n > n+ 5. So

n2

n+ 5
>
n2

2n
=
n

2
>
N

2
>

2M

2
= M.

Hence
n2 + 1

n+ 5
−→∞.

Proposition 2.2.10. If (sn)→ +∞ and (tn)→ t > 0, then (sntn)→ +∞.
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Proof. Let M > 0 be given. Since (tn)→ t, there is some N1 ∈ N such that for all n > N1,
|tn − t| < t

2
. So for all n > N , − t

2
< tn − t < t

2
=⇒ tn >

t
2
. Then sntn > sn

t
2
, and since

(sn)→∞, there is some N2 ∈ N such that sn >
2M
t

for all n > N2. Let N = max{N1, N2}.
Then sntn >

2M
t
· t

2
= M . Therefore (sntn) diverges.

Proposition 2.2.11. Suppose sn > 0 for all n ∈ N. Then (sn)→∞ ⇐⇒
(

1
sn

)
→ 0.

Proof. First suppose (sn) → ∞. Then given ε > 0,
1

ε
> 0 as well so there is some N ∈ N

such that for all n > N , sn >
1

ε
. This gives us

1

sn
<

1
1
ε

= ε so
(

1
sn

)
→ 0. Conversely,

suppose
(

1
sn

)
→ 0. Then given M > 0, there is some N ∈ N such that

∣∣∣∣ 1

sn

∣∣∣∣ < 1

M
for all

n > N . This means
1

sn
<

1

M
=⇒ sn >

1
1
M

= M . Hence (sn) diverges.
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2.3 Monotone Sequences

Definition. A sequence (sn) is non-decreasing if for all n ∈ N, sn+1 ≥ sn. Likewise, (sn)
is non-increasing if sn+1 ≤ sn for all n. A sequence is called monotone if it is either
non-decreasing or non-increasing.

Examples.

1 (sn) =

(
1

n

)∞
n=1

is monotone non-increasing.

2 For (sn) =

(
1 +

1

n

)n
, consider

(
1 + 1

n+1

)n+1(
1 + 1

n

)n =

(
1 + 1

n+1

)n (
1 + 1

n+1

)(
1 + 1

n

)n =

(
n+2
n+1

)n (
1 + 1

n+1

)(
n+1
n

)n =
(n+ 2)n+1nn

(n+ 1)2n+1
> 1.

So (sn) is monotone non-decreasing.

3 Notice that in n1/n =
(
1,
√

2, 3
√

3,
√

2, . . .
)

the second and fourth terms of the sequence

are equal, so the terms either increase then decrease, or the opposite. Either way, n1/n

is not monotone.

Theorem 2.3.1 (Monotone Convergence Theorem). Every bounded, monotone sequence
converges.

Proof. Without loss of generality, assume (sn) is non-decreasing. Since (sn) is bounded, the
set S = {sn | n ∈ N} is bounded above. By the Completeness Axiom, S has a supremum s.
In particular, s is an upper bound, so sn ≤ s for all n ∈ N. And s is the least upper bound,
so for any ε > 0, s − ε is not an upper bound. This means that there is some N ∈ N such
that sN > s− ε. By monotonicity, for all n > N , sn ≥ sN > s− ε. Then we have

s+ ε > s ≥ sn > s− ε

i.e. |sn − s| < ε for all n > N . Therefore (sn) converges to s.

Corollary 2.3.2. Every bounded, monotone non-decreasing sequence converges to supS,
where S is as above. Likewise, every bounded, monotone non-increasing sequence converges
to inf S.

Theorem 2.3.3. Every unbounded, non-decreasing sequence diverges to +∞, and similarly
every unbounded, non-increasing sequence diverges to −∞.

Proof. First suppose (sn) is non-decreasing. Let M > 0. Since (sn) is unbounded above,
there is some N ∈ N such that sN > M . By monotonicity, sn ≥ sN > M for all n > N .
Hence (sn)→ +∞. The proof for non-increasing sequences is the same.
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Example 2.3.4. A common type of sequence is a series, which is a sequence of sums (see
Section 7.2). For example, 0.9̄ = 0.999 . . . can be expressed as the limit of a sequence of
partial sums:

(
9
10
, 99

100
, 999

1000
, 9999

10000
, . . .

)
which is usually written 9

10
+ 9

100
+ 9

1000
+ 9

10000
+. . .+ 9

10n
.

Formally, a geometric series is of the form

sN =
N−1∑
n=0

arn = a

(
1− rN

1− r

)
.

It turns out that (sN) is bounded by
a

1− r
and this is the supremum. Clearly (sN) is

non-decreasing, since each term is the sum of nonnegative values. Thus by the monotone

convergence theorem, (sN) → a

1− r
. In the decimal example, (sN) →

9/10

1− 9/10
=

9/10

9/10
= 1.

Thus .9̄ is a monotone series that converges to 1.

A nonrepeating decimal 0.r1r2r3r4r5 . . . rn . . . = r1
10

+ r2
100

+ r3
1000

+ . . . can be represented
by a bounded, non-decreasing sequence of partial sums. For each n ∈ N, rn ≤ 9 so we see
that 0.r1r2r3 . . . ≤ 0.999 . . . = 1. Therefore by MCT, every decimal represents a real number
(its limit) between 0 and 1.

Not all sequences are monotone, as we’ve seen. If (sn) is bounded but not necessarily
monotone, we can still get information from the MCT: suppose (sn) is bounded. For each
N ∈ N, define UN = inf{sn | n ≥ N} and VN = sup{sn | n ≥ N}. Then UN is a non-
decreasing sequence and VN is a non-increasing sequence. By MCT, lim

N→∞
UN and lim

N→∞
VN

exist. Moreover, for any n ≥ N , UN ≤ sn ≤ VN so if lim
n→∞

sn exists, then for all N ,

UN ≤ lim
n→∞

sn ≤ VN . In fact, the limits of UN and VN bound the sequential limit as well:

lim
N→∞

UN ≤ lim
n→∞

sn ≤ lim
N→∞

VN .

Definition. For a sequence (sn), the limit inferior is lim inf
n→∞

sn = lim
N→∞

inf{sn | n ≥ N}.
Similarly, the limit superior of (sn) is lim sup

n→∞
sn = lim

N→∞
sup{sn | n ≥ N}.

By the above remarks, every bounded sequence has a lim inf and a lim sup.

Example 2.3.5. sn = (−1)n = (−1, 1,−1, 1,−1, . . .)

Fix N ∈ N. Then

UN = inf{sn | n ≥ N} = inf{−1, 1} = −1

VN = sup{sn | n ≥ N} = sup{−1, 1} = 1

and these are not equal.

Example 2.3.6. tn = 1
n

=
(
1, 1

2
, 1

3
, 1

4
, . . .

)
Fix N ∈ N. Then

UN = inf{tn | n ≥ N} = inf

{
1

N
,

1

N + 1
, . . .

}
= 0

VN = sup{tn | n ≥ N} = sup

{
1

N
,

1

N + 1
, . . .

}
=

1

N
.
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We see that lim inf tn = 0 and lim sup tn = lim
N→∞

VN = 0. This makes sense since the

sequential limit is also 0.

Theorem 2.3.7. Let (sn) be a bounded sequence. Then lim
n→∞

sn = L for some L ∈ R if and

only if lim inf sn = lim sup sn = L.

Proof. ( =⇒ ) Suppose (sn)→ L ∈ R. Let ε > 0 be given. Then there is some N ∈ N such
that for all n > N ,

|sn − L| <
ε

2

−ε
2
< sn − L <

ε

2

L− ε

2
< sn < L+

ε

2
.

So sup{sn | n > N} ≤ L + ε
2

=⇒ VN+1 ≤ L + ε
2
. Thus (Vk) is monotone non-increasing.

So for all k > N , Vk ≤ VN+1 ≤ L + ε
2

=⇒ lim sup sn = limVk ≤ L + ε
2
. Similarly,

lim inf sn = limUk ≥ L− ε
2
. So lim inf sn ≥ lim sup sn − ε. But lim inf sn ≤ lim sup sn for all

n, so as ε→ 0 it follows that lim inf sn = lim sup sn = L.
( =⇒) Now suppose for some L ∈ R, lim inf sn = lim sup sn = L. Let ε > 0 be given.

Then there is someN1 ∈ N such that for allN > N1, |UN−L| < ε. UN is non-decreasing so for
all N , UN < L. In particular, UN > L−ε for all N > N1, so L−ε < UN < ε. Thus sn > L−ε
for all n > N1. Likewise, there is some N2 ∈ N such that for all n > N2, sn < L + ε. Now
let N3 = max{N1, N2} and let n > N3. Then sn > L− ε and sn < L+ ε =⇒ |sn − L| < ε.
Hence (sn)→ L.

Definition. A sequence (sn) is called Cauchy if there is some N ∈ N such that for all
n,m > N , |sn − sm| < ε.

Theorem 2.3.8 (Cauchy Convergence Theorem). A sequence of real numbers is Cauchy if
and only if it converges.

Proof. ( =⇒) Suppose (sn) converges to some L ∈ R. Then given ε > 0, there is some
N ∈ N such that for all n > N , |sn − L| < ε

2
. Let n,m > N . Then |sn − L| < ε

2
and

|sm − L| < ε
2
. By the triangle inequality,

|sn − sm| ≤ |sn − L|+ |L− sm| < ε
2

+ ε
2

= ε.

Hence (sn) is Cauchy.
( =⇒ ) This is the real content of the Cauchy convergence theorem. We first prove that

Cauchy sequences are bounded. Let ε = 1. Then there is some N ∈ N such that |sn−sm| < 1
for all n,m > N . So if m ≥ N + 1 then |sm − sN+1| < 1, which implies

−1 < sm − sN+1 < 1

sm < 1 + sN+1

and − 1 < sN+1 − sm < 1

−1− sN+1 < sm.
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Thus |sm| < |sN+1 + 1| ≤ |sN+1|+ 1 for all m > N . Now set

M = max{|s1|, |s2|, . . . , |sN |, |sN+1|+ 1}.

If n ≤ N then |sn| ≤ max{|s1|, |s2|, . . . , |sN |} ≤M , or if n > N then |sn| < |sN+1|+ 1 ≤M .
Therefore all Cauchy sequences are bounded.

Now recall that (sn) converges if lim inf sn = lim sup sn, which exist since (sn) is bounded.
Then given ε > 0, choose N such that for all n,m > N , |sn−sm| < ε. Then for all n,m > N
we have

sn < sm + ε

sup{sn | n > N} ≤ sm + ε

lim
N→∞

sup{sn | n > N} ≤ sm + ε

lim
N→∞

sup{sn | n > N} ≤ inf{sm | m > N}.

So lim sup sn ≤ lim inf sn + ε, and as ε → 0, lim sup sn ≤ lim inf sn. But we know that for
any bounded sequence, lim inf sn ≤ lim sup sn, so we conclude that lim inf sn = lim sup sn
and (sn) converges.
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2.4 Subsequences

Definition. Let (sn) be a sequence. A subsequence of (sn) is a sequence (tk) such that for
all k ∈ N, there is an nk ∈ N such that tk = snk and nk < nk+1.

Example 2.4.1. Let sn = 1
n

and consider the subsequence tk = s2k−1 = 1
2k−1

sn =
(

1 , 1
2
, 1

3
, 1

4
, 1

5
, 1

6
, 1

7
, . . .

)

tn =
(
1, 1

3
, 1

5
, 1

7
, . . .

)
Subsequences cannot:

� jump out of order, i.e. (s1, s5, s4, s10, s2, . . .)

� repeat values, i.e. (s1, s2, s2, s4, s4, s4, . . .)

� add new terms, i.e.
(

1, 1
3
, 1

5
, 1

π
, 1

7
, . . .

)
The Completeness Axiom can be stated in terms of subsequences:

Proposition 2.4.2. It’s possible to write all rational numbers in a list (i.e. the rationals
are countable). Then if (rn)∞n=1 is the sequence of rational numbers and x ∈ R, there is a
subsequence of (rn) converging to x.

Proposition 2.4.3. Suppose (sn) is a sequence of positive numbers with inf sn = 0. Then
there is a subsequence (snk) of (sn) that converges to 0.

Proof. Since inf sn = 0, 1 is not a lower bound for sn. This means there is some n1 such that
0 < sn1 < 1. And since sj > 0 for all j ∈ N, 0 < min

{
s1, s2, . . . , sn,

1
2

}
, so 1

2
is not a lower

bound for (sn). Then there is some n2 such that sn2 < sn1 , sn2 <
1
2

and n2 > n1. Continue
to select sn1 , sn2 , . . . , snk , . . . so that 0 < min

{
s1, . . . , snk ,

1
k

}
. In this way, we construct a

subsequence (snk) such that for all k, 0 < snk <
1
k
. By the Squeeze Theorem, (snk)→ 0.

Theorem 2.4.4. Suppose (sn) is a convergent sequence. Then every subsequence of (sn)
also converges to lim

n→∞
sn.

Proof. Let ε > 0 be given. Since (sn) → L ∈ R, there is some N ∈ N such that for all
n > N , |sn − L| < ε. Let (snk) be any subsequence of (sn). Then there is some K such
that nK > N and for all k > K, nk > nK > N . Hence for all k > K, |snk − L| < ε so the
subsequence converges to L as well.

Theorem 2.4.5 (Bolzano-Weierstrass). Every bounded sequence has a convergent subse-
quence.
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Proof. We will prove that every sequence has a monotone subsequence, and then apply MCT
to any bounded sequence to obtain the result. First, we say that an entry sn in a sequence
(sn) is dominant if for all m > n, sn > sm. Then there are three cases.

Case 1: There are infinitely many dominant terms. Then if n1 < n2 and sn1 and sn2

are both dominant, sn2 < sn1 . Thus {snk | snk is dominant, ni < ni+1} is a non-increasing
subsequence of (sn).

Case 2: There are finitely many dominant terms. Then there is some M such that sM is
the last dominant term, and for all N > M , sN is not dominant. This means that for each
N > M , there is some n > N such that sn ≥ sN . To choose the subsequence, let n1 > M .
If sn1 , . . . , snk have been chosen, choose snk+1

such that snk+1
≥ snk and nk+1 > nk. Then

(snk) is non-decreasing.
Case 3: There are no dominant terms. Then let M = 1 and construct the same sequence

as in Case 2. Hence every sequence has a monotone subsequence.

Corollary 2.4.6. If (sn) is any sequence, then there is a monotone subsequence that con-
verges to lim sup sn and a monotone subsequence that converges to lim inf sn.

Proof. We will prove the existence of a subsequence that converges to lim sup sn and note
that the proof for lim inf sn is symmetrical. Recall the sequence VN = sup{sn | n ≥ N},
where (VN)→ lim sup sn. Note that V1 ≥ V2 ≥ · · · ≥ VN ≥ · · · . If VN → −∞ then sn → −∞
so every subsequence converges to −∞ by Theorem 2.4.4. Now assume lim sup sn 6= −∞.
As in the proof of the Bolzano-Weierstrass theorem, we can break the proof up by how many
dominant terms are in the sequence.

Case 1: (sn) has infinitely many dominant terms. As before, choose (snk) to be the
subsequence of dominant terms of (sn). Then for all j > k, snj ≥ snk . Thus snk = VN , and
(snk)→ limVN = lim sup sn.

Case 2: (sn) has finitely many dominant terms. For each n ∈ N, choose nk such that snk >
max

{
V − 1

n
, sn1 , . . . , snk−1

}
, where V = limVN = lim sup sn. Then (snk) is a subsequence of

(sn) such that V − 1
k
< snk < V for each k ∈ N. Thus (snk) → V and the subsequence is

monotone by construction.

Definition. Let (sn) be any sequence. A subsequential limit of (sn) is a number s, or
±∞, such that there is some subsequence (snk) of (sn) that converges to s.

Definition. For a set A, a is a limit point of A if there is some sequence (sn) ⊂ A
converging to a.

Definition. A is a closed set if it contains all of its limit points.

Example 2.4.7. Q is not closed because any r ∈ R is a limit point, and an infinite number
of those are not rational.

Let S be the set of subsequential limits of (sn). Some examples are shown below.
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(sn) S lim sup sn lim inf sn
(−1)n {−1, 1} 1 −1

(−1)nn2 {−∞,∞} +∞ −∞

1
n

{0} 0 0

cos
(
nπ
3

) {
1
2
,−1

2
,−1, 1

}
1 −1

Q ∩ [0, 1] [0, 1] 1 0

(The last one is shown by the density of rationals in the reals.) This table suggests a few
properties of subsequential limits:

Proposition 2.4.8. Let (sn) be a sequence of real numbers and let S be the set of subse-
quential limits of (sn). Then

(1) lim sup sn, lim inf sn ∈ S.

(2) S = {s} if and only if lim
n→∞

sn = s.

(3) S is nonempty.

(4) S always has a maximum and minimum element. In fact, lim sup sn = maxS and
lim inf sn = minS.

(5) S is a closed set.

Proof. (1) Recall that every sequence (sn) contains both a monotone subsequence converging
to lim sup sn and a monotone subsequence converging to lim inf sn. Thus lim sup sn and
lim inf sn ∈ S.

(2) Recall that by Theorem 2.3.7, lim sup sn = lim inf sn if and only if (sn) → L ∈ R.
Then the statement follows from (4).

(3) By the proof of the Bolzano-Weierstrass theorem (2.4.5), every sequence (sn) has
a monotone subsequence (snk), which has a limit by the monotone convergence theorem
(18.1.5). Therefore S is nonempty.

(4) Take any sequence (sn). Let t ∈ S and suppose (snk) → t. Consider lim inf snk =
lim
K→∞

inf{snk | k ≥ K}. There is some n such that snk = sn and as n → ∞, k → ∞ as

well. Then lim inf snk ≥ lim
N→∞

inf{sn | n ≥ N} = lim inf sn. A similar argument shows that

lim sup snk ≤ lim sup sn. But (snk) so lim inf snk = lim sup snk = t. Hence lim inf sn ≤ t ≤
lim sup sn for all t ∈ S.

(5) Let (tn) ⊂ S be a sequence converging to t. We will show that t ∈ S. Let m ∈ N.
Then since tm ∈ S, there is some subsequence (snk)m → tm. Choose sn1 to be any element of
(snk)1 such that |sn1− t1| < 1; choose sn2 to be any element of (snk)2 such that |sn2− t2| < 1

2

and n2 > n1; in general, choose sni to be any element of (snk)i such that |sni − ti| < 1
i
. Let

ε > 0 be given and let N1 ∈ N such that for all n > N1, |tn − t| < ε
2

by convergence of (tn).
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Also let N2 ∈ N such that for all n > N2, 1
n
< ε

2
by the Archimedean Property (1.3.5). Let

k > max{N1, N2}. Then

|snk − t| ≤ |snk − tk|+ |tk − t| < 1
k

+ ε
2
< ε

2
+ ε

2
= ε.

Hence (snk)t → t, so t ∈ S.
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2.5 lim inf and lim sup

Theorem 2.5.1. Suppose (sn) and (tn) are sequences such that (sn)→ s and sn > 0 for all
n. Then lim sup sntn = s lim sup tn.

NOTE: This is not the same as lim sup sntn = (lim sup sn)(lim sup tn).

Proof. Let β = lim sup tn; we start by proving lim sup sntn ≥ sβ. First consider β = +∞.
Then there is some subsequence (tnk) diverging to +∞. Let (snk) be the subsequence of (sn)
with the same indices as (tnk). Let M > 0. Then there is some K1 ∈ N such that for all
k > K1, tnk >

2M
s

. Since (sn) → s, (snk) → s as well. So for ε = s
2
, there is some N ∈ N

such that |sn − s| < s
2

for all n > N . In particular, − s
2
< sn − s < s

2
=⇒ sn >

s
2
. Then

there exists a K2 such that nk > n for all k > K2. Now let K3 = max{K1, K2} and let
k > K3. Then tnk >

2M
s

and snk >
s
2
, so snktnk >

s
2
· 2M

s
= M . Hence (snktnk) → +∞, and

since lim sup is the largest possible subsequential limit, lim sup sntn = +∞. The case when
β = −∞ is easy: everything is ≥ −∞, so lim sup sntn ≥ −∞. Finally if β ∈ R, there is a
subsequence (tnk) of (tn) converging to β. Let (snk) be as above. Then (snktnk)→ sβ, so by
lim sup properties, lim sup sntn ≥ sβ.

On the other hand, consider tn =
1

sn
(sntn). Since sn is nonzero for all but possibly the first

few terms,
1

sn
is defined for large enough n. Then by limit properties, lim

1

sn
=

1

lim sn
=

1

s
.

By the preceding paragraph, lim sup tn ≥
1

s
lim sup sntn =⇒ lim sup sntn ≤ s lim sup tn =

sβ. Therefore lim sup sntn = s lim sup tn.

Theorem 2.5.2. Suppose (sn) is a sequence such that sn 6= 0 for all n. Then

lim inf

∣∣∣∣sn+1

sn

∣∣∣∣ ≤ lim inf |sn|1/n ≤ lim sup |sn|1/n ≤ lim sup

∣∣∣∣sn+1

sn

∣∣∣∣ .
Proof. The middle inequality is obvious. We will prove the lim sup part of the statement and

note that the lim inf case is proven similarly. Let α = lim sup |sn|1/n and L = lim sup

∣∣∣∣sn+1

sn

∣∣∣∣.
Explicitly, L = lim

N→∞
sup

{∣∣∣∣sn+1

sn

∣∣∣∣ : n > N

}
. Let L1 > L. Then there is some N ∈ N such

that sup

{∣∣∣∣sn+1

sn

∣∣∣∣ : n > N

}
< L1. So for all n > N ,

∣∣∣∣sn+1

sn

∣∣∣∣ < L1 =⇒ |sn+1| < L1|sn|. Then

by induction, for all n > N , |sn| < Ln1
|sn|
LN1

. Let a =
|sN |
LN1

, so that |sn| ≤ aLn1 . This implies

|sn|1/n ≤ a1/nL1. And since lim
n→∞

a1/n = 1 by limit properties, |sn|1/n ≤ L1. Thus α ≤ L1,

and since L1 > L was arbitrary, this proves that α ≤ L.

This last theorem will be useful in the next section when we prove the relation between
the Ratio and Root Tests.
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2.6 Series

Definition. A series is a sequence of partial sums of some list of numbers (another se-
quence). Explicitly, if (an) is a sequence,

sN =
N∑
n=1

an

is a series. An infinite series
∞∑
n=1

an is just a formal way of representing an infinite sequence

of partial sums, and if lim
N→∞

sN exists, this is how we write it.

Definition. We say
∞∑
n=1

an converges if lim
N→∞

N∑
n=1

an exists. If lim
N→∞

N∑
n=1

an = ±∞, the series

is said to diverge to ±∞. And if the limit does not exist, we say the series diverges.

Recall that a geometric series is an infinite series of the form

∞∑
n=0

arn = lim
N→∞

N∑
n=0

arn

= lim
N→∞

a(1− rN+1)

1− r
=

a

1− r
.

Then a geometric series converges if |r| < 1 and diverges if |r| ≥ 1.

Example 2.6.1. A geometric series with a = 1, r = 1
2

This is the series sN = 1 + 1
2

+ 1
4

+ 1
8

+ . . . =
∞∑
n=0

1

2n
. Then we have

lim
N→∞

N∑
n=0

1

2n
= lim

N→∞

(
1− 1

2N

)
= 1

so the geometric series converges to 1. This is confirmed by the formula.

Theorem 2.6.2 (Convergence Tests for Series). The following are some important criteria
for series convergence.

(1) A geometric series
∞∑
n=0

arn converges if and only if |r| < 1. In this case, the series

converges to
a

1− r
.

(2) A p-series is a series of the form
∞∑
n=1

1

np
. A p-series converges if and only if p > 1.
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Remark. If p is a positive, even integer, there is a formula for the sum:

∞∑
n=1

1

n2k
=

(−1)k+1b2k(2π)2k

2(2k)!

where b2k is the 2kth Bernoulli number (see any text on analytic number theory, specifically
Riemann’s Zeta Function). Examples include:

∞∑
n=1

1

n2
=
π2

6

∞∑
n=1

1

n4
=
π4

90

However, there is no known formula if p is positive and odd.

Definition. A series
∞∑
n=0

an satisfies the Cauchy criterion if the sequence of partial sums

is Cauchy, i.e. if for every ε > 0 there is some N ∈ N such that for all n,m > N ,∣∣∣∣∣
n∑
k=0

ak −
m∑
k=0

ak

∣∣∣∣∣ < ε.

Without loss of generality, we may assume n > m and write this inequality as∣∣∣∣∣
n∑

k=m+1

ak

∣∣∣∣∣ < ε.

The following is a corollary to the Cauchy convergence theorem (2.3.8):

Corollary 2.6.3. A series converges if and only if it satisfies the Cauchy criterion.

For the rest of the section we focus on developing a toolbox of convergence/divergence
tests for series.

Theorem 2.6.4 (Divergence Test). If
∞∑
n=0

an converges then |an| → 0. The contrapositive is

a test for divergence.

Proof. Suppose
∞∑
n=0

an converges. Then it satisfies the Cauchy criterion, so given ε > 0,

there is some N ∈ N such that for all n,m > N ,

∣∣∣∣∣
n∑

k=m+1

ak

∣∣∣∣∣ < ε. Let m > N and n = m+ 1.

Then |am+1| < ε so |ak| → 0.

Example 2.6.5. The series
∞∑
n=1

1

n
is called a harmonic series. This series diverges (e.g.

by a comparison test with a p-series; see below). But 1
n
→ 0. This shows that the converse

to the Divergence Test fails in general.
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Theorem 2.6.6 (Comparison Test). Suppose that for all n ∈ N, an ≥ 0.

(1) If
∞∑
n=0

an converges and |bn| ≤ an for all n, then
∞∑
n=0

bn converges.

(2) If
∞∑
n=0

an diverges and |bn| ≥ an for all n, then
∞∑
n=0

bn diverges.

Proof. (1) Suppose
∞∑
n=0

an converges. By the Cauchy criterion, for any ε > 0 there is some

N ∈ N such that for all n > m > N ,

∣∣∣∣∣
n∑

k=m+1

ak

∣∣∣∣∣ < ε. Then by hypothesis we have

∣∣∣∣∣
n∑

k=m+1

bk

∣∣∣∣∣ ≤
n∑

k=m+1

|bk| ≤
n∑

k=m+1

ak < ε.

So
∞∑
n=0

bn satisfies the Cauchy criterion, hence it converges.

(2) Let sn =
n∑
k=0

ak and tn =
n∑
k=0

bk. Then by hypothesis, tn ≥ sn for all n, and

(sn)→ +∞. By an earlier result, (tn)→ +∞ as well, so
∞∑
k=0

bk diverges.

Corollary 2.6.7 (Absolute Convergence). If
∞∑
n=0

|an| converges then
∞∑
n=0

an converges.

Proof. Apply (1) of the Comparison Test with an = |an| and bn = an.

Definition. A series
∞∑
n=0

an is said to converge absolutely if
∞∑
n=0

|an| converges. If the

series converges but the series of absolute values does not converge, the series is said to
converge conditionally.

Theorem 2.6.8 (Root Test). For a series
∞∑
n=0

an, let α = lim sup |an|1/n. Then

(1) If α < 1, the series converges absolutely.

(2) If α > 1, the series diverges.

Otherwise the Root Test is inconclusive.
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Proof. (1) Suppose α < 1. Choose ε > 0 such that α + ε < 1. Then there is some N ∈ N
such that for all n > N , |an|1/n − α < ε since α = lim sup |an|1/n. So for all n > N ,

|an|1/n < α+ ε =⇒ |an| < (α+ ε)n. Now (α+ ε) < 1 so
∞∑
n=0

(α+ ε)n converges, and by the

Comparison Test,
∞∑
n=0

|an| converges as well.

(2) Now suppose α > 1. Then there is some subsequence (ank)
1/nk converging to α. So

for sufficiently large k, a
1/nk
nk > 1. Then (ank) 6→ 0, so (an) 6→ 0. Thus by the Divergence

Test,
∞∑
n=0

an diverges.

Theorem 2.6.9 (Ratio Test). If (an) is a sequence of nonzero values, then

(1)
∞∑
n=0

an converges absolutely if lim sup

∣∣∣∣an+1

an

∣∣∣∣ < 1.

(2)
∞∑
n=0

an diverges if lim inf

∣∣∣∣an+1

an

∣∣∣∣ > 1.

Otherwise the Ratio Test is inconclusive.

Proof. Recall from Theorem 2.5.2 that

lim inf

∣∣∣∣an+1

an

∣∣∣∣ ≤ lim inf |an|1/n ≤ lim sup |an|1/n ≤ lim sup

∣∣∣∣an+1

an

∣∣∣∣ .
Then the Ratio Test follows directly from the Root Test.

Examples.

1
∞∑
n=0

(
−1

3

)n
is a geometric series with r = −1

3
. By the geometric series test, this series

will converge if |r| < 1. But
∣∣−1

3

∣∣ = 1
3
< 1, so the series converges to

1

1 + 1
3

=
3

4
.

2 Consider
∞∑
n=1

1

n2 + 1
. We will do a comparison test with an =

1

n2
and bn =

1

n2 + 1
.

Then |an| ≥ |bn| for all n, and
∑
|an| converges by p-series test. Hence by a comparison

test,
∑
|bn| =

∑ 1

n2 + 1
converges.

3 Consider
∞∑
n=1

n

n2 + 3
. We will do another comparison test, this time letting an =

1

n+ 3

and bn =
n

n2 + 3
. First,

∞∑
n=1

1

n+ 3
=
∞∑
k=4

1

k
which diverges. Now observe that

1

n+ 3
≤ n

n2 + 3
⇐⇒ n2 + 3 ≤ n2 + 3n ⇐⇒ 1 ≤ n

33



2.6. Series Chapter 2. Sequences and Series

which holds for all n ∈ N. Hence by a comparison test,
∑

bn =
∞∑
n=1

n

n2 + 3
diverges.

4 Consider
∞∑
n=1

(
2

(−1)n − 3

)n
. Let’s try the root test:

lim sup
n→∞

∣∣∣∣( 2

(−1)n − 3

)n∣∣∣∣1/n = lim sup
n→∞

∣∣∣∣ 2

(−1)n − 3

∣∣∣∣ = sup
{

1, 1
2

}
= 1.

The lim sup is 1, so the root test is indeterminate. However, notice that

∞∑
n=1

(
2

(−1)n − 3

)n
= −1

2
+ 1− 1

8
+ 1− 1

32
+ 1− . . .

so an 6→ 0. By the divergence test, the series diverges.

5 Consider
∞∑
n=1

2(−1)n−n = 1
4
+ 1

2
+ 1

16
+ 1

8
+ 1

64
+ 1

32
+ . . . Notice that this is just a rearranged

geometric series. If we rearrange terms, we can write it as 3
4

+ 3
16

+ 3
64

+ . . . so

∞∑
n=1

2(−1)n−n =
∞∑
n=1

3

4n

which is geometric with a = 3 and r = 1
4
< 1. Hence this series converges to 4.

6 The series
∞∑
n=1

(−1)n√
n

is an example of an alternating series. We need another test for

convergence because we think this converges, albeit too slowly for the ratio or root test
to detect.
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2.7 The Integral Test

Consider the harmonic series
∞∑
n=1

1

n
. Below we plot the values of f(n) =

1

n
as rectangles,

along with the function f(x) =
1

x
for comparison.

2 4 6 8

1

2

3

4
f(x)

1 n

Then
∞∑
n=1

1

n
is equal to the area of all the rectangles. But this is larger than the area under

the curve, which is

∫ ∞
1

1

x
dx =∞, so the series appears to diverge. In fact, if we fix N ∈ N

then
N∑
n=1

1

n
≥
∫ N+1

1

1

x
dx

(this can be proven using Riemann sums, but the picture is enough to indicate it in this

case). Then lim
N→∞

N∑
n=1

1

n
≥ lim

N→∞

∫ N+1

1

1

x
dx =∞ so the series diverges by something akin to

a comparison test. This is the foundation for the integral test, which we will state shortly.

Let us also examine a case when the series converges. Consider
∞∑
n=1

1

n2
.
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2 4 6 8

2

4

1 n

f(x)

Notice here that, with the right-hand rule, we can write

∞∑
n=2

1

n2
≤
∫ ∞

1

1

x2
dx = 1

so it appears that the series converges to something less than 1. Fixing N ∈ N, we have

lim
N→∞

N∑
n=2

1

n2
≤ lim

N→∞

∫ N

1

1

x2
dx = 1

so
∞∑
n=2

1

n2
converges to something less than 1, which further implies that

∞∑
n=1

1

n2
= 1+

∞∑
n=2

1

n2

converges to something less than 2. Indeed this p-series converges to
π2

6
≈ 1.645.

Consider a p-series
∞∑
n=1

1

np
in general. If p > 1 then

∞∑
n=2

1

np
<

∫ ∞
1

1

xp
dx

which converges, so p-series converge when p > 1 (as we have already seen). And if p ≤ 1,

1

np
≥ 1

n
> 0 for all n, so by a comparison test with

∞∑
n=1

1

n
, p-series diverge whenever p ≤ 1.

Theorem 2.7.1 (Integral Test). Suppose (an) is a sequence such that an = f(n) for some
continuous function f : R → R and f(x) is a nonnegative, decreasing function on all of

[1,∞). Then
∞∑
n=1

an converges if and only if

∫ ∞
1

f(x) dx converges.
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2.8 Alternating Series

An alternating series is one that can be written in the form
∞∑
n=1

(−1)nan.

Theorem 2.8.1 (Alternating Series Test). Suppose (an) is a sequence of nonnegative terms

that is monotone non-increasing with lim
n→∞

an = 0. Then
∞∑
n=0

(−1)nan converges.

Proof. We will show convergence via the Cauchy criterion, and in fact it suffices to show

that if n > m ≥ N then

∣∣∣∣∣
n∑

k=m+1

(−1)kak

∣∣∣∣∣ ≤ aN . This will imply the theorem because if ε > 0

we can choose N such that for all n > N − 1, |an−)| < ε (since (an)→ 0), and then for all

n > m ≥ N ,

∣∣∣∣∣
n∑

k=m+1

(−1)kak

∣∣∣∣∣ ≤ aN < ε. Now to prove the claim: let n > m ≥ N and set

A = am+1 − am+2 + am+3 − . . .± an. Then

∣∣∣∣∣
n∑

k=m+1

(−1)kak

∣∣∣∣∣ = ±A. On one hand, if n−m is

even, the last term is negative. Then

A = (am+1 − am+2) + (am+3 − am+4) + . . .+ (an−1 − an)

≥ 0 + 0 + . . .+ 0

by monotonicity. Also note that

A = am+1 − (am+2 − am+3)− . . .− (an−2 − an−1)− an
≤ am+1 − 0− . . .− 0− 0 = am+1.

So 0 ≤ A ≤ am+1 ≤ aN by monotonicity again, which implies

∣∣∣∣∣
n∑

k=m+1

(−1)kak

∣∣∣∣∣ = A ≤ aN .

On the other hand, if n−m is odd, the last term is positive and we have

A = (am+1 − am+2) + . . .+ (an−2 − an−1) + an

≥ 0 + . . .+ 0 + 0 = 0

and A = am+1 − (am+2 − am+3)− . . .− (an−1 − an)

≤ am+1 − 0− . . .− 0 = am+1.

Again this shows that 0 ≤ A ≤ am+1 ≤ aN , and as above this proves the claim.

Examples.

1 Consider the alternating harmonic series
∞∑
n=1

(−1)n

n
. Let ak =

1

k
. Then for all

k, ak > ak+1 and lim
k→∞

1

k
= 0. By the Alternating Series Test, the series converges.
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However,
∞∑
n=1

∣∣∣∣(−1)n

n

∣∣∣∣ =
∞∑
n=1

1

n
diverges, so the alternating harmonic series converges

conditionally.

2 Let
∞∑
k=1

(−1)kak be the alternating series where

ak =

{
1
k

k is even

− 1
k2

k is odd.

The positive terms are 1
2
+ 1

4
+ 1

6
+. . .+ 1

2k
which is a subsequence of the harmonic series,

so they diverge. On the other hand, the negative terms are −1− 1
9
− 1

25
− . . .− 1

(2k+1)2

which is a subsequence of
∞∑
n=1

1

n2
and thus converges by Theorem 2.4.4. So what’s

the behavior of the whole series? The negative terms converge, but the positive terms
continue to diverge so the whole series must diverge. This shows that the monotonicity
requirement in the Alternating Series Test is necessary.

3
∞∑
n=1

sin(n)

n
oscillates as n → ∞, but it’s not properly alternating. So far we have no

test to determine this series’ convergence.
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3.1 Continuous Functions

Definition. Let f be a real-valued function f : A → R, where A is any subset of R. The
natural domain of f is the largest subset of R on which f(x) can have values.

Definition. A function f(x) is continuous at a point x0 in the domain of f if for all
sequences (xn)→ x0, f(xn)→ f(x0). (This is known as the sequential definition of continu-
ity.) For any subset S of the domain of f , we say f is continuous on S if f is continuous at
every point x0 ∈ S. If f is continuous on its entire domain, we simply say f is a continuous
function.

Example 3.1.1. Show that f(x) = x2 is continuous.

Proof. The domain of f is R so let x0 ∈ R. Suppose (xn) is a sequence converging to x0.
Then by limit properties,

lim
n→∞

f(xn) = lim
n→∞

x2
n = lim

n→∞
xn · xn = lim

n→∞
xn · lim

n→∞
xn = x0 · x0 = x2

0 = f(x0).

Hence f is continuous.

Example 3.1.2. Show f(x) =
√
x is continuous.

Proof. Here the domain is R+ = [0,∞), so let x0 ≥ 0. Suppose (xn) is a sequence such that
xn ≥ 0 for all n, and (xn)→ x0. Then by Proposition 2.1.6,

lim
n→∞

f(xn) = lim
n→∞

√
xn =

√
x0.

So f(xn)→ f(x0) and the function is continuous.

The following proposition introduces the more common “epsilon - delta definition of
continuity”.

Proposition 3.1.3. A function f is continuous at x0 if and only if for all ε > 0, there exists
a δ > 0 such that if |x− x0| < δ and x ∈ dom(f) then |f(x)− f(x0)| < ε.

Proof. ( =⇒) Suppose the epsilon - delta definition holds for a function f at a point x0 ∈
dom(f). Let (xn) be any sequence in dom(f) that converges to x0. Then for any ε > 0,
there exists a δ > 0 such that if |xn − x0| < δ then |f(xn) − f(x0)| < ε. Since (xn) → x0,
there is some N such that for all n > N , |xn − x0| < δ. It follows that for all n > N ,
|f(xn)− f(x0)| < ε. So f(xn)→ f(x0) and f is sequentially continuous at x0.

( =⇒ ) We will prove the forward direction by contrapositive. Suppose there is some ε > 0
such that for all δ > 0, there is some x with |x−x0| < δ but |f(x)−f(x0)| ≥ ε. We construct a
sequence as follows: first let δ1 = 1 and pick x1 such that |x1−x0| < 1 but |f(x1)−f(x0)| ≥ ε.
Next let δ2 = 1

2
and pick x2 such that |x2 − x0| < 1

2
but |f(x2) − f(x0)| ≥ ε. Continue in

this way, letting δn = 1
n

and picking xn so that |xn − x0| < 1
n

but |f(xn) − f(x0)| ≥ ε.
Then (xn) → x0, but f(xn) 6→ f(x0) because |f(xn) − f(x0)| ≥ ε for all n. Hence f is not
sequentially continuous at x0.
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Example 3.1.4. Show the continuity of f(x) = x2 using the ε – δ definition of continuity.

First we do some scratchwork. Let |x− x0| < δ. Then

|x2 − x2
0| = |(x− x0)(x+ x0)| < δ|x+ x0|.

Note that |x − x0| < δ, so x0 − δ < x < x0 + δ. If δ is small enough, we will have
x < 2|x0| < 2|x0|+ 1 – we use the latter inequality to avoid the possibility of x0 = 0. Then
for δ|x+ x0| to be less than ε, we want δ < ε

2|x0|+1
. Now for the proof:

Proof. Let ε > 0 and let δ < min
{

max{|x0|, 1}, ε
2|x0|+1

}
. Let x be chosen so that |x−x0| < δ.

Then

|f(x)− f(x0)| = |x2 − x2
0|

= |(x− x0)(x+ x0)|
< δ|x+ x0|

<
ε

2|x0|+ 1
|x+ x0|

<
ε

2|x0|+ 1
(2|x0|+ 1) by scratchwork

= ε.

Thus f is continuous.

Example 3.1.5. Let f(x) =

{
x2 sin

(
1
x

)
x 6= 0

0 x = 0.
Is f continuous at x0 = 0?

If |x| < δ then
∣∣x2 sin

(
1
x

)
− 0
∣∣ = |x|2

∣∣sin ( 1
x

)∣∣. Since sin(x) ≤ 1 for all x, we have
|x|2

∣∣sin ( 1
x

)∣∣ ≤ |x|2 < δ2 so if f is to be continuous, we should let δ =
√
ε.

Proof. Let ε > 0 and let δ =
√
ε. Let x be chosen such that |x| < δ. Then∣∣∣∣x2 sin

(
1

x

)
− 0

∣∣∣∣ = |x|2
∣∣∣∣sin(1

x

)∣∣∣∣
≤ |x|2

< δ2

= (
√
ε)2 = ε.

Hence f is continuous at 0.

Example 3.1.6. Is f(x) =

{
1
x

sin
(

1
x

)
x 6= 0

0 x = 0
continuous?

We think it’s not. To show this, we need a sequence (xn) → 0 such that sin
(

1
xn

)
= 1 for

example. This occurs precisely when 1
xn

= π
2
(4n + 1), so let xn = 2

π(4n+1)
. By limit laws,

(xn)→ 0, but f(xn) = π
2
(4n+ 1) sin

(
π
2
(4n+ 1)

)
= π

2
(4n+ 1) which tends to ∞ as n→∞.

Hence f(xn) diverges, so f is not continuous at x0 = 0.
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Theorem 3.1.7. Suppose f is continuous at x0. Then

(1) |f | is continuous at x0.

(2) If k ∈ R, then kf is continuous at x0.

Proof. (1) Given ε > 0, there is some δ > 0 such that |x − x0| < δ =⇒ |f(x) − f(x0)| <
ε. By the triangle inequality, ||f(x)| − |f(x0)|| ≤ |f(x) − f(x0)|, so when |x − x0| < δ,
||f(x)| − |f(x0)|| ≤ |f(x)− f(x0)| < ε. Thus |f | is continuous.

(2) Let k ∈ R. First note that if k = 0, kf = 0 which is continuous, so we may assume
k 6= 0. Then given ε > 0, there is some δ > 0 such that |x−x0| < δ =⇒ |f(x)−f(x0)| < ε

|k| .

This means |kf(x)− kf(x0)| = |k| |f(x)− f(x0)| < |k| · ε|k| = ε, so kf is continuous.

Theorem 3.1.8. If f and g are continuous at x0, then the following are also continuous at
x0:

(1) f + g

(2) f − g

(3) fg

(4)
f

g
if g(x0) 6= 0.

Proof. Let (xn) → x0. Since f and g are continuous, f(xn) → f(x0) and g(xn) → g(x0).
Then by limit laws,

(f(xn) + g(xn)) −→ f(x0) + g(x0) (3.1)

(f(xn)− g(xn)) −→ f(x0)− g(x0) (3.2)

(f(xn)g(xn)) −→ f(x0)g(x0) (3.3)

and if g(x0) 6= 0,

(
f(xn)

g(xn)

)
−→ f(x0)

g(x0)
. (3.4)

Thus the continuity of (1) – (4) is proven by the sequential definition.

Proposition 3.1.9. The following are some useful examples of continuous functions.

(1) f(x) = x is continuous on R.

(2) All polynomials are continuous on R.

(3) All rational functions are continuous on their domains.

(4) If f and g are continuous, then max(f, g) is continuous.
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Proof. (1) is simple. To show (2), consider f(x) = a0 + a1x + . . . + an−1x
n−1 + anx

n. This
is a sum of products of constants and powers of x, so by Theorem 3.1.8, f(x) is continuous
on R.

(3) Let f(x) =
a0 + a1x+ . . .+ an−1x

n−1 + anx
n

b0 + b1x+ . . .+ bm−1xm−1 + bmxm
. This is a quotient of polynomials, so

the numerator and denominator are both continuous on R by (2). The domain of f is thus
all points where the denominator is nonzero. Hence f(x) is continuous on its domain.

(4) If f and g are continuous, then

max(f, g) =

{
f(x) f(x) ≥ g(x)

g(x) g(x) ≥ f(x)

= 1
2
(f(x) + g(x)) + 1

2
|f(x)− g(x)|.

By Theorem 3.1.8, this formula is continuous, so max(f, g) is continuous.
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3.2 Properties of Continuous Functions

Theorem 3.2.1 (Extreme Value Theorem). If f is continuous on a closed interval [a, b],
then f is bounded on this interval and there exist x0, y0 ∈ [a, b] such that f(x0) = min{f(x) |
x ∈ [a, b]} and f(y0) = max{f(x) | x ∈ [a, b]}.
Proof. Suppose f is not bounded above (the proof is the same for bounded below). Then
for all n there exists some xn such that f(xn) > n. Consider the sequence of these xn. By
construction (xn) is a bounded sequence. Then by the Bolzano-Weierstrass theorem (2.4.5),
(xn) has a subsequence (xnk) which converges to x0. The interval [a, b] is closed, so x0 ∈ [a, b].
Since (xnk) → x0 and f is continuous, f(xnk) → f(x0). But f(xnk) > nk for all k. This
implies f(xnk)→ +∞, a contradiction. Hence f is bounded.

Now let M = sup f(x), which exists since f is bounded. For all n ∈ N, M − 1
n

is not an
upper bound of {f(x) | x ∈ [a, b]}, so there exists an xn such that f(xn) > M − 1

n
. Again

consider the sequence of these xn, which is bounded and has a convergent subsequence (xnk).
Let y0 = lim

k→∞
xnk . Then f(y0) = lim

k→∞
f(xnk) ≤ M by boundedness, and f(y0) ≥ M − 1

n
for

all n. Thus f(y0) = M = max{f(x) | x ∈ [a, b]}. The proof is the same for the minimum.

Note that the extreme value theorem is highly dependent on the interval [a, b] being
closed.

The second important theorem for continuous functions is the Intermediate Value Theo-
rem. In plain English, it says that when you draw a function on a continuous interval, you
don’t pick up your pencil.

Theorem 3.2.2 (Intermediate Value Theorem). Suppose f is continuous on some interval
I. Then for all a, b ∈ I with a < b, if either f(a) < y < f(b) or f(a) > y > f(b), then there
is some x between a and b such that f(x) = y.

Proof. Without loss of generality, assume f(a) < y < f(b). Let S = {x ∈ [a, b] | f(x) < y}.
Note that a ∈ S so S is nonempty, and S is bounded above by b. Then the Completeness
Axiom says S has a supremum, call it x0. Then x0 − 1

n
is not an upper bound for S for

any n, so there exists an xn ∈ S such that x0 − 1
n
< xn ≤ x0. By the Squeeze Theorem,

(xn)→ x0, and since f is continuous, f(xn)→ f(x0). Now since xn ∈ S for all n, f(xn) < y,
so f(x0) = lim

n→∞
f(xn) ≤ y. On the other hand, x0 is an upper bound for S, so x0 + 1

n
6∈ S

for any n. Let zn = min
{
x0 + 1

n
, b
}

. Then f(zn) ≥ y and (zn)→ x0 =⇒ f(zn)→ f(x0) by
continuity. Therefore f(x0) ≥ y by the above reasoning. Hence f(x0) = y.

The intermediate value theorem says that if f is continuous on an interval, then the
image of the interval is also an interval. One use of the intermediate value theorem is in
fixed point problems:

Theorem 3.2.3. Suppose f : [0, 1] → [0, 1] is continuous. Then f has a fixed point x such
that f(x) = x.

Proof. Consider g(x) = f(x) − x. By Theorem 3.1.8, g is continuous on [0, 1]. Suppose
f(0) 6= 0 and f(1) 6= 1. Then f(0) > 0 so g(0) > 0, and f(1) < 1 so g(1) = f(1) − 1 < 0.
This gives us g(1) < 0 < g(0), and the intermediate value theorem says there exists an
x ∈ (0, 1) such that g(x) = 0.
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Proposition 3.2.4. Suppose y > 0, m ∈ N and m ≥ 2. Then there is some x such that
xm = y, that is m

√
y exists.

Proof. Consider the continuous function f(x) = xm. Note that f(0) = 0 < y. If y > 1 then
let b = y so that f(b) = ym > y. Or if y < 1, let b = 1 so that f(b) = 1 > y, i.e. f(b) > y
in both cases. We have 0 < y < f(b), so by the intermediate value theorem there exists
x ∈ (0, b) such that f(x) = xm = y.

The third important theorem of this section states the existence of an inverse function
f−1 under certain conditions.

Theorem 3.2.5 (Inverse Function Theorem). If f is continuous and strictly increasing on
an interval I, then J = f(I) is an interval and f−1 : J → I is continuous and strictly
increasing.

Proof. First, if f is strictly increasing it is clearly one-to-one, so the inverse f−1 : J → I
exists. The fact that J = f(I) is an interval is provided by the intermediate value theorem.
Since x < y =⇒ f(x) < f(y), we have x < y =⇒ f−1(x) < f−1(y), so f−1 is strictly
increasing.

We now prove that g = f−1 is continuous; this is a partial converse to the intermediate
value theorem. Let x0 ∈ J and ε > 0. Assume x0 is not an endpoint of J ; then f−1(x0) is not
an endpoint of I by monotonicity. Then there is some ε0 such that (g(x0)−ε0, g(x0)+ε0) ⊂ J .
We may make ε small enough so that ε ≤ ε0. Then there exists an x1 such that g(x1) =
g(x0)− ε because g(x0)− ε ∈ (g(x0)− ε0, g(x0) + ε0). Similarly, there exists an x2 such that
g(x2) = g(x0) + ε. Let δ = min{x2− x0, x0− x1} and let x ∈ J such that |x− x0| < δ. Then
x0 − δ < x < x0 + δ which implies x0 + δ ≤ x2 and x0 − δ ≥ x1. This gives us

x1 < x < x2 =⇒ g(x1) < g(x) < g(x2) by monotonicity

=⇒ g(x0 − ε < g(x) < g(x0) + ε

=⇒ |g(x)− g(x0)| < ε.

Hence g = f−1 is continuous on J .

Example 3.2.6. f(x) = sin
(

1
x

)
is not continuous on R (for example, f is not continuous at

x = 0), but it does satisfy the intermediate value property for its entire domain: the image
of the interval between any two nonzero points, even including a < 0 < b, is an interval.
In fact, if a < 0 < b then f((a, b)) = [−1, 1] because there are an infinite number of whole
oscillations of the sine curve on the interval (a, b). This is a counterexample to the converse
of the inverse function theorem which shows why the partial converse requires the condition
that g is strictly increasing.

Theorem 3.2.7. If f is one-to-one and continuous on an interval I, then f is strictly
monotone.

Proof. Without loss of generality, assume there are a0, b0 ∈ I with a0 < b0 such that
f(a0) < f(b0). To contradict, suppose f(b) ≥ max{f(a), f(c)}. Since f is one-to-one,
f(b) > max{f(a), f(c)}. Without loss of generality, assume f(a) < f(c). Then by the
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intermediate value theorem, there exists an x0 ∈ (a, b) such that f(x0) = f(c). But
a < x0 < b < c so x0 6= c which contradicts injectivity. By the same argument, we can’t
have f(c) < f(a) < f(b). Thus f(b) < max{f(a), f(c)}.

Now let x1, x2 ∈ I such that x1 < x2. If a0 < x2 < b0 then f(a0) < f(b0) implies
f(a0) < f(x2) < f(b0). If a0 < x1 < x2 then f(a0) < f(x1) < f(x2), so f(x1) < f(x2) . . .
(lots of cases later . . .) x1 and x2 are two reference points that indicate whether f is increasing
or decreasing on I. Since x1 and x2 were chosen arbitrarily, f must be strictly monotone on
the entire interval.
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3.3 Uniform Continuity

Recall that f is continuous on a domain S if for all x0 ∈ S and for all ε > 0, there is a δ > 0
such that if x ∈ S and |x − x0| < δ then |f(x) − f(x0)| < ε. In this case the δ depends on
x0 and ε. There is a stronger notion of continuity that only depends on the ε chosen:

Definition. A function f is uniformly continuous on S if for all ε > 0 there is some
δ > 0 such that for all x, y ∈ S with |x− y| < δ, |f(x)− f(y)| < ε.

Examples.

1 f(x) = 1
x

on S = (0,∞)

Claim. f is continuous on (0,∞).

Proof. Let x ∈ S, ε > 0 and δ = min
{
x
2
, εx

2

2

}
. If y > 0 and |y − x| < δ then∣∣∣∣1y − 1

x

∣∣∣∣ =

∣∣∣∣x− yxy

∣∣∣∣ =
|x− y|
|x| |y|

.

Since |y − x| < δ ≤ x
2
, then y > x

2
, so

|y − x|
|x| |y|

<
2|y − x|
|x|2

<
2δ

|x2|
≤ 2

x2

(
εx2

2

)
= ε.

Hence f is continuous on S.

But is f uniformly continuous? No, because as x→ 0 we get larger and larger values
for ε:

Proof. Let ε = 1 and let δ > 0 be given. Choose x = δ and y = δ
2
. Then |x−y| = δ

2
< δ,

but |f(x) − f(y)| =
∣∣1
δ
− 2

δ

∣∣ = 1
δ
. If δ < 1 this is a contradiction. Hence f is not

uniformly continuous.

2 f(x) = 1
x

is uniformly continuous on [a,∞) for all a > 0. Look at

|y − x|
|y| |x|

≤ |y − x|
a2

since x, y ∈ [a,∞)

≤ δ

a2

so we should let δ = εa2.

Proof. Let ε > 0, δ = εa2 and x, y ∈ [a,∞) such that |x− y| < δ. Then∣∣∣∣1x − 1

y

∣∣∣∣ =
|y − x|
|x| |y|

≤ δ

a2
=
εa2

a2
= ε.

Hence f is uniformly continuous on [a,∞).
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The idea here is as long as you avoid the asymptote at x = 0, f remains uniformly
continuous.

3 Is f(x) = x2 uniformly continuous on R? In the proof of regular continuity, we see
that

|x2 − y2| = |x− y| |x+ y| < ε =⇒ |x− y| < ε

|x+ y|
.

If δ < 1, y < x + 1 so we choose δ = ε
2|x|+1

. The problem is that this δ depends on x,
so as x→∞, the graph gets steeper and steeper. Thus f is not uniformly continuous
on R:

Proof. Let ε = 1 and let δ > 0 be given. Let x = 1
δ

and y = 1
δ

+ δ
2
. Then

|f(x)− f(y)| = |x2 − y2| =
∣∣∣∣ 1

δ2
− 1

δ2
− 1− δ2

4

∣∣∣∣ =

∣∣∣∣1 +
δ2

4

∣∣∣∣ ≥ 1.

Hence f is not uniformly continuous.

Claim. f(x) = x2 is uniformly continuous on [−a, a] for all a > 0.

Proof. Let a > 0, ε > 0 and x, y ∈ [−a, a] such that |x− y| < ε
2a

. Then |x|, |y| ≤ a so
we have

|f(x)− f(y)| = |x2 − y2| = |x− y| |x+ y| ≤ |x− y| 2a < δ(2a) =
(
ε

2a

)
(2a) = ε.

Hence f is uniformly continuous on [−a, a].

Theorem 3.3.1. If a function f is continuous on a closed interval [a, b] then f is uniformly
continuous on [a, b].

Proof. Suppose f is continuous on [a, b] but not uniformly continuous on [a, b]. Then there is
some ε > 0 such that for all δ > 0, there are x, y ∈ [a, b] with |x− y| < δ but |f(x)− f(y)| ≥
ε. Let δ = 1

n
and define sequences (xn) and (yn) where for each n, |xn − yn| < 1

n
but

|f(xn)− f(yn)| ≥ ε. Consider (xn) which is bounded. By the Bolzano-Weierstrass theorem
(2.4.5), there is a convergent subsequence (xnk). Then |ynk−xnk | ≤ 1

nk
for all k, so xnk− 1

nk
<

ynk < xnk + 1
nk

. Since 1
nk
→ 0, the Squeeze Theorem gives us lim ynk = lim xnk := x. Then

(xnk) → x, and x ∈ [a, b] because it’s a closed interval. Moreover, since f is continuous on
[a, b], f(xnk) → f(x) and f(ynk) → f(x). Thus |f(xnk) − f(ynk)| → |f(x) − f(x)| = 0 < ε,
contradicting the assumption that f is not uniformly continuous.

Example 3.3.2. Riemann sums
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2 4 6 8

1

2

3

4

f(x)

a b

Suppose f(x) is continuous on [a, b]. A problem is to calculate

∫ b

a

f(x) dx by taking a limit:

lim
∆x→0

n∑
i=1

f(x∗i )∆x.

Let RU be the upper Riemann sum (i.e. the biggest the sum can be, which depends on the
choices of x∗i ) and let RL be the lower Riemann sum. How bad is R = RU −RL? Consider

RU −RL =
∑(

max
x in

subinterval

f(x)− min
x in

subinterval

f(x)

)
∆x.

The limit above, which equals the integral, exists if RU − RL → 0 as ∆x → 0. It turns
out that if f is uniformly continuous on [a, b] then RU − RL → 0 as ∆x → 0. Hence by
Theorem 3.3.1, it is sufficient to show that f is continuous on [a, b]. See Section 4.5 for more
on integration.

Theorem 3.3.3. Suppose f : S → R is uniformly continuous. If (xn) ⊂ S is a Cauchy
sequence then f(xn) is a Cauchy sequence in R.

Proof. Let ε > 0 and choose δ > 0 such that if |x− y| < δ, |f(x)− f(y)| < ε using uniform
continuity. Choose N ∈ N such that for all n,m > N , |xn − xm| < δ by (xn) Cauchy. Then
for all n,m > N , |xn − xm| < δ =⇒ |f(xn)− f(xm)| < ε so f(xn) is Cauchy.

Example 3.3.4. Recall f(x) = 1
x

on (0, 1). The sequence xn = 1
n

is Cauchy, but f(xn) =
1
1
n

= n is not Cauchy. Thus f is not uniformly continuous on (0, 1).

Definition. A function f̃ is an extension of f if dom(f) ⊂ dom(f̃) and for all x ∈ dom(f),

f(x) = f̃(x).

Theorem 3.3.5. A function f : (a, b) → R is uniformly continuous if and only if there

exists an extension f̃ of f such that f̃ : [a, b]→ R and f̃ is continuous on [a, b].
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Proof. ( =⇒) Suppose f̃ exists. Then by Theorem 3.3.1, f̃ is uniformly continuous on [a, b],

and since dom(f) ⊂ dom(f̃), f is uniformly continuous on (a, b).
( =⇒ ) Suppose f is uniformly continuous on [a, b]. Let (xn) be any sequence on the

interval (a, b) that converges to a. Then (xn) is Cauchy, so f(xn) is Cauchy by Theorem 3.3.3.
By the Cauchy convergence theorem (2.3.8), f(xn) converges. Let f(a) = lim

n→∞
f
(
a+ 1

n

)
.

Let (xn)→ a and consider the sequence

yn =

(
x1, a+ 1, x2, a+

1

2
, x3, a+

1

3
, . . .

)
.

Then (yn)→ a. By the above, f(yn) converges too, so it must converge to f(a) since half of
its terms converge to a – one can make this rigorous using subsequences. Finally, we have
f(xn)→ f(a) since f(xn) is a subsequence of f(yn).

Examples.

4 Consider f(x) = x sin
(

1
x

)
on the interval (0, 1]. Is it possible to extend f to [0, 1]?

Define

f̃(x) =

{
x sin

(
1
x

)
0 < x ≤ 1

0 x = 0.

Claim. f̃ is continuous on [0, 1].

Proof. Let x0 ∈ [0, 1]. If x0 > 0 then f̃(x0) = f(x0) and there there is some ε0 > 0

such that f̃(x) = f(x) for all x ∈ (x0− ε0, x0 + ε0). Since f is continuous at x0, for all

ε > 0 if |x − x0| < ε0 then |f̃(x) − f̃(x0)| = |f(x) − f(x0)|. So if we let δ < ε0, then

|x− x0| < δ =⇒ |f(x)− f(x0)| < ε =⇒ |f̃(x)− f̃(x0)| < ε.

Now suppose x0 = 0. Let δ = ε and suppose |x − 0| = |x| < δ. Then |f̃(x) − f̃(0)| =∣∣x sin
(

1
x

)∣∣ < |x| since 0 < sin θ < 1. Then |x| < δ = ε, so f̃ is continuous on [0, 1] in
all cases.

Now note that because f̃ is continuous on [0, 1], f is uniformly continuous on (0, 1] by
Theorem 3.3.5.

5 Consider g(x) = sin
(

1
x

)
on (0, 1]. Note that it’s always possible to extend g onto a

closed interval by picking any value you want for the endpoint. We could let

g̃(x) =

{
g(x) 0 < x ≤ 1

0 x = 0.

Is g̃(x) continuous on [0, 1]? Let xn = 2
π(4n+1)

. Then for all n,

sin(xn) = sin

(
1
2

π(4n+1)

)
= sin

(
4πn+ π

2

)
= sin

(
2πn+ π

2

)
= 1.

So g̃(xn)→ 1 but (xn)→ 0. Therefore g̃ is not continuous on [0, 1].
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6 Is h(x) =
sin(x)

x
uniformly continuous on Rr{0}? We first consider h on [−1, 1]r{0}.

Since lim
x→0

sin(x)

x
= 1, define

h̃(x) =

{
sin(x)
x

x 6= 0

1 x = 0.

(This function is sometimes denoted sinc(x).) Note that h̃(x) is continuous at 0 because

if (xn)→ 0,
sin(xn)

xn
→ 1. Thus h(x) is uniformly continuous on [−1, 1] r {0}.

To show h(x) is uniformly continuous on Rr{0}, we must show that sinc(x) is uniformly
continuous on all of R. In Section 4.3, we will prove the Mean Value Theorem (4.3.3),
which states that for all a < b there is some c such that a < c < b and f ′(c) =
f(b)− f(a)

b− a
. If |f ′(c)| ≤ M then |f(b) − f(a)| ≤ M |b − a|. So letting δ = ε

M
finishes

the proof.
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3.4 Limits of Functions

Definition. Let S ⊆ R and let a ∈ R or a = ±∞. We say the limit of a function f at a is
L, written lim

x→aS
f(x) = L, if dom(f) ⊃ S and for all ε > 0 there exists a δ > 0 such that for

all x ∈ S with |x− a| < δ, |f(x)− L| < ε.

The above is known as the epsilon – delta definition of a limit. Equivalently, the sequential
definition of a limit says that lim

x→aS
f(x) = L if for all sequences (xn) ⊂ S, (xn)→ a implies

f(xn)→ L.

Lemma 3.4.1. Sequential limits are unique.

Proof. Suppose (sn) → s and (sn) → t, with s 6= t. Let ε = |s−t|
2

. Choose N1 such that for
all n > N1, |sn − s| < ε. Likewise choose N2 such that for all n > N2, |sn − t| < ε. Then for
all n > N = max{N1, N2} we have

|s− t| = |s− sn + sn − t|
≤ |sn − s|+ |sn − t| by triangle inequality

< ε+ ε

=
|s− t|

2
+
|s− t|

2
= |s− t|,

a clear contradiction. Hence s = t.

Remarks.

i f is continuous at a ∈ R ⇐⇒ lim
x→aS

f(x) = L, where S = (a−ε0, a+ε0) and L = f(a).

ii If lim
x→aS

f(x) exists, it is unique.

Proof. Suppose lim
x→aS

f(x) = L1 = L2. Take a sequence (xn) ⊂ S with (xn)→ a. Then

f(xn) → L1 and f(xn) → L2. By Lemma 3.4.1, sequential limits are unique, which
implies L1 = L2.

iii Suppose lim
x→aS

f(x) = L. If S = (a − ε0, a + ε0) r {a} then we still have that for all

ε > 0 there is a δ > 0 such that ) < |x− a| < δ implies |f(x)−L| < ε. In other words,
the normal definition of a limit holds even when a is not included in the domain.

iv If S = (a− ε0, a) then we write lim
x→aS

f(x) = lim
x→a−

f(x).

v Likewise, if S = (a, a+ ε0) then we write lim
x→aS

f(x) = lim
x→a+

f(x).

Examples.
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1 Calculate lim
x→4

x3. Note that f(x) = x3 is continuous on R. So we may let S =

(3, 5) r {4}, and remark (i) tells us that L = f(4) = 64.

2 Calculate lim
x→2

x2 − 4

x− 2
. The domain of f(x) =

x2 − 4

x− 2
is Rr {2} and f is continuous on

its entire domain. Let

g(x) =


x2 − 4

x− 2
x 6= 2

6 x = 2.

Then g is a continuous extension of f onto R. Thus lim
x→2

f(x) must be 6.

3 Consider f(x) = 1
x
. Is lim

x→0
f(x) =∞? No: lim

x→0+
f(x) = +∞ but lim

x→0−
f(x) = −∞, i.e.

the right- and left-sided limits are not equal, so the function does not have a limit at
x = 0.

Like diverging sequences in the last chapter, functions may have one of the following
types of asymptotic behavior:

� f has a vertical asymptote at a, written lim
x→a

f(x) = +∞, if (xn) → a implies

f(xn) → +∞. An equivalent definition is if for all M > 0, there is some δ > 0 such
that |x− a| < δ =⇒ f(x) > M . (This definition can be adapted for −∞.)

� f has a horizontal asymptote, written lim
x→∞

f(x) = L if (xn) → ∞ implies that

f(xn)→ L. An equivalent definition is if for all ε > 0, there is some M > 0 such that
for all x > M , |f(x)− L| < ε. (This can also occur as x→ −∞.)

� lim
x→∞

f(x) = ∞ if (xn) → ∞ implies f(xn) → ∞, or if for all M > 0, there is some

N > 0 such that for all x > N , f(x) > M .

Theorem 3.4.2. Suppose f1 and f2 are continuous on S with lim
x→aS

f1(x) = L1 and lim
x→aS

f2(x) =

L2 for some L1, L2 ∈ R. Then

(1) lim
x→aS

(f1(x) + f2(x)) = L1 + L2.

(2) lim
x→aS

(f1(x)− f2(x)) = L1 − L2.

(3) lim
x→aS

f1(x)f2(x) = L1L2.

(4) If L2 6= 0, lim
x→aS

f1(x)

f2(x)
=
L1

L2

.

Proof. Use the sequence laws.

Theorem 3.4.3. Suppose lim
x→aS

f(x) = L exists, g is defined on {L} ∪ {y | y = f(x), x ∈ S}
and g is continuous at y0 = L. Then lim

x→aS
g ◦ f(x) = g(L).
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Proof omitted.

Example 3.4.4. Let f(x) = 1 + x sin
(
π
x

)
on Rr {0} and

g(x) =

{
4 x 6= 1

−4 x = 1.

Then lim
x→0

f(x) = 1 and lim
y→1

g(y) = 4, BUT g is not continuous at y0 = 1. Thus lim
x→0

g ◦ f(x)

does not exist.
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3.5 Power Series

This section introduces the notion of power series as a way to represent functions. This is
an important connection between Chapter 2 and the study of calculus.

Definition. A series of the form
∞∑
n=0

anx
n is called power series centered at 0. In general,

a power series centered at x0 has the form
∞∑
n=0

an(x− x0)n.

Theorem 3.5.1. Let β = lim sup |an|
1
n and let R = 1

β
, called the radius of convergence

of the power series. Then the power series converges absolutely if |x| < R and diverges if
|x| > R.

Proof. Let x ∈ R. By the Root Test, the series converges if lim sup |anxn|
1
n < 1, diverges if

lim sup |anxn|
1
n > 1 and is inconclusive otherwise. We compute

lim sup |anxn|
1
n = lim sup |an|

1
n |xn|

1
n

= lim sup |an|
1
n |x|

= |x| lim sup |an|
1
n since |x| does not depend on n

= |x| · β.

The the above characterization by the Root Test says the series converges if |x| · β < 1 ⇐⇒
|x| < 1

β
and diverges if |x| · β > 1 ⇐⇒ |x| > 1

β
.

There are three cases for the radius of convergence of a power series:

� If β = 0 and R = ∞, then for all x ∈ R, |x| < R so the power series converges for all
x.

� If β is a positive number, then the power series converges for all |x| < R and diverges
for all |x| > R. In this case we must check the endpoints x = x0 ±R separately.

� If β = ∞ and R = 0, the power series only converges at x0. Note that every power
series at minimum converges at the point about which it is centered.

Examples.

1 For
∞∑
n=0

nnxn, we compute lim sup |nn| 1n = lim sup |n| =∞. So β =∞ and R = 0, and

thus the series only converges at x0 = 0.
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2 Consider the series
∞∑
x=0

xn

n!
; this is an example of a Taylor series for ex (see Section 4.4).

Here we have

β = lim sup |an|
1
n

= lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ if this limit exists

= lim
n→∞

∣∣∣∣∣
1

(n+1)!

1
n!

∣∣∣∣∣ = lim
n→∞

∣∣∣∣ n!

(n+ 1!)

∣∣∣∣ = lim
n→∞

∣∣∣∣ 1

n+ 1

∣∣∣∣ = 0.

Then R = 0 so the series converges for all x.

3 A geometric series
∞∑
n=0

xn converges for |x| < 1 and diverges otherwise. There’s no

need to check the endpoints because the geometric series test (Theorem 2.6.2) tells us
it diverges at |x| = 1.

4 Consider
∞∑
n=1

xn

n
. As above, we compute

β = lim

∣∣∣∣an+1

an

∣∣∣∣ if it exists

= lim
n→∞

∣∣∣∣∣ 1
n+1

1
n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣ n

n+ 1

∣∣∣∣ = 1.

Thus R = 1. Theorem 3.5.1 says that this series converges if |x| < 1 and diverges if
|x| > 1, but what happens at |x| = 1? If x = −1, the series becomes the alternating
harmonic series, which converges by the alternating series test (Theorem 2.8.1). On
the other hand, if x = 1 then the series is the regular harmonic series, which we know
diverges. Thus the interval of convergence of this series is [−1, 1).

5 Now consider
∞∑
n=1

xn

n2
. By a similar argument as above, R = 1 so the series converges

for |x| < 1 and diverges for |x| > 1. Here however, the series converges at x = 1 by p-
series, and also still converges at x = −1 by the alternating series test (Theorem 2.8.1).
Hence the interval of convergence is closed this time: [−1, 1].

6 The geometric series
∞∑
n=0

2−nx3n converges for |x|3 < 2, i.e. |x| < 3
√

2 and diverges at

the endpoints. Thus the interval of convergence is
(
− 3
√

2, 3
√

2
)
.

Why should a power series
∞∑
n=0

an(x − x0)n be continuous? The partial sums are poly-

nomials, so they are all continuous. However, not all limits of continuous functions are
continuous. Consider for example fn(x) = xn.
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(1, 1)

On 0 ≤ x < 1, lim xn = 0, but for x ≥ 1, lim xn > 0. For example, at x = 1 the limit is 1 as
seen in the picture above. It turns out that we need uniform convergence to make the limit
of a sequence of continuous funtions continuous.
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3.6 Uniform Convergence

Definition. Let S ⊆ R and let fn be a sequence of functions S → R. We say fn converges
pointwise to f : S → R if for all x ∈ S, lim

n→∞
fn(x) = f(x); that is, for all x ∈ S and for

all ε > 0, there is some N ∈ N such that for all n > N , |fn(x)− f(x)| < ε.

In the previous example with fn(x) = xn on S = [0, 1], we do have pointwise convergence.
For x < 1, fn(x) is a geometric sequence with ratio < 1, so fn(x) → 0. If x = 1, then
fn(x) = 1n = 1 so fn(1)→ 1. Thus fn → f pointwise, where

f(x) =

{
0 x < 1

1 x = 1.

Definition. Let fn : S → R be a sequence of functions. Then fn converges uniformly to
f on S if for all ε > 0, there is some N ∈ N such that for all n > N and for all x ∈ S,
|fn(x)− f(x)| < ε.

The word uniform has the same meaning as in Section 3.3. It means that the ‘rate’ of
convergence cannot depend on x.

Examples.

1 Does fn(x) = xn converge uniformly on [0, 1]? First, if x = 1 then |1−1| < ε =⇒ 0 < ε
so any N works. Now if x < 1 then we have

|xn − 0| < ε

=⇒ |x|n < ε

=⇒ log |x|n < log ε

=⇒ n >
log ε

log |x|
.

But log |x| → 0 as x→ 1, so N →∞. So there’s a bad spot at x = 1. Say we cut out
x = 1. We claim that fn is uniformly convergent to f(x) = 0 on [0, a] for any a < 1.

Proof. Let 0 < a < 1, ε > 0, N > log ε
log a

, n > N and x ∈ [0, a]. Then

|fn(x)− f(x)| = |xn − 0| = xn ≤ an < aN < a
log ε
log a = aloga ε = ε.

Hence fn → 0 on [0, a].

2 Does gn(x) = cos(nx)
n

converge uniformly on R? As n→∞, gn(x)→ 0 so let g(x) = 0.
Since cos(nx) is bounded, we have∣∣∣∣cos(nx)

n
− 0

∣∣∣∣ =

∣∣∣∣cos(nx)

n

∣∣∣∣ ≤ 1

n
.

Then our choice of N should be bigger than 1
ε
.
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Proof. Let ε > 0, N > 1
ε
, n > N and x ∈ R. Then

|gn(x)− g(x)| =
∣∣∣∣cos(nx)

n
− 0

∣∣∣∣ =
| cos(nx)|

n
≤ 1

n
<

1

N
<

1
1
ε

= ε.

Hence gn converges uniformly to 0 on R.

Note that our choice of N doesn’t depend on x, and only on ε. This is how uniform
convergence works in general.

The next theorem establishes that if a sequence of continuous functions converges uni-
formly, it must converge to a continuous function. The proof is a classic in analysis known
as the “three epsilon proof”.

Theorem 3.6.1. The uniform limit of a sequence of continuous functions is continuous;
that is, if fn converges uniformly to some f on S and fn is continuous at x0 ∈ S for all n,
then f is also continuous at x0.

Proof. Let S, fn, f and x0 be as the theorem states. Let ε > 0. Since fn → f uniformly,
there exists an N such that for all n > N and for all x ∈ S, |fn(x) − f(x)| < ε

3
. Let

n > N . Since fn is continuous at x0, there is some δ > 0 such that |x − x0| < δ implies
|fn(x)− fn(x0)| < ε

3
. Let |x− x0| < δ. Then

|f(x)− f(x0)| = |f(x)− fn(x) + fn(x)− fn(x0) + fn(x0)− f(x0)|
≤ |f(x)− fn(x)|+ |fn(x)− fn(x0)|+ |fn(x0)− f(x0)|

<
ε

3
+
ε

3
+
ε

3
= ε.

Therefore f is continuous at x0.

Remark. An equivalent way to express uniform convergence is if

lim
n→∞

sup{|fn(x)− f(x)| : x ∈ S} = 0.

Proof. First suppose fn → f uniformly. Then given ε > 0, there is some N ∈ N such that
|fn(x)− f(x)| < ε for all n > N, x ∈ S. We want to show that |sup{|fn(x)− f(x)|}− 0| < ε.
By uniform continuity, there exists an N ′ such that for all n > N , |fn(x) − f(x)| < ε

2
.

Then for all n > max{N,N ′} and x ∈ S, we have sup{|fn(x) − f(x)|} ≤ ε
2
< ε. Thus

lim
n→∞

sup{|fn(x)− f(x)| : x ∈ S} = 0.

Conversely, suppose lim
n→∞

sup{|fn(x) − f(x)| : x ∈ S} = 0. Then given ε > 0, there is

some N such that for all n > N , |sup{|fn(x)−f(x)| : x ∈ S}−0| < ε. Moreover, for all x ∈ S
we have |fn(x)− f(x) ≤ sup{|fn(x)− f(x)|} < ε. Thus fn converges to f uniformly.

Examples.

3 Consider hn(x) = x
n

on [0,∞). hn converges pointwise to 0. However, observe that
sup{|hn(x)− 0| : x ≥ 0} = +∞, so lim sup{|hn(x)| : x ≥ 0} = +∞. Therefore x

n
does

not converge to 0 uniformly.
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4 Let fn(x) = x
1+nx2

, which is continuous on R. First, fn(x) → 0 as n → ∞ for x 6= 0,
and fn(0) = 0 for all n, so fn converges pointwise to f(x) = 0. Does it converge
uniformly? First let’s find the minimum and maximum values of fn(x):

f ′n(x) =
1 + nx2 − 2nx2

(1 + nx2)2
=

1− nx2

(1 + nx2)2
.

Setting this equal to 0, we have 1− nx2 = 0 =⇒ x = ± 1√
n
. So sup{|fn(x)− f(x)|} =

fn

(
1√
n

)
or −fn

(
− 1√

n

)
. Observe that

fn

(
1√
n

)
=

1√
n

1 + n
(

1√
n

)2 =

1√
n

1 + 1
=

1

2
√
n
−→ 0

as n→∞. Then by the remark, fn converges to 0 uniformly.

5 Consider fn(x) = n2xn(1− x) on S = [0, 1]. Then∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣(n+ 1)2xn+1(1− x)

n2xn(1− x)

∣∣∣∣ = |x|
∣∣∣∣n+ 1

n

∣∣∣∣2 −→ |x|
as n→∞. Thus fn converges pointwise for |x| < 1. To check the endpoint x = 1, we
have fn(1) = n21n(1−1) = 0 so fn converges pointwise to 0 on the interval [0, 1]. Does
fn → 0 uniformly? Again we calculate the maximum and minimum function values:

f ′n(x) = n3xn−1(1− x)− n2xn = n2xn−1[n(1− x)− x]

= n2xn−1(n− (n+ 1)x).

Setting this equal to 0, we have 0 = n− (n + 1)x and 0 = xn−1, so the critical points
are x = n

n+1
and x = 0. Thus sup{|fn(x)− f(x)| : 0 ≤ x ≤ 1} = f(0) or f

(
n
n+1

)
. But

f(0) = 0 and

f

(
n

n+ 1

)
= n2

(
n

n+ 1

)n(
1− n

n+ 1

)
= n2

(
n

n+ 1

)n(
n+ 1− n
n+ 1

)
=

nn+2(1)

(n+ 1)n+1
= n

(
n

n+ 1

)n+1

which tends to ∞ as n→∞. Thus fn does not converge to 0 uniformly.
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3.7 Applications of Uniform Convergence

In this section we develop some important results in analysis that deal with uniform conver-
gence.

Theorem 3.7.1. Suppose fn is a sequence of continuous functions converging uniformly to
f on a domain S = [a, b]. Then

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

(
lim
n→∞

fn(x)
)
dx =

∫ b

a

f(x) dx.

To prove the theorem, we need the following facts about Riemann integrals:

(a) If f(x) ≤ g(x) for all x ∈ [a, b] then∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx.

(b)

∣∣∣∣∫ b

a

g(x) dx

∣∣∣∣ ≤ ∫ b

a

|g(x)| dx.

(c) All continuous functions are Riemann integrable.

Proof. First note that since fn → f uniformly and fn is a sequence of continuous of functions,
Theorem 3.6.1 states that f is also continuous. In particular, (c) implies that f is Riemann
integrable. Let ε > 0 be given. Then there is some N ∈ N such that for all n > N and for
all x ∈ [a, b], |fn(x)− f(x)| < ε

b−a . Using the facts above, we compute∣∣∣∣∫ b

a

fn(x) dx−
∫ b

a

f(x) dx

∣∣∣∣ =

∣∣∣∣∫ b

a

[fn(x)− f(x)] dx

∣∣∣∣
≤
∫ b

a

|fn(x)− f(x)| dx

≤
∫ b

a

ε

b− a
dx =

ε

b− a
· (b− a) = ε.

Therefore lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

f(x) dx.

Definition. A sequence of functions fn is uniformly Cauchy if for all ε > 0, there is some
N ∈ N such that for all n,m > N and for all x ∈ S, |fn(x)− fm(x)| < ε.

The above definition comes from the Cauchy criterion for series: a series is uniformly Cauchy

if for all ε > 0 there is some N ∈ N such that for all n ≥ m > N ,

∣∣∣∣∣
n∑

k=m

ak

∣∣∣∣∣ < ε.

Theorem 3.7.2. Every uniformly Cauchy sequence is uniformly convergent.

61



3.7. Applications of Uniform Convergence Chapter 3. Functions

Proof. Let fn be a sequence of continuous functions that is uniformly Cauchy on S. Fix
x ∈ S. Then (fn(x)) is a Cauchy sequence of real numbers, so by the Cauchy convergence
theorem (2.3.8), (fn(x)) converges. For each x ∈ S, define f(x) = lim

n→∞
fn(x). Clearly fn → f

pointwise. To show uniform convergence, let ε > 0. By uniformly Cauchy, there is some
N ∈ N such that for all n,m > N, x ∈ S, |fn(x)− fm(x)| < ε

2
. Fix x ∈ S again and also fix

m > N . Then for any n > N , |fn(x) − fm(x)| < ε
2
, so fm(x) − ε

2
< fn(x) < fm(x) + ε

2
. As

n→∞, we have

fm(x)− ε
2
< fn(x) < fm(x) + ε

2
=⇒ fm(x) + ε

2
≤ f(x) ≤ fm(x) + ε

2

=⇒ |f(x)− fm(x)| ≤ ε
2
< ε.

Since x ∈ S and m > N were arbitrary, this shows that fm → f uniformly.

Example 3.7.3. Power series are uniformly convergent on their interval of convergence. For

instance, consider
∞∑
n=0

xn

1 + xn
on the interval (−1, 1). First suppose 0 < a < 1; we will show

the series is uniformly convergent on [0, a]. By the triangle inequality, we have∣∣∣∣∣
n∑

k=m

xk

1 + xk

∣∣∣∣∣ ≤
n∑

k=m

|x|k

|1 + xk|
≤

n∑
k=m

ak

1
=

am − an

1− a
<

am

1− a
−→ 0 < ε.

Given ε > 0, choose N ∈ N such that
aN

1− a
< ε (which is possible since this tends to 0).

Let n ≥ m > N . By the work above,∣∣∣∣∣
n∑

k=m

xk

1 + xk

∣∣∣∣∣ < am

1− a
<

aN

1− a
< ε.

Therefore the series is uniformly Cauchy on [0, a]. By Theorem 3.7.2,
∞∑
n=0

xn

1 + xn
represents a

uniformly convergent sequence for all x ∈ [0, a]. Moreover, a was chosen arbitrarily between

0 and 1, so it follows that
∞∑
n=0

xn

1 + xn
is a continuous function on [0, 1). The argument can

be repeated for −1 < b < 0 to conclude that it’s continuous on all of (−1, 1).

Theorem 3.7.4 (Weierstrass M -Test). Suppose (Mk) is a nonnegative sequence of numbers

such that
∞∑
k=0

Mk converges. Then if gk is a sequence of continuous functions on some domain

S such that |gk(x)| ≤ Mk for all x ∈ S, then
∞∑
k=0

gk(x) converges uniformly on S, and the

limit function represented by this series is continuous on S.

The Weierstrass M -test is sort of like a “uniform comparison test”.
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Proof. Let ε > 0. By the Cauchy criterion, there is an N ∈ N such that for all n ≥ m > N ,∣∣∣∣∣
n∑

k=m

Mk

∣∣∣∣∣ < ε. This implies that for all n ≥ m > N ,

∣∣∣∣∣
n∑

k=m

gk(x)

∣∣∣∣∣ ≤
n∑

k=m

|gk(x)| ≤
n∑

k=m

Mk < ε.

Thus
∞∑
k=0

gk(x) satisfies the uniform Cauchy criterion, so it is uniformly convergent.

Example 3.7.5. Consider the geometric series
∞∑
n=0

xn

2n
. The radius of convergence is 2 and

the interval of convergence is (−2, 2). Pick some a < 2 and look at S = [−a, a]. For the

sequence Mk =
(
a
2

)k
, we have

∞∑
k=0

Mk =
∞∑
k=0

(a
2

)k
=

1

1− a
2

< +∞.

Also, for the sequence of functions gk(x) =
(
x
2

)k
,

|gk(x)| ≤ |x|
k

2k
≤ ak

2k
=
(a

2

)k
= Mk

so gk(x) ≤Mk for all x ∈ [−a, a]. By the Weierstrass M -test,
∞∑
n=0

(x
2

)n
converges uniformly

on [−a, a], and furthermore the series converges to a continuous function on (−2, 2).

Proposition 3.7.6. If
∞∑
k=0

gk(x) converges uniformly on S then lim
k→∞

sup{|gk(x)| : x ∈ S} =

0.

Proof. Let ε > 0 and let N ∈ N such that for all n ≥ m > N ,

∣∣∣∣∣
n∑

k=m

gk(x)

∣∣∣∣∣ < ε. In particular,

for n = m,

∣∣∣∣∣
m∑

k=m

gk(x)

∣∣∣∣∣ < ε. Then for all m > N , |gm(x)| < ε for all x ∈ S. Hence

lim sup gm(x) = 0.
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4.1 Differentiation and Integration of Power Series

Lemma 4.1.1. Suppose
∞∑
n=0

anx
n has a positive radius of convergence R and suppose 0 <

R1 < R. Then
∞∑
n=0

anx
n converges uniformly on [−R1, R1].

Proof. Since R1 is inside the radius of convergence,
∞∑
n=0

anR
n
1 < +∞. So for all ε > 0 there

is an N ∈ N such that for all n ≥ m > N ,

∣∣∣∣∣
n∑

k=m

akR
k
1

∣∣∣∣∣ < ε. In fact,
∞∑
n=0

anR
n
1 converges

absolutely so
n∑

k=m

|ak|Rk
1 < ε. Now for all x ∈ [−R1, R1],

∣∣∣∣∣
n∑

k=m

akx
k

∣∣∣∣∣ ≤
n∑

k=m

|ak| |x|k by triangle inequality

≤
n∑

k=m

|ak|Rk
1 since |x| ≤ R1

< ε by the above.

Hence
∞∑
n=0

anx
n satisfies the Cauchy criterion, so it converges uniformly on [−R1, R1].

Corollary 4.1.2.
∞∑
n=0

anx
n converges to a continuous function on (−R,R).

Lemma 4.1.3. The derivative
∞∑
n=1

nanx
n−1 and the integral

∞∑
n=0

an
n+ 1

xn+1 have the same

radius of convergence as the power series
∞∑
n=0

anx
n.

Proof. Define the following values:

α = lim sup |an|1/n

β = lim sup |nan|1/n

γ = lim sup

∣∣∣∣ an
n+ 1

∣∣∣∣1/n .
By limit properties (Section 2.2),

β = lim sup |nan|1/n = lim sup |n|1/n · lim sup |an|1/n = 1 · lim sup |an|1/n = α.
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On the other hand, we have

γ = lim sup

∣∣∣∣ an
n+ 1

∣∣∣∣1/n = lim sup |an|1/n · lim sup

∣∣∣∣ 1

n+ 1

∣∣∣∣1/n = lim sup |an|1/n · 1 = α.

Thus α = β = γ. Notice that the radii of convergence for the series, the derivative and the
integral are 1

α
, 1
β

and 1
γ
, respectively, so these are all equal as claimed.

Theorem 4.1.4. Suppose f(x) =
∞∑
n=0

anx
n on some radius of convergence R > 0. Then

∫ x

0

f(t) dt =
∞∑
n=0

an
n+ 1

xn+1

for all |x| < R.

Proof. Without loss of generality assume −R < x < 0 (the case when x = 0 is trivial). By

Lemma 4.1.1,
∞∑
n=0

ant
n converges uniformly to f(t) on [−x, 0], so we may switch the order of

the integral and summation in the following steps:∫ 0

x

lim
N→∞

N∑
n=0

ant
n dt = lim

N→∞

∫ 0

x

N∑
n=0

ant
n dt

=⇒
∫ 0

x

f(t) dt = lim
N→∞

N∑
n=0

∫ 0

x

ant
n dt

= lim
N→∞

N∑
n=0

[
an
xn+1

n+ 1

]0

x

= lim
N→∞

N∑
n=0

−an
xn+1

n+ 1
.

Then we have

∫ x

0

f(t) dt = − lim
N→∞

−an
xn+1

n+ 1
= lim

N→∞
an
xn+1

n+ 1
as claimed.

Theorem 4.1.5. Suppose f(x) =
∞∑
n=0

anx
n on some radius of convergence R > 0. Then f

is differentiable (see Section 4.2) on (−R,R) with derivative

f ′(x) =
∞∑
n=1

annx
n−1

for all |x| < R.
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Proof. Let g(x) =
∞∑
n=1

annx
n−1; we will show that g is the derivative of f on (−R,R). By

Lemma 4.1.3, g has the same radius of convergence R as the series for f , and by Theo-
rem 4.1.4, ∫ x

0

g(t) dt =
∞∑
n=1

ann
xn

n
=
∞∑
n=1

anx
n.

For 0 < R1 < R, there is some k such that∫ x

−R1

g(t) dt+ k = f(x).

Then by the Fundamental Theorem of Calculus, f ′(x) exists and f ′(x) = g(x) on [−R1, R1]
for all R1 < R. Therefore f ′ exists and equals g on (−R,R) and the theorem is proved.

Example 4.1.6. Consider
∞∑
n=0

xn =
1

1− x
on (−1, 1). By Theorem 4.1.4,

∞∑
n=0

xn+1

n+ 1
=

∫
1

1− x
dx = − log(1− x)

on (−1, 1). Note that if x = −1,
∞∑
n=0

(−1)n+1

n+ 1
= − log(2) even though −1 is an endpoint of

the series’ interval of convergence.

Example 4.1.6 suggests the following theorem, which is a famous result due to Abel.

Theorem 4.1.7 (Abel’s Theorem). If
∞∑
n=0

anx
n has radius of convergence R and converges at

the endpoint x = R (resp. x = −R), then the series is continuous at x = R (resp. x = −R).

Proof omitted.

67



4.2. The Derivative Chapter 4. Calculus

4.2 The Derivative

Definition. Suppose f : S → R where S is an open interval containing a. Then f is said to

be differentiable at a if lim
x→a

f(x)− f(a)

x− a
exists (is finite). If so, we define the derivative

of f at a in two ways:

f ′(a) = lim
x→a

f(x)− f(a)

x− a
= lim

h→0

f(a+ h)− f(a)

h
.

Examples.

1 For f(x) = x2, fix a ∈ R. Then we compute the derivative of f at a to be

lim
x→a

f(x)− f(a)

x− a
= lim

x→a

x2 − a2

x− a
= lim

x→a
(x+ a) = 2a.

2 Likewise, let g(x) =
√
x and for a fixed a > 0, compute

lim
h→0

g(a+ h)− g(a)

h
= lim

h→0

√
a+ h−

√
a

h
·
√
a+ h+

√
a√

a+ h+
√
a

= lim
h→0

a+ h− a
h
(√

a+ h+
√
a
)

= lim
h→0

1√
a+ h+

√
a

=
1

2
√
a
.

This also shows that the domain of g′ is {a > 0}.

3 Let h(x) = xn for some n ∈ N and fix a ∈ R. Then we compute

lim
k→0

h(a+ k)− h(a)

k
= lim

k→0

(a+ k)n − an

k

= lim
k→0

(
n∑
i=0

(
n
i

)
aikn−i

)
− an

k

= lim
k→0

1

k

n−1∑
i=0

(
n

i

)
aikn−i = lim

k→0

n−1∑
i=0

(
n

i

)
aikn−i−1

=

(
n

n− 1

)
an−1 + 0 + 0 + 0 + . . . = nan−1.

Theorem 4.2.1. Suppose f : S → R is differentiable at some a ∈ S. Then f is continuous
at a.

Proof. Suppose f is differentiable at a. Then lim
x→a

f(x)− f(a)

x− a
exists and is finite. Note that

lim
x→a

(x− a) = 0. Then we have

lim
x→a

(
f(x)− f(a)

x− a
· (x− a)

)
= lim

x→a

(
f(x)− f(a)

x− a

)
lim
x→a

(x− a) = f ′(a) · 0 = 0.
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This implies lim
x→a

(f(x)− f(a)) = 0 =⇒ lim
x→a

f(x) = f(a), so f is continuous at a.

Theorem 4.2.2 (Properties of Derivatives). Suppose c ∈ R, and f, g : S → R are functions
that are differentiable at a ∈ S. Then

(1) cf is differentiable at a with (cf)′(a) = cf ′(a).

(2) f + g is differentiable at a with (f + g)′(a) = f ′(a) + g′(a).

(3) fg is differentiable at a with (fg)′(a) = f(a)g′(a) + f ′(a)g(a).

(4) If g(a) 6= 0 then
f

g
is differentiable at a with

(
f

g

)′
(a) =

g(a)f ′(a)− f(a)g′(a)

g(a)2
.

Proof. (1) Consider

lim
x→a

cf(x)− cf(a)

x− a
= lim

x→a
c
f(x)− f(a)

x− a
= c lim

x→a

f(x)− f(a)

x− a
= cf ′(a).

Thus (cf)′(a) = cf ′(a).
(2) By limit properties (Section 2.2),

lim
x→a

(f + g)(x)− (f + g)(a)

x− a
= lim

x→a

f(x) + g(x)− f(a)− g(a)

x− a

= lim
x→a

f(x)− f(a)

x− a
+ lim

x→a

g(x)− g(a)

x− a
= f ′(a) + g′(a).

(3) Consider

(fg)′(a) = lim
x→a

f(x)g(x)− f(a)g(a)

x− a

= lim
x→a

f(x)g(x)− f(x)g(a) + f(x)g(a)− f(a)g(a)

x− a

= lim
x→a

[
f(x)(g(x)− g(a)) + g(a)(f(x)− f(a))

x− a

]
= lim

x→a
f(x)

g(x)− g(a)

x− a
+ lim

x→a
g(a)

f(x)− f(a)

x− a

= lim
x→a

f(x) lim
x→a

g(x)− g(a)

x− a
+ lim

x→a
g(a) lim

x→a

f(x)− f(a)

x− a
.

Since f is differentiable at a, Theorem 4.2.1 says that f is continuous at a, so lim
x→a

f(x) = f(a).

Thus (fg)′(a) = f(a)g′(a) + g(a)f ′(a).
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(4) Finally, consider(
f

g

)′
(a) = lim

x→a

f(x)
g(x)
− f(a)

g(a)

x− a
= lim

x→a

f(x)g(a)− f(a)g(x)

(x− a)g(x)g(a)

= lim
x→a

f(x)g(a)− f(a)g(a) + f(a)g(a)− f(a)g(x)

(x− a)g(x)g(a)

= lim
x→a

1

g(x)
· lim
x→a

1

g(a)
·
[

lim
x→a

g(a)
f(x)− f(a)

x− a
− lim

x→a
f(a)

g(x)− g(a)

x− a

]
=

1

[g(a)]2
(g(a)f ′(a)− f(a)g′(a))

=
g(a)f ′(a)− f(a)g′(a)

[g(a)]2
.

Theorem 4.2.3 (Chain Rule). If f : S → R is differentiable at x0 ∈ S and g : T → R is
differentiable at f(x0) ∈ T , then g ◦ f : S → R is differentiable at x0 with derivative

(g ◦ f)′(x0) = g′(f(x0)) · f ′(x0).

Proof. The trick with this proof is that we can expand the limit:

lim
x→x0

g(f(x))− g(f(x0))

x− x0

=

(
lim
x→x0

g(f(x))− g(f(x0))

f(x)− f(x0)

)
·
(

lim
x→x0

f(x)− f(x0)

x− x0

)
but we are not guaranteed to have f(x) 6= f(x0). To remedy this, define

h(y) =


g(y)− g(f(x0))

y − f(x0)
y 6= f(x0)

g′(y) y = f(x0).

Since g is differentiable at f(x0), h is well-defined. In order for h to be continuous at f(x0),
we must have

lim
y→f(x0)

h(y) = lim
y→f(x0)

g(y)− g(f(x0))

y − f(x0)
= h(f(x0))

but this is true by continuity of g at f(x0). This further implies that the above limit equals
g′(f(x0)) by definition of h. Thus for each y 6= f(x0), h(y)(y−f(x0)) = g(y)−g(f(x0)), and
for y = f(x0) the equation becomes 0 = 0. So the equation holds for all y, and in particular
h(f(x))(f(x)− f(x0)) = g(f(x))− g(f(x0)). Now we compute

lim
x→x0

h(f(x))(f(x)− f(x0))

x− x0

= lim
x→x0

g(f(x))− g(f(x0))

x− x0

=⇒ lim
x→x0

h(f(x)) lim
x→x0

f(x)− f(x0)

x− x0

= lim
x→x0

g(f(x))− g(f(x0))

x− x0

=⇒ h(f(x0))f ′(x0) = g′(f(x0)).

Since h is continuous at x0, g(f(x0)) · f ′(x0) = (g ◦ f)′(x0), proving the Chain Rule.
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Examples.

4 Consider f(x) = sin(x2). By the Chain Rule, f ′(x) = 2x cos(x2).

5 For g(x) = sin2(x), the Chain Rule tells us that the derivative is g′(x) = 2 sin(x) cos(x).
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4.3 The Mean Value Theorem

In this section we prove one of the “Main Theorems” in calculus, the Mean Value Theorem.
The route we take is standard; we first prove the special case called Rolle’s Theorem and
then use it to prove the general result. Later in the section we prove several corollaries,
including two other “Main Theorems”.

Theorem 4.3.1. Suppose that for some x0 ∈ (a, b), f(x0) is either a maximum or minimum
value of f on (a, b). If f is differentiable at x0 then f ′(x0) = 0.

Proof. We will prove the maximum case and remark that the minimum case is identical up
to symmetry. First suppose f ′(x0) > 0. Then

lim
x→x0

f(x)− f(x0)

x− x0

> 0

so there is some δ > 0 such that 0 < |x−x0| < δ implies
f(x)− f(x0)

x− x0

> 0. So if x−x0 > 0 we

have f(x)− f(x0) > 0, i.e. f(x) > f(x0), contradiction the maximality of f(x0). Similarly,
if f ′(x0) < 0 then

lim
x→x0

f(x)− f(x0)

x− x0

< 0.

In this case, there is some δ > 0 such that 0 < |x− x0| < δ implies
f(x)− f(x0)

x− x0

< 0. So if

x− x0 < 0 then f(x)− f(x0) > 0 =⇒ f(x) > f(x0). Both cases produce contradictions, so
f ′(x0) must be 0.

Theorem 4.3.2 (Rolle’s Theorem). Suppose f is continuous on [a, b] and differentiable on
(a, b). Then if f(a) = f(b), there is some x0 ∈ (a, b) such that f ′(x0) = 0.

Proof. By the extreme value theorem (3.2.1), there exist x0, y0 ∈ [a, b] such that f(x0) ≤
f(x) ≤ f(y0) for all x ∈ [a, b]. Case 1 is if f(a) = f(b) = f(x0) = f(y0). In this case, f is
constant, so f ′(x) = 0 for the whole interval and any point between a and b will suffice.

Case 2 is when one of f(x0), f(y0) is not equal to f(a) = f(b). Then either x0 ∈ (a, b) or
y0 ∈ (a, b). Without loss of generality, suppose it’s x0. By Theorem 4.3.1, f ′(x0) = 0. This
proves Rolle’s Theorem in all cases.

Theorem 4.3.3 (Mean Value Theorem). Suppose f is continuous on [a, b] and differentiable

on (a, b). Then there exists some x0 ∈ (a, b) such that f ′(x0) =
f(b)− f(a)

b− a
.

Proof. Define

g(x) = f(x)−
(
f(b)− f(a)

b− a
(x− a) + f(a)

)
.

(The part in parentheses is the secant line from a to b.) Then g(a) = g(b) = 0, so by Rolle’s
Theorem, there is some x0 ∈ (a, b) such that g′(x0) = 0. But we calculate that

g′(x0) = f ′(x0)−
(
f(b)− f(a)

b− a
· 1 + 0

)
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which shows that f ′(x0) =
f(b)− f(a)

b− a
as claimed.

Corollary 4.3.4. Suppose f is differentiable on (a, b) and f ′(x) = 0 for all x ∈ (a, b). Then
there is some c ∈ R such that f(x) = c for all x ∈ (a, b), i.e. f is a constant function on the
interval (a, b).

Proof. Suppose there exist y, z ∈ (a, b), y < z, such that f(y) 6= f(z). Without loss of
generality, say f(y) < f(z). By the mean value theorem, there exists an x ∈ (a, b) such that

y < x < z and f ′(x) =
f(z)− f(y)

z − y
> 0, contradicting our assumption on f ′. Therefore f(x)

is constant across (a, b).

Corollary 4.3.5. Suppose f and g are differentiable on (a, b) and f ′(x) = g′(x) for all
x ∈ (a, b). Then there is some c ∈ R such that f(x) = g(x) + c for all x ∈ (a, b), i.e. f and
g differ by a constant on the whole interval.

Proof. Let h(x) = f(x) − g(x). Then h′(x) = f ′(x) − g′(x) = 0 by hypothesis, so by
Corollary 4.3.4, h(x) = c for all x ∈ (a, b) and for some constant c. Therefore f(x) =
g(x) + c.

Corollary 4.3.6. Let f be a continuous function on some interval (a, b).

(1) f ′ strictly positive =⇒ f strictly increasing.

(2) f ′ nonnegative =⇒ f nondecreasing.

(3) f ′ strictly negative =⇒ f strictly decreasing.

(4) f ′ nonpositive =⇒ f nonincreasing.

Proof. We will prove (1) and leave the similar proofs for (2) – (4) for exercise. Suppose
f is not strictly increasing on (a, b). Then there exist x, y ∈ (a, b) such that x < y but
f(x) ≥ f(y). By the mean value theorem, there is some z ∈ (a, b) such that x < z < y and

f ′(z) =
f(y)− f(x)

y − x
≤ 0. By contrapositive, f ′ strictly positive implies that f is strictly

increasing on (a, b).

Theorem 4.3.7 (Intermediate Value Theorem for Derivatives). Suppose f is differentiable
on (a, b) and a < x1 < x2 < b with f ′(x1) < f ′(x2). Then for all c between f ′(x1) and f ′(x2)
there is some x0 ∈ (x1, x2) such that f ′(x0) = c.

Note that the intermediate value property holds for derivatives even if they are not contin-
uous on the interval. This is sometimes known as Darboux’s Theorem.

Proof. Let g(x) = f(x)−cx for any c between f ′(x1) and f ′(x2). Then g′(x1) = f ′(x1)−c < 0
and g′(x2) = f ′(x2)−c > 0. This means that on the interval [x1, x2], g must have an absolute
minimum, but by Theorem 4.3.1, x1 and x2 cannot be minima. Thus for some x0 ∈ (x1, x2),
f(x0) is a minimum. Then we have g′(x0) = f ′(x0)− c = 0 and hence f ′(x0) = c.
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Theorem 4.3.8 (Inverse Function Theorem). Suppose f is one-to-one and continuous on
an interval I. Let J = f(I). If f is differentiable at some x0 ∈ I and f ′(x0) 6= 0, then the

inverse function f−1 is differentiable at y0 = f(x0) and (f−1)′(y0) =
1

f ′(x0)
.

Proof. First note that if I is an open interval, so is J by the intermediate value theorem
(3.2.2). Then y0 = f(x0) ∈ J so f−1(y0) is well-defined. Moreover,

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0

=⇒ 1

f ′(x0)
= lim

x→x0

x− x0

f(x)− f(x0)
.

Let y = f(x). Then we can write the above as

1

f ′(x0)
= lim

x→x0

f−1(y)− f−1(y0)

y − y0

.

This is almost the derivative of f−1. By our previous work proving the intermediate value
theorem (3.2.2), f−1(y) is continuous at y0, so for all δ > 0 there exists an η > 0 such that
0 < |y − y0| < η implies 0 < |x− x0| < δ. Suppose |y − y0| < η. Then |x− x0| < δ implies
by the above that ∣∣∣∣f−1(y)− f−1(y0)

y − y0

− 1

f ′(x0)

∣∣∣∣ < ε

for any ε > 0 we choose. Therefore

1

f ′(x0)
= lim

y→y0

f−1(y)− f−1(y0)

y − y0

= (f−1)′(y0)

and the theorem is proved.

Example 4.3.9. Find d
dx

(
x1/n

)
.

To compute this derivative (without using the power rule on this function), let f−1(x) = x1/n,
so that f(x) = xn. Now the power rule becomes useful: f ′(x) = nxn−1 as we know. Then
the inverse function theorem says that

d

dx

(
x1/n

)
= (f−1)′(x) =

1

n (x1/n)
n−1 =

1

nx1/n−1
.

Example 4.3.10. Calculate d
dx

(arcsin(x)).

The inverse function theorem is useful for calculating derivatives of inverse trig functions.
Let f−1(x) = arcsin(x), so that f(x) = sin(x) and f ′(x) = cos(x). Then

d

dx
(arcsin(x)) = (f−1)′(x) =

1

cos(sin−1(x))

=
1√

cos 2(sin−1(x))

=
1√

1− [sin(sin−1(x))]2

=
1√

1− x2
.
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4.4 Taylor’s Theorem

The notes in this section are taken from a presentation I gave for Dr. Sarah Raynor’s
analysis course in Fall 2012, using Ross as a primary reference. The section covers Taylor
series, Taylor’s Theorem and a corollary to the theorem.

Recall the derivative theorem for power series (Theorem 4.1.5): if f(x) =
∞∑
k=0

akx
k with

radius of convergence R > 0, the derivative of f is given by

f ′(x) =
∞∑
k=1

kakx
k−1

and has the same radius of convergence as f(x). By the same theorem, we can calculate the
second derivative:

f ′′(x) =
∞∑
k=2

k(k − 1)akx
k−2.

We obtain the nth derivative of f(x) with the following formula:

f (n)(x) =
∞∑
k=n

k!

(k − n)!
akx

k−n.

Notice that if we plug in x = 0, we have f (n)(0) = n! an — this holds even for n = 0, since
f (0) = f and 0! = 1. This allows us to write the Taylor series expansion of f about 0:

f(x) =
∞∑
k=0

f (k)(0)

k!
xk for all x such that |x| < R.

Notice that for this definition to make sense, f must be defined on some open interval
containing 0 and have derivatives of all orders defined at 0.

Next, define the nth remainder with respect to f by:

Rn(x) = f(x)−
n−1∑
k=0

f (k)(0)

k!
xk.

Then f(x) =
∞∑
k=0

f (k)(0)

k!
xk if and only if lim

n→∞
Rn(x) = 0. We are now prepared to prove the

main theorem on Taylor series.

Theorem 4.4.1 (Taylor’s Theorem). Let f be a function on (a, b) where a < 0 < b and
suppose f (n) exists on (a, b). Then for all x 6= 0 between a and b, there is some y between 0
and x such that

Rn(x) =
f (n)(y)

n!
xn.
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Proof. Fix x 6= 0 in (a, b) and n ∈ N. Then

f(x) =
n−1∑
k=0

f (k)(0)

k!
xk +Rn(x) =

n−1∑
k=0

f (k)(0)

k!
xk +

Mxn

n!

for a unique M . We will show that f (n)(y) = M for some y between 0 and x. Consider the
function

g(t) =
n−1∑
k=0

f (k)(0)

k!
tk +

Mtn

n!
− f(t).

Then g(0) = 0 and for k < n, g(k)(0) = 0. Since M is unique, this means that g(x) = 0
as well. Now we can apply Rolle’s Theorem (4.3.2) to find some x1 between 0 and x such
that g′(x1) = 0. And since g′(0) = 0, we can choose some x2 between 0 and x1 such that
g′′(x2) = 0. Continuing in this way, we find xn between 0 and xn−1 such that g(n)(xn) = 0.
Note that for all t ∈ (a, b), g(n)(t) = M − fn(t). Then M = f (n)(xn). Finally by letting
y = xn, we have

Rn(x) =
Mxn

n!
=
f (n)(y)

n!
xn

which proves Taylor’s Theorem.

Corollary 4.4.2. Let f be defined on (a, b) where a < 0 < b. If f (n) is defined on (a, b)
for all n and f (n) is bounded by a single constant C, then Rn(x) → 0 for all x ∈ (a, b). In
other words, if all derivatives are bounded on (a, b) then f(x) equals its Taylor series on the
interval.

Proof. Let x ∈ (a, b). By Taylor’s Theorem,

|Rn(x)| = |f
(n)(y)|
n!

|x|n.

Since f (n) is bounded, we have

|Rn(x)| ≤ C

n!
|x|n.

Therefore lim
n→∞

|x|n

n!
= 0 implies lim

n→∞
Rn(x) = 0.

Example 4.4.3. The Taylor series for f(x) = ex about 0 is
∞∑
k=0

xk

k!
. Recall from calculus that

the nth derivative of ex is ex for all n. Then on the interval (−M,M) ⊂ R for some fixed,
positive M , f is bounded by eM . Then Corollary 4.4.2 implies that the radius of convergence
for the Taylor series of ex is ∞, i.e. ex is represented by its Taylor series expansion on all of
R.

Example 4.4.4. Let g(x) = sin(x). We calculate

g(n)(x) =


sin(x) n ≡ 0 (mod 4)

cos(x) n ≡ 1 (mod 4)

− sin(x) n ≡ 2 (mod 4)

− cos(x) n ≡ 3 (mod 4).
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So for all n, |g(n)(x)| ≤ 1. Thus Corollary 4.4.2 says that sin(x) is represented by its Taylor

series
∞∑
k=0

(−1)k

(2k + 1)!
x2k+1 on all of R.

An alternate version of Taylor’s Theorem is given here.

Theorem 4.4.5. Given f defined on (a, b) with a < 0 < b and continuous derivatives f (n)

on the whole interval, there is some x ∈ (a, b) such that

Rn(x) =

∫ x

0

(x− t)n−1

(n− 1)!
f (n)(t) dt.

Proof. Shown using induction and integration by parts.
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4.5 The Integral

In this section we forego a routine discussion of the standard Riemann integral, which can be
found in any undergraduate calculus text (cf. Stewart). Instead, we describe the Darboux
integral, which turns out to be equivalent to the Riemann integral.

Definition. Suppose f is bounded on [a, b]. Then for a subset S ⊆ [a, b], we define

M(f, S) = sup{f(x) | x ∈ S}
m(f, S) = inf{f(x) | x ∈ S}.

Definition. A partition of [a, b] is a finite sequence of numbers {t0, t1, . . . , tn} such that
a = t0 < t1 < · · · < tn−1 < tn = b. Partition may also refer to the collection of intervals
[ti, ti+1] that compose the full interval [a, b].

Definition. For any partition P of [a, b], the upper Darboux sum of f with respect to P
is given by

U(f, P ) =
n∑
i=1

M(f, [ti−1, ti]) · (ti − ti−1)

and the lower Darboux sum is

L(f, P ) =
n∑
i=1

m(f, [ti−1, ti]) · (ti − ti−1).

a = t0 t1 t2 t3 t4 t5 = b

M(f, [t0, t1])

m(f, [t0, t1])

f(x)

Notice that for any partition P ,

m(f, [a, b]) · (b− a) ≤ L(f, P ) ≤ U(f, P ) ≤M(f, [a, b]) · (b− a)

so the set {L(f, P ) | P is a partition of [a, b]} is bounded, and it has a sup which is finite.
Likewise, the set of U(f, P ) has an inf.
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Definition. The lower Darboux integral and upper Darboux integral are defined as

L(f) = sup{L(f, P ) | P is a partition of [a, b]}
U(f) = inf{U(f, P ) | P is a partition of [a, b]}.

If L(f) = U(f) then we say f is Darboux integrable. In this case, the Darboux integral
of f on [a, b] is given by ∫ b

a

f(x) dx = L(f) = U(f).

Proposition 4.5.1. The Darboux and Riemann integrals are equivalent.

Proof omitted.

Example 4.5.2. Consider f(x) = x2 on [0, 1].

Let P = {t0, t1, . . . , tn} be a partition. Then

U(f, P ) =
n∑
i=1

M(f, [ti−1, ti]) · (ti − ti−1) =
n∑
i=1

(ti)
2(ti − ti−1)

since f is monotone increasing. If we take P1 =
{

0, 1
n
, 2
n
, . . . , n−1

n
, 1
}

, then for all i, we have
ti − ti−1 = 1

n
and

U(f, P1) =
n∑
i=1

(
i

n

)2(
1

n

)
=

1

n3

n∑
i=1

i2 =
1

n3
· n(n+ 1)(2n+ 1)

6
=

2n3 + 3n2 + n

6n3
.

Taking the limit as n→∞, we see that U(f, P1)→ 1
3
. This means

U(f) = inf U(f, P ) ≤ inf U(f, P1) = 1
3
.

On the other hand,

L(f, P1) =
n∑
i=1

(
i− 1

n

)2(
1

n

)
=

1

n3

n∑
i=1

(i− 1)2

=
1

n3
· (n− 1)n (2n− 1)

6
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which also converges to 1
3
. So L(f) = supL(f, P ) ≥ supL(f, P1) = 1

3
. We have shown that

U(f) ≤ 1
3
≤ L(f), and at the end of the section we will prove that L(f) ≤ U(f) holds in

general, so U(f) = L(f). Hence f(x) = x2 is Darboux integrable.

Example 4.5.3. Define the following function on [0, 1]:

f(x) =

{
0 x 6∈ Q
1 x ∈ Q.

Let P be a partition of [0, 1]. By definition,

U(f, P ) =
n∑
i=1

M(f, [ti−1, ti]) · (ti − ti−1).

By the density of Q in the reals (Theorem 1.3.6), there is some ri ∈ Q such that ti−1 < ri < ti

for each i. Thus for all i, M(f, [ti−1, ti]) = 1. Then U(f, P ) =
n∑
i=1

1 ·(ti− ti−1) = 1. Likewise,

L(f, P ) =
n∑
i=1

0 · (ti − ti−1) = 0. This shows that f is not Darboux integrable.

Lemma 4.5.4. If P ⊂ Q are partitions then L(f, P ) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P ).

Proof. This can be proven by induction on the number of points in Q. We will prove the
base case when Q has one more point than P . Suppose

P = {t0, t1, . . . , tk, tk+1, . . . , tn}
and Q = {t0, t1, . . . , tk, s, tk+1, . . . , tn}.

Then U(f, P ) =
n∑
i=1

M(f, [ti−1, ti]) · (ti − ti−1) and

U(f,Q) =
n+1∑
j=1

M(f, [sj−1, sj]) · (sj − sj−1)

=
n∑
i=1

M(f, [ti−1, ti]) · (ti − ti−1)−M(f, [tk−1, tk]) · (tk − tk−1)

+M(f, [tk−1, s]) · (s− tk−1) +M(f, [s, tk]) · (tk − s).

But M(f, [tk−1, s]) ≤M(f, [tk−1, tk]) and M(f, [s, tk]) ≤M(f, [tk−1, tk]), so

U(f,Q) ≤ U(f, P )−M(f, [tk−1, tk]) · (tk − tk−1)

+M(f, [tk−1, s]) · (s− tk−1) +M(f, [s, tk]) · (tk − s)

which implies U(f,Q) ≤ U(f, P ). By similar calculations using m(f, [tk−1, tk]), we can show
that L(f,Q) ≥ L(f, P ). The inductive step is nearly identical, and the middle inequality
comes from the definition, so we have proved the lemma.
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Lemma 4.5.5. If P and Q are any partitions of [a, b], then L(f, P ) ≤ U(f,Q).

Proof. Let R = P ∪Q. Then P ⊂ R and Q ⊂ R, so by Lemma 4.5.4,

L(f, P ) ≤ L(f,R) ≤ U(f,R)

and L(f,R) ≤ U(f,R) ≤ U(f,Q).

Stringing these all together gives us L(f, P ) ≤ U(f,Q) as claimed.

Theorem 4.5.6. For all f , U(f) ≥ L(f).

Proof. We may treat U(f) as the infimum of {U(f, P ) | partitions P}, and L(f) as the supre-
mum of {L(f,Q) | partitions Q}. By Lemma 4.5.5, L(f,Q) ≤ U(f, P ) for any partitions
P,Q, so L(f,Q) is a lower bound for {U(f, P ) | partitions P}. This means that

L(f,Q) ≤ inf{U(f, P ) | partitions P} = U(f)

so we see that U(f) is an upper bound of {L(f,Q) | partitions Q}. This in turn implies that
U(f) ≥ sup{L(f,Q) | partitions Q} = L(f). Hence for all f , U(f) ≥ L(f).

Theorem 4.5.7. f is Darboux integrable on [a, b] if and only if for all ε > 0, there is a
partition P of [a, b] such that U(f, P ) < L(f, P ) + ε.

Proof. ( =⇒) Let ε > 0 and choose P so that U(f, P ) < L(f, P ) + ε. For all partitions P ,
L(f, P ) ≤ L(f), so with this particular partition, U(f, P ) < L(f) + ε. Then as ε → 0, this
gives us U(f) = L(f). Hence f is integrable.

( =⇒ ) Conversely, suppose f is integrable. Then U(f) = L(f). Since U(f, P ) ≤ U(f),
for any ε > 0 we may choose a partition P so that U(f, P ) < U(f) + ε

2
. Thus U(f) + ε

2
is

not a lower bound of the set {U(f, P ) | partitions P}. Similarly, we can choose a partition
Q so that L(f,Q) > L(f)− ε

2
since L(f,Q) ≥ L(f). Let R = P ∪Q; we claim that R is the

partition we are looking for. Using Lemma 4.5.4 and our work so far, we can write

L(f)− ε

2
< L(f,Q) ≤ L(f,R) ≤ U(f,R) ≤ U(f, P ) < U(f) +

ε

2
= L(f) +

ε

2

=⇒ L(f)− ε

2
< L(f,R) ≤ U(f,R) < L(f) +

ε

2

=⇒ U(f,R)− L(f,R) < L(f)− L(f,R) +
ε

2

< L(f)−
(
L(f)− ε

2

)
+
ε

2
= ε.

Hence U(f,R) < L(f,R) + ε.
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4.6 Properties of Integrals

Theorem 4.6.1. Every monotone function on [a, b] is integrable.

Proof. Without loss of generality suppose f is nondecreasing. Then for all x ∈ [a, b], f(a) ≤
f(x) ≤ f(b) so f is bounded. Let ε > 0. By Theorem 4.5.7, it suffices to find a partition P
such that U(f, P )− L(f, P ) < ε. Choose P such that

max{tk − tk−1}k=1,...,n <
ε

f(b)− f(a)
.

This maximum is called the mesh of f on [a, b], i.e. the widest base of a partition on the
interval. Consider

U(f, P )− L(f, P ) =
n∑
i=1

M(f, [ti−1, ti]) · (ti − ti−1)−
n∑
i=1

m(f, [ti−1, ti]) · (ti − ti−1)

=
n∑
i=1

(M −m) · (ti − ti−1).

Since f(x) ≤ f(b) for all x, M ≤ f(ti) for all i. Similarly, m ≥ f(ti−1). So M − m ≤
f(ti)− f(ti−1). This implies

U(f, P )− L(f, P ) ≤
n∑
i=1

(f(ti)− f(ti−1)) · (ti − ti−1)

<
n∑
i=1

(f(ti)− f(ti−1)) · ε

f(b)− f(a)

=
ε

f(b)− f(a)
(f(b)− f(a)) by telescoping sum

= ε.

Hence f is integrable on [a, b].

Note that in Theorem 4.6.1, f need not even be continuous.

Theorem 4.6.2. Every continuous function on [a, b] is integrable.

Proof. Let f be continuous on [a, b]. By Theorem 3.3.1, f is uniformly continuous on [a, b], so
given ε > 0 there is a δ > 0 such that for all x, y ∈ [a, b] with |x−y| < δ, |f(x)−f(y)| < ε

b−a .
Let P be any partition with mesh less than δ. Then

U(f, P )− L(f, P ) =
n∑
i=1

(M(f, [ti−1, ti])−m(f, [ti−1, ti])) · (ti − ti−1).

Since f is continuous on [ti−1, ti], the extreme value theorem (3.2.1) says that there exist
x0, y0 such that for all x ∈ [ti−1, ti], f(x0) ≤ f(x) ≤ f(y0). So m = f(x0) and M = f(y0).
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By our choice of P , |x0 − y0| ≤ |ti − ti−1| < δ, so f(y0)− f(x0) < ε
b−a . This gives us

U(f, P )− L(f, P ) =
n∑
i=1

(M −m) · (ti − ti−1)

<

n∑
i=1

ε

b− a
(ti − ti−1)

=
ε

b− a
(b− a) by telescoping sum

= ε.

Hence f is integrable on [a, b].

Remark. It’s simple to tweak the last two theorems to show that piecewise monotone
functions and piecewise continuous functions are all integrable.

Proposition 4.6.3. Let f be a bounded function on [a, b] and suppose there exist sequences
(Un) and (Ln) of upper and lower Darboux sums for f such that lim

n→∞
(Un − Ln) = 0. Then

f is integrable and

∫ b

a

f = limUn = limLn.

Proof. Note that Un is bounded. Then by the Bolzano-Weierstrass theorem (2.4.5) Un has
a monotone subsequence Unk . Similarly, Lnk has a monotone subsequence Lnkj . By the

monotone convergence theorem (18.1.5), Unkj and Lnkj converge, so

lim
j→∞

(Unkj − Lnkj ) = lim
j→∞

Unkj − lim
j→∞

Lnkj

and this must be 0. Let I = limUnkj = limLnkj . We claim that I =

∫ b

a

f . By definition,

U(f) = inf{U(f, P ) | partitions P}
≤ inf{Un | n ∈ N}
≤ limUnkj = I.

On the other hand, for all j and for all partitions P , U(f, P ) ≥ Lnkj so inf U(f, P ) ≥ Lnkj .

This shows that for all j, U(f) ≥ Lnkj ≥ limLnkj = I. Hence U(f) = I. A similar proof

shows that L(f) = I. Hence f is Darboux integrable with U(f) = L(f) = I as claimed.

Proposition 4.6.4. Let f and g be integrable functions on [a, b]. Then

(1) f + g is integrable on [a, b].

(2) f − g is integrable on [a, b].

(3) fg is integrable on [a, b].

(4) max(f, g) and min(f, g) are integrable on [a, b].
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Chapter 5

Introduction

The contents of Part II come from a semester course on complex analysis taught by Dr.
Richard Carmichael at Wake Forest University during the fall of 2010. The main topics
covered include

� Complex numbers and their properties

� Complex-valued functions

� Line integrals

� Derivatives and power series

� Cauchy’s Integral Formula

� Singularities and the Residue Theorem

The primary reference for the course and throughout these notes is Fisher’s Complex Vari-
ables, 2nd edition.
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6.1 A Formal View of Complex Numbers

We begin with a description of the complex number system. In the 16th century, mathe-
maticians sought solutions to polynomial equations such as x3 + x+ 1, but struggled to find
a ‘complete’ way of describing the solutions. Recall for instance that the roots of a quadratic
polynomial ax2 + bx+ c is given by the quadratic formula

x =
−b±

√
b2 − 4ac

2a
.

Of course if b2−4ac < 0 this has no real solutions. This led Gerolamo Cardano to create the
imaginary value i =

√
−1 to compensate for a perceived lack of completeness of solutions.

Formally, complex numbers are numbers of the form z = x + iy where x and y are real
numbers. These numbers lie on what is known as the complex plane, denoted C.

x

y
(x, y)

In this way we can view the real part x and the imaginary part y of x + iy separately.
The set of all complex numbers is denoted C, and they form an algebraic field under the
operations

� Addition: (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2).

� Scaling: k(x, y) = (kx, ky) where k is a real scalar.

� Multiplication: (x1, y1)(x2, y2) = (x1x2 − y1y2, x1y2 + x2y1). Note that this multiplica-
tion differs from the usual multiplication on R, as in Euclidean geometry.

In this class we will freely use both notations for a complex number, that is x+iy = (x, y).
For example,

x = (x, 0)

i = (0, 1)

i2 = (0, 1)(0, 1) = (−1, 0).

For z = x+ iy we will also denote the real and imaginary parts by x = Re(z) and y = Im(z).
As a vector space, C has the following special attributes for each vector (complex number).

Definition. For a complex number z = x + iy, the modulus or absolute value of z is
|z| =

√
x2 + y2 and the complex conjugate of z is z̄ = x− iy.
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Note that |z| and |z̄| are always equal. Geometrically, the modulus represents the distance
in the complex plane from the origin (0, 0) to (x, y).

Proposition 6.1.1. For z, w ∈ C,

(i) |zw| = |z| |w|.

(ii) zw = z̄w̄.

Since C is a field, there is also a notion of divisibility for complex numbers. In particular
if x+ iy, u+ iv ∈ C and u+ iv 6= 0, we define

x+ iy

u+ iv
=
xu+ yv + i(yu− xv)

u2 + v2
.

One can check that this is the appropriate formula by multiplying and dividing x+iy
u+iv

by the
conjugate u− iv.

As in the xy-plane, there is a polar coordinate system for complex numbers: if z = x+ iy
then we set r = |z|, x = r cos θ and y = r sin θ where θ = tan−1

(
y
x

)
. This gives us

z = |z|(cos θ + i sin θ).

Multiplication is compatible with polar representations, for if z = |z|(cos θ + i sin θ) and
w = |w|(cosψ + i sinψ) we have

zw = |z| |w|(cos θ + i sin θ)(cosψ + i sinψ)

= |z| |w|(cos θ cosψ − sin θ sinψ) + i(cos θ sinψ + sin θ cosψ)

= |z| |w|(cos(θ + ψ) + i sin(θ + ψ)).

Likewise, z
w

= |z|
|w|(cos(θ − ψ) + i sin(θ − ψ)).

Taking powers of complex numbers, e.g. zn, is sometimes difficult to compute, since
multiplication isn’t quite as straightforward in the complex plane. However, there is a result
which utilizes the polar representation of a complex number to simplify the expression.

Theorem 6.1.2 (De Moivre’s Theorem). For all integers n, (cos θ + i sin θ)n = cos(nθ) +
i sin(nθ).

Proof. We prove this using induction on n. For the base case n = 1, we simply have

(cos θ + i sin θ)1 = cos θ + i sin θ.

Now assume De Moivre’s Theorem holds for n. Then we have

(cos θ + i sin θ)n+1 = (cos θ + i sin θ)n(cos θ + i sin θ)

= (cos(nθ) + i sin(nθ))(cos θ + i sin θ)

= (cos(nθ) cos θ − sin(nθ) sin θ) + i(sin θ cos(nθ) + cos θ sin(nθ))

= cos((n+ 1)θ) + i sin((n+ 1)θ).
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Definition. When we write z = |z|(cos θ+ i sin θ), the angle θ is called the argument of z,
denoted arg z.

We often want to restrict our attention to a single, canonical value of θ for any z. Thus
we define the principal argument θ = Arg z, where −π ≤ θ ≤ π.

Proposition 6.1.3. Arg(zw) = Arg z + Argw, where these may differ by a multiple of 2π.

Example 6.1.4. Let z = −1 + i and w = i. Then zw = −1− i, Arg(zw) = −3π
4

and

Arg z + Argw =
3π

4
+
π

2
=

5π

4
≡ −3π

4
mod 2π.
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6.2 Properties of Complex Numbers

Continuing with the geometric parallels between Euclidean space and the complex plane, we
have the important triangle inequality for complex numbers:

|z + w| ≤ |z|+ |w|.

There is also a related inequality, sometimes called the reverse triangle inequality:

||z| − |w|| ≤ |z − w|.

The original purpose of complex numbers was to compute roots of all polynomials, so
it will be desirable to be able to compute roots of complex numbers. In other words, if
w = |w|(cosψ + i sinψ), what is w1/n? Let z = w1/n, so that zn = w. Then using De
Moivre’s Theorem (6.1.2) we have

|w|(cosψ + i sinψ) = (|z|(cos θ + i sin θ))n = |z|n(cos(nθ) + i sin(nθ)).

Solving for θ, we see that

cosψ = cos(nθ) =⇒ nθ = ψ + 2πk =⇒ θ =
ψ + 2πk

n

for some integer k. Hence our expression for w1/n is

z = w1/n = |w|1/n
(

cos

(
ψ + 2πk

n

)
+ i sin

(
ψ + 2πk

n

))
.

For the nth root of w, that is w1/n, this formula gives all possible roots. In fact there are n
distinct roots; all others are repeated values.

Recall that the equation of a circle in R2 is
√

(x− x0)2 + (y − y0)2 = r for r > 0. In the
complex plane, this is expressed by |z − z0| = r.

Example 6.2.1. Let’s find the 5th roots of z = 1 + i. The polar representation of 1 + i is

1 + i =
√

2
(

cos
π

4
+ i sin

π

4

)
.

The modulus of all the 5th roots of unity is 21/10 ≈ 1.07171. Our work above gives all of
these roots as

(1 + i)1/5 = 21/10

(
cos

(
π

20
+

2πk

5

)
+ i sin

(
π

20
+

2πk

5

))
.

These are shown on the circle of radius 21/10 below.
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x

y

the 5th roots of 1 + i

Example 6.2.2. Consider the equation z4 − 4z2 + 4 − 2i = 0. This may be rewritten as
(z2 − 2)2 = 2i = (1 + i)2 which has solutions

z2 − 2 = ±(1 + i) =⇒ z2 =

{
3 + i

1− i.

Using the expression for roots above, this yields the following solutions to the original equa-
tion:

z = ± 4
√

10

(
cos

(
1

2
arctan

1

3

)
+ i sin

(
1

2
arctan

1

3

))
and z = ± 4

√
2
(

cos
π

8
− i sin

π

8

)
.
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6.3 Subsets of the Complex Plane

In Chapter 7 we will define functions on the complex plane, i.e. functions whose domain and
range are subsets of the complex plane. The following topological terms will be useful.

Definition. A subset D ⊆ C is open if all its points are interior points, that is, any circle
drawn around a point (called a neighborhood of the point) lies entirely within D.

D

z0

Circles are actually a specific case of a more general notion of ‘neighborhood’ or open set in
topology. Since the open disks (sometimes called open balls) B(z0, ε) = {z ∈ C : |z−z0| < ε}
form a basis for C (see any introductory topology text, e.g. Adams and Franzosa or Munkres)
it suffices to consider open sets as those ‘composed’ of smaller open balls.

Example 6.3.1. The half plane H = {z ∈ C | Re(z) > 0} is an open set. Likewise, for any
a ∈ R, {z ∈ C | Re(z) > a} and {z ∈ C | Re(z) < a} are open sets, and the same is true for
Im(z).

Definition. A point z0 in a set D is called a boundary point if every neighborhood of z0

contains both interior and exterior points. D is said to be closed if it contains its boundary,
or the set of all boundary points of D.

Definition. An open set D is connected if all points in D may be joined by a series of
contiguous, direct line segments, each of which is completely contained within D. Further-
more, D is convex if it is connected and any single line segment joining two points in D
also lies in D.
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7.1 Functions and Limits

In this section we introduce functions that have values in the complex plane.

Definition. A function of a complex variable z is a map f : D → C for some subset
D ⊆ C, i.e. f assigns a complex number to each z ∈ D.

Definition. The domain of a complex-valued function f is the set of all values z for which
the function operates; this is usually denoted D. The range is all possible values of the
function, denoted Im f or f(D).

Example 7.1.1. Let f(z) = z2. The domain of f is all of C, while the range of f is the
closed upper half plane {z ∈ C | Im(z) ≥ 0}.

x

y

f
x

y

Example 7.1.2. f(z) = 1
z−1

has domain D = {z ∈ C | z 6= 1} and range f(D) = {z ∈ C |
z 6= 0}.

Definition. A sequence is a complex-valued function whose domain is the set of positive
integers, written (zn) = (z1, z2, z3, . . .) where each zi is a complex number.

Definition. A sequence (zn) is said to have a limit L if, given any ε > 0 there is some
N ∈ N such that |zn − L| < ε for all n ≥ N . In this case we write lim

n→∞
zn = L and say that

(zn) converges to L. If no such L exists, then (zn) is said to diverge.

The definitions of sequence and limit are nearly identical to their counterparts in real
analysis. However, in the complex plane every number has a real and an imaginary part.
The following proposition helps us relate the definition of a complex limit to its real and
imaginary parts.

Proposition 7.1.3. Let zn = xn + iyn and z = x+ iy. Then lim
n→∞

zn = z ⇐⇒ lim
n→∞

xn = x

and lim
n→∞

yn = y.

Proof. ( =⇒ ) If lim
n→∞

zn = z then the inequalities |xn − x| ≤ |zn − z| and |yn − y| ≤ |zn − z|
directly imply that (xn) and (yn) converge to x and y, respectively.

( =⇒) On the other hand, suppose (xn) → x and (yn) → y. If ε > 0 is given, we may
choose N1 and N2 such that |xn− x| < ε

2
for all n ≥ N1 and |yn− y| < ε

2
for all n ≥ N2. Let

N = max{N1, N2}. Then for all n ≥ N the triangle inequality gives us

|zn − z| ≤ |xn − x|+ |yn − y| <
ε

2
+
ε

2
= ε.

Hence (zn) converges to z = x+ iy.
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As a result, we have

Corollary 7.1.4. If zn → z then |zn| → |z|.

The converse to this is generally false. For example, the sequence |in| converges to 1
since |in| = |i|n = 1n = 1 for all n; however, in = (i,−1,−i, 1, i,−1, . . .) and this fluctuates
infinitely often between these four values, so the sequence diverges.

Proposition 7.1.5. Suppose lim
n→∞

zn = z. Then

(i) For any complex scalar k 6= 0, lim
n→∞

kzn = kz.

(ii) If zn 6= 0 for any n and z 6= 0, then lim
n→∞

1

zn
=

1

z
.

Proof. (i) Let ε > 0 be given. By convergence of (zn) there exists a positive integer N such
that |zn − z| < ε

|k| . Then for all n ≥ N ,

|kzn − kz| = |k| |zn − z| < |k|
ε

|k|
= ε.

Hence (kzn)→ kz.

(ii) First we can choose an N1 such that |zn − z| < |z|
2

for all n ≥ N1. Note that by the
reverse triangle inequality,

|zn| ≥ |z| − |zn − z| > |z| −
|z|
2

=
|z|
2
.

We use this to control the |zn| term in the calculations below. Next for any ε > 0 there is an

N2 such that for all n ≥ N2, |zn − z| < |z|2ε
2

. Let N = max{N1, N2}. Then for any n ≥ N ,∣∣∣∣ 1

zn
− 1

z

∣∣∣∣ =

∣∣∣∣z − znznz

∣∣∣∣ =
|zn − z|
|zn| |z|

≤ 2

|z|
1

|z|
|zn − z| <

2

|z|2
|z|2ε

2
= ε.

Hence
(

1
zn

)
→ 1

z
.

This shows that limits of complex sequences behave as expected (by which we mean they
behave as their counterparts do in the real case). We also have

Theorem 7.1.6. If (zn) converges to z and (wn) converges to w, then the sequence (znwn)
converges to zw.

Proof omitted.

Definition. Given a function f(z) with domain D and a point z0 either in D or in the
boundary ∂D of D, we say f has a limit at z0 if

lim
z→z0

f(z) = L

for some L ∈ C. Explicitly, f(z) has limit L at z0 if for every ε > 0 there exists a δ > 0
such that 0 < |z − z0| < δ implies |f(z)− L| < ε.
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Definition. f(z) is continuous at a point z0 in its domain if lim
z→z0

f(z) exists and it equals

f(z0). In particular, f(z) is continuous if for every ε > 0 there exists a δ > 0 such that if
|z − z0| < δ then |f(z)− f(z0)| < ε.

Example 7.1.7. The function f(z) = |z|2 is continuous on its domain C. For example, f(z)
has limit 4 at z0 = 2i. To see this, let ε > 0 and define δ1 = 1, δ2 = ε

5
and δ = min{δ1, δ2}.

Note that by the reverse triangle inequality, |z| ≤ |z− 2i|+ |2i| < 1 + 2 = 3; we will use this
below. Then if 0 < |z − 2i| < δ we have

|f(z)− f(2i)| = ||z|2 − 4|
= ||z|+ 2| · ||z| − 2|
= (|z|+ 2)|z − 2i|

< (3 + 2)
ε

5
= ε.

Hence lim
z→2i

f(z) = 4 as claimed.

Example 7.1.8. Consider the function f(z) =
z

z̄
where z = x + iy 6= 0 and z̄ = x− iy, its

complex conjugate. Does lim
z→0

f(z) exist? Well consider this limit along two different paths

in the complex plane:

lim
(x,y)→(0,y)

f(z) =
0 + iy

0− iy
= −1

lim
(x,y)→(x,0)

f(z) =
x+ i0

x− i0
= 1.

Since these limits are different, the limit of the function must not exist. Hence
z

z̄
is not

continuous at z0 = 0.

Definition. A function f(z) has a limit at infinity, denoted lim
z→∞

f(z) = L, if for any

ε > 0 there is a (large) number M such that |f(z) − L| < ε whenever |z| ≥ M . Note that
there is no restriction on arg z; only |z| is required to be large.

Example 7.1.9. The family of functions f(z) = 1
zm

has a limit L = 0 as z → ∞ for all
m = 1, 2, 3, . . .. To see this, let ε > 0 and choose M = 1

ε1/m
. Then if |z| ≥M ,∣∣∣∣ 1

zm

∣∣∣∣ =

(
1

|z|

)m
≥
(

1

M

)m
= (ε1/m)m = ε.

By properties of limits, we have

Proposition 7.1.10.

1) Every polynomial p(z) = a0 + a1z + . . .+ anz
n is continuous on the complex plane.

2) If p(z) and q(z) are polynomials, then their quotient p(z)
q(z)

is continuous at all points such

that q(z) 6= 0.
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Every complex-valued function f(z) can be written as f(z) = u(z) + iv(z), where u and
v are each real-valued functions. This allows us to view every complex function by its real
and imaginary parts. It is easy to see that all of the results on continuity for functions of
the real numbers now apply for complex-valued functions. In particular,

Proposition 7.1.11. Let f = u+ iv be a complex-valued function. Then f is continuous at
z0 if and only if u and v are both continuous at z0.
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7.2 Infinite Series

In this section we briefly review infinite series, since they carry over to the complex case
nearly identically.

Definition. For complex numbers z1, z2, . . . their nth partial sum is
n∑
j=1

zj = z1 + . . .+ zn.

Definition. An infinite series of complex numbers is a limit of partial sums

∞∑
j=1

zj = lim
n→∞

n∑
j=1

zj.

Definition. We say an infinite series of partial sums sn =
n∑
j=1

zj converges if s = lim
n→∞

sn

exists. Otherwise, the series diverges.

In the complex case, we can write each zj = xj + iyj so every infinite series may be
written as the sum of a real and imaginary series:

∞∑
j=1

zj =
∞∑
j=1

xj + i
∞∑
j=1

yj.

As with functions, the series
∑
zj converges if and only if

∑
xj and

∑
yj converge. In other

words, lim
n→∞

sn only converges when lim
n→∞

xn and lim
n→∞

yn both exist.

Definition. A series
∞∑
j=1

zj has absolute convergence if
∞∑
j=1

|zj| converges. If
∞∑
j=1

zj con-

verges but the absolute series does not converge, we say the series converges conditionally.

Notice that if
∞∑
j=1

zj converges (absolutely) then both
∞∑
j=1

xj and
∞∑
j=1

yj converge (abso-

lutely) as well. The triangle inequality for series looks like∣∣∣∣∣
∞∑
j=1

zj

∣∣∣∣∣ ≤
∞∑
j=1

|zj|.

Example 7.2.1. As in the real case, a geometric series
∞∑
j=1

αj converges to
1

1− α
if |α| < 1

and diverges otherwise. The value α is sometimes called the ratio of the series.
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Example 7.2.2. Consider the series
∞∑
j=1

j

(
1 + 2i

3

)j
. Absolute convergence is useful in

complex analysis since we can reduce complex numbers to purely real-valued expressions. In
this case, we see that

∞∑
j=1

∣∣∣∣∣j
(

1 + 2i

3

)j∣∣∣∣∣ =
∞∑
j=1

j

∣∣∣∣1 + 2i

3

∣∣∣∣j =
∞∑
j=1

j

(√
5

3

)j

which converges by the ratio test, for example. Hence the original series converges absolutely.

Example 7.2.3. The series
∞∑
n=1

in

n
converges even though the similar-looking harmonic series

∞∑
n=1

1

n
diverges. To see this, notice that we can write

∞∑
n=1

in

n
=
∞∑
n=1

(−1)n

2n
+ i

∞∑
n=1

(−1)n−1

2n− 1

and both parts converge by the alternating series test.
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7.3 Exponential and Logarithmic Functions

Recall from single-variable calculus the exponential function ex. This function has many
definitions, with the two most important being

ex = lim
t→∞

(
1 +

x

t

)t
and ex =

∞∑
n=1

xn

n!
.

In complex analysis, we define

Definition. For z = x+ iy, the complex exponential function ez is defined by

ez = ex(cos y + i sin y).

The special case eit = cos t + i sin t is called Euler’s formula. Euler was the first to
realize the connection between the exponential function and sine and cosine. This amazing
identity, called “the most remarkable formula in mathematics” by Feynman, has been around
since 1748 and has far-reaching implications in many branches of mathematics and physics.

The following proposition shows that this definition captures all of the nice properties of
ex from the real case. We will see in a moment that in the complex plane, the exponential
function has even deeper properties and an essential connection to the geometry of C.

Proposition 7.3.1. For complex numbers z and w,

(a) ez+w = ezew.

(b) 1
ez

= e−z.

(c) ez+2πi = ez, that is, the complex exponential function is periodic with period 2πi.

(d) If z = x+ iy, |ez| = ex and therefore |eiy| = 1.

(e) ez 6= 0 for any z ∈ C.

Proof. (a) Let z = x+ iy and w = x′ + iy′. Then

ez+w = e(x+x′)+i(y+y′) = ex+x′(cos(y + y′) + i sin(y + y′))

= exex
′
(cos y + i sin y)(cos y′ + i sin y′) = ezew

(the last part uses a trick similar to the one used in the proof of De Moivre’s Theorem
(6.1.2)).

(b) follows from (a) and trig properties.
(c) follows directly from the definition of ez.
(d) follows from the fact that for any θ, | cos θ + i sin θ| = 1.
(e) By part (d), |ex+iy| = ex, and x is real so ex is always nonzero. Therefore |ez| 6= 0

which implies ez 6= 0.

100



7.3. Exponential and Logarithmic Functions Chapter 7. Complex-Valued Functions

We will see in Chapter 15 that ez also satisfies one of the nicest properties of the expo-
nential function in the real case: d

dz
ez = ez

Note that part (c) of Proposition 7.3.1 implies that f(z) = ez is not a one-to-one function
on the complex plane. This is unfortunate, since that was one of the nice attributes of ex in
the real case, as it allowed us to define an inverse, the logarithm log x. We next show how
to construct a partial solution to this problem.

Let w = ex+iy. We seek a function F such that F (w) = x + iy and eF (x+iy) = x + iy.
Note that since |w| = ex and these are real numbers, we have x = ln |w|. This allows us to
define

Definition. The formal logarithm is written log z = ln |z|+ i arg z.

This is not a function (meaning it is not well-defined), since arg z represents a set of
values which differ by 2kπ for integers k.

We remedy this by making branch cuts of the complex plane. This is done by taking
a ray from the origin, say with angle θ and defining the branch (θ, θ + 2π] so that log z is
well-defined on this domain. The most important branch is

Definition. Let Arg z denote the argument of z in the branch (−π, π]; this is called the
principal branch. Then we define the principal logarithm by

Log z = ln |z|+ iArg z.

Proposition 7.3.2. On the principal branch, Log ez = eLog z = z.

Proof. Let z = x+ iy with Arg z = θ ∈ (−π, π]. Then on one hand,

Log ez = ln |ez|+ iArg ez = ln ex + iy = x+ iy = z

and on the other hand,

eLog z = eln |z|+iArg z = eln |z|(cos θ + i sin θ) = |z|(cos θ + i sin θ) = z.

Note that these require that we restrict our attention to a single branch (it may not even be
the principal branch) for the expressions to be well-defined.

Recall that f(z) = u(z) + iv(z) is continuous if and only if u and v are continuous. Well
Arg z has no limit at values along the negative real axis. Therefore Log z is not continuous at
any point Re(z) ≤ 0. However, making a different branch cut allows us to define a function
with different continuity.

As in the real case, exponentials for bases other than e are permitted. They relate to the
logarithm by

az = ez log a

where log a is defined on a fixed branch of the logarithm.
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Example 7.3.3. Let’s use the complex logarithm to evaluate (−1)i. Note that (−1)i =
ei log(−1) where log is defined appropriately. We also have

log(−1) = ln | − 1|+ i(arg(−1) + 2kπ) = 0 + i(−π + 2kπ).

Then ei log(−1) = e−(−π+2kπ) = eπ−2kπ for any integer k. The principal value of (−1)i is eπ,
which is found by

(−1)i = eiLog(−1) = ei(−πi) = eπ.

Example 7.3.4. We can use logarithms to solve an equation such as z1+i = 4. First consider
(1 + i) log z = log 4 = ln |4|+ 2kπi. This gives us

log z =
ln |4|+ 2kπi

1 + i

(
1− i
1− i

)
=

(ln |4|+ 2kπ)− i ln |4|+ 2kπi

2
= (ln |2|+ kπ) + i(− ln |2|+ kπ).

Taking the exponential of both sides yields

z = elog z = e(ln 2+kπ)+i(− ln 2+kπ)

= 2ekπ((−1)k cos(ln 2) + i(−1)k+1 sin(ln 2))

= (−1)k2ekπ(cos(ln 2)− i sin(ln 2)).

Example 7.3.5. To simplify an expression such as (1 + i)i, use the logarithm to write
(1 + i)i = ei log(1+i). Then

log(1 + i) = ln |1 + i|+ i(arg(1 + i) + 2πk) =
ln 2

2
+ i
(π

4
+ 2πk

)
=⇒ ei log(1+i) = e−(π4 +2πk)+i ln 2

2 = e−
π
4

(
cos

(
ln 2

2

)
+ i sin

(
ln 2

2

))
.
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7.4 Trigonometric Functions

The complex trigonometric functions are defined in terms of ez. This should come as no
surprise, given the relation we have seen between exponential and trig functions. By the end
of the section we will see that this connection runs even deeper.

Definition. The complex cosine and complex sine functions are defined by

cos z = 1
2
(eiz + e−iz) and sin z = 1

2i
(eiz − e−iz).

Note that the complex trig functions coincide with their real counterparts, for if x ∈ R
we have

1
2
(eix + e−ix) = 1

2
(cosx+ i sinx+ cos(−x) + i sin(−x))

= 1
2
(cosx+ i sinx+ cosx− i sinx) = cos x

and 1
2i

(eix − e−ix) = 1
2i

(cosx+ i sinx− (cos(−x) + i sin(−x)))

= 1
2i

(cosx+ i sinx− cosx+ i sinx) = sinx.

The complex cosine and sine functions are also periodic, with period 2π like the real-valued
cosine and sine. Using the fact that ez is periodic, we can write

cos(z + 2π) = 1
2
(ei(z+2π) + e−i(z+2π))

= 1
2
(eize2πi + e−ize−2πi)

= 1
2
(eiz + e−iz) = cos z

and sin(z + 2π) = 1
2i

(ei(z+2π) − e−i(z+2π))

= 1
2i

)(eize2πi − e−ize−2πi)

= 1
2i

(eiz − e−iz) = sin z.

Many other properties of the real trig functions carry over the complex case. Just to name
a few,

(a) cos(−z) = cos z and sin(−z) = − sin z

(b) sin
(
z + π

2

)
= cos z and cos

(
z + π

2

)
= − sin z

(c) sin(z + w) = sin z cosw + cos z sinw

(d) cos(z + w) = cos z cosw − sin z sinw

(e) cos2 z + sin2 z = 1

(f) cos2 z − sin2 z = cos(2z)

(g) When we define the derivative of a complex-valued function in Section 15.1, we will
see that the derivatives of cos z and sin z are similar to the real case.
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Example 7.4.1. It is easy to see from the definition of cosine that cos z = 0 if and only if
z = π

2
+ πk for any integer k.

Example 7.4.2. Complex conjugation commutes with trig and exponential functions:

ez = ez cos z = cos z sin z = sin z.

Using the definitions of cos z and sin z, we can define the other four main trig functions.

tan z =
sin z

cos z
= −ie

2iz − 1

e2iz + 1

sec z =
1

cos z

csc z =
1

sin z

cot z =
cos z

sin z
= i

e2iz + 1

e2iz − 1
.
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Calculus in the Complex Plane
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8.1 Line Integrals

If f : [a, b] → C is a complex-valued function which is continuous on some interval [a, b]
where a, b ∈ R, then the integral of f over [a, b] is simply∫ b

a

f(t) dt =

∫ b

a

Re(f(t)) dt+ i

∫ b

a

Im(f(t)) dt.

For functions that take on values over some region in the complex plane, we integrate over
curves.

Definition. Let f(z) be a complex-valued function which is continuous on some region D ⊆
C and let γ be a smooth curve contained in D that is parametrized by γ(t), a ≤ t ≤ b. Then
the line integral of f over γ is∫

γ

f(z) dz =

∫ b

a

f(γ(t))γ′(t) dt.

a

b

γ(t)

Remember that a curve is smooth if its first derivative γ′(t) exists and is continuous on
[a, b]. Since the curves are all functions on a real interval [a, b], we need not worry about
complex derivatives yet; γ′(t) is just the first derivative in the normal sense. Some important
examples of parametrizations in the complex plane are

Example 8.1.1. A curve γ is simple if γ(t1) 6= γ(t2) whenever a < t1 < t2 < b. In plain
language, a simple curve does not intersect itself; it is an embedding of the interval [a, b] into
C. The easiest simple curve to parametrize is a line:

z0

z1

γ

If γ is the line between z0 and z1, then we parametrize it by γ(t) = z0 + t(z1 − z0) for
0 ≤ t ≤ 1.
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Example 8.1.2. A curve γ is closed if γ(a) = γ(b), i.e. it starts and ends in the same
location. The canonical example of a simple closed curve is a circle:

z0

r

γ

This is parametrized by γ(t) = z0 + reit for 0 ≤ t ≤ 2π.

Example 8.1.3. Let’s compute the line integral

∫
γ

z2 dz over the line from (0, 0) to (2, 3) in

the complex plane.

z0 = 0 + 0i

z1 = 2 + 3i

γ

We parametrize the curve by γ(t) = 2t + 3it, 0 ≤ t ≤ 1. Then using the formula above, we
compute ∫

γ

z2 dz =

∫ 1

0

γ(t)2γ′(t) dt =

∫ 1

0

(2t+ 3it)2(2 + 3i) dt

=

∫ 1

0

(4t2 − 9t2 + 12it2)(2 + 3i) dt =

∫ 1

0

(−5t2 + 12it2)(2 + 3i) dt

=

∫ 1

0

(−46t2 + 9it2) dt = −46

3
t3
∣∣∣∣1
0

+ 3it3
∣∣1
0

= −46

3
+ 3i.

Example 8.1.4. Just as reversing the order of a and b in a real integral changes the integral
by −1, one can reverse the orientation of a smooth curve γ to switch the sign of the line
integral along γ. Let −γ denote the curve γ with orientation reversed. Then∫

−γ
f(z) dz = −

∫
γ

f(z) dz.

Example 8.1.5. Next let’s change the path of integration to be the semicircle γ(t) =
eit, 0 ≤ t ≤ π. We will write γ(t) = cos t + i sin t so that the derivative may be written
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γ′(t) = − sin t+ i cos t. Then we compute∫
γ

z2 dz =

∫ π

0

(cos t+ i sin t)2(− sin t+ i cos t) dt

=

∫ π

0

(cos2 t− sin2 t+ 2i cos t sin t)(− sin t+ i cos t) dt

=

∫ π

0

(sin3 t− cos2 t sin t− 2 cos2 t sin t) dt+ i

∫ π

0

(cos3 t− sin2 t cos t− 2 sin2 t cos t) dt

=

∫ π

0

(sin t− cos2 t sin t− 3 cos2 t sin t) dt+ i

∫ π

0

(cos t− sin2 t cos t− 3 sin2 t cos t) dt

=

∫ π

0

(sin t− 4 cos2 t sin t) dt+ i

∫ π

0

((cos t− 4 sin2 t cos t) dt

=

[
− cos t+

4

3
cos3 t

]π
0

+ i

[
sin t− 4

3
sin3 t

]π
0

= −2

3
.

Example 8.1.6. Compute the line integral

∫
γ

(z2 − 3|z|+ Im z) dz where γ is parametrized

by γ(t) = 2eit, 0 ≤ t ≤ π
2
. First note that γ′(t) = 2ieit. Then∫

γ

(z2 − 3|z|+ Im z) dz =

∫ π
2

0

(4e2it − 3|2eit|+ Im(2eit)) · 2ieit dt

=

∫ π
2

0

(8ie3it − 12ieit + 4ieit sin t) dt

=

∫ π
2

0

(
8ie3it − 12ieit + 4ieit

(
1

2i
(eit − e−it)

))
dt

=

[
8

3
e3it − 12ieit +

1

2
sin(2t)− i

2
cos(2t)− 2t

]π
2

0

=
28

3
− π

2
− 44

3
i.

The definition of line integrals can be extended to piecewise smooth curves by∫
γ

f(z) dz =

∫
γ1

f(z) dz +

∫
γ2

f(z) dz + . . .+

∫
γk

f(z) dz

where each γi is a smooth curve on an interval [ai, bi] ⊂ [a, b], γ1(a) = γ(a), γk(b) = γ(b) and
γi(bi) = γi+1(bi) for all i.

Definition. The length of a curve γ is given by the integral∫ b

a

|γ′(t)| dt =

∫ b

a

√
x′(t)2 + y′(t)2 dt

where γ(t) = x(t) + iy(t), a ≤ t ≤ b is a parametrization of γ.
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Example 8.1.7. Let γ be the unit circle, which has the parametrization γ(t) = eit, 0 ≤ t ≤
2π. Let’s verify the circumference of the circle with the formula for the length of γ:∫ 2π

0

|γ′(t)| dt =

∫ 2π

0

|ieit| dt =

∫ 2π

0

dt = 2π.

The next proposition contains some useful properties of the line integral.

Proposition 8.1.8. Suppose γ is a smooth curve and f and g are continuous, complex-valued
functions on a domain containing γ.

(a)

∫
γ

(f(z) + g(z)) dz =

∫
γ

f(z) dz +

∫
γ

g(z) dz.

(b) For any c ∈ C,

∫
γ

cf(z) dz = c

∫
γ

f(z) dz.

(c) If τ is a curve whose initial point is the terminal point of γ, then γτ is defined to be
the curve obtained by following γ and then τ . The integral over γτ is given by∫

γτ

f(z) dz =

∫
γ

f(z) dz +

∫
τ

f(z) dz.

(d)

∣∣∣∣∫
γ

f(z) dz

∣∣∣∣ ≤ max
z∈γ
|f(z)| · length(γ).
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8.2 Differentiability

Recall that the function f(z) =
z

z̄
is not continuous at z0 = 0. This points to the fact

that complex functions are somehow different than their real brethren, and in particular the
convergence of a function in C is much stronger than convergence in R.

Definition. The derivative of a complex function f(z) at a point z0 ∈ C is defined by

f ′(z0) = lim
h→0

f(z0 + h)− f(z0)

h
= lim

z→z0

f(z)− f(z0)

z − z0

.

If these limits exist, we say f(z) is differentiable at z0.

This definition is the same as in the real case, although as discussed above the notion of
a limit is much stronger in C. In the complex world, we have a further notion of differentia-
bility:

Definition. A complex function f(z) is holomorphic at z0 ∈ C if f(z) is differentiable on
some open disk centered at z0. Functions which are holomorphic on the whole complex plane
C are called entire.

Example 8.2.1. Many familiar functions from real analysis have the same derivative in
the complex plane. For example, f(z) = z2 has derivative 2z which may be confirmed by
computing either of the above limits. In fact this holds for all z ∈ C so z2 is an entire
function.

Example 8.2.2. f(z) = z̄2 is differentiable at 0 and nowhere else, which means f(z) is not
holomorphic at 0. To see this, write z = z0 + reiθ. Then the difference quotient can be
written

z̄2 − z̄2
0

z − z0

=
(z̄0 + re−iθ)2 − z̄2

0

reiθ

=
z̄2

0 + 2z̄0re
−iθ + r2e−2iθ − z̄2

0

reiθ

=
2z̄0re

−iθ + r2e−2iθ

reiθ
= 2z̄0e

−2iθ + re−3iθ.

If r 6= 0 then we get different answers for the limit z → z0 (e.g. take θ = 0 and θ = π
2
) which

shows that f(z) is not differentiable at any point other than the origin. At z0 = 0, we see
that

lim
z→z0

z̄2 − z̄2
0

z − z0

= lim
z→z0

z̄2

z
= 0.

Example 8.2.3. Complex conjugation is not differentiable at any z0 ∈ C since

lim
z→z0

z̄ − z̄0

z − z0

= lim
z→z0

z − z0

z − z0

= lim
z→0

z̄

z

does not exist as we have seen.
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Most of the nice properties of real derivatives carry over to the complex place.

Proposition 8.2.4. Let f and g be differentiable at z ∈ C.

(a) (f(z) + g(z))′ = f ′(z) + g′(z).

(b) For any c ∈ C, (cf)′(z) = cf ′(z).

(c) (fg)′(z) = f ′(z)g(z) + f(z)g′(z).

(d) If g(z) 6= 0 then

(
f(z)

g(z)

)′
=
f ′(z)g(z)− f(z)g′(z)

g(z)2
.

(e) (zn)′ = nzn−1. In particular this means that polynomials are entire.

(f) If g is differentiable at f(z) then (g(f(z)))′ = g′(f(z))f ′(z).

The fundamental property in this section is a pair of equations called the Cauchy-
Riemann Equations, which relate the derivative f ′(z) to the partial derivatives with respect
to the real and imaginary parts of z.

Theorem 8.2.5 (Cauchy-Riemann Equations). Let f(z) = u(x, y) + iv(x, y) be a complex
function which is continuous at z0 = x0 + iy0. Then f(z) is differentiable at z0 if and only
if the partial derivatives ∂u

∂x
, ∂u
∂y
, ∂v
∂x

and ∂v
∂y

exist, are continuous and satisfy

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x

on some neighborhood of z0.

Proof. ( =⇒ ) If f(z) is differentiable at z0 = x0 + iy0 then

f ′(z0) = lim
h→0

f(z0 + h)− f(z0)

h
.

First consider approaching z along the line (x0 + h) + iy0:

lim
h→0

f((x0 + h) + iy0)− f(x0 + iy0)

h
= lim

h→0

u(x0 + h, y0) + iv(x0 + h, y0)− u(x0, y0)− iv(x0, y0)

h

= lim
h→0

u(x0 + h, y0)− u(x0, y0)

h
+ i

v(x0 + h, y0)− v(x0, y0)

h

=
∂u

∂x
+ i

∂v

∂x
= f ′(z0).

Next, approach along x0 + i(y0 + h):

lim
ih→0

f(x0 + i(y0 + h))− f(x0 + iy0)

ih
= lim

ih→0

u(x0, y0 + h) + iv(x0, y0 + h)− u(x0, y0)− iv(x0, y0)

ih

= lim
h→0

u(x0, y0 + h)− u(x0, y0)

ih
+ i

v(x0, y0 + h)− v(x0, y0)

ih

=
1

i

∂u

∂y
+
∂v

∂y
=
∂v

∂y
− i∂u

∂y
= f ′(z0).
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Setting these two expressions for f ′(z0) equal gives the result, since the real and imaginary
parts of the resulting expression must be equal.

( =⇒) The converse requires a little more care. We will show that f(z) is differentiable
at z0 with derivative f ′(z0) = ∂f

∂x
(z0) = ∂u

∂x
(z0) + i ∂v

∂x
(z0). We first break up the difference

quotient, using h = hx + ihy:

f(z0 + h)− f(z0)

h
=
f(z0 + h)− f(z0 + hx) + f(z0 + hx)− f(z0)

h

=
f(z0 + hx + ihy)− f(z0 + hx)

h
+
f(z0 + hx)− f(z0)

h

=
hy
h
· f(z0 + hx + ihy)− f(z0 + hx)

hy
+
hx
h
· f(z0 + hx)− f(z0)

hx
.

Elsewhere, we have
∂f

∂x
(z0) =

hy
h
· ∂f
∂y

(z0) +
hx
h
· ∂f
∂x

(z0).

Now we subtract these two expressions and take a limit, which gives

lim
h→0

f(z0 + h)− f(z0)

h
− ∂f

∂x
(z0) = lim

h→0

[
hy
h

(
f(z0 + hx + ihy)− f(z0 + hx)

hy
− ∂f

∂y
(z0)

)]
+ lim

h→0

[
hx
h

(
f(z0 + hx)− f(z0)

hx
− ∂f

∂x
(z0)

)]
.

If we can show that the limits on the right are both 0, then we’re done. The ratios hx
h

and
hy
h

are both bounded by the triangle inequality, so it suffices to prove the the expressions in
parentheses tend to 0. The second term goes to 0 since by definition,

∂f

∂x
(z0) = lim

hx→0

f(z0 + hx)− f(z0)

hx
.

The other expression is more problematic, since it involves both hx and hy. However, the
Mean Value Theorem from real analysis gives us real numbers 0 < a, b < 1 such that

u(x0 + hx, y0 + hy)− u(x0 + hx, y0)

hy
= uy(x0 + hx, y0 + ahy)

and
v(x0 + hx, y0 + hy)− v(x0 + hx, y0)

hy
= vy(x0 + hx, y0 + bhy).

Substituting these expressions into the first term above gives us

f(z0 + hx + ihy)− f(z0 + hx)

hy
− ∂f

∂y
(z0) = uy(x0 + hx, y0 + ahy) + ivy(x0 + hx, y0 + bhy)

− uy(x0, y0)− ivy(x0, y0)

= (uy(x0 + hx, y0 + ahy)− uy(x0, y0))

+ i(vy(x0 + hx, y0 + bhy)− vy(x0, y0)).

Finally, these two pieces each tend to 0 since uy and vy are assumed to be continuous at
z0 = x0 + iy0. This finishes the proof.
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Example 8.2.6. Consider the function

f(z) =


x3 − y3

x2 + y2
+ i

x3 + y3

x2 + y2
z 6= 0

0 z = 0.

It is easy to see that the Cauchy-Riemann equations hold for f(z) at z0 = 0, but the complex
derivative f ′(0) does not exist. This is not a failure of the theorem, however, since the partial
derivatives ux, uy, vx and vy are not continuous at any point but 0.

Example 8.2.7. Consider f(z) = Log z using the principal branch D as its domain. We
may write this as

f(z) = ln |z|+ iArg z = 1
2

ln(x2 + y2) + i arctan
(
y
x

)
.

So one sees that u(x, y) = 1
2

ln(x2 + y2) and v(x, y) = arctan
(
y
x

)
. We calculate the partials:

ux =
x

x2 + y2
vx = − y

x2

1

1 +
(
y
x

)2 =
−y

x2 + y2

uy =
y

x2 + y2
vy =

1

x

1

1 +
(
y
x

)2 =
x

x2 + y2
.

Hence ux = vy and uy = −vx so f(z) satisfies the Cauchy-Riemann equations on D, meaning
it is differentiable. Moreover, we can write its derivative as

f ′(z) = ux + ivx =
x

x2 + y2
− i y

x2 + y2
=

x− iy
x2 + y2

=
z̄

|z|2
=

1

|z|
.

This is a striking, yet perhaps predictable result that reassures us that our definition of the
complex logarithm captures the real case.
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8.3 Power Series

Definition. A power series is an infinite series of the form

∞∑
n=0

an(z − z0)n.

Such a series is said to be centered about z0.

Example 8.3.1. Power series are really a generalization of a geometric series

∞∑
n=0

zn

centered about z0 = 0, where all the coefficients are 1. We know from Section 7.2 that this

series converges to
1

1− r
exactly when |z| < 1. We will see that power series behave in

similar ways, and when they converge, they converge to complex functions that we may be
interested in.

For a power series
∞∑
n=0

an(z − z0)n we have three cases for convergence:

(1) The series only converges at z = z0. In this case, the radius of convergence of the
series is 0.

(2) The series converges for all z in a disc of finite radius R centered at z0.

(3) The series converges for all z ∈ C, in which case we say the series has an infinite radius
of convergence.

Examples.

1 Consider the series
∞∑
n=0

n! zn. By the ratio test,

lim
n→∞

∣∣∣∣(n+ 1)! zn+1

n! zn

∣∣∣∣ = lim
n→∞

|z|(n+ 1) =∞

so the series diverges for all positive radii. This is an example of case 1, i.e. the series
has no radius of convergence.

2 For
∞∑
n=0

5n(z − i)n, the ratios test gives us

lim
n→∞

∣∣∣∣5n+1(z − i)n+1

5n(z − i)n

∣∣∣∣ = lim
n→∞

5|z − i|.

So the series converges (absolutely) whenever 5|z − i| < 1 =⇒ |z − i| < 1
5
. This is an

example of case 2, where the series has positive radius of convergence R = 1
5
.
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3 The power series
∞∑
n=0

zn

n!
is an example of case 3, since it converges (absolutely) for all

z as shown again by the ratio test:

lim
n→∞

∣∣∣∣∣
zn+1

(n+1)!

zn

n!

∣∣∣∣∣ = lim
n→∞

∣∣∣∣ z

n+ 1

∣∣∣∣ = 0 < 1.

A power series with positive or infinite radius of convergence represents a function that is
holomorphic within the disc of convergence of the series. This is one of the most important
facts in complex analysis, so we take a moment to formalize it here.

Theorem 8.3.2. Suppose
∞∑
n=0

an(z− z0)n has a positive or infinite radius of convergence R.

Then it represents a function f(z) which is holomorphic on D = {z ∈ C : |z − z0| < R}.

Proof. This will be proven in Section 8.6.

Now that we know that power series are holomorphic (differentiable) on their discs of
convergence, we can take derivatives.

Theorem 8.3.3. Suppose
∞∑
n=0

an(z− z0)n has a positive or infinite radius of convergence R.

Then its derivative is also a power series:

f ′(z) =
∞∑
n=1

nan(z − z0)n−1

which has radius of convergence R.

This can be applied repeatedly to obtain the Taylor series expansion of f(z) about z0:

f(z) =
∞∑
n=0

f (n)(z0)

n!
(z − z0)n.

Example 8.3.4. The Taylor series for the exponential function is

ez =
∞∑
n=0

zn

n!
.

Using the formulas for cos z and sin z from Section 7.4, we can derive their Taylor series as
well:

cos z =
∞∑
n=0

(−1)n

(2n)!
(z − z0)2n

sin z =
∞∑
n=0

(−1)n

(2n+ 1)!
(z − z0)2n+1.
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8.4 Cauchy’s Theorem

We now arrive at a theorem of central importance in complex analysis. The statement of the
theorem is simple, but as we will see, this result has far-reaching implications in the complex
world.

Theorem 8.4.1 (Cauchy’s Theorem). Let f(z) be a complex function that is holomorphic
on domain D, and suppose γ is any piecewise smooth, simple, closed curve in D. Then∫

γ

f(z) dz = 0.

Proof. By assumption f ′(z) is continuous on D and γ has interior Ω within D. We compute∫
γ

f(z) dz =

∫
γ

(u+ iv)(dx+ i dy) =

∫
γ

(u dx− v dy + i(v dx+ u dy))

=

∫
γ

(u dx− v dx) + i

∫
γ

(v dx+ u dy)

=

∫∫
Ω

(−vx − uy) dxdy + i

∫∫
Ω

(ux − vy) dxdy by Green’s Theorem

=

∫∫
Ω

(−vx + vx) dxdy + i

∫∫
Ω

(ux − ux) dxdy by Cauchy-Riemann equations

= 0 + i0 = 0.

Some immediate consequences of Cauchy’s Theorem are

Corollary 8.4.2 (Independence of Path). If γ1 and γ2 are curves with the same initial and
terminal points lying in a domain on which f(z) is holomorphic, then∫

γ1

f(z) dz =

∫
γ2

f(z) dz.

Corollary 8.4.3 (Deformation of Path). Suppose γ1 and γ2 are two simple, closed curves
with the same orientation, with γ2 lying on the interior of γ1.

γ2

γ1

If f(z) is holomorphic on the region between γ1 and γ2 then∫
γ1

f(z) dz =

∫
γ2

f(z) dz.
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Corollary 8.4.4 (Fundamental Theorem of Calculus). If f(z) is holomorphic on a simply-
connected domain D, then there is a holomorphic function F satisfying

F (z) =

∫
γ

f(z) dz

for any γ lying in D. Equivalently, F satisfies F ′(z) = f(z) on all of D.

Example 8.4.5. Now it’s easy to solve an integral such as

∫
γ

ez dz where γ is some path

from 0 to 2 + 2i:

γ

0 + 0i

2 + 2i

∫
γ

ez dz = ez|2+2i − ez|0+0i = e2(cos 2 + i sin 2)− 1.

The most important application of Cauchy’s Theorem is Cauchy’s Integral Formula,
which is described in the next section.
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8.5 Cauchy’s Integral Formula

Theorem 8.5.1 (Cauchy’s Integral Formula). Suppose f is holomorphic on a domain D
and γ is a simple closed curve on D, with positive orientation and interior Ω. Then for all
z ∈ Ω,

f(z) =
1

2πi

∫
γ

f(ζ)

ζ − z
dζ.

Ω

z0
C

γ

D

Proof. Fix z ∈ Ω and let C be a circle with center z contained in Ω. Note that for any

z ∈ D,
f(ζ)

ζ − z
is holomorphic on D r {z}. By deformation of path,

1

2πi

∫
γ

f(ζ)

ζ − z
dζ =

1

2πi

∫
C

f(ζ)

ζ − z
dζ.

We parametrize C by z + reit for 0 ≤ t ≤ 2π and write

1

2πi

∫
C

f(ζ)

ζ − z
dζ =

1

2πi

∫ 2π

0

f(z + reit)

reit
ireit dt

=
1

2π

∫ 2π

0

f(z + reit) dt.

Now take the limit as r → 0. Since f(z) is continuous, we can bring the limit inside the
integral:

lim
r→0

1

2π

∫ 2π

0

f(z + reit) dt =
1

2π

∫ 2π

0

f(z) dt.

Notice that f(z) doesn’t depend on t, so we can integrate this easily and see that it equals
f(z). This proves the theorem.

Example 8.5.2. Cauchy’s integral formula allows us to solve path integrals that were pre-
viously inaccessible. For example, if γ is a circle about the origin of radius 1, then z = 1

2
is

on its interior and
ez

z − 1
2

is not holomorphic on the interior of γ. However, Cauchy’s integral

formula lets us compute ∫
γ

ez

z − 1
2

dz = 2πie1/2.
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Example 8.5.3. Consider the following contours

γ1

γ2

z1z2

First, Cauchy’s Theorem (8.4.1) makes it easy to evaluate integrals around γ2, since z1 and
z2 are not on the interior of this curve. For example,∫

γ2

ez

z − z1

dz = 0 and

∫
γ2

ez

z − z2

dz = 0.

When a point is on the interior of a curve, we use Cauchy’s integral formula (8.5.1):∫
γ1

ez

z − z1

dz = 2πiez1 .

Unfortunately, since z2 lies directly on γ1, the integral∫
γ1

ez

z − z2

dz

must be evaluated by hand, e.g. by parametrization.

Example 8.5.4. Using our integration formulas so far, we can break complicated contours
down into simple pieces. For example, consider∫

|z+1|=2

−z2

(z − 2)(z + 2)
dz.

The contour of integration is the circle of radius 2 centered at z0 = −1, which contains
z1 = −2 on its interior but not z2 = 2. By partial fraction decomposition, we can write∫

|z+1|=2

−z2

(z − 2)(z + 2)
dz =

∫
|z+1|=2

(
−1

z − 2
+

1

z + 2

)
dz

=

∫
|z+1|=2

1

z + 2
dz −

∫
|z+1|=2

1

z − 2
dz.

The second of these integrals is 0 by Cauchy’s Theorem (8.4.1). The first evaluates to 2πi
by Cauchy’s integral formula (8.5.1), so we see that the original integral is equal to 2πi.
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We can see this another way, by setting f(z) =
−z2

z − 2
and noticing that f is holomorphic

on |z + 1| = 2. Then Cauchy’s integral formula (8.5.1) tells us that∫
|z+1|=2

−z2

(z − 2)(z + 2)
dz = 2πif(−2) = 2πi

−4

−4
= 2πi.

The next theorem shows that Cauchy’s Integral Formula is intimately related to complex
power series.

Theorem 8.5.5. Let f be holomorphic on a domain D and suppose z0 is a point in D such
that the circle |z − z0| < R for some real R lies in D. Let γ be a simple closed curve lying
within this circle and containing z0 on its interior. Then

f(z) =
∞∑
k=0

ak(z − z0)k where ak =
1

2πi

∫
γ

f(ζ)

(ζ − z0)k+1
dζ

Proof. Let ∆ = {z : |z − z0| < R}. By deformation of path, it suffices to consider when γ is
a circle. For a fixed r < R, we take γ to be the positively-oriented circle γ : |z− z0| = r. By
Cauchy’s Integral Formula (8.5.1),

f(z) =
1

2πi

∫
γ

f(ζ)

ζ − z
dζ

for any z on the interior of γ. For any one of these z’s, let s = |z−z0| so that s < r. Consider

1

ζ − z
=

1

(ζ − z0)− (z − z0)
=

1

ζ − z0

· 1

1− z−z0
ζ−z0

.

Note that
|z − z0|
|ζ − z0|

=
s

r
< 1. This allows us to introduce the series as a convergent geometric

series:
1

ζ − z
=

1

ζ − z0

∞∑
k=0

(
z − z0

ζ − z0

)k
.

Using this and the expression given by Cauchy’s integral formula above, we are able to write

f(z) =
1

2πi

∫
γ

f(ζ)

ζ − z
dζ

=
1

2πi

∫
γ

f(ζ)

ζ − z0

∞∑
k=0

(
z − z0

ζ − z0

)k
dζ

=
1

2πi

∞∑
k=0

(z − z0)k
∫
γ

f(ζ)

(ζ − z0)k+1
dζ.

Corollary 8.5.6. If f(z) is holomorphic on D, f has derivatives of all orders on D and
each derivative is holomorphic on D.
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Proof. By Theorem 8.5.5, f(z) can be written as a power series with positive radius of
convergence,

f(z) =
∞∑
k=0

ak(z − z0)k with ak =
1

2πi

∫
γ

f(ζ)

(ζ − z0)k+1
dζ,

for some γ about z0. We will see in Section 8.6 that we can differentiate (and antidifferentiate)
power series, so f(z) is infinitely differentiable on the region of convergence of the power
series.
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8.6 Analytic Functions

Theorem 8.5.5 suggests a powerful connection between power series and holomorphic func-
tions in the complex plane. In this section we prove that every power series represents a
holomorphic function on its region of convergence and every holomorphic function has a
power series representation on its domain. First, we need a converse to Cauchy’s Theorem
(8.4.1).

Theorem 8.6.1 (Morera’s Theorem). Suppose f(z) is continuous on a domain D and∫
γ

f(z) dz = 0

for all smooth, closed curves γ in D. Then f is holomorphic on D.

Proof. We may assume D is connected; otherwise the proof can be repeated on each con-

nected component of D. Fix z0 ∈ D and define F (z) =

∫
γ

f(ζ) dζ where γ is any smooth

curve connecting z0 and z. By independence of path, F (z) is well-defined for all z ∈ D.
Since all closed curves γ give F = 0 and f(z) is continuous, it follows that F ′(z) = f(z),
that is, F is an antiderivative of f . Then F (z) is holomorphic on D, which by Corollary 8.5.6
implies that f(z) is also holomorphic on D.

We prove the first direction of the power series-holomorphic function connection below.

Theorem 8.6.2. Suppose f(z) =
∞∑
k=0

ak(z − z0)k has a positive radius of convergence R.

Then f is a holomorphic function on the domain D = {z ∈ C : |z − z0| < R}.

Proof. Given any closed curve γ in D,∫
γ

∞∑
k=0

ak(z − z0)k dz = 0

by continuity of the power series on its region of convergence. Then Morera’s Theorem says
that f(z) is holomorphic on D.

Now we know that power series are differentiable on their region of convergence. The
next result says that we can differentiate power series term-by-term, just as in the real case.

Theorem 8.6.3. Suppose f(z) =
∞∑
k=0

ak(z−z0)k has positive radius of convergence R. Then

f(z) is differentiable with

f ′(z) =
∞∑
k=1

kak(z − z0)k−1

which also has radius of convergence R.
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Example 8.6.4. In this example we verify the derivatives for ez, cos z and sin z. In Exam-
ple 8.3.4 we saw that the Taylor series expansions for these functions are

ez =
∞∑
n=0

zn

n!

cos z =
∞∑
n=0

(−1)n

(2n)!
(z − z0)2n

and sin z =
∞∑
n=0

(−1)n

(2n+ 1)!
(z − z0)2n+1.

Differentiating the power series for ez term-by-term shows that

d

dz
ez =

∞∑
n=1

nzn−1

n!
=
∞∑
n=1

zn−1

(n− 1)!
=
∞∑
n=0

zn

n!
= ez.

We can use the definitions of cos z and sin z in terms of the complex exponential function
(Section 7.4) to prove that their derivatives are

d

dz
cos z = − sin z and

d

dz
sin z = cos z.

We can repeatedly apply Theorem 8.6.3 to subsequent derivatives of f to obtain a state-
ment of Taylor’s Theorem for complex functions:

Theorem 8.6.5. Suppose f(z) =
∞∑
k=0

ak(z− z0)k has a positive radius of convergence. Then

ak =
f (k)(z0)

k!
.

We now turn to the other connection between holomorphic functions and power series.
Well actually, we have already proven (Corollary 8.5.6) that holomorphic functions have
power series representations, which we recall here.

Theorem 8.6.6. Let f be holomorphic on a domain D. Then

f(z) =
∞∑
k=0

ak(z − z0)k for ak =
1

2πi

∫
γ

f(ζ)

(ζ − z0)k+1
dζ

where z0 ∈ D and γ is a simple closed curve lying in D and containing z0 on its interior.

We immediately obtain the following generalization of Cauchy’s integral formula (8.5.1).

Corollary 8.6.7. Suppose f is holomorphic on a domain D and γ is a simple closed curve
in D, positively oriented and with interior Ω. Then for all z ∈ Ω and n ∈ N,

f (n)(z) =
n!

2πi

∫
γ

f(ζ)

(ζ − z)n+1
dζ.
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We now define what it means for a function to be analytic on a certain region in the
complex plane.

Definition. A function f(z) that is continuous on a region D ⊆ C is analytic at z0 ∈ D if
f equals its Taylor series expansion about z0 and f is analytic on D if it is analytic at every
point in D.

The following theorem summarizes everything we have learned so far about holomorphic
functions in the complex plane.

Theorem 8.6.8. For a complex function f(z) which is continuous on a domain D, the
following are equivalent:

(1) f(z) is differentiable on some open disk centered at z0 ∈ D, that is, f is holomorphic
at z0.

(2) The Taylor series expansion of f(z) about z0 converges to f(z) with positive radius of
convergence, i.e. f is analytic.

(3) f(z) satisfies the Cauchy-Riemann equations on some neighborhood of z0.

(4)

∫
γ

f(z) dz = 0 for every simple closed curve γ inside D with z0 on its interior (Cauchy’s

Theorem and Morera’s Theorem).

We conclude with a consequence of the generalized Cauchy’s integral formula to entire
functions that are bounded.

Theorem 8.6.9 (Liouville’s Theorem). If f(z) is entire and there exists a constant M such
that |f(z)| ≤M for all z ∈ C, then f is a constant function.

Proof. Let z0 ∈ C and take Cr to be the circle centered at z0 with radius r > 0. By
Corollary 8.6.7,

f ′(z0) =
1

2πi

∫
Cr

f(ζ)

(ζ − z0)2
dζ.

Parametrize the circle by Cr : z0 + reit, 0 ≤ t ≤ 2π. Then

f ′(z0) =
1

2πi

∫ 2π

0

f(z0 + reit)

r2e2it
ireit dt

=
1

2πr

∫ 2π

0

f(z0 + reit)

eit
dt.

Taking the modulus of both sides and applying the triangle inequality for integrals, we have

|f ′(z0)| ≤ 1

2πr

∫ 2π

0

∣∣∣∣f(z0 + reit)

eit

∣∣∣∣ dt
=

1

2πr

∫ 2π

0

|f(z0 + reit)|
|eit|

dt

≤ 1

2πr

∫ 2π

0

M dt.
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As we take r → 0, this expression tends to 0 as well, showing |f ′(z0)| = 0. Since z0 was
arbitrary, we have shown that f(z) is constant.
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8.7 Harmonic Functions

There is a certain class of holomorphic functions which are important in physics. We study
them here.

Definition. A complex function f = u+iv is harmonic on a domain D if it has continuous
second partial derivatives on D that satisfy the Laplace equation

∂2u

∂x2
+
∂2u

∂y2
= 0.

The next result says that the real and imaginary parts of a holomorphic function are
harmonic.

Proposition 8.7.1. Suppose f = u+ iv is a holomorphic function on a domain D. Then u
and v are harmonic on D.

Proof. Since f is holomorphic, it is infinitely differentiable and so are u and v. In particular, u
and v have continuous second partial derivatives. Moreover, f satisfies the Cauchy-Riemann
equations:

ux = vy and uy = −vx
which imply uxx +uyy = vyx− vxy = 0 since these are continuous. Hence u is harmonic. The
proof is the same for v.

Given a harmonic function u, one may be interested in finding a harmonic conjugate
of u, i.e. another harmonic function v such that f = u+ iv is holomorphic in some region of
the complex plane.

Example 8.7.2. Consider the function u(x, y) =
x

x2 + y2
. We first show that u is harmonic

by computing second partials.

ux =
−x2 + y2

(x2 + y2)2

uxx =
−2x(x2 + y2)2 − 4x(x2 + y2)(−x2 + y2)

(x2 + y2)4

=
(x2 + y2) · 2x(−x2 − y2 + x2 − y2)

(x2 + y2)4

=
−4xy2

(x2 + y2)3

and uy =
−2xy

(x2 + y2)2

uyy =
−2x(x2 + y2)2 − 4y(x2 + y2)(−2xy)

(x2 + y2)4

=
(x2 + y2) · 2x(4y2 − x2 − y2)

(x2 + y2)4

=
4xy2

(x2 + y2)3
.
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Thus uxx +uyy = 0 so u(x, y) is harmonic. Now for f = u+ iv to be a holomorphic function,
it will need to satisfy the Cauchy-Riemann equations, so ux = vy and uy = −vx. The above

shows that we must have vx =
2xy

(x2 + y2)2
. Integrating with respect to x,

v =

∫
2xy(x2 + y2)−2 dx =

−y
x2 + y2

+ yΨ(y)

for some function Ψ(y). Now if we differentiate this with respect to y, we have

vy =
−(x2 + y2)− 2y(−y)

(x2 + y2)2
+ yΨ′(y) + Ψ(y) =

−x2 + y2

(x2 + y2)2
+ yΨ′(y) + Ψ(y).

By the expression for ux determined above, we must have yΨ′(y) + Ψ(y) = 0. A general
solution to this differential equation is Ψ(y) = c

|y| , which gives us

v(x, y) =
−y

x2 + y2
+ y

c

|y|
=

−y
x2 + y2

± c

and this is holomorphic for all (x, y) ∈ C such that y 6= 0.

Proposition 8.7.3. If u(x, y) = k is a constant function, then it has a harmonic conjugate
v(x, y) which is also constant.

Proof. To begin with, u clearly satisfies the Laplace equation so it is harmonic. A harmonic
conjugate v must satisfy vx = vy = 0 by the Cauchy-Riemann equations, so

v =

∫
vy dy = k1 + χ(x)

and v =

∫
vx dx = k2 + ψ(y).

Setting these equal, we have k1 + χ(x) = k2 + ψ(y), so χx(x) = ψy(y) = 0, showing that
each of the functions must be constant, say χ(x) = c1 and ψ(y) = c2. Therefore v(x, y) =
k1 + c1 = k2 + c2, showing v is a constant function.

In general, the existence of harmonic conjugates is characterized by

Theorem 8.7.4. Suppose u(x, y) is a harmonic function on the simply connected region
D ⊆ C. Then there exists a harmonic conjugate v(x, y) such that f = u+ iv is holomorphic
on D.

Proof. Fix (x0, y0) ∈ D and define v(x, y) by

v(x, y) =

∫ y

y0

∂u

∂x
(x, t) dt−

∫ x

x0

∂u

∂y
(t, y0) dt.
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Then f = u+ iv is holomorphic in D since it satisfies the Cauchy-Riemann equations:

∂v

∂y
=

∂

∂y

∫ y

y0

∂u

∂x
(x, t) dt =

∂u

∂x

and
∂v

∂x
=

∂

∂x

∫ y

y0

∂u

∂x
(x, t) dt− ∂2u

∂x∂y
(x, y0) =

∫ y

y0

∂2u

∂x2
(x, t) dt− ∂2u

∂x∂y
(x, y0)

= −
∫ y

y0

∂2u

∂y2
(x, t) dt− ∂2u

∂x∂y
(x, y0) using the Laplace equation

= −∂u
∂y

(x, y) +
∂u

∂y
(x, y0)− ∂u

∂y
(x, y0) = −∂u

∂y
(x, y).

Moreover,

∂2v

∂x2
+
∂2v

∂y2
=

∂

∂x

∫ y

y0

∂2u

∂x2
(x, t) dt− ∂

∂x

(
∂u

∂y
(x, y0)

)
+

∂

∂y

(
∂u

∂x
(x, y)

)
− ∂

∂y

∫ x

x0

∂2u

∂y2
(t, y0) dt

= − ∂

∂x

∫ y

y0

∂2u

∂y2
(x, t) dt− ∂2u

∂x∂y
(x, y0) +

∂2u

∂y∂x
(x, y) +

∂

∂y

∫ x

x0

∂2u

∂x2
(t, y0) dt

= − ∂

∂x

(
∂u

∂y
(x, y)− ∂u

∂y
(x, y0)

)
− ∂2u

∂x∂y
(x, y0) +

∂2u

∂y∂x
(x, y) +

∂

∂y

(
∂u

∂x
(x, y0)− ∂u

∂x
(x0, y0)

)
= 0.

So v(x, y) is indeed a harmonic conjugate of u(x, y).

Corollary 8.7.5. Every harmonic function is infinitely differentiable on its domain.
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9.1 Laurent Series

With Theorem 8.6.6, we saw that an analytic function can be written

f(z) =
∞∑
k=0

ak(z − z0)k where ak =
1

2πi

∫
γ

f(ζ)

(ζ − z0)k+1
dζ

for all z in its domain D. This is highly useful, but when f(z) is not analytic on a domain
D we still want a way of representing f as a series. This motivates the introduction and
application of Laurent series:

Definition. A Laurent series is a series expansion of a function f(z) about a point z0 not
in the domain of f in terms of two infinite power series, a positive and negative one:

f(z) =
∞∑
k=0

ak(z − z0)k +
∞∑
k=1

bk(z − z0)−k =
∑
k∈Z

ck(z − z0)k.

Remark. A Laurent series converges if and only if both the positive and negative series
converge. Absolute and uniform convergence are defined analagously. Notice that any Taylor
series is a Laurent series whose negative part vanishes.

Example 9.1.1. f(z) = e1/z is not analytic at z0 = 0, but we can write its Laurent series
expansion

e1/z =
∞∑
k=0

1

k!
z−k.

In this case only the k = 0 term of the positive series is nonzero.

Example 9.1.2. Consider the function f(z) = z3+z2

(z−1)2
about z0 = 1. First we write the

regular Taylor series expansion of the numerator about z0:

z3 + z2 =
∞∑
k=0

an(z − 1)k = 2 + 5(z − 1) +
8

2!
(z − 1)2 +

6

3!
(z − 1)3.

Dividing by (z − 1)2 yields

z3 + z2

(z − 1)2
=

2

(z − 1)2
+

5

z − 1
+ 4 + (z − 1)

which is a Laurent series for f(z) about z0 = 1. The coefficients are b2 = 2, b1 = 5, a0 =
4, a1 = 1 and the rest are zero.

Example 9.1.3. Similarly, we use the Taylor series for sin z to write the Laurent series for
f(z) = sin z

z3
about z0 = 0 as

sin z

z3
=

1

z2
− 1

3!
+
z2

5!
− z4

7!
+ . . .
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We should take a moment to explicitly describe the region of convergence of a Laurent
series. Suppose ∑

k∈Z

ck(z − z0)k =
∞∑
k=0

ak(z − z0)k +
∞∑
k=1

bk(z − z0)−k.

The positive series has some radius convergence R1, that is, the series converges on the region
{z ∈ C : |z − z0| < R1}. Similarly, the negative series is just a power series in 1

z−z0 so it

has radius of convergence 1
R2

, i.e. it converges when 1
|z−z0| <

1
R2

. This can be written as the

complement of a closed disk, {z ∈ C : |z − z0| > R2}. Thus we see that the Laurent series
is convergent on an annular region {z ∈ C : R2 < |z − z0| < R1} (as long as R2 < R1).
By Theorem 8.6.2, the Laurent series represents an analytic function f(z) on the region
D = {z ∈ C : R2 < |z − z0| < R1}. This is made explicit in the next theorem.

Theorem 9.1.4. Suppose f is a holomorphic function on D = {z ∈ C : R1 < |z−z0| < R2}.
Then f is equal to its Laurent series expansion about z0 which can be written

f(z) =
∞∑
k=0

ak(z − z0)k +
∞∑
k=1

bk(z − z0)−k

where ak =
1

2πi

∫
C2

f(ζ)

(ζ − z0)k+1
dζ and bk =

1

2πi

∫
C1

f(ζ)

(ζ − z0)−k+1
dζ

for circles C1 and C2 centered at z0 with radii R1 and R2, respectively.

Proof. Apply Cauchy’s Theorem (8.4.1) and related results to both series.

Remark. By the definition of their coefficients in terms of the integrals above, Laurent
series expansions are unique.

Example 9.1.5. Consider f(z) = 1
(z−1)(z−3)

on three different regions centered about the
origin:

I

II
III

The three regions are given by I : {z ∈ C : |z| < 1}, II : {z ∈ C : 1 < |z| < 3} and III :
{z ∈ C : |z| > 3}. We want to compute Laurent series for f(z) in each of the regions. First
we use partial fraction decomposition to write

1

(z − 1)(z − 3)
=
−1/2

z − 1
+

1/2

z − 3
.
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On various regions, we compute the following using geometric series:

−1

2
· 1

z − 1
=

1

2
· 1

1− z
=

1

2

∞∑
n=0

zn, |z| < 1

1

2
· 1

z − 3
= −1

2
· 1

3
· 1

1− 2/3
= −1

6

∞∑
n=0

(z
3

)n
, |z| < 3

−1

2
· 1

z − 1
= −1

2
· 1

z
· 1

1− 1/z
= −1

2
· 1

z

∞∑
n=0

z−n, |z| > 1

1

2
· 1

z − 3
=

1

2
· 1

z

1

1− 3/z
=

1

2
· 1

z

∞∑
n=0

(
3

z

)n
, |z| > 3.

Putting these together into Laurent series on each region, we have

I : f(z) =
1

2

∞∑
n=0

zn − 1

6

∞∑
n=0

(z
3

)n
=
∞∑
n=0

(
1

2
− 1

6
· 1

3n

)
zn

=
∞∑
n=0

1

2
(1− 3−n−1)zn

II : f(z) = −1

2
· 1

z

∞∑
n=0

z−n − 1

6

∞∑
n=0

(z
3

)n
=
∞∑
n=0

−1

2
3−n−1zn +

∞∑
n=0

−1

2
z−n−1

III : f(z) = −1

2
· 1

z

∞∑
n=0

z−n +
1

2
· 1

z

∞∑
n=0

3nz−n

=
∞∑
n=0

1

2
(3n − 1)z−n−1.

In these we see examples of a Laurent series that is a Taylor series (I), corresponding to a
disk on which f(z) is holomorphic; a Laurent series with both positive and negative parts
(II), which is holomorphic on an annulus; and a Laurent series with only negative part (III),
holomorphic on the complement of a disk.

Laurent series give us a way to deal with ‘holes’ in the domain of a function which is
otherwise holomorphic on the region. Such functions have a special name:

Definition. A complex function f(z) is meromorphic on a domain D if it is holomorphic
on D r {z1, z2, . . . , zr} where r is finite.
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9.2 Isolated Singularities

A singularity is the name we give to a ‘hole’ in the domain of a complex function. Below we
describe the three different types of singularities a function may have.

Definition. If f(z) is holomorphic on the punctured disk D = {z ∈ C : 0 < |z − z0| < R}
for some R > 0 (R may be infinite) but not at z0 then z0 is called an isolated singularity
of f . The three types of isolated singularities are

(a) z0 is a removable singularity if there is a function g which is holomorphic on the
disk D ∪ {z0} = {z ∈ C : |z − z0| < R} such that f(z) = g(z) for all z ∈ D.

(b) z0 is a pole if lim
z→z0
|f(z)| = ∞. In particular, z0 is a pole of order m if z0 is

a root of 1
f(z)

with multiplicity m. Equivalently, m is the smallest integer such that

lim
z→z0

(z − z0)m+1f(z) = 0.

(c) z0 is an essential singularity if it is neither removable nor a pole.

The isolated singularities of a function may be characterized in terms of Laurent series
expansions of the function.

Proposition 9.2.1. Let z0 be an isolated singularity of f(z) and suppose f(z) has a Laurent
series expansion

f(z) =
∞∑
n=0

an(z − z0)n +
∞∑
n=1

bn(z − z0)−n

in the region 0 < |z − z0| < R.

(a) z0 is a removable singularity if and only if bn = 0 for all n and there is a function g,

g(z) =

{
f(z) z 6= z0

a0 z = z0,

which is analytic in |z − z0| < R.

(b) z0 is a pole of f(z) if and only if all but a finite number of the bn vanish. Specifically,
if bn = 0 for all n > m then z0 is a pole of order m and f can be written

f(z) =
bm

(z − z0)m
+

bm−1

(z − z0)m−1
+ . . .+

b1

z − z0

+
∞∑
n=0

an(z − z0)n.

(c) z0 is an essential singularity if and only if infinitely many of the bn are nonzero.
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Examples. We examine functions with each type of isolated singularity.

1 The function f(z) = sin z
z

has a Laurent series which is a Taylor series:

sin z

z
=

1

z

∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1 =

∞∑
n=0

(−1)n

(2n+ 1)!
z2n

on the region {z ∈ C : |z| > 0}. Therefore z0 = 0 is removable and the function g that
removes the singularity is

g(z) =

{
sin z
z

z 6= 0

1 z = 0.

Note that g(z) is analytic everywhere; it is an entire function. This shows that f(z) is
meromorphic on Cr {0}.

2 Consider f(z) = sin z
z4

whose Laurent series is given by

sin z

z4
=

1

z4

∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1 =

∞∑
n=0

(−1)n

(2n+ 1)!
z2n−3 =

1

z3
−

1/6

z
+
∞∑
n=0

(−1)n

(2n+ 5)!
z2n+1.

This shows that z0 = 0 is a pole of order 3. Moreover, by Theorem 9.1.4 we can use the
coefficients of the Laurent series to integrate f(z) around some contour C containing
z0 = 0 on its interior:∫

C

sin z

z4
dz = b1 · 2πi =

(
−1

6

)
2πi = −πi

3
.

3 sin
(

1
z

)
, cos

(
1
z

)
and e1/z are all functions with essential singularities at z0 = 0. For

example, consider the Laurent series expansion of f(z) = e1/z:

e1/z =
∞∑
n=0

1

n!
z−n = 1 + z−1 +

1

2
z−2 +

1

6
z−3 + . . . .

Although there is not a nice extension of e1/z to an analytic function about z0 = 0, we
can still use the b1 coefficient of its Laurent series to compute contour integrals:∫

C

e1/z dz = b1 · 2πi = (1)2πi = 2πi.

The next result is rather neat. It says that if f(z) has an essential singularity at z0 then
the image f(D) of any disk D centered at z0 is dense in C (in the topological sense).

Theorem 9.2.2 (Casorati-Weierstrass). If z0 is an essential singularity of f(z) and D =
{z ∈ C : 0 < |z− z0| < R} for some positive R, then for any z ∈ C and ε > 0, there is some
z′ ∈ D such that |z − f(z′)| < ε.
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Proof. To contradict, suppose there is some z ∈ C and an ε > 0 such that for all z′ ∈ D,
|z − f(z′)| ≥ ε. Then g(z) = 1

f(z′)−z is bounded as z → z0, so

lim
z→z0

(z − z0)g(z) = lim
z→z0

z − z0

f(z′)− z
= 0.

By Proposition 9.2.1, g has a removable singularity at z0, and therefore

lim
z→z0

∣∣∣∣f(z′)− z
z − z0

∣∣∣∣ =∞.

This implies that f(z′)−z
z−z0 has a pole at z0, say of order m. By definition,

lim
z→z0

(z − z0)m+1f(z′)− z
z − z0

= lim
z→z0

(z − z0)n(f(z′)− z) = 0.

Finally, this shows that f(z′) − z has a pole or removable singularity at z0 which implies
the same of f(z), but this cannot be the case since z0 was essential. Hence f(D) must be
dense.
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9.3 The Residue Theorem

The examples in Section 9.2 illustrate the connection between the coefficients of the negative
part of the Laurent series of a function and contour integrals of the function about its
singularities. The coefficient b1 is of particular importance, so much so that it has a special
name.

Definition. Let z0 be an isolated singularity of f(z). The residue of f at z0 is

Res(f ; z0) :=
1

2πi

∫
C

f(z) dz

where C : |z − z0| = r for some 0 < r < R, the radius of convergence of the Laurent series
for f . This is in turn equal to the b1 coefficient of the Laurent series.

There is a nice formula for the residues of removable singularities and poles.

Proposition 9.3.1. Suppose z0 is a nonessential singularity of f(z).

(a) If z0 is a removable singularity, Res(f ; z0) = 0.

(b) If z0 is a pole of order m, then

Res(f ; z0) =
1

(m− 1)!
lim
z→z0

dm−1

dzm−1
(z − z0)mf(z).

Proof. (a) follows from Cauchy’s Theorem (8.4.1), and (b) is a simple application of Taylor’s
Theorem to the series

(z − z0)mf(z) =
∞∑

n=−m

cn(z − z0)n+m.

The formula for Res(f ; z0) follows from the identification of the residue and b1.

Example 9.3.2. Let f(z) =
ez

z2(z − iπ)4
. Then f has a pole of order 2 at z0 = 0, so we

define g(z) = z2f(z) which is analytic on a small enough neighborhood of 0 (so that it avoids
iπ). By Proposition 9.3.1,

Res(f ; 0) =
1

(2− 1)!
lim
z→0

d2−1

dz2−1
g(z) = lim

z→0
g′(z).

The first derivative of g is

g′(z) =
ez(z − iπ)4 − ez · 4(z − iπ)3

(z − iπ)8

=
ez(z − iπ)3(z − iπ − 4)

(z − iπ)8

=
ez(z − iπ − 4)

(z − iπ)5
.
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Then the formula for the residue above allows us to compute

Res(f ; 0) = lim
z→0

ez(z − iπ − 4)

(z − iπ)5
=
−iπ − 4

(−iπ)5
=

1

π4
+

4

iπ5
.

Proposition 9.3.3. Suppose f and g are analytic on |z − z0| < r for some z0 ∈ C and
r > 0, and suppose g(z0) = 0 but g′(z0) 6= 0. Then

Res

(
f

g
; z0

)
=
f(z0)

g′(z0)
.

Proof. Let g(z) have the following power series centered at z0 (by assumption the series has
no c0 coefficient):

g(z) =
∞∑
k=1

ck(z − z0)k = (z − z0)
∞∑
k=0

ak(z − z0)k

where ak = ck−1; call the analytic function represented by this new series h(z). Note that
h(z0) = c1 6= 0, so

f(z)

g(z)
=

f(z)

(z − z0)h(z)

and f
h

is analytic at z0. Using the definition of residue in terms of the Laurent series coeffi-

cients, the residue of f
g

is equal to the constant term of the series for f
h

(the n = −1 term of

the series for f
g
). This is computed to be f(z0)

h(z0)
, but by the way we defined h, h(z0) = g′(z0).

Hence

Res

(
f

g
; z0

)
=
f(z0)

g′(z0)
.

We finally arrive at the central theorem in basic complex analysis: the Residue Theorem.

Theorem 9.3.4 (The Residue Theorem). Suppose f(z) is meromorphic on a region D; let
z1, . . . , zn be the isolated singularties of f inside D. If γ is a piecewise smooth, positively
oriented, simple closed curve lying in D that does not pass through any of the zi then∫

γ

f(z) dz = 2πi
n∑
i=1

Res(f ; zi).

Proof. Draw a positively-oriented circle Ci around each singularity zi such that zi is the only
singularity of f on its interior. The case where n = 3 is illustrated below.
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γ

z1z2

z3

Then γ is contractible to a curve γ′ which connects the Ci together and otherwise contains
no singularities on its interior. Such a contraction is shown in the next figure.

z1z2

z3

γ′

Then

∫
γ

f(z) dz =

∫
γ′
f(z) dz +

n∑
i=1

∫
Ci

f(z) dz but by construction, f(z) is holomorphic on

the interior of γ′, so by Cauchy’s Theorem (8.4.1) this part equals 0. Evaluate the remaining
terms using the definition of residue to produce the main summation formula:∫

γ

f(z) dz =
n∑
i=1

∫
Ci

f(z) dz =
n∑
i=1

2πiRes(f ; zi).

Example 9.3.5. Evaluate

∫
γ

z2 − 2z + 1

(z − 1)(z − 4)(z + 3)
dz about the given contour.
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C1 C2 C3

γ

Set f(z) =
z2 − 2z + 1

(z − 1)(z − 4)(z + 3)
. By the Residue Theorem we may evalute the integral of

f over γ as∫
γ

z2 − 2z + 1

(z − 1)(z − 4)(z + 3)
dz = 2πi(Res(f ;−3) + Res(f ; 1) + Res(f ; 4)).

First, note that the function g(z) = z−1
(z−4)(z+3)

is holomorphic on C2 and f(z) = g(z) on
the interior of C1 minus 1. Thus z2 = 1 is a removable singularity, so by Proposition 9.3.1,
Res(f ; 1) = 0. Next, it is easy to see that z1 = −3 and z3 = 4 are both simple poles, so we
compute their residues using the pole formula (Proposition 9.3.1):

Res(f ;−3) = lim
z→−3

(z + 3)f(z) = lim
z→−3

z2 − 2z + 1

(z − 1)(z − 4)
=

4

7

Res(f ; 4) = lim
z→4

(z − 4)f(z) = lim
z→4

z2 − 2z + 1

(z − 1)(z + 3)
=

3

7
.

Putting this together, we have∫
γ

z2 − 2z + 1

(z − 1)(z − 4)(z + 3)
dz = 2πi

(
4

7
+ 0 +

3

7

)
= 2πi.
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9.4 Some Fourier Analysis

Techniques in Fourier analysis are vital in many areas of mathematics and the physical
sciences, especially when signal or wave data needs to be broken down into simple compo-
nents. By studying heat diffusion and wave equations, Joseph Fourier discovered that every
continuous function can be approximated with arbitrarily small error by a series of the form

∞∑
n=0

an cos(nx) + bn sin(nx).

Extending these functions to the complex plane, we can take advantage of Euler’s formula
eit = cos t+ i sin t.

Definition. Let f be an integrable, complex-valued function defined on R (or defined on C
but restricted to R for this section). The Fourier transform of F is

f̂(w) =

∫ ∞
−∞

f(x)e2πiwx dx.

The reason the Residue Theorem (9.3.4) is important to the study of Fourier series
becomes evident in the next theorem.

Theorem 9.4.1. Let f(z) be analytic on the half-plane H : Im(z) ≥ 0 except possibly at a
finite number of singularities {z1, . . . , zn}, all of which have positive imaginary part. Suppose
|f(z)| gets arbitrarily small for all z ∈ H with sufficiently large modulus, i.e.

lim
R→∞

max
|z|=R

Im(z)≥0

|f(z)| = 0.

Then for all real numbers w > 0,

f̂(w) = 2πi
n∑
j=0

Res(f(z)e2πiwz; zj).

Similarly, if all of the above conditions hold for the negative half-plane H′ : Im(z) ≤ 0, then

f̂(w) = −2πi
n∑
j=1

Res(f(z)e2πiwz; zj).

Example 9.4.2. Consider the real-valued function f(x) =
1

1 + x2
. We can extend this to a

complex function f(z) =
1

1 + z2
which clearly satisfies

lim
R→∞

max
|z|=R

Im(z)≥0

|f(z)| = 0.
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Then Theorem 9.4.1 above tells us we can compute the Fourier transform of f(x) in terms
of residues of f(z): f̂(w) = 2πiRes(f(z)e2πiwz; i). Since f(z) only has a simple pole in the
upper half-plane at z0 = i, we use Proposition 9.3.1 to compute this residue:

Res(f(z)e2πiwz; i) = lim
z→i

(z − i) e2πiwz

(z − i)(z + i)
= lim

z→i

e2πiwz

z + i
=
e−2πw

2i
.

Hence the Fourier transform of f(z) is f̂(w) = πe−2πw.
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Chapter 10

Riemann Surfaces

Riemann surfaces are a mix of the topology of covering spaces and the complex analysis
of analytic continuation. The main problem one encounters in the latter setting is that a
holomorphic function does not always admit a uniquely defined analytic continatuion. The
normal strategy then is to employ ‘branch cuts’, but this tactic seems ad hoc and not suited
to generalization. Riemann’s idea was to replace the branches of a function with a covering
space on which the analytic continuation is an actual function.
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10.1 Holomorphic and Meromorphic Maps

Definition. Let X be a surface, i.e. a two-dimensional manifold. A complex atlas on X
is a choice of open covering {Ui} of X together with homeomorphisms ϕi : Ui → ϕi(Ui) ⊆ C
such that for each pair of overlapping charts Ui, Uj, the transition map

ϕij := ϕj ◦ ϕ−1
i : ϕi(Ui ∩ Uj) −→ ϕj(Ui ∩ Uj)

and its inverse are holomorphic. A complex structure on X is the choice of a complex
atlas, up to holomorphic equivalence of charts, defined by a similar condition to the above.
A connected surface which admits a complex structure is called a Riemann surface.

Example 10.1.1. The complex plane C is a trivial Riemann surface. Any connected open
subset U in C is also a Riemann surface via the given embedding U ↪→ C.

Example 10.1.2. The complex projective line P1 = P1
C = C ∪ {∞} admits a complex

structure defined by the open sets U0 = P1 r {∞} = C and U1 = P1 r {0} = C× ∪ {∞},
together with charts

ϕ0 : U0 → C, z 7→ z and ϕ1 : U1 → C, z 7→ 1

z
,

where 1
∞ = 0 by convention. Note that ϕ1 ◦ ϕ−1

0 is the function z 7→ 1
z

on C× which is
holomorphic.

Example 10.1.3. Let Λ ⊆ C be a lattice with basis [ω1, ω2].

ω1

ω2

Then the quotient C/Λ admits a complex structure as follows. Let π : C → C/Λ be the
quotient map and suppose Π ⊆ C is a fundamental domain for Λ, meaning no two points in
Π are equivalent mod Λ. Set U = π(Π) ⊆ C/Λ. Then π|Π : Π → U is a homeomorphism,
so let ϕ : U → Π be its inverse. Letting {Ui} be the collection of all images under π of
fundamental domains for Λ, we get a complex atlas on C/Λ (one can easily check that the
transition functions between the Ui are locally constant, hence holomorphic). Topologically,
C/Λ is homeomorphic to a torus.
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Definition. A function f : U → C on an open subset U of a Riemann surface X is holo-
morphic if for every complex chart ϕ : V → ϕ(V ) ⊆ C, the function f ◦ ϕ−1 : ϕ(U ∩ V )→
U ∩ V → C is holomorphic.

Let O(U) denote the set of all holomorphic functions U → C.

Lemma 10.1.4. For any open set U of a Riemann surface X, O(U) is a commutative
C-algebra.

Proposition 10.1.5 (Holomorphic Continuation). For any open set U ⊆ X of a Riemann
surface and any x ∈ U , if f ∈ O(U r{x}) is bounded in a neighborhood of x, then f extends
uniquely to some f̃ ∈ O(U).

More generally, we can define holomorphic maps between two Riemann surfaces.

Definition. A continuous map f : X → Y between Riemann surfaces is called holomorphic
if for every pair of charts ϕ : U → ϕ(U) ⊆ C on X and ψ : V → ψ(V ) ⊆ C on Y such that
f(U) ⊆ V , the map

ψ ◦ f ◦ ϕ−1 : ϕ(U)→ U → V → ψ(V )

is holomorphic. We say f is biholomorphic if it is a bijection and its inverse f−1 is also
holomorphic. In this case X and Y are said to be isomorphic as Riemann surfaces.

Lemma 10.1.6. If X
f−→ Y

g−→ Z are holomorphic maps between Riemann surfaces, then
g ◦ f : X → Z is also holomorphic.

Proposition 10.1.7. Let f : X → Y be a holomorphic map. Then for all open U ⊆ X,
there is an induced C-algebra homomorphism

f ∗ : O(U) −→ O(f−1(U))

ψ 7−→ f ∗ψ := ψ ◦ f.

Proof. The fact that f ∗ψ is an element of O(f−1(U)) follows from the above definitions of
O and a holomorphic map between Riemann surfaces. The ring axioms are also easy to
verify.

Theorem 10.1.8. Suppose f, g : X → Y are holomorphic maps between Riemann surfaces
such that there exist a set A ⊆ X containing a limit point a ∈ A and f |A = g|A. Then f = g.

Proof. Let U ⊆ X be the set of all x ∈ X with an open neighborhoodW on which f |W = g|W .
Then U is open and a ∈ U ; we will show it is also closed. If x ∈ ∂U , we have f(x) = g(x) since
f and g are continuous. Choose a neighborhood W ⊆ X of x and charts ϕ : W → ϕ(W ) ⊆ C
and ψ : W ′ → ψ(W ′) ⊆ C in Y with f(W ) ⊆ W ′ and g(W ) ⊆ W ′. Consider

F = ψ ◦ f ◦ ϕ−1 : ϕ(W )→ ψ(W ′) and G = ψ ◦ g ◦ ϕ−1 : ϕ(W )→ ψ(W ′).

Then F and G are holomorphic and W ∩ U 6= ∅, so we must have F = G. Therefore
f |W = g|W , so x ∈ U after all. This implies U = X.
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Definition. A meromorphic function on an open set U ⊆ X consists of an open subset
V ⊆ U and a holomorphic function f : V → C such that UrV contains only isolated points,
called the poles of f , and limx→p |f(x)| =∞ for every pole p ∈ U r V .

Denote the set of meromorphic functions on U by M(U). Then M(U) is a C-algebra,
where f + g and fg are defined by meromorphic continuation.

Example 10.1.9. Any polynomial f(z) = c0 + c1z + . . . + cnz
n is a holomorphic function

C→ C. Viewing C ⊆ P1, f is a meromorphic function on P1 with only a pole at ∞ of order
n (assuming cn 6= 0).

Example 10.1.10. Any meromorphic function f ∈M(X) may be represented by a Laurent
series expansion about any of its poles p by choosing a complex chart U → C containing p,
lifting z to a parameter t on U and writing

f(t) =
∞∑

n=−N

cnt
nfor some cn ∈ C.

Theorem 10.1.11. Suppose X is a Riemann surface. Then the set of meromorphic func-
tions M(X) is in bijection with the set of holomorphic maps X → P1.

Proof. If f ∈ M(X) is a meromorphic function, then setting f(p) = ∞ for every pole p of
f defines a holomorphic map f : X → P1. Indeed, it is clear that f is continuous. Let P be
the set of its poles. If ϕ : U → ϕ(U) ⊆ C is a chart on X and ψ : V → ψ(V ) ⊆ C is a chart
on P1 with f(U) ⊆ V , then since f is holomorphic on X r P , ψ ◦ f ◦ ϕ−1 : ϕ(U)→ ψ(V ) is
holomorphic on ϕ(U)rϕ(P ). By Proposition 10.1.5, ψ ◦ f ◦ϕ−1 is actually holomorphic on
ϕ(U), so f is a holomorphic map of Riemann surfaces.

Conversely, if g : X → P1 is holomorphic, then by Theorem 10.1.8, either g(X) = {∞}
or g−1(∞) is a set of isolated points in X. It is then easy to see that g : X r g−1(∞) → C
is meromorphic.

Corollary 10.1.12 (Meromorphic Continuation). For any open set U ⊆ X and any x ∈ U ,
if f ∈ M(U r {x}) is bounded in a neighborhood of x, then f extends uniquely to some
f̃ ∈M(U).

Proof. Apply Proposition 10.1.5 and Theorem 10.1.11.

Corollary 10.1.13. Any nonzero function in M(X) has only isolated zeroes. In particular,
M(X) is a field.

Theorem 10.1.14. Let f : X → Y be a nonconstant holomorphic map between Riemann
surfaces. Then for every x ∈ X with y = f(x) ∈ Y , there exists k ∈ N and complex charts
ϕ : U → ϕ(U) ⊆ C of X and ψ : V → ψ(V ) ⊆ C of Y with f(U) ⊆ V such that

(1) x ∈ U with ϕ(x) = 0 and y ∈ V with ψ(y) = 0.

(2) F = ψ ◦ f ◦ ϕ−1 : ϕ(U)→ ψ(V ) is given by F (z) = zk for all z ∈ ϕ(U).
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Proof. It is easy to arrange (1) by replacing (U,ϕ) with another chart obtained by composing
ϕ with an automorphism of C taking ϕ(x) 7→ 0. So without loss of generality assume (1) is
satisfied. By Theorem 10.1.8, F = ψ ◦ f ◦ ϕ−1 is nonconstant. Thus since f(0) = 0, we may
write F (z) = zkg(z) for some k ≥ 1 and some g ∈ O(ϕ(U)) with g(0) 6= 0. Then g(z) = h(z)k

for some holomorphic function h on ϕ(U), and H(z) = zh(z) defines a biholomorphic map
α of some open neighborhood W ⊆ ϕ(U) of 0 onto another open neighborhood of 0. Finally,
replace (U,ϕ) by (ϕ−1(W ), α ◦ ϕ). By construction, F = ψ ◦ fϕ−1 is now of the form
F (z) = zk.

Definition. The integer k for which F can be written F (z) = zk about x ∈ X is called the
multiplicity of f at x.

Corollary 10.1.15. If f : X → Y is a nonconstant holomorphic map between Riemann
surfaces, then f takes open sets to open sets.

Corollary 10.1.16. If f : X → Y is an injective holomorphic map, then f is biholomorphic
X → f(X).

Proof. If f is injective, then locally F (z) = zk with k = 1. Hence f−1 is holomorphic.

Corollary 10.1.17 (Maximum Principle). Suppose X is a Riemann surface and f : X → C
is a nonconstant holomorphic function. Then |f | does not attain its maximum.

Proof. Suppose x0 ∈ X exists such that |f(x0)| = sup{|f(x)| : x ∈ X}. Set

D = {z ∈ C : |z| ≤ |f(x0)|}

so that f(x0) lies in the boundary of D. Then f(X) ⊆ D, but by Corollary 10.1.15, f(X) is
open in D, contradicting f(x0) ∈ ∂D.

Theorem 10.1.18. If f : X → Y is a nonconstant holomorphic map and X is compact,
then Y is also compact and f is surjective.

Proof. By Corollary 10.1.15, f(X) is open but since X is compact, f(X) is also compact
and in particular closed. Therefore f(X) = Y .

Corollary 10.1.19 (Fundamental Theorem of Algebra). Every nonconstant polynomial
f(z) = c0 + c1z + . . .+ cnz

n with ci ∈ C has a root.

Proof. Such an f extends to a holomorphic map f : P1 → P1 by setting f(∞) = ∞. Since
P1 is compact, Theorem 10.1.18 says f is surjective, so f(z) = 0 for some z ∈ C.

Corollary 10.1.20. Every holomorphic function on a compact Riemann surface is constant.

Proof. C is not compact, so Theorem 10.1.18 implies that every holomorphic function from
a compact space into C must be constant.

Corollary 10.1.21. Every meromorphic function on P1 is rational.
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Proof. First, note that the only way for such an f ∈ M(P1) to have infinitely many poles
is if it had a limit point, but then Theorem 10.1.8 would imply f ≡ ∞. Thus f has finitely
many poles, say a1, . . . , an ∈ P1; we may assume ∞ is not one of the poles, or else consider
the function 1

f
instead. For 1 ≤ i ≤ n, expand f as a Laurent series about ai:

fi(z) =

mi∑
j=1

cij(z − ai)−j for cij ∈ C.

Then g = f − (f1 + . . . + fn) is holomorphic on P1 and thus constant by Corollary 10.1.20
since P1 is compact. This shows f is rational.

Corollary 10.1.20 gives another proof of Liouville’s Theorem (8.6.9):

Corollary 10.1.22 (Liouville’s Theorem). Every bounded holomorphic function on C is
constant.

Proof. By Proposition 10.1.5, f has a holomorphic continuation to f̃ : P1 → C, but by
Corollary 10.1.20, f̃ must be constant.
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10.2 Covering Spaces

The idea in this section is to relate holomorphic maps between Riemann surfaces to covering
space theory. Recall the following definition from topology.

Definition. A map p : Y → X between connected, Hausdorff spaces is a covering map if
each point x ∈ X has a neighborhood U such that p−1(U) ⊆ Y is a nonempty disjoint union
p−1(U) =

∐
Uα such that the restriction p|Uα : Uα → U is a homeomorphism for each Uα.

Such a neighborhood U is called an evenly covered neighborhood of x, and the Uα are called
the sheets of the cover over x. The domain space Y is called a covering space of X.

Theorem 10.2.1. If p : Y → X is a nonconstant holomorphic map between Riemann
surfaces then p is open and has discrete fibres.

Proof. By Corollary 10.1.15, p is open and Theorem 10.1.8 implies each fibre is discrete.

Let p : Y → X be a cover of Riemann surfaces. Traditionally, holomorphic functions
f : Y → C are treated as multi-valued functions on X by setting f(x) = {f(y1), . . . , f(yn)}
where p−1(x) = {y1, . . . , yn}.

Example 10.2.2. Let exp : C→ C× be the exponential map z 7→ ez and f = id : C→ C the
identity map. Then the resulting multi-valued function C× → C is the complex logarithm,
which is only defined as a function after making a particular choice of branch of the function.
We can describe this idea more cleanly with Riemann surfaces and branched covers.

Definition. Suppose p : Y → X is a nonconstant holomorphic map. A ramification point
of p is a point y ∈ Y such that for every neighborhood V ⊆ Y of y, p|V : V → p(V ) is not
injective. The image x = p(y) is called a branch point of p. If p has no ramification points
(and hence no branch points), then we call p an unramified map.

Theorem 10.2.3. A nonconstant holomorphic map p : Y → X is unramified if and only if
it is a local homeomorphism.

Proof. Suppose p is unramified. Then for any y ∈ Y , there exists a neighborhood V ⊆ Y of
y such that p|V : V → p(V ) is injective and open. Therefore p|V is a homeomorphism onto
p(V ). The converse follows from basically the same argument.

Example 10.2.4. For each n ≥ 2, the map pn : C → C defined by pn(z) = zn is ramified
at 0 ∈ C and unramified everywhere else. Therefore pn : C× → C is an unramified cover.
Moreover, Theorem 10.1.14 says that every ramified cover of Riemann surfaces Y → X is
locally of the form C→ C, z 7→ zn.

Example 10.2.5. The exponential map exp : C → C×, z 7→ ez is an unramified cover. In
fact, as in the topological case, exp gives a universal cover of C via the inverse system of the
covers pn.

Example 10.2.6. The quotient map π : C → C/Λ from Example 10.1.3 is an unramified
cover of Riemann surfaces.
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Theorem 10.2.7. Suppose p : Y → X is a local homeomorphism of Hausdorff topological
spaces and X is a Riemann surface. Then Y admits a unique complex structure making p a
holomorphic map.

Proof. Let ϕ : V → C be a chart of X. Then there exists an open subset U ⊆ V over which
p|U : p−1(U) → U is a homeomorphism. Set Ũ = p−1(U) and ϕ̃ = ϕ ◦ p|U : Ũ → C. Then

ϕ̃ is a complex chart on Y and the collection {Ũ , ϕ̃} obtained in this way forms a complex
atlas on Y . Since p : Y → X is locally biholomorphic by construction, it is a holomorphic
map between Riemann surfaces. Uniqueness is easy to check.

Example 10.2.8. Now that we can view nonconstant holomorphic maps as local homeo-
morphisms, and in most cases covering spaces, we can rephrase the language of branch cuts
as a lifting problem. For example, let exp : C → C× be the exponential map and suppose
f : X → C× is a holomorphic map of Riemann surfaces, with X simply connected. Then by
covering space theory, for each fixed x0 ∈ X and z0 ∈ C such that f(x0) = ez0 , there exists
a unique lift F : X → C making the diagram

X

C

C×

F exp

f

commute. Theorem 10.2.7 can be used to show that any such F is holomorphic. Moreover,
any other lift G of f differs from F by 2πin for some n ∈ Z. For the special case of a simply
connected open set X ⊆ C×, any lift F is a branch of the complex logarithm on X.

Example 10.2.9. Similarly, one can construct the complex root functions z 7→ z1/n, n ≥ 2,
as lifts along the cover pn : C× → C.

Let f : Y → X be a nonconstant holomorphic map that is proper, i.e. the preimage of
any compact set in X is compact in Y . For each x ∈ X, define the multiplicity of f at x to
be

ordx(f) =
∑

y∈f−1(x)

vy(f)

where vy(f) is the multiplicity of f at y.

Example 10.2.10. If f : Y → X is unbranched at x ∈ X, then p−1(x) = {y1, . . . , yn} for
some n and vyi(f) = 1 for each 1 ≤ i ≤ n. Thus ordx(f) = n.

Theorem 10.2.11. If f : Y → X is a proper, nonconstant holomorphic map between
Riemann surfaces, then there exists a number n ∈ N such that for every x ∈ X, ordx(f) = n.

Proof. By Theorem 10.2.1, the set B of ramification points of f is a closed, discrete subset
of Y . Let A = f(B) ⊆ X. Then since f is proper, A is also closed and discrete. The
restriction f |Y rB : Y rB → XrA is unramified, so it is a finite-sheeted covering space; say
n is the number of sheets of f |Y rB, i.e. the size of any fibre f−1(x) for an unbranched point
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x ∈ X. By the above example, f has multiplicity n at every y ∈ Y r B. Suppose a ∈ A
and write f−1(a) = {b1, . . . , bk} ⊆ B and mi = vbi(f). For each 1 ≤ i ≤ k, we may choose
neighborhoods Vi ⊂ Y of bi and Ui ⊂ X of a such that for all x ∈ Ui r {a}, f−1(x) ∩ Vi
consists of exactly mi points. Then there is a neighborhood U ⊆ U1∩ · · · ∩Uk of a such that
f−1(U) ⊆ V1∪· · ·∪Uk and for every x ∈ U∩(XrA), f−1(x) consists of exactly m1 + . . .+mk

points. However we showed that |f−1(x)| = n, so n = m1 + . . .+mk as required.

Corollary 10.2.12. Let X be a compact Riemann surface and f : X → C a nonconstant
meromorphic function. Then the number of zeroes of f equals the number of poles of f ,
counted with multiplicity.

Proof. View f as a holomorphic function X → P1. Since X and P1 are compact, f is a
proper map so ord0(f) = ord∞(f). But ord0(f) is precisely the number of zeroes of f , while
ord∞(f) is the number of poles.

Corollary 10.2.13. Any complex polynomial f(z) ∈ C[z] of degree n has exactly n zeroes,
counted with multiplicity.

Proof. We may view f as a holomorphic map P1 → P1. Then it is easy to see ord∞(f) = n,
so once again ord0(f) = n.
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Chapter 11

Elliptic Functions

In this chapter we review the classical theory of Jacobians for complex curves, starting with
the construction and basic properties of elliptic functions, their connection to elliptic curves
and their Jacobians, and then describing the construction in arbitrary dimension.
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11.1 Elliptic Functions

Let Λ ⊆ C be a lattice, i.e. a free abelian subgroup of rank 2. Then Λ can be written

Λ = Zω1 + Zω2 for some ω1, ω2 ∈ C such that
ω1

ω2

6∈ R.

Definition. A function f : C→ C ∪ {∞} is doubly periodic with lattice of periods Λ
if f(z + `) = f(z) for all ` ∈ Λ and z ∈ C.

Definition. An elliptic function is a function f : C→ C∪ {∞} that is meromorphic and
doubly periodic.

It is not obvious that doubly periodic functions even exist! We will prove this shortly.

Definition. Let Λ ⊆ C be a lattice. The set

Π = Π(ω1, ω2) = {t1ω1 + t2ω2 | 0 ≤ ti < 1}

is called the fundamental parallelogram, or fundamental domain, of Λ. We say a
subset Φ ⊆ C is fundamental for Λ if the quotient map C → C/Λ restricts to a bijection
on Φ.

ω1

ω2

Π

Lemma 11.1.1. For any choice of basis [ω1, ω2] of Λ, Π(ω1, ω2) is fundamental for Λ.

Lemma 11.1.2. Let Λ be a lattice. Then

(a) If Π is the fundamental domain of Λ, then for any α ∈ C, Πα := Π+α is fundamental
for Λ.

(b) If Φ is fundamental for Λ, then C =
⋃
`∈Λ

Φ + `.

Corollary 11.1.3. Suppose f is an elliptic function with lattice of periods Λ and Φ funda-
mental for Λ. Then f(C) = f(Φ).
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Proposition 11.1.4. A holomorphic elliptic function is constant.

Proof. Let f be such an elliptic function and let Φ be the fundamental domain for its lattice
of periods. Then Π is compact and hence f(Π) is as well. In particular, f(C) = f(Π) ⊆ f(Π)
is bounded, so by Liouville’s theorem, f is constant.

Proposition 11.1.5. Let f be an elliptic function. If α ∈ C is a complex number such that
∂Πα does not contain any of the poles of f , then the sum of the residues of f inside ∂Πα

equals 0.

Proof. Fix a basis [ω1, ω2] of Λ and set ∆ = ∂Πα. By the residue theorem, it’s enough to
show

∫
∆
f(z) dz = 0. We parametrize the boundary of Π as follows:

γ1 = α + tω1

γ2 = α + ω1 + tω2

γ3 = α + (1− t)ω1 + ω2

γ4 = α + (1− t)ω2.

γ1

γ2

γ3

γ4

α

Πα

We show that
∫
γ1
f(z) dz+

∫
γ3
f(z) dz = 0 and leave the proof that

∫
γ2
f(z) dz+

∫
γ2
f(z) dz = 0

for exercise. Consider∫
γ1

f(z) dz +

∫
γ3

f(z) dz =

∫ 1

0

f(α + tω1)(ω1 dt) +

∫ 1

0

f(α + (1− t)ω1 + ω2)(−ω1 dt)

= ω1

∫ 1

0

f(α + tω1) dt+ ω1

∫ 0

1

f(α + sω1) ds since f is elliptic

= ω1

(∫ 1

0

f(α + tω1) dt−
∫ 1

0

f(α + sω1) ds

)
= 0.

Hence the sum of the residues equals 0.

Corollary 11.1.6. Any elliptic function has either a pole of order at least 2 or two poles on
the fundamental domain of its lattice of periods.

Proposition 11.1.7. Suppose f is an elliptic function with fundamental domain Π and
α ∈ C such that ∆ = ∂Πα does not contain any zeroes or poles of f . Let {aj}nj=1 be a finite
set of zeroes and poles in Πα, with mj the order of the pole aj. Then

∑n
j=1mj = 0.
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Proof. For a pole z0, we can write f(z) = (z− z0)mg(z) for some holomorphic function g(z),
with g(z0) 6= 0. Then

f ′(z)

f(z)
= (z − z0)−1

(
m+ (z − z0)

g′(z)

g(z)

)
.

Hence Res
(
f ′

f
; z0

)
= m. Then the statement follows from Proposition 11.1.5.

Proposition 11.1.7 has an analogue in algebraic geometry: if f is a rational function on
an algebraic curve C, the formal sum (f) =

∑
mjaj, where the aj and mj are defined as

above, is called the principal divisor associated to f and its degree is deg(f) =
∑
mj. Then

one can prove that deg(f) = 0.
Continuing in the complex setting, let f be an elliptic function and let a1, . . . , ar be the

poles and zeroes of f in the fundamental domain of Λ. Write ordai f = mi if ai is a pole
of order −mi or if ai is a zero of multiplicity mi. The sum ord(f) =

∑r
i=1 mi is called the

order of f . Then Corollary 11.1.6 says that there are no elliptic functions of order 1. We
will show that the field of elliptic functions with period lattice Λ is generated by an order 2
and an order 3 function.

Let f be elliptic and z0 ∈ C with ordz0 f = m. Then for any ` ∈ Λ, ordz0+` f = m as
well. Indeed, if z0 is a zero then

0 = f(z0) = f(z0) = . . . = f (m−1)(z0)

but f (k)(z) is also elliptic for all k ≥ 1. If z0 is a pole of f , the same result can be obtained
using 1

f
instead of f .

If Φ1 and Φ2 are any two fundamental domains for Λ, then for all a1 ∈ Φ1, there is a
unique a2 ∈ Φ2 such that a2 = a1 + ` for some ` ∈ Λ. Thus Propositions 11.1.5 and 11.1.7
hold for any fundamental domain of Λ, so it follows that ord(f) is well-defined on the quotient
C/Λ.

Now given any meromorphic function f(z) on C, we would like to construct an elliptic
function F (z) with lattice Λ. Put

F (z) =
∑
`∈Λ

f(z + `).

There are obvious problems of convergence and (in a related sense) the order of summation.
It turns out we can do this construction with f(z) = 1

zm
,m ≥ 3 though. First, we need the

following result, which can be proven using Cauchy’s integral formula (8.5.1) and Morera’s
theorem (8.6.1).

Lemma 11.1.8. Let U ⊆ C be an open set and suppose (fn) is a sequence of holomorphic
functions on U such that fn → f uniformly on every compact subset of U . Then f is
holomorphic on U and f ′n → f ′ uniformly on every compact subset of U .

Proposition 11.1.9. Let Λ be a lattice with basis [ω1, ω2]. Then the sum∑
ω∈Λr{0}

1

|ω|s

converges for all s > 2.
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Proof. Extend the fundamental domain by translation by the vectors ω1, ω2 and ω1 + ω2,
and call the boundary of the resulting region ∆:

Λ

Λ

Λ

Λ

∆

Then ∆ is compact, so there exists c > 0 such that |z| ≥ c for all z ∈ ∆. We claim that for
all m,n ∈ Z,

|mω1 + nω2| ≥ c ·max{|m|, |n|}.
The cases when m = 0 or n = 0 are trivial, so without loss of generality assume m ≥ n > 0.
Then

|mω1 + nω2| = |m|
∣∣∣ω1 +

n

m
ω2

∣∣∣ ≥ |m|c.
Hence the claim holds. Set M = max{|m|, |n|} and arrange the sum in question so that the

1
|ω|s are added in order of increasing M values. Then the sum can be estimated by

∑
ω∈Λr{0}

1

|ω|s
≤

∞∑
M=1

8M

csM s
∼

∞∑
M=1

1

M s−1
.

This converges for s > 2 by p-series.

Proposition 11.1.10. Let n ≥ 3 and define

Fn(z) =
∑
ω∈Λ

1

(z − ω)n
.

Then Fn(z) is holomorphic on CrΛ and has poles of order n at the points of Λ. Moreover,
Fn is doubly periodic and hence elliptic.

Proof. Fix r > 0 and let Br = Br(0) be the open complex r-ball centered at the origin in C.
Let Λr = Λ ∩Br be the lattice points contained in the closed r-ball. Then the function

Fn,r(z) =
∑

ω∈ΛrΛr

1

(z − ω)n

is holomorphic on Br. To see this, one has 1
|z−ω|n ≤

C
|ω|n for some constant C and for all

z ∈ Br, ω ∈ ΛrΛr. Then C
|ω|n converges by Proposition 11.1.9, so by the Weierstrass M -test,

1
|z−ω|n converges uniformly and hence Fn,r(z) is holomorphic. It follows from the definition
that Fn has a pole of order n at each ω ∈ Λ. Finally, for ` ∈ Λ, we have

Fn(z + `) =
∑
ω∈Λ

1

(z + `− ω)n
=
∑
η∈Λ

1

(z − η)n
= Fn(z)

since the series is absolutely convergent and we can rearrange the terms.
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This shows that elliptic functions exist and more specifically that for each n ≥ 3, there
is at least one elliptic function of order n. Unfortunately the previous proof won’t work
to construct an elliptic function of order 3. However, Weierstrass discovered the following
elliptic function.

Definition. The Weierstrass ℘-function for a lattice Λ is defined by

℘(z) =
1

z2
+

∑
ω∈Λr{0}

[
1

(z − w)2
− 1

ω2

]
.

Theorem 11.1.11. For any lattice Λ, ℘(z) is an elliptic function with poles of order 2 at
the points of Λ and no other poles. Moreover, ℘(−z) = ℘(z) and ℘′(z) = −2F3(z).

Proof. (Sketch) To show ℘(z) is meromorphic, one estimates the summands by∣∣∣∣ 1

(z − ω)2
− 1

ω2

∣∣∣∣ ≤ D

|ω|3

for some constant D and all z ∈ Br, ω ∈ Λ r Λr as in the previous proof.
Next, ℘(z) can be differentiated term-by-term to obtain the expression ℘′(z) = −2F3(z).

And proving that ℘(z) is odd is straightforward:

℘(−z) =
1

(−z)2
+

∑
ω∈Λr{0}

[
1

(−z − ω)2
− 1

ω2

]

=
1

z2
+

∑
−ω∈Λr{0}

[
1

(z − (−ω))2
− 1

(−ω)2

]
= ℘(z)

after switching the order of summation.
Finally, proving ℘(z) is doubly periodic is difficult since we don’t necessarily have absolute

convergence. However, one can reduce to proving ℘(z+ω1) = ℘(z) = ℘(z+ω2). Then using
the formula for ℘′(z), we have

d

dz
[℘(z + ω1)− ℘(z)] = −2F3(z + ω1) + 2F3(z)

= −2F3(z) + 2F3(z) = 0

since F3(z) is elliptic by Proposition 11.1.10. Hence ℘(z + ω1) − ℘(z) = c is constant.
Evaluating at z = −ω1

2
, we see that c = ℘

(
ω1

2

)
− ℘

(
−ω1

2

)
= 0 since ℘(z) is odd. Hence

c = 0, so it follows that ℘(z) is doubly periodic and therefore elliptic.

Lemma 11.1.12. Let ℘(z) be the Weierstrass ℘-function for a lattice Λ ⊆ C and let Π be
the fundamental domain of Λ. Then

(1) For any u ∈ C, the function ℘(z) − u has either two simple roots or one double root
in Π.

(2) The zeroes of ℘′(z) in Π are simple and they only occur at ω1

2
, ω2

2
and ω1+ω2

2
.
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(3) The numbers u1 = ℘
(
ω1

2

)
, u2 = ℘

(
ω2

2

)
and u3 = ℘

(
ω1+ω2

2

)
are precisely those u for

which ℘(z)− u has a double root.

Proof. (1) follows from Corollary 11.1.6.
(2) By Theorem 11.1.11, deg℘′(z) = 3 so it suffices to show that ω1

2
, ω2

2
and ω1+ω2

2
are all

roots. For z = ω1

2
, we have

℘′
(ω1

2

)
= −℘′

(
−ω1

2

)
= −℘′

(ω1

2
− ω1

)
= −℘′

(ω1

2

)
since ℘′(z) is elliptic. Thus ℘′

(
ω1

2

)
= 0. The others are similar.

(3) The double roots occur exactly when ℘′(u) = 0, so use (2).

We now prove that any elliptic function can be written in terms of ℘(z) and ℘′(z).

Theorem 11.1.13. Fix a lattice Λ ⊆ C and let E(Λ) be the field of all elliptic functions with
lattice of periods Λ. Then E(Λ) = C(℘, ℘′).

Proof. Take f(z) ∈ E(Λ). Then f(−z) ∈ E(Λ) as well and thus we can write f(z) as the
sum of an even and an odd elliptic function:

f(z) = feven(z) + fodd(z) =
f(z) + f(−z)

2
+
f(z)− f(−z)

2
.

We will prove that every even elliptic function is rational in ℘(z), but this will imply the

theorem, since then feven(z) = ϕ(℘(z)) and fodd(z)
℘′(z)

= ψ(℘(z)) for some ϕ, ψ ∈ C(℘(z)) and

we can then write f(z) = ϕ(℘(z)) + ℘′(z)ψ(℘(z)).
Assume f(z) is an even elliptic function. It’s enough to construct ϕ(℘(z)) such that

f(z)
ϕ(℘(z))

only has (potential) zeroes and poles at z = 0 in the fundamental parallelogram for

Λ, since then by Corollary 11.1.6, f(z)
ϕ(℘(z))

is holomorphic and then by Proposition 11.1.4

it is constant. Suppose f(a) = 0 for a some zero of order m. Consider ℘(z) = u. If
u 6= ℘

(
ω1

2

)
, ℘
(
ω2

2

)
, ℘
(
ω1+ω2

2

)
then ℘(z) = u has precisely two solutions in the fundamental

parallelogram, z = a and z = a∗ where

a∗ =


ω1 + ω2 − a if a ∈ Int(Π)

ω1 − a if a is parallel to ω1

ω2 − a if a is parallel to ω2.

(Notice that since f is even, f(a) = 0 implies f(a∗) = 0 as well.) Moreover, if orda f = 0 then
orda∗ f = m. Note that a = a∗ holds precisely when a is in the set Θ :=

{
0, ω1

2
, ω2

2
, ω1+ω2

2

}
.

Let Z (resp. P ) be the set of zeroes (resp. poles) of f(z) in Π. Then the assignment
a 7→ a∗ is in fact an involution on Z and P , so we can write

Z = Z ′1 ∪ · · · ∪ Z ′r ∪ Z ′′1 ∪ · · · ∪ Z ′′s
P = P ′1 ∪ · · · ∪ P ′u ∪ P ′′1 ∪ · · · ∪ P ′′v

where the Z ′i and P ′i are the 2-element orbits of the involution and the Z ′′j and P ′′j are the
1-element orbits. Of course then s, v ≤ 3. For a′i ∈ Z ′i, set orda′i f = m′i and for a′′j ∈ Z ′′j ,
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set orda′′i f = m′′i , which is even. Likewise, for b′i ∈ P ′i , set ordb′i f = n′i and for b′′j ∈ P ′′j , set
ordb′′i f = n′′i which is even. Then we define ϕ(℘(z)) by

ϕ(℘(z)) =

∏r
i=1(℘(z)− ℘(a′i))

m′i
∏s

j=1(℘(z)− ℘(a′′j ))
m′′j /2∏u

i=1(℘(z)− ℘(b′i))
n′i
∏v

j=1(℘(z)− ℘(b′′j ))
nj

.

Then ϕ(℘(z)) has only potential zeroes/poles at z = 0 in the fundamental parallelogram, so
we are done.
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11.2 Elliptic Curves

Let Λ ⊆ C be a lattice. There is a canonical way to associate to the complex torus C/Λ
an elliptic curve E such that C/Λ ∼= E(C). We would also like to reverse this process, i.e.
given an elliptic curve E, define a lattice Λ ⊆ C such that C/Λ ∼= E(C). This procedure
generalizes for a curve C of genus g > 1 and produces its Jacobian, C ↪→ Cg/Λ = J(C).

We need the following lemma.

Lemma 11.2.1. Suppose f0, f1, f2, . . . is a sequence of analytic functions on the ball Br(z0)
with Taylor expansions

fn(z) =
∞∑
k=0

a
(n)
k (z − z0)k.

Then if F (z) =
∑∞

n=0 fn(z) converges uniformly on Bρ(z0) for all ρ < r, each series Ak =∑∞
n=0 a

(n)
k converges and F (z) has Taylor expansion

F (z) =
∞∑
k=0

Ak(z − zk0 ).

Let ℘(z) be the Weierstrass ℘-function for Λ. Then ℘′(z)2 is an even elliptic function, so
by Theorem 11.1.13, ℘′(z)2 ∈ C(℘). On a small enough neighborhood around z0 = 0,

℘(z)− 1

z2
=

∑
ω∈Λr{0}

[
1

(z − ω)2
− 1

ω2

]

is analytic. Moreover, for each ω ∈ Λ r {0} we have

1

(z − ω)2
=

1

ω2
+

2z

ω3
+

3z2

ω4
+ . . .

=⇒ 1

(z − ω)2
− 1

ω2
=

2z

ω2
+

3z2

ω4
+ . . .

which is uniformly convergent. Hence Lemma 11.2.1 shows that

℘(z)− 1

z2
=

∑
ω∈Λr{0}

∞∑
k=1

k + 1

ωk+2
zk =

∞∑
k=1

(k + 1)Gk+2z
k

where Gm = Gm(Λ) :=
∑

ω∈Λr{0}
1
ωm

. These Gm are examples of modular forms.

Definition. The series Gm(Λ) =
∑

ω∈Λr{0}
1
ωm

is called the Eisenstein series for Λ of
weight m.
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From the above work, we obtain the following formulas:

℘(z) =
1

z2
+ 3G4z

2 + 5G6z
4 + 7G8z

6 + . . .

℘(z)2 =
1

z4
+ 6G4 + . . .

℘(z)3 =
1

z6
+

9G4

z2
+ 15G6 + . . .

℘′(z) = − 2

z3
+ 6G4z + . . .

℘′(z)2 =
4

z6
− 24G4

z2
− 80G6 − . . .

This implies:

Proposition 11.2.2. The functions ℘ and ℘′ satisfy the following relation:

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3

where g2 = 60G4 and g3 = 140G6.

Consider the polynomial p(x) = 4x3 − g2x − g3, where the gn are defined for the lattice
Λ ⊆ C.

Proposition 11.2.3. p(x) = 4(x− u1)(x− u2)(x− u3) where u1 = ℘
(
ω1

2

)
, u2 = ℘

(
ω2

2

)
and

u3 = ℘
(
ω1+ω2

2

)
are distinct roots.

Thus (x, y) = (℘(z), ℘′(z)) determine an equation y2 = 4x3−g2x−g3 which is the defining
equation for an elliptic curve E0 over C. Let E = E0 ∪ {[0, 1, 0]} ⊆ P2 be the projective
closure of E0. The point [0, 1, 0] is sometimes denoted ∞.

Theorem 11.2.4. The map

ϕ : C/Λ −→ E(C)

z + Λ 7−→ ϕ(z + Λ) =

{
[℘(z), ℘′(z), 1], z 6∈ Λ

[0, 1, 0], z ∈ Λ

is a bijective, biholomorphic map.

Proof. Assume z1, z2 ∈ C are such that z1 + Λ 6= z2 + Λ. Without loss of generality we may
assume z1, z2 ∈ Π, the fundamental domain of Λ (otherwise, translate). If ℘(z1) = ℘(z2) and
℘′(z1) = ℘′(z2), then with the notation of Theorem 11.1.13, we must have z2 = z∗1 6= z1 and
thus z1, z2 6∈ Θ =

{
0, ω1

2
, ω2

2
, ω1+ω2

2

}
. Since ℘′(z) is odd, we get ℘′(z1) = ℘′(z2) = −℘′(−z2) =

−℘′(z1), but this implies ℘(z1) = 0, contradicting z1 6∈ Θ. Therefore ϕ is one-to-one.
Next, we must show that for any (x0, y0) ∈ E(C), x0 = ℘(z) and y0 = ℘′(z) for some

z ∈ C. If ℘(z1) = x0, then it’s clear that ℘′(z1) = y0 or −y0. Now one shows as in the
previous paragraph that we must have ℘′(z1) = y0.

Now consider F (x, y) = y2 − p(x), where p(x) = 4x3 − g2x − g3. If (x0, y0) satisfies
F (x0, y0) = 0 and y0 6= 0, then ∂F

∂y
(x0, y0) 6= 0 and thus the assignment (x, y) 7→ x is a local

chart about (x0, y0). Likewise, (x, y) 7→ y defines a local chart about (x0, y0) when x0 6= 0.
Finally, we conclude by observing that a locally biholomorphic map is biholomorphic.
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In general, an elliptic curve can be defined by a Weierstrass equation

E : y2 = f(x) = ax3 + bx2 + cx+ d.

This embeds into projective space via (x, y) 7→ [x, y, 1]. Setting x = X
Z

and y = Y
Z

, we also
obtain a homogeneous equation for the curve:

E : ZY 2 = aX3 + bX2Z + cXZ2 + dZ3.

The single point at infinity, [0, 1, 0], can be studied by dehomogenizing via the coordinates
z̃ = Z

Y
and x̃ = X

Y
, which yield

E : z̃ = ax̃3 + bx̃2z̃ + ax̃z̃2 + dz̃3.

We have shown that a lattice Λ ⊆ C determines elliptic functions ℘(z) and ℘′(z) that satisfy
℘′(z)2 = 4℘(z)3 − g2℘(z) − g3 and that this polynomial expression has no multiple roots.
Therefore the mapping z 7→ (℘(z), ℘′(z)) determines a bijective correspondence C/Λr{0} →
E(C) r {∞} which can be extended to all of C/Λ→ E(C) (this is Theorem 11.2.4). There
is a natural group structure on C/Λ induced from C, but what is not so obvious is that E(C)
also possesses a group structure, the so-called “chord-and-tangent method”.

Let E be an elliptic curve over an arbitrary field k, let O ∈ E(k) be the point at infinity
and fix two points P,Q ∈ E(k). In the plane P2

k, there is a unique line containing P and Q;
call it L. (If P = Q, then take L to be the tangent line to E at P .) By Bézout’s theorem,
E ∩L = {P,Q,R} for some third point R ∈ E(k), which may not be distinct from P and Q
if multiplicity is counted. Let L′ be the line through R and O and call its third point R′.

P
Q

R

P +Q

Addition of two points P,Q ∈ E(k) is defined by P + Q = R′, where R′ is the unique
point lying on the line through R and O. If R = O, we set R′ = O.

Proposition 11.2.5. Let E be an elliptic curve with O ∈ E(k). Then

(a) If L is a line in P2 such that E ∩ L = {P,Q,R}, then (P +Q) +R = O.

(b) For all P ∈ E(k), P +O = P .
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(c) For all P,Q ∈ E(k), P +Q = Q+ P .

(d) For all P ∈ E(k), there exists a point −P ∈ E(k) satisfying P + (−P ) = O.

(e) For all P,Q,R ∈ E(k), (P +Q) +R = P + (Q+R).

Together, (b) – (e) say that chord-and-tangent addition of points defines an associative,
commutative group law on E(k). The proofs of (a) – (d) are rather routine using the
definition of this addition law, whereas verifying associativity is notoriously difficult. There
are formulas for the coordinates of P +Q that make this possible though (see Silverman).

Theorem 11.2.6. The map ϕ : C/Λ→ E(C) is an isomorphism of abelian groups.

Proof. Consider the diagram

C/Λ× C/Λ E(C)× E(C)

C/Λ E(C)

ϕ× ϕ

α β

ϕ

where α and β are the respective group operations. Since C/Λ×C/Λ is a topological group,
it’s enough to show the diagram commutes on a dense subset of C/Λ× C/Λ. Consider

X̃ = {(u1, u2) ∈ C2 | u1, u2, u1 ± u2, 2u1 + u2, u1 + 2u2 6∈ Λ}.

Then X̃ ∼= C2 so X = X̃ mod Λ × Λ is dense in C/Λ × C/Λ. Take (u1 + Λ, u2 + Λ) ∈ X
and set u3 = −(u1 + u2). Then u1 + u2 + u3 = 0 in C/Λ. Set P = ϕ(u1), Q = ϕ(u2) and
R = ϕ(u3) ∈ E(C). By the assumptions on X, the points P,Q,R are distinct. We want to
show ϕ(u1 + u2) = ϕ(u1) + ϕ(u2) = P +Q. Since ℘(z) is even and ℘′(z) is odd, we see that
ϕ(−z) = −ϕ(z) for all z ∈ C/Λ. Thus ϕ(u1 + u2) = −ϕ(−(u1 + u2)) = −R so we need to
show P + Q + R = O, i.e. P,Q,R are colinear. Since u1 6= u2, the line PQ is not vertical,
so there exist a, b such that ℘′(ui) = a℘(ui) + b for i = 1, 2. Consider the elliptic function

f(z) = ℘′(z)− (a℘(z) + b).

Then on the fundamental domain Π, f only has a pole at 0, so ord0 f = −3. Also, u1 and u2

are distinct zeroes of f , so there is a third point ω ∈ Π such that deg(f) = u1+u2+ω−3·0 = 0,
i.e. u1 + u2 + ω = 0. Solving for ω, we get ω = −(u1 + u2) = u3. It follows that R = ϕ(u3)
is on the same line as P and Q, so we are done.

The compatibility of the group operations of C/Λ and E(C) is highly useful. For example,
fix N ∈ N and let

E[N ] = {P ∈ E(C) | [N ]P = O},
where [N ]P = P + . . .+ P︸ ︷︷ ︸

N

. The points of E[N ] are called the N -torsion points of E. For

N = 2, the points P such that P = −P are exactly the intersection points of E with the
x-axis along with O = [0, 1, 0]:
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In general, one can show that #E[N ] = N2. This is hard to see from the geometric
picture, but working with the isomorphism E(C) ∼= C/Λ from Theorem 11.2.6, we see
that since C/Λ = R/Z × R/Z as an abelian group, the N -torsion is given by (C/Λ)[N ] =
1
N
Z/Z× 1

N
Z/Z. This is a group of order N2.

A morphism in the category of elliptic curves is called an isogeny. Explicitly, ϕ : E1 → E2

is an isogeny between two elliptic curves if it is a (nonconstant) morphism of schemes that
takes the basepoint O1 ∈ E1 to the basepoint O2 ∈ E2.

Proposition 11.2.7. Suppose Λ1,Λ2 ⊆ C are lattices and f : C/Λ1 → C/Λ2 is a holomor-
phic map. Then there exist a, b ∈ C such that aΛ1 ⊆ Λ2 and

f(z mod Λ1) = az + b mod Λ2.

Proof. As topological spaces, C/Λ1 and C/Λ2 are complex tori with the same universal
covering space C, so any f : C/Λ1 → C/Λ2 lifts to F : C → C making the diagram
commute:

C C

C/Λ1 C/Λ2

F

π1 π2

f

Since covers are local homeomorphisms, it follows that F is holomorphic as well. Thus for
any z ∈ C, ` ∈ Λ1,

π2(F (z + `)− F (z)) = f(π1(z + `)− π1(z)) = f(π1(z)− π1(z)) = f(0) = 0.

So F (z+ `)−F (z) ∈ Λ1 for any ` ∈ Λ1 and the function L(z) = F (z+ `)−F (z) is constant.
It follows that F ′(z + `) = F ′(z), so F ′ is holomorphic and elliptic, but this means by
Proposition 11.1.4 that F ′(z) = a for some constant a. Hence F (z) = az+ b as claimed.
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Corollary 11.2.8. Any holomorphic map f : C/Λ1 → C/Λ2 is, up to translation, a group
homomorphism. In particular, if f(0) = 0 then f is a homomorphism.

Corollary 11.2.9. For any elliptic curve E, the group of endomorphisms End(E) has rank
at most 2.

Proof. Viewing E(C) = C/Λ for some Λ = Z + Zτ , we get

End(E) = {f : E → E | f is an isogeny}
= {f : C/Λ→ C/Λ | f is holomorphic and f(0) = 0} by Corollary 11.2.8

= {z ∈ C | zΛ ⊆ Λ}
= {z ∈ C | z(Z + Zτ) ⊆ (Z + Zτ)}
⊆ Z + Zτ.

Hence rank End(E) ≤ 2.

It turns out that there are two possible cases for the rank of End(E), breaking down as
follows:

� End(E) = Z.

� End(E) is an order O in some imaginary quadratic number field K/Q. In this case, E
is said to have complex multiplication.
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11.3 The Classical Jacobian

For the isomorphism ϕ : C/Λ → E(C) in Theorem 11.2.6, let ψ = ϕ−1 : E(C) → C/Λ be
the inverse map. To understand this map explicitly, we will show how to construct a torus
for every elliptic curve, i.e. find a lattice Λ ⊆ C such that C/Λ ∼= E(C).

Lemma 11.3.1. Any lattice Λ ⊆ C can be written

Λ =

{∫ P

0

dz : P ∈ Λ

}
.

Notice that each differential form dz on C satisfies d(z + `) = dz for all ` ∈ Λ by
Lemma 11.3.1. Thus dz descends to a differential form on C/Λ, which by abuse of notation
we will also denote by dz. Formally, this is the pushforward of dz along the quotient π :
C→ C/Λ. This implies:

Lemma 11.3.2. Any lattice Λ ⊆ C can be written

Λ =

{∫
γ

dz : γ is a closed curve in C/Λ passing through 0

}
.

For an elliptic curve E defined by the equation y2 = f(x), fix a holomorphic differential
form ω on E(C). (In general, the space of holomorphic differential forms on a curve has
dimension equal to the genus of the curve, so in the elliptic curve case, there is exactly one
such ω, up to scaling.)

Definition. The lattice of periods for an elliptic curve E is

Λ =

{∫
γ

ω : γ is a closed curve in E passing through P

}
where P ∈ E(C) is fixed.

Example 11.3.3. Under the map ϕ : C/Λ→ E(C), z 7→ (x, y) = (℘(z), ℘′(z)), we see that

dx = ℘′(z) dz = y dz

so ω = dx
y

is a differential form on E(C). In fact, ω = dx
f ′(x)

, where E is defined by y2 = f(x),

is holomorphic because f ′(x) 6≡ 0. This differential form is also holomorphic at O = [0, 1, 0],
so up to scaling, this is the unique holomorphic form on E.

Historically, mathematicians were interested in studying solutions to elliptic integrals, or
integrals of the form ∫

dx√
ax3 + bx+ c

.

When f(x) = ax3 + bx + c, the expression ω = dx√
ax3+bx+c

is precisely the holomorphic

differential form defining the lattice of periods of the elliptic curve E : y2 = f(x).
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For a more functorial description, let VE = Γ(E,ΩE) be the space of all holomorphic
differential forms on E. If γ is a curve in E(C), there is an associated linear functional
ϕγ ∈ V ∗E defined by

ϕγ : VE −→ C

ω 7−→
∫
γ

ω.

Fixing the basepoint O ∈ E(C), the lattice of periods for E can be written

Λ = {ϕγ : γ ∈ π1(E(C), O)}.

In other words, this defines a map π1(E(C), O)→ V ∗E , γ 7→ ϕγ.

Definition. The Jacobian of an elliptic curve E is the quotient J(E) = V ∗E/Λ.

For each point P ∈ E(C), the coset ϕγ + Λ is an element of the Jacobian, where γ is a
path from O to P . This defines an injective map i : E ↪→ J(E).

Proposition 11.3.4. Suppose σ : E1 → E2 is an isogeny between elliptic curves, so that
σ(O1) = O2. Then there is a map τ : J(E1)→ J(E2) making the following diagram commute:

E1 E2

J(E1) J(E2)

σ

i1 i2

τ

Proof. The pullback gives a contravariant map σ∗ : VE2 → VE1 , ω 7→ σ∗ω = ω ◦ σ. Taking
the dual of this gives a linear map σ∗∗ : V ∗E1

→ V ∗E2
defined by (σ∗∗ρ)(ω) = ρ(σ∗ω) for any

ρ ∈ V ∗E1
and ω ∈ VE2 . Taking ρ = ϕγ1 for a path γ1 in E1 gives

ρ(σ∗ω) = ϕγ1(σ
∗ω) =

∫
γ1

σ∗ω =

∫
σ(γ1)

ω = ϕσ(γ1)ω.

Thus σ∗∗ϕγ1 = ϕσ(γ1). If γ1 is a closed curve through O1, then σ(γ1) is a closed curve passing
through O2 = σ(O1). Hence if ΛE1 ,ΛE2 are the lattices of periods for E1, E2, respectively,
we have σ∗∗(λE1) ⊆ ΛE2 . So σ∗∗ factors through the quotients, defining τ :

τ = σ∗∗ : V ∗E1
/ΛE1 −→ V ∗E2

/ΛE2 .

It is immediate the diagram commutes.

Lemma 11.3.5. For any elliptic curve E, the inclusion i : E ↪→ J(E) induces an isomor-
phism

i∗ : π1(E,O) −→ π1(J(E), i(O)).
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Unfortunately, the construction of the Jacobian given so far is not algebraic so it would
be hard to carry over to curves over an arbitrary ground field. To construct Jacobians
algebraically, we will prove Abel’s theorem:

Theorem 11.3.6 (Abel). Suppose Λ ⊆ C is a lattice with fundamental domain Π and take
any set {ai} ⊂ Π such that there are integers mi ∈ Z satisfying

∑
mi = 0 and

∑
miai ∈ Λ.

Then there exists an elliptic function f(z) whose set of zeroes and poles is {ai} and whose
orders of vanishing/poles are ordai f = mi.

Given a lattice Λ ⊆ C, we may assume Λ = Z + Zτ for some τ ∈ C with Im τ > 0.

Definition. The theta function for a lattice Λ is

θ(z, τ) =
∞∑

n=−∞

eπi(n
2τ+2nz).

One has |eπi(n2τ+2nz)| = e−π(n2 Im τ+2n Im z) for any z ∈ C, which implies that the above
series converges absolutely.

Proposition 11.3.7. Fix a theta function θ(z) = θ(z, τ). Then

(1) θ(z) = θ(−z).

(2) θ(z + 1) = θ(z).

(3) θ(z + τ) = e−πi(τ+2z)θ(z).

Properties (2) and (3) together say that θ(z) is what’s known as a semielliptic function.
For our purposes, this will be good enough. Notice that for z = 1+τ

2
, we have

θ

(
1 + τ

2

)
= θ

(
−1 + τ

2
+ (1 + τ)

)
= eπi(τ+2(− 1+τ

2 ))θ

(
−1 + τ

2

)
= eπiθ

(
−1 + τ

2

)
= −θ

(
1 + τ

2

)
.

Thus z = 1+τ
2

is a zero of θ(z).

Lemma 11.3.8. All zeroes of θ(z, t) are simple and are of the form 1+τ
2

+ ` for ` ∈ Λ.

Lemma 11.3.9. For x ∈ C, set θ(x)(z, τ) = θ
(
z − 1+τ

2
− x
)
. Then θ(x)(z) = θ(x)(z, τ)

satisfies:

(1) θ(x)(z + 1) = θ(x)(z).

(2) θ(x)(z + τ) = e−πi(2(z−x)−1)θ(x)(z).

We now prove Abel’s theorem (11.3.6).
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Proof. Given such a set {ai} ⊂ Π, let x1, . . . , xn be the list of all ai with mi > 0, listed with
repetitions corresponding to the number mi. For example, if m1 = 2 then x1 = x2 = a1.
Likewise, let y1, . . . , yn be the list of all ai with mi < 0, once again with repetitions. By the
hypothesis

∑
mi = 0, there are indeed an equal number of each. Set

f(z) =

∏n
i=1 θ

(xi)(z)∏n
i=1 θ

(yi)(z)
.

Then by Lemma 11.3.9, f(z + 1) = f(z). On the other hand, the lemma also gives

f(z + τ) =

∏n
i=1 θ

(xi)(z + τ)∏n
i=1 θ

(yi)(z)

= e2πi(
∑n
i=1 xi−

∑n
i=1 yi)f(z)

= e2πi
∑
miaif(z)

= f(z) since
∑

miai = 0.

Therefore f(z) is elliptic.

Note that θ(z) is a meromorphic function, so the integral

1

2πi

∫
∂Π

θ′(z)

θ(z)
dz

counts the number of zeroes of θ(z) in the fundamental domain Π, up to multiplicity. To
ensure no zeroes lying on ∂Π are missed, we may shift Π → Πα for an appropriate α ∈ C.
Parametrize ∂Π as in Proposition 11.1.5. Then once again the integrals along γ2 and γ4

cancel since θ(z + 1) = θ(z). On the other hand,

θ(z + τ) = e−πi(τ+2z)θ(z)

=⇒ θ′(z + τ) = e−πi(τ+2z)(−2πiθ(z) + θ′(z))

=⇒ θ′(z + τ)

θ(z + τ)
= −2πi+

θ′(z)

θ(z)
.

This implies∫
∂Π

θ′(z)

θ(z)
dz =

∫
γ1

θ′(z)

θ(z)
dz +

∫
γ2

θ′(z)

θ(z)
dz +

∫
γ3

θ′(z)

θ(z)
dz +

∫
γ4

θ′(z)

θ(z)
dz

=

(∫
γ1

θ′(z)

θ(z)
dz +

∫
γ3

θ′(z)

θ(z)
dz

)
+

(∫
γ2

θ′(z)

θ(z)
dz +

∫
γ4

θ′(z)

θ(z)
dz

)
=

(∫
γ1

θ′(z)

θ(z)
dz −

∫
γ1

θ′(z)

θ(z)
dz + 2πi

)
+ 0

= 2πi.

It follows that θ(z) has exactly one zero in Π, and it must be z = 1+τ
2

.
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Definition. For a curve E (need not be elliptic), define:

� A divisor on E is a formal sum D =
∑
nPP over the points P ∈ E, with nP ∈ Z.

The abelian group of all divisors is denoted Div(E).

� The degree of a divisor D =
∑
nPP ∈ Div(E) is deg(D) =

∑
nP . The set of all

degree 0 divisors is denoted Div0(E).

� For a meromorphic function f on E(C) = C/Λ, the principal divisor associated to
f is (f) =

∑
degP P where nP = ordP f . The group of all principal divisors is denoted

PDiv(E).

� The Picard group of E is the quotient group Pic(E) = Div(E)/PDiv(E). The degree
zero part of the Picard group is written Pic0(E) = Div0(E)/PDiv(E).

The inverse map ψ : E → C/Λ extends to the group of divisors on E:

Ψ : Div(E) −→ C/Λ∑
nPP 7−→

∑
nPψ(P ).

Definition. The map Ψ : Div(E)→ C/Λ is called the Abel-Jacobi map.

Recall that ψ : P 7→
∫
γP
ω + Λ ∈ C/Λ where ω is a fixed holomorphic differential form

on E and γP is a path connecting O ∈ E(C) to P . If O′ is another basepoint and ψ′ is the
corresponding map, we have ψ(P ) = ψ(O′) + ψ′(P ) for all P ∈ E. So it appears that Ψ is
not well-defined. However, this issue vanishes when we restrict Ψ to Div0(E): if D =

∑
nPP

is a degree 0 divisor, then

Ψ(D) =
∑

nPψ(P )

=
∑

nP (ψ(O′) + ψ′(P ))

= ψ(O′)
∑

nP +
∑

nPψ
′(P )

= 0 +
∑

nPψ
′(P ) = Ψ′(D).

Corollary 11.3.10. The map Ψ : Div0(E)→ C/Λ induces an isomorphism Pic0(E) ∼= C/Λ.

Proof. One can prove that Ψ is a surjective group homomorphism. Moreover, Abel’s theorem
(11.3.6) implies that ker Ψ = PDiv(E).

Consider the map iO : E → Div0(E) that sends P 7→ P−O. This fits into a commutative
diagram:

Div0(E)

E

C/Λ

Ψ

iO

ψO
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On the level of the Picard group, this diagram looks like

Pic0(E)

E

C/Λ

Ψ

iO

ψO

and every arrow is a bijection.
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11.4 Jacobians of Higher Genus Curves

Let C be a complex curve of genus g ≥ 2 and let V = Γ(C,ΩC) be the vector space of
holomorphic differential forms on C. Then dimC V = g, so V ∗ ∼= Cg. As in the previous
section, for any path ω in C the assignment ϕγ : ω 7→

∫
γ
ω defines a functional ϕγ ∈ V ∗. As

for elliptic curves, we define:

Definition. The lattice of periods for C is

Λ = {ϕγ ∈ V ∗ | γ is a closed curve in C}.

Lemma 11.4.1. Λ is a lattice in V ∗.

Definition. The Jacobian of C is the quotient space J(C) = V ∗/Λ.

As with elliptic curves, we have a map ψ : C → J(C) called the Abel-Jacobi map, which
sends P 7→ ϕγP + Λ, where γP is a curve through P . Also, ψ extends to the divisor group of
C as a map

Ψ : Div(C) −→ J(C)

which is canonical when restricted to Div0(C). The Abel-Jacobi theorem generalizes Theo-
rem 11.3.6 and Corollary 11.3.10.

Theorem 11.4.2. Let C be a curve of genus g > 0 and let Ψ : Div0(C) → J(C) be the
Abel-Jacobi map. Then

(1) (Abel) ker Ψ = PDiv(C).

(2) (Jacobi) Ψ is surjective.

Therefore Ψ induces an isomorphism Pic0(C) ∼= J(C).

Just as with elliptic curves, if we fix a basepoint O ∈ C, the map iO : C → Div0(C), P 7→
P −O determines a commutative diagram

Pic0(C)

C

J(C)

Ψ

iO

ψO

However, this time not every map is a bijection. In particular, dimC = 1 < g = dim J(C).
To remedy this, let Cg be the g-fold product of C and consider the map

ψg : Cg −→ J(C)

(P1, . . . , Pg) 7−→ ψ(P1) + . . .+ ψ(Pg)

where + denotes the group law on J(C).
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Theorem 11.4.3 (Jacobi). ψg : Cg −→ J(C) is surjective.

There is still work to do to show that the natural map Cg → Pic0(C) is surjective.
It turns out that J(C) is birationally equivalent to the symmetric power C(g) = Cg/ ∼,
where (P1, . . . , Pg) ∼ (Pσ(1), . . . , Pσ(g)) for any permutation σ ∈ Sg. Jacobi proved that this
birational equivalence is enough to endow Pic0(C) ∼= J(C) with the structure of an algebraic
group.

Theorem 11.4.4. J(C) is an abelian variety.
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Functional Analysis
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Chapter 12

Introduction

Part III follows a course on Banach spaces taught by Dr. Stephen Robinson at Wake Forest
University during the spring of 2014. The primary reference for the semester was a set of
course notes compiled by Dr. Robinson.

Our motivation for studying functional analysis is the following question which describes
phase transitions in physics (e.g. water ↔ ice).

Question. Given a system whose energy is described by the integral equation

E(u) =

∫ 1

0

|u′|2 du+

∫ 1

0

F (u) du

for some function F , what are the values for which the system’s energy is minimized?

In general, this can be thought of as a critical point search. For example, consider

F (u)

ice state water state

The trick is the domain of E(u) is some set of functions u, whereby E is a function from
this set of functions to the real numbers R. For this reason we want to be able to perform
calculus on such sets of functions, called function spaces. They are a special type of vector
space called a normed linear space.

The main topics covered in these notes are
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� Normed linear spaces, Banach spaces and their properties

� The Arzela-Ascoli Theorem

� Polynomial approximation and the Weierstrass Approximation Theorem

� Contraction mapping

� Completion of a metric space

� Calculus on normed linear spaces, including the Fréchet derivative, the Mean Value
Theorem, Sard’s Theorem and the Inverse Function Theorem
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Normed Linear Spaces and Banach
Spaces
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13.1 Normed Linear Spaces

We begin with the fundamental object of study in analysis: a metric space.

Definition. A space X is a metric space if there is a function d : X ×X → R satisfying

1) (Positivity) For all x, y ∈ X, d(x, y) ≥ 0 and equality holds if and only if x = y.

2) (Symmetry) For all x, y ∈ X, d(x, y) = d(y, x).

3) For all x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z).

Examples.

1 R is a metric space under the usual distance function d(x, y) = |x− y|.

2 For any n ≥ 2, Rn is a metric space under the Euclidean norm

d(x, y) = ||x− y|| :=

(
n∑
i=1

|xi − yi|2
)1/2

.

3 There is a generalization of Euclidean n-space called `2 which will be important in
subsequent sections. One can think of `2 as the space of sequences of real numbers
(x1, x2, x3, . . .). Then `2 is a metric space under the 2-norm:

d(x, y) =

(
∞∑
i=1

|xi − yi|2
)1/2

4 Let C[0, 1] denote the space of continuous functions on the interval [0, 1]. Then C[0, 1]
is a metric space with several compatible metrics. The two most important are:

d(f, g) := sup
x∈[0,1]

|f(x)− g(x)|

and d2(f, g) :=

(∫ 1

0

|f(x)− g(x)|2 dx
)1/2

.

All of the spaces in these examples have a vector space structure. In addition, the notion
of distance is derived from the distance between vectors: d(x, y) = ||x− y||. In the study of
functional analysis, we want to restrict our consideration to a certain type of metric space.

Definition. Suppose that X is a real vector space and there is a function || · || : X → R
satisfying

(1) ||x|| ≥ 0 for all x ∈ X, and ||x|| = 0 if and only if x is the zero vector.

(2) ||x+ y|| ≤ ||x||+ ||y|| for all x, y ∈ X.

(3) ||αx|| = |α| ||x|| for any α ∈ R.

Then X is a normed linear space. If only (2) and (3) hold, then ||·|| is called a seminorm.

177



13.1. Normed Linear Spaces Chapter 13. Normed Linear Spaces and Banach Spaces

Example 13.1.1. Not every metric space is a normed linear space. For instance, let X = R
and define

d(x, y) =

{
0 x = y

1 x 6= y

which is called the discrete metric. By virtue of d being a metric, (1) and (2) above are
satisfied. However, if (3) held we would have

1 = d(2, 0) = ||2− 0|| = ||2|| = 2||1|| = 2||1− 0||
= 2 · d(1, 0) = 2 · 1 = 2

clearly a contradiction. Therefore (R, d) is not a normed linear space.

Example 13.1.2. Consider the unit circle in R2:

X = {(x, y) ∈ R2 | x2 + y2 = 1}

X is not a vector space, so it is certainly not a normed linear space.

While not every metric space is a normed linear space, the reverse implication is true.

Theorem 13.1.3. If (X, || · ||) is a normed linear space, then (X, d) is a metric space under
the function d(x, y) := ||x− y||.

Proof. Norms are nonnegative, so d ≥ 0. Likewise, d(x, y) = 0 ⇐⇒ x = y follows directly
from (1) in the definition of a normed linear space. For the triangle inequality (2), consider

d(x, z) = ||x− z|| = ||x− y + y − z|| ≤ ||x− y||+ ||y − z|| = d(x, y) + d(y, z).

Finally, to show symmetry consider

d(y, x) = ||y − x|| = || − (x− y)|| = | − 1| ||x− y|| = ||x− y|| = d(x, y).

Hence d is a metric so (X, d) is a metric space.
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13.2 Generalizing the Reals

In this section we will focus on generalizing the following properties of the real numbers to
Euclidean n-space Rn for finite n:

� R is a normed linear space (easy).

� R is complete, that is, every Cauchy sequence converges (Theorem 2.3.8).

� A set D ⊂ R is compact if and only if D is closed and bounded (the Heine-Borel
theorem).

� The set of rationals Q is dense in R (Theorem 1.3.6).

For notational convenience, we will actually restrict our focus to the proofs in R2, but
moving up in dimension doesn’t alter the proofs much. Consider R2 with ||x|| =

√
x2

1 + x2
2

for x = (x1, x2) ∈ R2. We first prove

Proposition 13.2.1. R2 is a normed linear space.

The main ingredients in this proof are three inequalities, which we state and prove sep-
arately before returning to the main proof.

Lemma 13.2.2 (Young’s Inequality). For any nonnegative a, b ∈ R, ab ≤ 1
2
a2 + 1

2
b2.

Proof. Consider

ln(ab) = ln(a) + ln(b) = 1
2

ln(a2) + 1
2

ln(b2) ≤ ln
(

1
2
a2 + 1

2
b2
)

where the inequality comes from the concavity of ln(x) – see the diagram below.

ln(x)

a2 1
2
(a2 + b2) b2

ln(a2)

ln
(

1
2
a2 + 1

2
b2
)ln(b2)

1
2

ln(a2) + 1
2

ln(b2)

Taking the exponential of both sides of the inequality ln(ab) ≤ ln
(

1
2
ab + 1

2
b2
)

proves Young’s
Inequality.

Lemma 13.2.3 (Hölder’s Inequality).
2∑
i=1

aibi ≤

(
2∑
i=1

a2
i

)1/2( 2∑
i=1

b2
i

)1/2

.
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Proof. By Young’s Inequality (Lemma 13.2.2),

2∑
i=1

aibi ≤
2∑
i=1

|aibi| ≤
2∑
i=1

(
1
2
a2
i + 1

2
b2
i

)
.

If we suppose that ||a|| = 1 = ||b|| then the inequality becomes

1

2

2∑
i=1

a2
i +

1

2

2∑
i=1

b2
i =

1

2
+

1

2
= 1 = ||a|| ||b||

which proves the desired inequality. Now if a and b are vectors of any length, then the
normal vectors in the directions of a and b satisfy Hölder’s Inequality:

2∑
i=1

(
ai
||a||

)(
bi
||b||

)
≤ 1 =⇒

2∑
i=1

aibi ≤ ||a|| ||b||.

We will see more general versions of Young’s and Hölder’s inequalities in Section 20.3.

Lemma 13.2.4 (Minkowski’s Inequality).

(
2∑
i=1

(ai + bi)
2

)1/2

≤

(
2∑
i=1

a2
i

)1/2

+

(
2∑
i=1

b2
i

)1/2

.

Proof. Consider

2∑
i=1

(ai + bi)
2 =

2∑
i=1

|ai + bi|2

=
2∑
i=1

|ai + bi| |ai + bi|

≤
2∑
i=1

(|ai|+ |bi|) |ai + bi| by the triangle inequality for R

=
2∑
i=1

|ai| |ai + bi|+
2∑
i=1

|bi| |ai + bi|

≤

(
2∑
i=1

a2
i

)1/2( 2∑
i=1

|ai + bi|2
)1/2

+

(
2∑
i=1

b2
i

)1/2( 2∑
i=1

|ai + bi|2
)1/2

by Hölder’s Inequality (Lemma 20.3.4).

Dividing through by

(
2∑
i=1

(ai + bi)
2

)1/2

then yields

(
2∑
i=1

(ai + bi)
2

)1/2

≤

(
2∑
i=1

a2
i

)1/2

+

(
2∑
i=1

b2
i

)1/2

.
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Young’s, Hölder’s and Minkowski’s inequalities generalize to finite n with only minor
changes in each proof. These allow us to prove

Proposition 13.2.5. (R2, || · ||) is a normed linear space.

Proof. First, R2 is a vector space. By properties of square roots, ||x|| ≥ 0 and ||x|| = 0 ⇐⇒
x = 0. To show the linear condition, let α ∈ R. Then

||αx|| =

(
2∑
i=1

|αxi|2
)1/2

=

(
2∑
i=1

|α|2|xi|2
)1/2

=

(
|α|2

2∑
i=1

|xi|2
)1/2

= |α|

(
2∑
i=1

|xi|2
)1/2

= |α| ||x||.

Finally, Minkowski’s Inequality (Lemma 13.2.4) gives us ||x+ y|| ≤ ||x||+ ||y||, the triangle
inequality. Hence R2 is a normed linear space.

Again, note that all proofs generalize to Rn, so that we may conclude that Rn is a normed
linear space for finite n.

Lemma 13.2.6. A sequence (xn) in R2 converges if and only if the component sequences of
(xn) converge in R.

Proof. Suppose that (xn) ⊂ R2 converges to x. Then given any ε > 0, there is some N > 0
such that ||xn − x|| < ε for all n ≥ N . Note that

|xn1 − x1| ≤
√
|xn1 − x1|2 + |xn2 − x2|2 = ||xn − x||

and likewise |xn2 − x2| ≤
√
|xn1 − x1|2 + |xn2 − x2|2 = ||xn − x||.

Hence |xn1 − x1|, |xn2 − x2| < ε for all n ≥ N , so (xn1)→ x1 and (xn2)→ x2 in R.
Conversely, suppose (xn1) → x1 and (xn2) → x2 for some x1, x2 ∈ R. Let ε > 0. By

convergence, there exist natural numbers N1, N2 such that

|xn1 − x1| < ε√
2

for n > N1

and |xn2 − x2| < ε√
2

for n > N2.

Let N = max{N1, N2} and set x = (x1, x2). Then

||xn − x|| =
√
|xn1 − x1|2 + |xn2 − x2|2 <

√
ε2

2
+ ε2

2
= ε.

Hence (xn) converges to x ∈ R2.

Definition. The p-norm on R2 is defined for all x ∈ R2 by

||x||p = (|x1|p + |x2|p)1/p

for any 1 ≤ p <∞.
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Example 13.2.7. The Euclidean norm || · || is simply the p = 2 case of this definition.

Proposition 13.2.8. || · ||p is a norm on R2.

Proof. Omitted. This requires a generalization of Minkowski’s Inequality (Lemma 13.2.4).

Example 13.2.9. A unit circle with respect to a p-metric is the set of points {x ∈ R2 :
||x||p = 1}. Some examples of unit circles for various values of p are shown below.

p
=
1

p
=
2

As p→∞, the circles converge to the unit square.

Definition. The ∞-norm, sometimes called the sup norm or max norm, is defined for
all x ∈ R2 by

||x||∞ = max{|x1|, |x2|}.

Note that the unit circle under || · ||∞ is precisely the unit square, shown with dashed
lines above. When consider any of these norms, we will often write || · ||p for 1 ≤ p ≤ ∞.

Definition. A normed linear space which is complete is called a Banach space.

Theorem 13.2.10. (R2, || · ||2) is complete, and therefore a Banach space.

Proof. Let (xn) ⊂ R2 be a Cauchy sequence. Consider (xn1) ⊂ R, the sequence of first
components of (xn). Then for any m,n,

|xn1 − xm1| ≤
√
|xn1 − xm1|2 + |xn2 − xm2|2 = ||xn − xm||2

and this implies that (xn1) is Cauchy since (xn) is assumed to be. Now R is complete so (xn1)
converges. By a similar argument, (xn2) ⊂ R converges as well. Hence by Lemma 13.2.6,
(xn) converges in R2 and we conclude R2 is complete.
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Theorem 13.2.11. If (xn) is a bounded sequence in R2, then (xn) has a convergent subse-
quence.

Proof. Let (xn) be a bounded sequence in R2. Consider (xn1), the sequence of first compo-
nents in R. We know |xn1| ≤ ||xn|| so (xn1) is bounded as well. By the Bolzano-Weierstrass
Theorem, (xn1) has a convergent subsequence, say (xnk1). Then (xnk) ⊂ R2 has converging
first components.

Now consider (xnk2), the sequence of second components of (xnk). By Bolzano-Weierstrass
this has a convergent subsequence, (xnkj 2) ⊂ R. Therefore (xnkj ) has both component

sequences converging, and thus this subsequence converges by Lemma 13.2.6.

This has the following consequence for characterizing compact sets in R2.

Corollary 13.2.12. A subset K ⊂ R2 that is closed and bounded is compact.

This generalizes one direction of the Heine-Borel Theorem. It turns out that the other
direction holds as well (we won’t prove this), so that we have the following characterization
of compact sets in Rn.

Theorem 13.2.13 (Heine-Borel). For every n ≥ 1, K ⊂ Rn is compact if and only if K is
closed and bounded.

Next we prove the two-dimensional analog (the case for Rn is similar) of the density of
the rationals in the reals.

Theorem 13.2.14. Q2 is dense in R2.

Proof. Let x ∈ R2 and suppose ε > 0 is given. Let r1 ∈ Q such that |x1 − r1| < ε√
2

and let

r2 ∈ Q such that |x2 − r2| < ε√
2
; these choices are possible by the density of Q ⊂ R. As a

result, if r = (r1, r2) ∈ Q2 we have

||x− r|| =
√
|x1 − r1|2 + |x2 − r2|2 <

√(
ε√
2

)2

+
(

ε√
2

)2

= ε.

Therefore Q2 is dense in R2.

Definition. Two norms || · ||1 and || · ||2 on Rn are said to be equivalent if there exist
a, b > 0 such that b||x||2 ≤ ||x||1 ≤ a||x||2 for all x ∈ R2.

Proposition 13.2.15. The p-norms || · ||p for 1 ≤ p ≤ ∞ are equivalent on R2.

Proof. Let x = (x1, x2) ∈ R2 and first consider

||x||1 = |x1|+ |x2| =
2∑
i=1

|xi| · 1

≤

(
2∑
i=1

|xi|p
)1/p( 2∑

i=1

1q

)1/q

by Hölder’s Inequality (Lemma 20.3.4)

= 21/q||x||p
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for any p, q such that 1
p

+ 1
q

= 1. In particular, this shows that ||x||1 ≤ 2||x||p for any p. Now

compare ||x||p and ||x||∞:

||x||p =

(
2∑
i=1

|xi|p
)1/p

≤

(
2∑
i=1

||x||p∞

)1/p

= ||x||∞

(
2∑
i=1

1p

)1/p

= 21/p||x||∞.

So ||x||p ≤ 2||x||∞. Finally, we close the circle:

||x||∞max{|x1|, |x2|} ≤
2∑
i=1

|xi| = ||x||1.

Hence all the p-norms for 1 ≤ p ≤ ∞ are equivalent.

Notice again that this proof is easily modified for Rn, n > 2. An important consequence
of the above fact is that convergence in R2 (or Rn) is the same with respect to any p-norm.
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13.3 Sequences Spaces

In the last section we saw how to generalize the intrinsic properties of R to any finite-
dimensional Euclidean space Rn. The natural extensions of such spaces are called `p spaces.

Definition. A sequence space, or `p space, is defined for each

`p =

{
(xn) ⊂ R :

∞∑
n=1

|xn|p <∞

}
.

Example 13.3.1. The most important of the `p spaces is `2, which is the space of sequences
of real numbers that converge with respect to the 2-norm. `2 is notable for being the only
sequence space which is also a Hilbert space, that is, `2 is complete with respect to the inner
product induced by || · ||2. (We will study these spaces in Chapter 20.)

An example of a ‘point’ in `2 is the sequence xn = 1
n
, which converges with respect to

the `2-norm since
∞∑
n=1

1

n2
=
π2

6
<∞.

On the other hand, the sequence xn = 1√
n

is not an element of `2 since

∞∑
n=1

(
1√
n

)2

=
∞∑
n=1

1

n
,

the harmonic series, diverges.

It may be useful after reading the first two sections to think of `2 as R∞ and indeed it
exhibits many of the same characteristics. However, the convergent sum requirement makes
things ‘nice’ in `2, whereas in an infinite dimensional vector space of real numbers we may
not be so lucky.

We are about to prove that `2 is a normed linear space – as with the different p-norms in
the previous section, slight modifications will make the proof run for any `p as well. First,
note that Young’s Inequality (Lemma 13.2.2) doesn’t change when moving to the infinite
dimensional case. Then Hölder’s and Minkowski’s inequalities follow in much the same way.

Lemma 13.3.2 (Hölder’s Inequality). lim
N→∞

N∑
i=1

|aibi| ≤ limN→∞

(
N∑
i=1

|ai|2
)1/2( N∑

i=1

|bi|2
)1/2

.

Proof. Take a limit of Hölder’s Inequality (Lemma 20.3.4) in the finite case.

Lemma 13.3.3 (Minkowski’s Inequality).

(
∞∑
i=1

(xi + yi)
2

)1/2

≤

(
∞∑
i=1

|xi|2
)1/2

+

(
∞∑
i=1

|yi|2
)1/2

.

Proof. Take a limit of the n-dimensional Minkowski’s Inequality; limits preserve inequality.
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Theorem 13.3.4. `2 is a normed linear space.

Proof. Since ||x||2 =

(
∞∑
i=1

|xi|2
)1/2

is a convergent sum of nonnegative terms, we have

||x||2 ≥ 0, and clearly ||x||2 = 0 ⇐⇒ xi = 0 for all i. For linearity, let α ∈ R and consider

||αx||2 =

(
∞∑
i=1

|αxi|2
)1/2

=

(
∞∑
i=1

|α|2|xi|2
)1/2

=

(
|α|2

∞∑
i=1

|xi|2
)1/2

= |α| ||x||2.

Finally, the generalized Minkowski’s Inequality above directly implies the triangle inequality.
Hence `2 is a normed linear space.

Example 13.3.5. Consider the sequence of sequences (xn) in `2 defined by

x1 = (1, 0, 0, . . .)

x2 = (0, 1, 0, . . .)

x3 = (0, 0, 1, . . .)

...

xn = (. . . ,
n−1

0 ,
n

1,
n+1

0 , . . .)

We calculate that

||x2 − x1||2 =

(
∞∑
i=1

|x2i − x1i|2
)1/2

= (12 + 12 + 02 + 02 + 02 + . . .)1/2 =
√

2.

and in fact this is the difference between any pair of distinct terms in (xn). Thus (xn) has
the following surprising properties.

� (xn) is bounded.

� (xn) is not Cauchy, so the sequence is not convergent in `2.

� The sequence does have componentwise convergence, as for each n, xn is a sequence in
R converging to 0.

� (xn) has no converging subsequences.

Theorem 13.3.6. `2 is a Banach space.

186



13.3. Sequences Spaces Chapter 13. Normed Linear Spaces and Banach Spaces

Proof. We proved `2 is a normed linear space, so it remains to show that `2 is complete with
respect to the `2 norm. Let (xn) be a Cauchy sequence in `2. Consider the sequence of kth
components (xnk), which is itself a sequence of real numbers. Then we see that for any n,m,

|xnk − xmk| =
√
|xnk − xmk| ≤

(
∞∑
j=1

|xnj − xmj|2
)1/2

= ||xn − xm||2.

This implies that since (xn) is Cauchy, so is (xnk). By completeness of R, (xnk) converges
to some real number x̄k. Since k was arbitrary, we have componentwise convergence for the
original sequence (xn). Let x̄ be the sequence of these limits, i.e. x̄ = (x̄k). To show x̄ ∈ `2,
note that there is some M such that

∞∑
k=1

|xnk|2 ≤M

for all n, since Cauchy sequences are bounded. Look at the partial sum:

N∑
k=1

|x̄k|2 = lim
n→∞

|xnk|2 ≤M.

It follows that for all N ,
N∑
k=1

|x̄k|2 ≤ M , so taking the limit as N → ∞ will preserve this

bound. Hence
∞∑
k=1

|x̄k|2 is finite and we conclude that x̄ ∈ `2.

Now we will show that ||xn − x̄||2 −→ 0. Consider(
N∑
k=1

|xnk − x̄k|2
)1/2

≤

(
N∑
k=1

|xnk − xmk|2
)1/2

+

(
N∑
k=1

|xmk − x̄k|2
)1/2

by Minkowski’s Inequality (Lemma 13.3.3)

≤ ||xn − xm||2 +

(
N∑
k=1

|xmk − x̄k|2
)1/2

.

For a given ε > 0, we can choose N0 such that n,m > N0 implies(
N∑
k=1

|xnk − x̄k|2
)1/2

< ε+

(
N∑
k=1

|xmk − x̄k|2
)1/2

.

Letting m→∞, the left side doesn’t change and (xmk)→ x̄k by componentwise convergence,
so we have (

N∑
k=1

|xnk − x̄k|2
)1/2

< ε+ 0 = ε

for all n > N0. Finally, taking the limit as N →∞ gives us ||xn− x̄||2 < ε so (xn) converges.
Hence `2 is complete.
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Example 13.3.7. In this example we illustrate some differences between `2 and `3. Recall

that
(

1√
n

)
6∈ `2. However, in the `3 norm we see that

∞∑
n=1

∣∣∣∣ 1

n1/2

∣∣∣∣3 =
∞∑
n=1

1

n3/2

which converges. Thus `3 6⊂ `2. On the other hand, suppose x ∈ `2, i.e. x = (xn) is a
sequence such that

∑
|xn|2 <∞. Then there must be some N > 0 such that |xn| < 1 for all

n > N . This implies

∞∑
n=1

|xn|3 =
N∑
n=1

|xn|3 +
∞∑

n=N+1

|xn|3 ≤
N∑
n=1

|xn|3 +
∞∑

n=N+1

|xn|2 <∞.

Hence `2 ⊂ `3 and this containment is proper.

Proposition 13.3.8. In `2, any sequence (xn) that is bounded has a subsequence that con-
verges componentwise.

Proof. Suppose (xn) ⊂ `2 is a bounded sequence. Consider the kth components x1k, x2k, x3k, . . .
and observe that they are bounded for each k ∈ N. First choose a subsequence (x1i) of (xn)
such that the first components of (x1i) converges; this is possible by the Heine-Borel Theorem
on R. Next choose a subsequence (x2i) of the first subsequence (x1i) such that the second
components of (x2i) converge, again using Heine-Borel. Note that (x2i) ⊂ (x1i) implies the
first components of (x2i) also converge. In the inductive step, choose (xji) to be a subse-
quence of (xj−1,i) such that the jth components converge. Since the chosen subsequences
are nested, (xji) will have convergence in its first j components.

We want to find a subsequence of (xn) that converges in every component. To do this,
we select the ‘diagonalization’ of the nested subsequences above. Consider (xii); this is a
subsequence of (xn) that converges componentwise, since for any k ≥ 1 and j ≥ k, (xji) is a
subsequence of (xki) so its kth components converge.

Note that in most cases componentwise convergence does not give us `2 convergence.
Hence boundedness does not imply compactness in `2. However, we next introduce an
object called the Hilbert cube which is closed, bounded and compact in `2.

Definition. The Hilbert cube is the subset K ⊂ `2 defined by

K =
{
x ∈ `2 : |xk| ≤ 1

k

}
.

Notice that
∞∑
k=1

|xk|2 ≤
∞∑
k=1

1

k2
<∞ so K does indeed lie in `2. Also, by construction K

is bounded. We will show that K is also closed and compact.

Lemma 13.3.9. K is closed.
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Proof. Let (xn) ⊂ K be a convergent sequence with respect to the `2 norm and denote its
limit of convergence by x ∈ `2. It follows that (xn) is componentwise convergent to the
components of x. In other words, lim

n→∞
xnk = xk for all k. Thus

|xk| = limn→∞|xnk| ≤
1

k

and this shows x ∈ K by definition, so K is closed.

Lemma 13.3.10. K is compact.

Proof. Let (xn) ⊂ K be a bounded sequence. By Proposition 13.3.8, we may assume without
loss of generality that (xn) converges componentwise. For each k, let xk = lim

n→∞
xnk. By the

proof of Lemma 13.3.9, x = (xk) ∈ K.
We want to show ||xn − x||2 −→ 0. Let ε > 0 be given and consider

(||xn − x||2)2 =
∞∑
k=1

|xnk − xk|2

=
N∑
k=1

|xnk − xk|2 +
∞∑

k=N+1

|xnk − xk|2

for any fixed N . Notice that |xnk − xk| ≤ 2
k

for each k, by definition of the Hilbert cube. So
it follows that

∞∑
k=N+1

|xnk − xk|2 ≤
∞∑

k=N+1

4

k2

but the series on the right converges, so we may choose N large enough so that

∞∑
k=N+1

4

k2
<
ε

2
.

Now consider the other term. We know by componentwise convergence that

lim
n→∞

N∑
k=1

|xnk − xk|2 = 0.

In other words, there is an M such that for every n > M ,

N∑
k=1

|xnk − xk|2 <
ε

2
.

Putting these together, for all n > max{N,M}, (||xn − x||2)2 < ε
2

+ ε
2

= ε. Hence (xn)
converges.

In Rn we saw that Qn is an example of a dense subset. Since `2 consists of sequences of
real numbers that are eventually small, we must adjust things slightly to obtain a dense
subset of rational sequences. In fact, consider the set Q of all x ∈ `2 such that x =
(r1, r2, . . . , rk, 0, 0, 0, . . .) where r1, . . . , rk ∈ Q and k is finite. Then Q is dense in `2.
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Chapter 14

Function Spaces

In Section 13.3 we defined a sequence space as a vector space whose elements (vectors) are
infinite sequences of real numbers. Alternatively, a sequence can be thought of as a function
N→ R, so that each point in `2 is such a function. In this chapter we generalize the notion
of a function space and explore four important examples in functional analysis:

� C[0, 1] is the set of continuous functions on the interval [0, 1].

� C1[0, 1] is the set of differentiable functions on [0, 1] that have continuous derivatives.

� L2[0, 1] is the completion of C[0, 1] as a metric space.

� W 1,2[0, 1], the so-called Sobolev space, is a completion of C1[0, 1] with respect to a
certain norm.
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14.1 Norms on Function Spaces

The most important space in functional analysis is C[0, 1]:

Definition. The space of continuous functions on the interval [0, 1] is denoted

C[0, 1] = {f : [0, 1]→ R | f is continuous}.

Definition. On C[0, 1], we define the sup norm by ||f ||∞ = max
x∈[0,1]

|f(x)|.

From calculus, we know that a continuous function on a closed interval achieves its
maximum, so the sup and max norms are interchangeable on C[0, 1]. Another norm of
interest is a generalization of the 2-norm from Chapter 13.

Definition. On C[0, 1], we define the 2-norm by

||f ||2 =

(∫ 1

0

|f(x)|2 dx
)1/2

.

Proposition 14.1.1. (C[0, 1], || · ||∞) is a normed linear space.

Proof. We will establish the triangle inequality and note that the proof of the other properties
is routine. Let x ∈ [0, 1] and f, g ∈ C[0, 1]. Then

|f(x) + g(x)| ≤ |f(x)|+ |g(x)| ≤ ||f ||∞ + ||g||∞.

Notice that the right side no longer depends on x, so taking the sup of both sides preserves
the inequality, giving us

||f + g||∞ ≤ ||f ||∞ + ||g||∞.
It follows that || · ||∞ is a norm on C[0, 1].

In order to prove that C[0, 1] is a normed linear space with the 2-norm, we need Hölder’s
inequality:

Lemma 14.1.2 (Hölder’s Inequality for Continuous Functions). For any functions f, g ∈
C[0, 1], ∫ 1

0

|fg| ≤
(∫ 1

0

|f |2
)1/2(∫ 1

0

|g|2
)1/2

.

Proof. First suppose ||f ||2 = ||g||2 = 1. Then∫ 1

0

|fg| ≤
∫ 1

0

(
1
2
|f |2 + 1

2
|g|2
)

by Young’s inequality (Lemma 13.2.2)

=
1

2

∫ 1

0

|f |2 +
1

2

∫ 1

0

|g|2

= 1
2
(1) + 1

2
(1) = 1 = ||f ||2 ||g||2.

This proves Hölder’s inequality for the unit norm case. In general this may applied to f
||f ||2

and g
||g||2 to produce the inequality for all f, g.
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Proposition 14.1.3. (C[0, 1], || · ||2) is a normed linear space.

Proof. We will check the triangle inequality; the rest of the properties are routine to verify.
For any f, g ∈ C[0, 1], consider

(||f + g||2)2 =

∫ 1

0

|f + g|2

=

∫ 1

0

|f + g| |f + g|

≤
∫ 1

0

|f | |f + g|+
∫ 1

0

|g| |f + g| by the regular triangle inequality

≤ ||f ||2 ||f + g||2 + ||g||2 ||f + g||2 by Hölder’s inequality (Lemma 14.1.2).

Dividing through by ||f + g||2 gives us ||f + g||2 ≤ ||f ||2 + ||g||2. Hence we can conclude that
(C[0, 1], || · ||2) is a normed linear space.

Example 14.1.4. To illustrate the differences between || · ||∞ and || · ||2, consider the family
of functions {fn} described by the picture below.

1

11
n+1

1
n

By construction, ||fn||∞ = 1 for each n, and for any m 6= n, ||fn − fm||∞ = 1. Hence the
sequence (fn) is not Cauchy in the function space (C[0, 1], || · ||∞). However, it is easy to see
that (fn) is pointwise convergent to 0, since for any x, fn(x)→ 0.

Now consider (fn) in C[0, 1] with the || · ||2 norm. For each n,

||fn||2 =

(∫ 1

0

|f(x)|2 dx
)1/2

=

(∫ 1
n

1
n+1

|f(x)|2
)1/2

≤

(∫ 1
n

1
n+1

1 dx

)1/2

=

(
1

n
− 1

n+ 1

)1/2

=

√
1

n(n+ 1)
.

Thus we can see that ||fn− 0||2 −→ 0 as n→∞, so the sequence (fn) converges to f(x) = 0
in (C[0, 1], || · ||2). In fact, we could even let the peaks of {fn} tend towards ∞ at a certain
rate and still have ||fn||2 −→ 0, while in that case we would see ||fn||∞ −→∞.

Example 14.1.5. Let {fn} be the family of functions fn(x) = sin(nπx) for n = 2, 3, 4, . . ..
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0 1

sin(2πx)
sin(3πx)
sin(4πx)
sin(5πx)

Note that ∫ 1

0

sin2(nπx) dx =

∫ 1

0

cos2(nπx) dx

and

∫ 1

0

(
sin2(nπx) + cos2(nπx)

)
dx =

∫ 1

0

1 dx = 1.

This shows that

(||fn||2)2 =

∫ 1

0

sin2(nπx) dx =
1

2

which can also be verified using integration by parts. Now consider for some m 6= n,

(||fn − fm||2)2 =

∫ 1

0

(sin(nπx)− sin(mπx))2 dx

=

∫ 1

0

(sin2(nπx) + sin2(mπx)− 2 sin(nπx) sin(mπx)) dx

=
1

2
+

1

2
− 2

∫ 1

0

sin(nπx) sin(mπx) dx

= 1− 2(0) = 1.

Therefore (fn) is not Cauchy. Note the similarities between this example and the `2 sequence

x1 = (1, 0, 0, . . .)

x2 = (0, 1, 0, . . .)

x3 = (0, 0, 1, . . .)

...

It turns out that the family of functions {fn} in C[0, 1] is isomorphic to (xn) in `2. These
are examples of orthonormal bases for the vector spaces C[0, 1] and `2.

Example 14.1.6. Define the family of functions {fn} for n ≥ 2 described by the picture
below.
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1

11
2
− 1

n
1
2

Then (fn) converges pointwise to the step function

f(x) =

{
0 0 ≤ x < 1

2

1 1
2
≤ x ≤ 1.

Consider these functions with the sup norm (we must use the sup norm instead of the max
norm since f(x) is discontinuous):

||fn − f ||∞ = sup
x∈[0,1]

|fn(x)− f(x)| = 1 for all n ≥ 2.

It looks like (fn) does not converge with respect to || · ||∞. For any m 6= n, we have

||fn − fm||∞ = sup
x∈[0,1]

|fn(x)− fm(x)|.

If we choose any n ≥ 2, then as m → ∞, ||fn − fm||∞ −→ 1 by the picture. Hence the
sequence is not Cauchy in (C[0, 1], || · ||∞). Note that convergence with respect to || · ||∞ is
equivalent to uniform convergence, so clearly a sequence cannot converge to a discontinuous
function such as the step function.

Now consider (fn) with the 2-norm:

(||fn − f ||2)2 =

∫ 1

0

|fn(x)− f(x)|2 dx =

∫ 1
2

1
2
− 1
n

12 dx =
1

n
.

So ||fn−f ||2 −→ 0, but since f is not continuous, (fn) still doesn’t converge in (C[0, 1], ||·||2).
By a similar estimate, (fn) is Cauchy in (C[0, 1], || · ||2). In particular, this suggests that
(C[0, 1], || · ||2) is not complete. We prove this next.

Proposition 14.1.7. C[0, 1] is not complete with respect to || · ||2 and hence not a Banach
space.

Proof. We proved that the sequence (fn) defined above is Cauchy with respect to || · ||2 and
showed that the sequence converges to the step function f(x) which is not in C[0, 1]. Now
we must verify that (fn) doesn’t have any limit in C[0, 1].

Suppose (fn) converges to some f(x) in C[0, 1]. Take x0 ∈
(
0, 1

2

)
such that f(x0) 6= 0.

Then since f is continuous, there must be some neighborhood of x0 on which f is nonzero.
This means there is a δ > 0 such that

|f(x)| ≥ 1
2
|f(x0)| for x ∈ (x0 − δ, x0 + δ) ⊂

(
0, 1

2

)
.
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Choose N such that x0 + δ < 1
2
− 1

n
for all n > N and consider∫ 1

0

|fn(x)− f(x)|2 dx ≥
∫ x0+δ

x0−δ
|fn(x)− f(x)|2 dx

=

∫ x0+δ

x0−δ
|f(x)|2 dx for all n > N

≥ 1
4
|f(x0)|2 2δ by the work above.

Taking the square root of both sides, we have

||fn − f ||2 ≥
√

2δ

2
|f(x0)| for all n > N.

Hence fn 6→ f so we must have f(x) = 0 for all x ∈
(
0, 1

2

)
. A similar proof shows that

f(x) = 1 for all x ∈
(

1
2
, 1
)
. Now these show that

lim
x→ 1

2

−
f(x) = 0 and lim

x→ 1
2

+
f(x) = 1.

Thus lim
x→ 1

2

f(x) does not exist, so in fact f is not continuous on [0, 1], contradicting our choice

of f . Therefore we conclude that (C[0, 1], || · ||2) is not complete.

The last few examples and propositions illustrate an important point about function
spaces: there is a difference between pointwise and uniform convergence, and a sequence
may exhibit one with respect to a particular norm but not the other. It turns out that
convergence with respect to || · ||∞ does guarantee convergence in the space C[0, 1], as the
next lemma shows.

Lemma 14.1.8. If (fn) ⊂ C[0, 1] and f : [0, 1] → R such that ||fn − f ||∞ −→ 0 then
f ∈ C[0, 1].

Proof. This is just a restatement of Theorem 3.6.1.

Theorem 14.1.9. (C[0, 1], || · ||∞) is a Banach space.

Proof. We proved that C[0, 1] is a normed linear space with respect to the sup norm so it
remains to check this space is complete. Let (fn) be a Cauchy sequence in C[0, 1]. Then for
a fixed x ∈ [0, 1] and m 6= n,

|fn(x)− fm(x)| ≤ ||fn − fm||∞

so it follows that (fn(x)) ⊂ R is Cauchy. By completeness of R, (fn(x)) converges, say to
f(x). Let f be the function whose values are these convergent limits of (fn(x)) for each
x ∈ [0, 1]. Consider

|fn(x)− f(x)| ≤ |fn(x)− fm(x)|+ |fm(x)− f(x)|

leq||fn − fm||∞ + |fm(x)− f(x)|.
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Then given ε > 0 we can choose N such that n,m > N imply ||fn−fm||∞ < ε by the Cauchy
property of (fn). Now taking m→∞, |fm(x)−f(x)| −→ 0 by pointwise convergence. Hence
for all x and n > N ,

|fn(x)− f(x)| ≤ ||fn − fm||∞ + |fm(x)− f(x)| < ε+ 0 = ε.

Taking the supremum of both sides respects the inequality, so ||fn−f ||∞ < ε. By Lemma 14.1.8,
f is continuous so (fn) converges in C[0, 1] and therefore (C[0, 1]|| · ||∞) is complete.
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14.2 The Arzela-Ascoli Theorem

In this section we explore compactness in C[0, 1]. Recall that in `2, a bounded sequence
contained a subsequence which converged componentwise. We might expect a bounded
sequence in C[0, 1] to have a subsequence with pointwise convergence. It turns out that the
conditions required for compactness are

� The slopes may be controlled via the Lipschitz condition:

|fn(x)− fn(y)| ≤ k|x− y| for all n, x, y and for some k.

� Equicontinuity (to be defined).

Assume (fn) ⊂ C[0, 1] is a sequence satisfying ||fn||∞ ≤ M for all n. We will not
be able to show pointwise convergence for every point in [0, 1] because the unit interval is
uncountable. Instead, we will take a countable subset of [0, 1] (hint: what’s a nice, countable
subset of any real interval?) and show pointwise convergence on this subset.

Let x1 ∈ [0, 1] and consider (fn(x1)) ⊂ R. Note that |fn(x1)| ≤ ||fn||∞ ≤ M for all
n, so (fn(x1)) is a bounded sequence in R. By the Bolzano-Weierstrass Theorem (2.4.5),
(fn(x1)) has a converging subsequence (f1n(x1)), and thus (f1n) is a subsequence of (fn)
that converges when evaluated at x1. Next, let x2 ∈ [0, 1] such that x2 6= x1 and consider
(f1n(x2)). Notice that |f1n(x2)| ≤ ||f1n||∞ ≤ M for all n, so (f1n(x2)) is another bounded
sequence in R with a converging subsequence (f2n(x2)). As above, (f2n) is a subsequence of
(fn) with pointwise convergence at both x1 and x2.

Continue in this way to obtain nested subsequences such that (fkn(xi)) converges for all
1 ≤ i ≤ k and xi 6= xj for all 1 ≤ i < j ≤ k. As we did in Section 13.3, consider the
‘diagonal’ sequence (fnn). Choose xk ∈ [0, 1]. Then for n ≥ k, (fnn) is a subsequence of
(fkn). Hence (fnn) converges. In practice we let (xn) be an enumeration of Q ∩ [0, 1] but it
can be any sequence that enumerates a countable, dense subset of [0, 1]. In the proof below,
we will show pointwise convergence at every point in (xn).

The last ingredient, as mentioned above, is the following condition:

Definition. A sequence (fn) ⊂ C[0, 1] is equicontinuous at a point x0 ∈ [0, 1] if for any
ε > 0 there is a δ > 0 such that |x − x0| < δ implies |fn(x) − fn(x0)| < ε for all n. The
sequence is equicontinuous if it is equicontinuous at every point in [0, 1], and uniformly
equicontinuous if δ does not depend on x0.

Now we can prove the main theorem characterizing compactness in C[0, 1].

Theorem 14.2.1 (Arzela-Ascoli). If (fn) ⊂ C[0, 1] is bounded and uniformly equicontinuous,
then (fn) has a converging subsequence.

Proof. By the arguments above, we may assume (fn) is a bounded sequence in C[0, 1] such
that (fn(r)) converges for all r ∈ Q∩ [0, 1]. By uniform equicontinuity, for every ε > 0 there
is a single δ > 0 such that

|x− y| < δ =⇒ |fn(x)− fn(y)| < ε
3

for all n.
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Let 0 = r0 < r1 < r2 < · · · < rk = 1 such that ri ∈ Q and |ri+1 − ri| < δ; this is possible by
the density of the rationals in any interval of real numbers. For each ri, choose Ni such that
|fn(ri)− fm(ri)| < ε

3
for all n,m > Ni. Then set N = max

0≤i≤k
{Ni} and consider

|fn(x)− fm(x)| ≤ |fn(x)− fn(r)|+ |fn(r)− fm(r)|+ |fm(r)− fm(x)|
for some r = ri such that |x− ri| < δ

< ε
3

+ |fn(r)− fm(r)|+ ε
3

by equicontinuity

< ε
3

+ ε
3

+ ε
3

= ε for all m,n ≥ N ≥ Ni.

This string of inequalities is valid for all x ∈ [0, 1] by our choice of the ri. Therefore
||fn − fm||∞ < ε for all n,m ≥ N , and since (C[0, 1]|| · ||∞) is complete, this shows (fn)
converges.

We immediately obtain the following corollary.

Corollary 14.2.2. If K ⊂ C[0, 1] is closed, bounded and equicontinuous then K is compact.

A partial converse is also true.

Proposition 14.2.3. If K ⊂ C[0, 1] is compact then K is equicontinuous.

Proof. Suppose to the contrary that K is compact but not equicontinuous. Then there is
an ε > 0 and sequences (xn), (yn) ⊂ [0, 1] and (fn) ⊂ K such that |xn − yn| −→ 0 but
|fn(xn) − fn(yn)| ≥ ε for all n. Without loss of generality, we may assume since [0, 1] and
K are compact that (xn) → x and (yn) → y in [0, 1] and (fn) → f in K. Note that
|xn − yn| −→ 0 implies x = y. Then

|fn(xn)− f(x)| ≤ |fn(xn)− f(xn)|+ |f(xn)− f(x)|
≤ ||fn − f ||∞ + |f(xn)− f(x)|,

but lim
n→∞

||fn − f ||∞ = 0, and moreover lim
n→∞

|f(xn) − f(x)| because (fn) → f , (xn) → x

and f is a continuous function. This shows that lim
n→∞

fn(xn) = f(x); similarly, lim
n→∞

fn(yn) =

f(y) = f(x). Finally, this shows that

lim
n→∞

|fn(xn)− fn(yn)| = 0,

a contradiction. Therefore compactness implies equicontinuity in C[0, 1].

Example 14.2.4. Consider the sequence of continuous functions fn(x) = xn. The first 10
elements of the sequence are shown below.
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1

1

It can be shown that any subsequence of (fn) must converge to

f(x) =

{
0 0 ≤ x < 1

1 x = 1

but f 6∈ C[0, 1] so by the Arzela-Ascoli Theorem, (fn) must not be equicontinuous. In fact,
let ε = 1

2
and consider the interval [1− δ, 1] for sufficiently small δ. Let x = 1 and y = 1− δ,

by which |x− y| ≤ δ and

|fn(x)− fn(y)| = |1n − (1− δ)n| = |1− (1− δ)n|.

Note that since 1− δ < 1, lim
n→∞

(1− δ)n = 0 so (1− δ)n ≤ 1
4

for large enough n. Thus

|fn(x)− fn(y)| ≥
∣∣1− 1

4

∣∣ = 3
4
> 1

2
= ε.

Hence (fn) is not equicontinuous.

The next lemma gives us a nice criterion for checking that a sequence is equicontinuous.

Lemma 14.2.5. Let (fn) ⊂ C[0, 1] where each fn is differentiable and suppose there is some
M > 0 such that ||f ′n||∞ ≤M for all n. Then (fn) is equicontinuous.

Proof. Given any x, y ∈ [0, 1], the Mean Value Theorem (4.3.3) says that there is some
c ∈ [0, 1] such that |fn(x) − fn(y)| = |f ′n(c)| |x − y| ≤ M |x − y| for all n. So given ε > 0,
setting δ = ε

M
shows that (fn) is equicontinuous.

There is an alternate proof of this lemma that uses the fundamental theorem of calculus.

The Arzela-Ascoli Theorem has an important application in the study of initial value
problems. Suppose we have a first order differential equation

y′ = f(y)

y(0) = y0.

Assume f : R→ R is bounded and continuous. Then Peano’s Theorem says the IVP has a
solution.
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Theorem 14.2.6 (Peano’s Theorem). Given a bounded, continuous function f : R → R
and a first order differential equation y′ = f(y), then every initial value problem y(0) = y0

has a solution.

Proof sketch. The first step is to change the IVP into a fixed-point problem. We do this via
the fundamental theorem of calculus:

y(t)− y(0) =

∫ t

0

f(y(s)) ds

=⇒ y(t) = y0 +

∫ t

0

f(y(s)) ds.

Next we set up an iteration scheme:

y0(t) = y0

y1(t) = y0 +

∫ t

0

f(y0(s)) ds

...

yn+1(t) = y0 +

∫ t

0

f(yn(s)) ds.

If the sequence (yn) converges to some function y = y(t) then y is a solution to the initial
value problem. To show convergence, we prove that (yn) is bounded and equicontinuous on
[0, 1] and apply the Arzela-Ascoli Theorem. Consider

|yn(t)| =
∣∣∣∣y0 +

∫ t

0

f(yn−1(s)) ds

∣∣∣∣
≤ |y0|+

∫ t

0

|f(yn−1(s))| ds

≤ |y0|+ tM since f is bounded

≤ |y0|+M for all t ∈ [0, 1].

Hence ||yn||∞ ≤ |y0|+M . Now use the fundamental theorem of calculus to write

|y′n(t)| = |f(yn−1(t))| ≤M

for all t ∈ [0, 1]. This shows that ||y′n||∞ ≤ M , so by Lemma 14.2.5 (yn) is equicontin-
uous. Hence by Arzela-Ascoli, (yn) has a converging subsequence and the limit of such a
subsequence represents a solution to the initial value problem.
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14.3 Approximation

In many different branches of mathematics, it is useful to be able to use ‘nice’ objects to
approximate not-so-nice objects. In the world of functional analysis, this takes the form of
polynomial approximation (there are other types of functional approximations but we study
the most common form here). We will prove the Weierstrass Approximation Theorem, which
says that every function in C[0, 1] can be approximated to an arbitrary degree of accuracy
by a polynomial.

Suppose we are trying to approximate a discontinuous function such as the step function
shown below (left).

0 1
2 1

f

0 1
2 1

The idea is to average over small intervals. Let fn(x) be the average of f(x) on
[
x− 1

n
, x+ 1

n

]
.

Explicitly, this can be written as an integral:

fn(x) =
n

2

∫ x+ 1
n

x− 1
n

f(t) dt.

At times we may need to extend the function outside [0, 1], which is typically done by letting
f(x) = 0 for x 6∈ [0, 1]. Next, we change the limits of integration by setting

fn(x) =

∫ ∞
−∞

n

2
χ[x− 1

n
,x+ 1

n ](t)f(t) dt,

where χI denotes the characteristic function of an interval I, equal to 1 on the defin-
ing interval and 0 elsewhere. The component n

2
χ[x− 1

n
,x+ 1

n ] is typically referred to as the

averaging kernel and it may be written more compactly as

gn(t− x) where gn(t) =
n

2
χ[− 1

n
, 1
n ](t).

This family of functions gn has the following properties

(1) gn ≥ 0 for all n.

(2)

∫ ∞
−∞

gn(t) dt = 1.

(3) The gn concentrate at 0, i.e. as n→∞, there is a greater emphasis on values near 0.
Rigorously, the concentration property says that for all δ > 0,

lim
n→∞

∫ δ

−δ
gn(t) dt = 1, or equivalently, lim

n→∞

∫
[−δ,δ]C

gn(t) dt = 0.
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The reason for using these gn is that

fn(x) =

∫ ∞
−∞

gn(t− x)f(t) dt

inherits nice properties from gn. This description of fn is a special case of

Definition. For two functions f, g : R→ R, the convolution of f by g is

f ∗ g(x) =

∫ ∞
−∞

g(x− t)f(t) dt.

Note that since our gn are all even functions, gn(x− t) = gn(t−x) so that in the language
of convolutions, fn = f ∗ gn.

Proposition 14.3.1. Convolution is commutative, i.e. for any f, g : R → R, f ∗ g(x) =
g ∗ f(x).

Proof. Start with f ∗ g(x) =

∫ ∞
−∞

g(x− t)f(t) dt. Set u = x− t so that du = −dt. Then

f ∗ g(x) = −
∫ −∞
∞

g(u)f(x− u) du =

∫ ∞
−∞

g(u)f(x− u) du = g ∗ f(x).

Our strategy for approximating C[0, 1] functions by polynomials is as follows:

(1) Start with a function f ∈ C[0, 1].

(2) Extend f by f̄ on (−∞,∞) so that

(a) f̄ is uniformly continuous.

(b) f̄ is bounded.

(3) Define fn(x) := f̄ ∗ gn(x) =

∫ ∞
−∞

gn(x− t)f̄(t) dt.

Lemma 14.3.2. (fn) converges to f̄ uniformly.

Proof. Let ε > 0 and choose δ > 0 such that |f̄(x) − f̄(y)| < ε
2

whenever |x − y| < δ, and

choose N such that for every n ≥ N ,

∫
[−δ,δ]C

gn(t) dt <
ε

4M
for some M , by the concentration
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property (3) of gn. Then

|fn(x)− f̄(x)| =
∣∣∣∣∫ ∞
−∞

f̄(x− t)gn(t) dt− f̄(x) · 1
∣∣∣∣

=

∣∣∣∣∫ ∞
−∞

f̄(x− t)gn(t) dt− f̄(x)

∫ ∞
−∞

gn(t) dt

∣∣∣∣ by property (2)

=

∣∣∣∣∫ ∞
−∞

(f̄(x− t)− f̄(x))gn(t) dt

∣∣∣∣
≤
∫ ∞
−∞
|f̄(x− t)− f̄(x)|gn(t) dt by property (1)

=

∫
[−δ,δ]
|f̄(x− t)− f̄(x)|gn(t) dt+

∫
[−δ,δ]C

|f̄(x− t)− f̄(x)|gn(t) dt

≤
∫

[−δ,δ]

ε

2
gn(t) dt+

∫
[−δ,δ]C

2Mgn(t) dt

by uniform convergence and boundedness of f̄

≤ ε

2
· 1 + 2M · ε

4M
for large enough n by property (3)

=
ε

2
+
ε

2
= ε.

Hence (fn)→ f̄ and since δ didn’t depend on x or y, the convergence is uniform.

What if gn(x) is a polynomial? What can we say about fn? For example, if gn(t) =
c0 + c1t+ c2t

2 then fn inherits the property of being a polynomial, at least on [0, 1]:∫ ∞
−∞

gn(x− t)f̄(t) dt =

∫ ∞
−∞

(c0 + c1(x− t) + c2(x− t)2)f̄(t) dt

= c0

∫ ∞
−∞

f̄(t) dt+ c1x

∫ ∞
−∞

f̄(t) dt− c1

∫ ∞
−∞

tf̄(t) dt

+ c2x
2

∫ ∞
−∞

f̄(t) dt− 2c2x

∫ ∞
−∞

tf̄(t) dt+ c2

∫ ∞
−∞

t2f̄(t) dt.

We can collect these since the integrals are just constant, yielding

fn(x) = d0 + d1x+ d2x
2,

a polynomial.

−2 −1 0 1 2

203



14.3. Approximation Chapter 14. Function Spaces

A technical issue is that our choice of gn must satisfy the given properties, so we will choose a
quadratic-type polynomial on [−2, 2]. We make the following observations about our chosen
family of functions gn:

�

∫ ∞
−∞

gn(x− t)f̄(t) dt =

∫ 2

−1

gn(x− t)f̄(t) dt.

� We are primarily interested in x ∈ [0, 1] to study C[0, 1] functions, so we only need
gn(x − t) to be a polynomial for 0 ≤ x ≤ 1 and −1 ≤ t ≤ 2. Added together, these
give us −2 ≤ x− t ≤ 2 which is why we choose gn to be polynomials on [−2, 2].

To construct gn explicitly, first consider the following family of functions.

−2 −1 0 1 2

pn(x) =

{(
1− x2

4

)n
−2 ≤ x ≤ 2

0 elsewhere.

We can see that pn ≥ 0, that is, pn satisfy nonnegativity. Let

cn =

∫ ∞
−∞

pn(x) dx =

∫ 2

−2

(
1− x2

4

)n
dx.

Now we can define gn(x) = 1
cn
pn(x). By construction, the gn satisfy the nonnegativity and

unit area properties. Note that as n→∞, cn and pn both tend to 0 so we will estimate cn
to control this term in the formula for gn. Differentiating pn gives us

p′n(x) = n

(
1− x2

4

)n−1(
−2x

4

)
= −nx

2

(
1− x2

4

)n−1

.

It’s also helpful to know concavity of gn so we differentiate again:

p′′n(x) = −n
2

(
1− x2

4

)n−1

− nx

2
(n− 1)

(
1− x2

4

)n−2(
−2x

4

)
= −n

2

(
1− x2

4

)n−1

+ n(n− 1)
x2

4

(
1− x2

4

)n−2

= n

(
1− x2

4

)n−2 [
−1

2

(
1− x2

4

)
+ (n− 1)

x2

4

]
.

The inflection points are found by solving the following equations:

0 =

(
1− x2

4

)n−2

=⇒ x = ±2

0 = −1

2

(
1− x2

4

)
+ (n− 1)

x2

4

0 = −1

2
+

1

2
· x

2

4
+ (n− 1)

x2

4
=⇒ xn = ± 2√

2n− 1
.
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The latter set of inflection points are the ones we are interested in; these are depicted on the
graph below.

−2 −xn xn 2

�

� �

�

Looking at the inscribed triangle, we see its area is 1
2
· (2xn) · 1 = xn and this is a lower

bound for the total area under the curve, which is cn. Hence cn ≥ 2√
2n−1

.
Now we can prove the concentration property for gn by taking an arbitrary δ > 0 and

computing the integral ∫ 2

δ

gn(x) dx ≤ (2− δ)gn(δ) =
1

cn
pn(δ)(2− δ)

≤
√

2n− 1

2

(
1− δ2

4

)n
(2− δ)

=

√
2n− 1

2
rn(2− δ)

for some 0 < r < 1. This term goes to 0 as n gets large and therefore as n → ∞,∫
[−δ,δ]C

gn(x) dx −→ 0 as n→∞, showing gn satisfies the concentration property.

With our gn in hand that satisfies the important properties of an approximating polyno-
mial, we next prove that fn(x) = f̄ ∗ gn(x) is a polynomial for all x ∈ [0, 1]. For x ∈ [0, 1]
and t ∈ [−1, 2], we showed that −2 ≤ x− t ≤ 2. Thus

gn(x− t) =
1

cn

(
1− (x− t)2

4

)n
=

2n∑
k=0

akt
kx2n−k + b.

This allows us to compute the convolution:

f̄ ∗ gn(x) =

∫ ∞
−∞

gn(x− t)f̄(t) dt

=

∫ 2

−1

(
2n∑
k=0

akt
kx2n−k + b

)
f̄(t) dt

=
2n∑
k=0

(
akx

2n−k
∫ 2

−1

tkf̄(t) dt

)
+ b

∫ 2

−1

f̄(t) dt,
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which is a polynomial in x.
We are now ready to prove the Weierstrass Approximation Theorem, which in general

terms says that every f ∈ C[0, 1] can be approximated to any level of accuracy by a polyno-
mial on [0, 1]. In analytic terms,

Theorem 14.3.3 (Weierstrass Approximation). The set of polynomials is dense in C[0, 1].

Proof. We have defined a sequence (fn) defined appropriately for any f(x) ∈ C[0, 1] such
that each fn is a polynomial on [0, 1]. Moreover, we proved that (fn) converges to f uniformly
on [0, 1]. This shows the set of polynomials is dense in C[0, 1].

Another approximation technique is to let

cε =

∫ ∞
−∞

e−(t/ε)2 dt and gε(x) =
1

cε
e−(x/ε)2

for any ε > 0. Then each gε condenses around 0 and decays rapidly outside [0, 1].

−2 −1 0 1 2

To compute numerical approximations for f(x) (e.g. with Mathematica), we can define a
family gε(x) that approximate f and then further approximate the gε with polynomials.
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14.4 Contraction Mapping

Definition. Let (X, d) be a complete metric space and suppose F : X → X is a function on
this metric space. If there is a number α ∈ (0, 1) such that d(F (x), F (y)) ≤ α d(x, y) for all
x, y ∈ X, then F is called a contraction.

Lemma 14.4.1. Contractions are continuous.

Proof. Let F : X → X be a contraction. Then given ε > 0, choose δ = ε and note that if
d(x, y) < δ, we have

d(F (x), F (y)) ≤ α d(x, y) < αδ < δ = ε.

Hence F is continuous.

The main reason we study contraction maps is to determine fixed points. The follow-
ing theorem, known as the contraction mapping theorem, asserts that a contraction on a
complete metric space has a unique fixed point.

Theorem 14.4.2 (Contraction Mapping Theorem). Let X be a complete metric space and
F : X → X be a contraction. Then F has a unique fixed point x ∈ X such that F (x) = x.

Proof. Let x1 ∈ X and for each n ≥ 2, define xn+1 = F (xn). Although we have no target
for convergence, X is complete so we will show the sequence (xn) is Cauchy. Take n,m ∈ N
– without loss of generality, assume n > m. Then consider

d(xn, xm) = d(F (xn−1), F (xm−1))

≤ α d(xn−1, xm−1)

≤ αm−1d(xn−m+1, x1) after m− 1 iterations.

Now we can write

d(xn, xm) ≤ d(xn, xn−1) + d(xn−1, xn−2) + . . .+ d(xm+1, xm) by the triangle inequality

≤ αn−2d(x2, x1) + αn−3d(x2, x1) + . . .+ αm−1d(x2, x1) by the above

= d(x2, x1)(αm−1 + . . .+ αn−2)

≤ d(x2, x1)(αm−1 + . . .+ αn−2 + αn−1 + αn + . . .)

= d(x2, x1)
αm−1

1− α
by geometric series.

Now, given ε > 0, we can choose N ∈ N such that d(x2, x1)α
N−1

1−α < ε. Then by the above
estimate, d(xn, xm) < ε for all n,m > N . Hence (xn) is Cauchy and by completeness,
(xn)→ x for some x ∈ X.

We will show that x is the unique fixed point of F . First, since F is continuous by
Lemma 14.4.1, we can take the limit of our iterative definition:

lim
n→∞

F (xn) = lim
n→∞

xn =⇒ F (x) = x.
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Hence x is a fixed point of F . Suppoes y is another fixed point of F , that is, F (y) = y. If x
and y are distinct,

0 < d(x, y) = d(F (x), F (y)) ≤ α d(x, y)

and dividing through by d(x, y) (which is assumed to be nonzero) shows that 1 ≤ α, contra-
dicting 0 < α < 1. Therefore the fixed point x is unique.

The search for fixed points, and in particular unique fixed points, is critical in the study
of differential equations (recall Peano’s theorem, Section 14.2). The contraction mapping
theorem may be used to proved the so-called Existence and Uniqueness Theorem for ODEs.

Theorem 14.4.3. Suppose we have an initial value problem y′(t) = f(y(t), t), y(0) = y0,
where f : R2 → R is a continuous function satisfying the Lipschitz condition. Then there
exists an ε > 0 such that the IVP has a unique solution on the interval [0, ε].

Proof sketch. The Lipschitz condition says that there is some k > 0 such that

|f(t, y2)− f(t, y1)| ≤ k |y2, y1| for all y1, y2 ∈ R.

As in Peano’s theorem, we change the IVP into an integral equation:

y(t) = y0 +

∫ t

0

f(y(s), s) ds.

To prove Theorem 14.4.3, we will find a continuous function y satisfying this equation. Let
X = {y ∈ C[0, ε] : |y(t) − y0| ≤ δ for all t ∈ [0, ε]}. One can show that X is a complete
metric space. For each y ∈ X, define

F (y) = y0 +

∫ t

0

f(y(s), s) ds.

Now we have a fixed point problem, so we will show F is a contraction. First, F (y) is a
continuous function on [0, ε] for each y ∈ X because y0 +

∫ t
0
f(y(s), s) ds is differentiable on

[0, ε] (apply the fundamental theorem of calculus). Next, the extreme value theorem says
that f is bounded on the closed interval [0, ε]. Then

|F (y)(t)− y0| =
∣∣∣∣∫ t

0

f(y(s), s) ds

∣∣∣∣
≤
∫ t

0

|f(y(s), s)| ds

≤Mt since f is bounded on [0, ε]

≤Mε.

This shows that the appropriate restriction on ε is ε ≤ δ
M

and shows that F is well-defined.
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To show F is a contraction, let y1, y2 ∈ X and consider

|F (y2)(t)− F (y1)(t)| =
∣∣∣∣∫ t

0

(f(y2(s), s)− f(y1(s), s)) ds

∣∣∣∣
≤
∫ t

0

|f(y2(s), s)− f(y1(s), s)| ds

≤ k

∫ t

0

|y2(s)− y1(s)| ds by the Lipschitz condition

≤ k||y2 − y1||∞
∫ t

0

1 ds = kt||y2 − y1||∞

≤ kε||y2 − y1||∞.

This shows that if we choose ε ≤ 1
2k

, then |F (y2)(t) − F (y1)(t)| ≤ 1
2
||y2 − y1||∞ and taking

the sup of both sides yields

||F (y2)− F (y1)||∞ ≤ 1
2
||y2 − y1||∞.

Hence F is a contraction, so by the contraction mapping theorem, F has a unique fixed point
y satisfying

y(t) = F (y)(t) = y0 +

∫ t

0

f(y(s), s) ds.

Therefore y(t) is the unique solution to our original IVP.
To recap a bit, the necessary assumptions to make a formal proof of the existence and

uniqueness theorem work are

� Assume k > 0 is a value satisfying the Lipschitz condition for f .

� Pick δ > 0 and notice that f is continuous on the closed rectangle 0 ≤ t ≤ 1, y0 − δ ≤
y ≤ y0 + δ, so there exists an M > 0 such that |f(y, t)| ≤M on this rectangle.

� Assume ε ≤ 1, ε ≤ δ
M

and ε ≤ 1
2k

.

Example 14.4.4. Consider the IVP y′ = y2, y(0) = 1. In the study of ODEs, this is called
a separable differential equation because it can be written

dy

y2
= dt.

We can integrate, yielding −y−1 = t + c for a constant c. By the initial condition, c = −1
so we have y = 1

1−t . Notice that y2 fails the Lipschitz condition on R, but the proof above
can be adapted to show this IVP has a unique solution.

The above example shows that even without the Lipschitz condition, we can prove exis-
tence and uniqueness of solutions to initial value problems. This brings up a related question:
can fixed points be found only with the Lipschitz condition? The following example shows
that the answer is no in general.
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Example 14.4.5. Consider the metric space (C[0,∞), | · |) and the function F (x) = x+ 1
1+x

.

y = x
F (x)

Note that |F (x)− F (y)| < |x− y| for all x, y ∈ [0,∞) so F almost satisfies the hypotheses
of the contraction mapping theorem. However, no fixed point exists – graphically, a fixed
point is represented by a point on the line y = x, but as we can see from the picture, F (x)
never intersects this line.
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14.5 Differentiable Function Spaces

Recall the space C1[0, 1] = {f : [0, 1] → R : f is differentiable}. We turn C1[0, 1] into a
normed linear space by defining

||f ||C1 = ||f ||∞ + ||f ′||∞.

It turns out that (C1[0, 1], || · ||C1) is complete and therefore a Banach space. The Weierstrass
Approximation Theorem (14.3.3) has a nice generalization to C1[0, 1]:

Theorem 14.5.1. The polynomials are dense in C1[0, 1].

Proof. Let f ∈ C1[0, 1]. Since f is continuously differentiable, f ′ ∈ C[0, 1]. By the Weier-
strass Approximation Theorem (14.3.3), there exists a polynomial p such that ||f ′−p||∞ < ε

2

for any given ε > 0. Let

P (x) = f(0) =

∫ x

0

p(t) dt.

By the fundamental theorem of calculus, f(x) = f(0) +

∫ x

0

f ′(t) dt so we have

|f(x)− P (x)| =
∣∣∣∣∫ x

0

f ′(t) dt−
∫ x

0

p(t) dt

∣∣∣∣
≤
∫ x

0

|f ′(t)− p(t)| dt

<
εx

2
≤ ε

2
for all x ∈ [0, 1].

This shows ||f − P ||∞ < ε
2

which implies ||f − P ||C1 = ||f − P ||∞ + ||f ′ − p|| < ε
2

+ ε
2

= ε.
Hence the polynomials are dense in C1[0, 1].

Example 14.5.2. Consider an oscillating function such as f(x) = ε sin(Mx), ε > 0, M ≥ 1.

ε

−ε

Clearly ||f ||∞ ≤ ε. However, ||f ′||∞ may be large, depending on how we choose M . Thus
||f ||C1 is not bounded by any constant multiple of ||f ||∞. By definition, ||g||∞ ≤ ||g||C1 for
any g ∈ C1[0, 1], so this shows that the C1 norm is finer than the sup norm.
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14.6 Completing a Metric Space

Recall that C[0, 1] is complete with respect to || · ||∞, but not complete with respect to || · ||2.
In functional analysis we still want to be able to use || · ||2 since it is useful in other settings.
For example, calculating angles between “vectors” (functions) and defining an inner product
(creating a Hilbert space; see Section 20.2) are possible in (C[0, 1], || · ||2). Therefore, our
motivation in this section is to develop a completion of (C[0, 1], || · ||2).

The most useful analogy is the completion of Q into the real numbers R. We want to
reconstruct the aspects of this construction as closely as possible. Let (X, d) be a metric
space. We define a relation ∼ on the set of Cauchy sequences in X by (xn) ∼ (yn) if and
only if lim

n→∞
d(xn, yn) = 0.

Lemma 14.6.1. ∼ is an equivalence relation.

Proof. For all n ∈ N, d(xn, xn) = 0 so (xn) ∼ (xn). If (xn) ∼ (yn), then lim
n→∞

d(xn, yn) =

lim
n→∞

d(yn, xn) shows that (yn) ∼ (xn). Lastly, suppose (xn) ∼ (yn) and (yn) ∼ (zn). Then

the triangle inequality gives us

d(xn, zn) ≤ d(xn, yn) + d(yn, zn)

and both of the terms on the right can be made small with sufficiently large n, so d(xn, zn)→
0. Hence (xn) ∼ (zn) so ∼ is an equivalence relation.

This allows us to partition the set of Cauchy sequences in (X, d) via ∼. For any Cauchy
sequence (xn) ⊂ X, denote the equivalence class of (xn) by

[(xn)] = {(yn) ⊂ X | (yn) is Cauchy and (yn) ∼ (xn)}.

Lemma 14.6.2. For any Cauchy sequences (xn), (yn) ⊂ X, lim
n→∞

d(xn, yn) exists.

Proof. We show that d(xn, yn) is a Cauchy sequence of real numbers and use the completeness
of R. First, for any n,m ∈ N,

d(xn, yn) ≤ d(xn, xm) + d(xm, ym) + d(ym, yn)

=⇒ d(xn, yn)− d(xm, ym) ≤ d(xn, xm) + d(ym, yn).

Similarly, d(xm, ym)− d(xn, yn) ≤ d(xn, xm) + d(yn, ym). Thus

|d(xn, yn)− d(xm, ym)| ≤ d(xn, xm) + d(yn, ym)

and given any ε > 0 we can choose N large enough so that for all n,m > N , d(xn, xm) < ε
2

and d(yn, ym) < ε
2

by Cauchy. Hence

|d(xn, yn)− d(xm, ym)| < ε
2

+ ε
2

= ε for all n,m > N.

So d(xn, yn) is a Cauchy sequence in R and therefore lim
n→∞

d(xn, yn) exists.
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Definition. For a metric space (X, d), define the completion of X with respect to d by
X = {[(xn)] : (xn) ⊂ X is Cauchy}. Elements of X are equivalence classes of Cauchy
sequences, which are written x̄ = [(xn)]. A metric on X may be defined for any x̄, ȳ ∈ X by

d̄(x̄, ȳ) = lim
n→∞

d(xn, yn).

Lemma 14.6.2 shows that d̄(x̄, ȳ) exists for all x̄, ȳ ∈ X but to shows d̄ is well-defined,
we need to verify that d(xn, yn) does not depend on which Cauchy sequences we pick from
each equivalence class.

Lemma 14.6.3. Let (xn), (x′n) and (yn) be Cauchy sequences in X and suppose (xn) ∼ (x′n).
Then

lim
n→∞

d(xn, yn) = lim
n→∞

d(x′n, yn).

Proof. By the triangle inequality,

d(xn, yn) ≤ d(xn, x
′
n) + d(x′n, yn)

=⇒ d(xn, yn)− d(x′n, yn) ≤ d(xn, x
′
n).

Similarly, d(x′n, yn)− d(xn, yn) ≤ d(xn, x
′
n), so

|d(xn, yn)− d(x′n, yn)| ≤ d(xn, x
′
n).

The right side can be made small for sufficiently large n since (xn) ∼ (x′n), so we conclude

lim
n→∞

d(xn, yn) = lim
n→∞

d(x′n, yn).

The properties of a metric are now easy to verify for d̄, which shows

Proposition 14.6.4. (X, d̄) is a metric space.

Recall that Q is a dense subset of R. In the same way, we want to first think of X as
a subset of X – formally, it is not defined this way – and then show X is dense in X. In
other words, we want to define an injective function ϕ : X → X, i.e. a function such that
ϕ(x) = [(xn)] for some Cauchy sequence (xn) ⊂ X.

Definition. Let ϕ : X → X be the map ϕ(x) = [(xn)] where xn = x for all n.

The constant sequence (xn) = (x, x, x, x, . . .) is clearly Cauchy, so this gives us ϕ(X) as
a subset of X, i.e. ϕ is an embedding.

Lemma 14.6.5. ϕ is an isometry.

Proof. Let x, y ∈ X and define the constant sequences (xn) = (x, x, x, . . .) and (yn) =
(y, y, y, . . .). Then d̄(ϕ(x), ϕ(y)) = lim

n→∞
d(xn, yn) = lim

n→∞
d(x, y) = d(x, y). Hence ϕ preserves

distances, that is, ϕ is an isometry.
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Lemma 14.6.6. ϕ(X) is dense in X.

Proof. Let x̄ ∈ X, where x̄ = [(xn)] for some representative Cauchy sequence (xn) ⊂ X.
Consider the sequence (ϕ(xk)) ⊂ X. Then d̄(ϕ(xk), x̄) = lim

n→∞
d(xk, xn). For a given ε > 0,

let N > 0 such that for all k, n > N , d(xk, xn) < ε. This is possible since (xn) is Cauchy.
Then d̄(ϕ(xk), x̄) < ε for all k > N . Hence ϕ(X) is a dense subset of X.

Our main goal is to show that X is a complete metric space. Our strategy has two parts:

(1) Show that if (x̄n) ⊂ ϕ(X) is Cauchy, then (x̄n) converges in X.

(2) Show that any arbitrary Cauchy sequence (x̄n) ⊂ X converges in X.

Lemma 14.6.7. If (x̄k) ⊂ ϕ(X) is Cauchy then (x̄k) converges in X.

Proof. Let x̄k = ϕ(xk), i.e. x̄k = [(xkn)] for the sequence (xkn), xkn = xk for all n. Since
(ϕ(xk)) is Cauchy in X and ϕ is an isometry, (xk) is Cauchy in X and therefore we can
define x̄ = [(xn)]. Consider

d̄(x̄k, x̄) = d̄(ϕ(xk), x̄) = lim
n→∞

d(xkn, xn) = lim
n→∞

d(xk, xn).

Then as in the last proof, for a given ε > 0 we can choose N > 0 such that for all k, n > N ,
d(xk, xn) < ε by the Cauchy condition. Thus d̄(x̄k, x̄) < ε for all k > N , so (x̄k) converges
to x̄.

Theorem 14.6.8. X is a complete metric space.

Proof. We have proven that X is a metric space, so it remains to show that if (x̄n) ⊂ X
is a Cauchy sequence then (x̄n) converges in X. Given such a Cauchy sequence, choose
(ȳn) ⊂ ϕ(X) such that d̄(x̄n, ȳn) < 1

n
for all n, which is possible since ϕ(X) ⊂ X is dense.

Consider the following inequality:

d̄(ȳn, ȳm) ≤ d̄(ȳn, x̄n) + d̄(x̄n, x̄m) + d̄(x̄m, ȳm) < 1
n

+ d̄(x̄n, x̄m) + 1
m
.

Given ε > 0, choose N > 0 such that for all n,m > N , 1
n

+ 1
m
< ε

2
and d̄(x̄n, x̄m) < ε

2
, using

the Archimedean Principle and the fact that (x̄n) is Cauchy. Then for all n,m > N ,

d̄(ȳn, ȳm) < ε
2

+ ε
2

= ε,

which shows (ȳn) is Cauchy. By Lemma 14.6.7, (ȳn) converges to some ȳ ∈ X. We will show
that (x̄n) also converges to ȳ to complete the proof. Consider

d̄(x̄n, ȳ) ≤ d̄(x̄n, ȳn) + d̄(ȳn, ȳ) < 1
n

+ d̄(ȳn, ȳ).

Taking the limit as n → ∞ makes the right side small since (ȳn) → ȳ, so this shows
d̄(x̄n, ȳ)→ 0. Hence (x̄n) converges to ȳ.

Remark. The technique used in the proof above is easily modified for any metric space with
a dense subset.
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Definition. The Lebesgue space L2[0, 1] is defined as the completion of C[0, 1] with respect
to the norm || · ||2.

Example 14.6.9. Consider the step function

f(x) =

{
0 if 0 ≤ x ≤ 1

2

1 if 1
2
< x ≤ 1.

Recall that we found a sequence (fn) ⊂ C[0, 1] that is Cauchy and “converges” to f(x) outside
C[0, 1]. Technically, f(x) is not an element of L2[0, 1] because objects in the completion
L2[0, 1] are equivalence classes of Cauchy sequences in C[0, 1]. However, it’s common to
denote [(fn)] by f(x) ∈ L2[0, 1] and proceed with further computation.
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14.7 Sobolev Space

For the space of differentiable functions C1[0, 1] we can equip an alternate norm || · ||1,2
defined by

||f ||1,2 = ||f ||2 + ||f ′||2 =

(∫ 1

0

f 2

)1/2

+

(∫ 1

0

(f ′)2

)1/2

.

Unlike with the || · ||C1 norm, the normed linear space with respect to || · ||1,2 is not complete.

Definition. The Sobolev space W 1,2[0, 1] is the completion of (C1[0, 1], || · ||1,2).

This space has turned out to be of vital importance in modern analysis for finding solu-
tions to differential equations, since W 1,2[0, 1] has some notion of differentiability.

There is even a limited notion of differentiability for L2[0, 1] functions. Let f̄ ∈ L2[0, 1], so
f̄ = [(fn)] for a Cauchy sequence (fn) ⊂ C[0, 1]. Then for any g ∈ C[0, 1] and 0 ≤ a < b ≤ 1,∣∣∣∣∫ b

a

g(t) dt

∣∣∣∣ ≤ ∫ b

a

|g(t)| dt

≤
(∫ b

a

12 dt

)1/2(∫ b

a

g(t)2 dt

)1/2

by Hölder’s inequality (Lemma 14.1.2)

= (b− a)1/2||g||2.

So

∣∣∣∣∫ b

a

g

∣∣∣∣ ≤ ||g||2. Applied to the sequence (fn), this means

∣∣∣∣∫ b

a

(fn − fm)

∣∣∣∣ ≤ ||fn − fm||2
which implies

(∫ b

a

fn

)
is a Cauchy sequence in R and hence converges. To show that this

integral doesn’t depend on our choice of (fn), suppose (hn) ∼ (fn). Then by the above work,∣∣∣∣∫ b

a

fn −
∫ b

a

hn

∣∣∣∣ =

∣∣∣∣∫ b

a

(fn − hn)

∣∣∣∣ ≤ ||fn − hn||2,
but since the sequences are in the same equivalence class, ||fn − hn||2 −→ 0 as n gets large.
Hence the integrals are the same and we can state the following definition.

Definition. For any f̄ = [(fn)] ∈ L2[0, 1], we define the L2 integral∫ b

a

f̄ = lim
n→∞

(∫ b

a

fn

)
.

It can be verified that

∫ b

a

f̄ has all the nice properties of the ordinary integral from single-

variable calculus. The story doesn’t end there, however. Objects in W 1,2[0, 1] are even nicer
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for integration. Take f̄ ∈ W 1,2[0, 1], with f̄ = [(fn)] where (fn) is now Cauchy with respect
to || · ||1,2. For any g ∈ C1[0, 1], differentiability allows us to write

g(x) = g(0) +

∫ x

0

g′(t) dt

for any x ∈ [0, 1], which means

|g(0)| ≤ |g(x)|+
∣∣∣∣∫ x

0

g′(t) dt

∣∣∣∣
≤ |g(x)|+

(∫ x

0

12 dt

)1/2(∫ x

0

g′(t)2 dt

)1/2

by Hölder’s inequality (Lemma 14.1.2)

≤ |g(x)|+ ||g′||2.

If we integrate both sides over the whole interval, this becomes∫ 1

0

|g(0)| dt ≤
∫ 1

0

|g(x)| dx+

∫ 1

0

||g′||2 dx

|g(0)| ≤ ||g||2 + ||g′||2 using Hölder’s inequality again

= ||g||1,2.

Now for any x ∈ [0, 1], we have

|g(x)| ≤ |g(0)|+
∫ x

0

|g′(t)| dt

≤ ||g||1,2 + ||g′||2 using the above manipulations

≤ ||g||1,2 + ||g||1,2 = 2||g||1,2

and taking the max gives us the following norm comparison: ||g||∞ ≤ 2||g||1,2. Hence || · ||∞
is bounded by the || · ||1,2 norm.

Returning to the sequence (fn), our work so far shows that ||fn− fm||∞ ≤ 2||fn− fm||1,2
so since (fn) is Cauchy with respect to || · ||1,2, this implies it is also Cauchy with respect to
||·||∞. We proved (C[0, 1], ||·||∞) is complete, so (fn) converges to some f ∈ C[0, 1]. Suppose
we also have (gn) ∼ (fn). Then the inequalities above give us ||gn − fn||∞ ≤ 2||gn − fn||1,2
but (fn) and (gn) are in the same equivalence class, so the right side goes to 0 as n → ∞.
Therefore there is a well-defined choice of limit f ∈ C[0, 1] which satisfies lim(fn) = f for
f̄ = [(fn)] ∈ W 1,2[0, 1]. In fact, this gives us an embedding W 1,2[0, 1] ↪→ C[0, 1].

The most important theorem for Sobolev spaces is

Theorem 14.7.1 (Rellich-Kondrakov). Let (f̄n) ⊂ W 1,2[0, 1] be a bounded sequence and
let (fn) be a representative sequence of (f̄n) in C[0, 1]. Then (fn) has a subsequence which
converges in C[0, 1].

Proof. If (f̄n) is bounded then there is an M > 0 such that ||fn||1,2 ≤ ||f̄n|| ≤ M for all n.
We showed that || · ||∞ is bounded by || · ||1,2 so this implies the ||fn||∞ are bounded as well.
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Write fn(x) = fn(0) +

∫ x

0

f ′n(t) dt using the fundamental theorem of calculus. Then for all

x, y ∈ [0, 1] and n ∈ N,

|fn(y)− fn(x)| =
∣∣∣∣∫ y

x

f ′n(t) dt

∣∣∣∣
≤
∫ y

x

|f ′n(t)| dt

≤
(∫ y

x

12 dt

)1/2(∫ y

x

|f ′n(t)|2 dt
)1/2

by Hölder’s inequality (Lemma 14.1.2)

= |y − x|1/2||fn||1,2
≤M |y − x|1/2.

Thus (fn) is both bounded and equicontinuous in C[0, 1] so the Arzela-Ascoli Theorem
(14.2.1) says there is a subsequence which converges in C[0, 1].

Corollary 14.7.2. There is a compact embedding of W 1,2[0, 1] into L2[0, 1].
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15.1 Differentiability

In single-variable calculus (see Section 4.2), if lim
h→0

f(x0 + h)− f(x)

h
exists then we say f

is differentiable at x0. As a consequence we can form linear approximations f(x0 + h) ≈
f(x0) + f ′(x0)h, or alternatively f(x) = f(x0) + f ′(x0)(x−x0) + error. We can solve for the
error term, error = f(x)− (f(x0) + f ′(x0)(x− x0)), and divide out by x− x0:

error

x− x0

=
f(x)− f(x0)

x− x0

− f ′(x0)

to see that lim
x→x0

error

x− x0

= 0. This is expressed more compactly in ‘little o’ notation.

Definition. Let f be a continuous function. We say f(x) = o(h) if

lim
h→0

f(x)

h
= 0.

In this notation, error = o(x− x0) in a linear approximation.
To generalize the notion of differentiability, let f : X → Y where X and Y are normed

linear spaces. We want to associate the differentiability of f with an expression of the form

f(x) = f(x0) + L(x− x0) + o(x− x0)

where L is a particularly ‘nice’ function, acting in a similar fashion as the single-variable
derivative f ′.

Definition. A function L : X → Y is called a linear operator if

(1) L(cx) = cL(x) for all c ∈ R and x ∈ X.

(2) L(x1 + x2) = L(x1) + L(x2) for all x1, x2 ∈ X.

The first two facts that one often verifies in single-variable calculus is that the derivative
satisfies (1) and (2), so linear operators do indeed generalize the derivative. This allows us
to define

Definition. For normed linear spaces X and Y and a continuous function f : X → Y , we
say f is differentiable at x0 ∈ X if there is a continuous linear operator L : X → Y such
that f(x) = f(x0) + L(x − x0) + o(x − x0). If such an L exists, it is called the Fréchet
derivative of f at x0, denoted Df(x0).
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Examples.

1 Consider f(x) = x2 at x0 = 1. The Fréchet derivative of f is simply the first derivative
f ′(x) = 2x so the linear approximation at x0 is

x2 = 1 + 2(x− 1) + error.

Solving for error, we have error = x2 − 2x+ 1 = (x− 1)2, and we see that

lim
x→1

(x− 1)2

|x− 1|
= 0

so error = o(x− 1). Hence f(x) = x2 is differentiable.

2 Consider f(x, y) = x2 + y2 at (x0, y0) = (1, 2). The partial derivatives of f are fx = 2x
and fy = 2y so at (x0, y0), the linear approximation is described by

x2 + y2 = 5 + 2(x− 1) + 4(y − 2) + error.

Solving for error, we have error = x2 − 2x+ y2 − 4y + 5 = (x− 1)2 + (y − 2)2, so

lim
(x,y)→(1,2)

(x− 1)2 + (y − 2)2

||(x, y)− (1, 2)||
=

(x− 1)2 + (y − 2)2√
(x− 1)2 + (y − 2)2

= 0.

Hence error = o(x̄− x̄0) so f is differentiable at x̄0 = (1, 2).

3 Consider the function f(x, y) = (x2 + y2, x2 − y2) = (f1(x, y), f2(x, y)) at (x0, y0) =
(1, 2). There is a linear approximation of each component function:

f1(x, y) = 5+2(x−1)+4(y−2)+error1 and f2(x, y) = −3+2(x−1)−4(y−2)+error2,

which can be written together in matrix-vector form:

f(x, y) =

(
f1(x, y)
f2(x, y)

)
=

(
5
−3

)
+

[
2 4
2 −4

](
x− 1
y − 2

)
+−−−→error.

Notice that the matrix Df(x0, y0) is the Jacobian of f , i.e. the matrix of partials:

Df(x0, y0) =

∂f1∂x ∂f1
∂y

∂f2
∂x

∂f2
∂y

 .
4 Is the function f(x, y) = |x|1/2|y|1/2 differentiable at (0, 0)? Although derivatives may

be computed at (0, 0), e.g.

∂f

∂x
(0, 0) = 0 and

∂f

∂y
(0, 0) = 0,

an approximation would look like

|x|1/2|y|1/2 = 0 + 0(x− 0) + 0(y − 0) + error =⇒ error = |x|1/2|y|1/2.
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Then along the path y = x, the little o limit is

lim
(x,y)→(0,0)

y=x

|x|1/2|y|1/2√
x2 + y2

=
|x|
|x|
√

2
=

1√
2
6= 0.

Therefore f is not differentiable at (0, 0). This shows the importance of the tangent
approximation structure in defining differentiability in higher-dimension spaces, rather
than just the existence of derivatives. However, the next theorem shows that in the two-
dimensional case it suffices to show that the partial derivatives exist on a neighborhood
of (x0, y0) – this generalizes well to any finite n.

Theorem 15.1.1. Let f : R2 → R be a continuous function such that ∂f
∂x

and ∂f
∂y

exist and

are continuous on a neighborhood of some (x0, y0). Then f is differentiable at (x0, y0).

Proof. Let error = f(x, y)− f(x0, y0)− fx(x0, y0)(x− x0)− fy(x0, y0)(y− y0). By the Mean
Value Theorem (Section 15.4), this can be written

error = f(x, y)− f(x, y0) + f(x, y0)− f(x0, y0)− fx(x0, y0)(x− x0)− fy(x0, y0)(y − y0)

= fy(x, y
∗)(y − y0) + fx(x

∗, y0)(x− x0)− fx(x0, y0)(x− x0)− fy(x0, y0)(y − y0)

for some y∗ between y and y0, and x∗ between x and x0. Then taking the little o limit,

lim
x̄→x̄0

error

||x̄− x̄0||
= lim

x̄→x̄0

[
(fx(x

∗, y0)− fx(x0, y0))
x− x0

||x̄− x̄0||
+ (fy(x, y

∗)− fy(x0, y0))
y − y0

||x̄− x̄0||

]
.

Notice that

x− x0√
(x− x0)2 + (y − y0)2

≤ x− x0√
(x− x0)2

= 1

and likewise
y − y0√

(x− x0)2 + (y − y0)2
≤ y − y0√

(y − y0)2
= 1,

so these two partials are bounded. Also, since the x∗ and y∗ terms are squeezed between x, x0

and y, y0, respectively, the continuity of fx and fy on the neighborhood of (x0, y0) implies
that fx(x

∗, y0)− fx(x0, y0) −→ 0 and fy(x, y
∗)− fy(x0, y0) −→ 0. Hence

lim
x̄→x̄0

error

||x̄− x̄0||
= 0

so f is differentiable at (x0, y0).
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15.2 Linear Operators

In this section we further study the properties of linear operators introduced in the last
section. Since Fréchet derivatives are linear operators, this will have implications in the
study of differentiable functions on normed linear spaces.

Definition. A linear operator L : X → Y is bounded if there is a c > 0 such that
||Lx||Y ≤ c||x||X for all x ∈ X.

Intuitively, c is a bound on how far a vector x ∈ X may be “stretched” by L.

Lemma 15.2.1. If X and Y are normed linear spaces and X is finite dimensional then any
linear operator L : X → Y is bounded.

Proof. We may assume X = Rn for some n < ∞. Let {e1, . . . , en} be the standard basis.
Then for any x ∈ Rn,

||L(x)|| = ||L(x1e1 + . . .+ xnen)||

≤
n∑
i=1

|xi| ||L(ei)|| by the triangle inequality

≤

(
n∑
i=1

|xi|2
)1/2( n∑

i=1

||L(ei)||2
)1/2

by Hölder’s inequality (Lemma 14.1.2)

= c||x||

where c =

(
n∑
i=1

||L(ei)||2
)1/2

. Hence L is bounded.

Examples.

1 Define D : (C1[0, 1], || · ||∞)→ (C[0, 1], || · ||∞) by Df = f ′. Then for any f, g ∈ C1[0, 1]
and α ∈ R,

D(f + g) = (f + g)′ = f ′ + g′ = Df +Dg

and D(αf) = (αf)′ = αf ′ = αDf,

so D is a linear operator. However, D is unbounded since, for example, D sin(nx) =
n cosx for any n and this sequence is unbounded as n→∞.

2 Define the integral operator L : (C[0, 1], || · ||∞)→ (C1[0, 1], || · ||C1) by

L(f) =

∫ x

0

f(t) dt.

Then since f is continuous on [0, 1], f is Riemann integrable so L is well-defined. Let
F (x) = Lf(x) so that by the fundamental theorem of calculus, F ′(x) = f(x). Then

||L(f)||C1 = ||F ||C1 = ||F ||∞ + ||F ′||∞ = ||F ||∞ + ||f ||∞.
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For any x ∈ [0, 1], consider

|F (x)| ≤
∫ x

0

|f(t)| dt ≤
∫ x

0

||f ||∞ dt ≤ ||f ||∞.

Then taking the sup on both sides gives us ||F ||∞ ≤ ||f ||∞, which further implies
||L(f)||C1 ≤ 2||f ||∞ so the integral operator is bounded.

3 We saw in example 3 in Section 15.1 that many times a derivative is a matrix operator.
Consider for example

L =

[
−1 2
2 2

]
: R2 → R2.

Notice that L is a symmetric matrix so it is (1) diagonalizable, (2) has real eigenvalues
and (3) its eigenvalues are orthogonal. To explicitly compute the eigenvalues, we set
the determinant det(L− λ) equal to 0:∣∣∣∣−1− λ 2

2 2− λ

∣∣∣∣ = 0,

which produces the equation 0 = λ2− λ− 6 = (λ− 3)(λ+ 2). So the eigenvalues for L
are λ1 = 3 and λ2 = −2. Denote unit eigenvectors for λ1, λ2 by ~x1 and ~x2, respectively.
Let ~x ∈ R2. Then since ~x1, ~x2 are a basis for R2 we can write ~x = α~x1 + β~x2 for some
α, β ∈ R. By orthonormality of ~x1, ~x2, we have

||~x||2 = ||α~x1 + β~x2||2 =
√
α2 + β2.

Moreover, since ~x1, ~x2 are eigenvectors, L~x = αL~x1 + βL~x2 = 3α~x1 − 2β~x2. Then

||L~x||2 = ||3α~x1 − 2β~x2||2 =
√

9α2 + 4β2

≤
√

9α2 + 9β2 = 3
√
α2 + β2 = 3||~x||2.

Hence L is a bounded linear operator and it is easy to show that the best bound will
always be the largest (in magnitude) of the eigenvectors; this is sometimes referred to
as the principal eigenvalue of the operator.

4 The Laplacian L = −∆ is a linear operator on C2[0, 1]: Lu = −(uxx + uyy).

Remark. To show L is a bounded linear operator, it suffices to show that ||Lu|| ≤ c||u|| for
all unit vectors u.

Definition. Let X, Y be normed linear spaces. Define the vector space

L(X, Y ) = {L : X → Y | L is a bounded linear operator}

and the operator norm ||L||op = inf{c > 0 : ||Lx||Y ≤ c||x||X for all x ∈ X}.

Lemma 15.2.2. || · ||op is a norm on L(X, Y ).
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Proof. Positivity follows from the definition. Suppose ||L||op = 0. Then for any x ∈ X,
||Lx|| ≤ c||x|| is true for all c > 0. This implies ||Lx|| = 0 for all x, so L must be the zero
operator. To show the triangle inequality, take x ∈ X and consider

||(L1 + L2)x||Y = ||L1x+ L2x||Y
≤ ||L1x||Y + ||L2x||Y by triangle inequality on Y

≤ ||L1||op||x||X + ||L2||op||x||X
= (|L1||op + ||L2||op)||x||X .

It follows that ||L1 + L2||op ≤ ||L1||op + ||L2||op. Scalars are proven similarly. Hence
(L(X, Y ), || · ||op) is a normed linear space.

Lemma 15.2.3. Suppose L : X → Y is a linear operator. Then L is bounded if and only if
L is continuous.

Proof. ( =⇒ ) If L is bounded then ||Lx2 − Lx1||Y = ||L(x2 − x1)||Y ≤ ||L||op||x2 − x1||X .

Given ε > 0, choose δ =
ε

||L||op
so that

||x2 − x1||X < δ =⇒ ||Lx2 − Lx1||Y < ε.

This shows L is continuous.
( =⇒) Conversely, suppose L is continuous. We will use continuity at x0 = 0. Let ε = 1

and choose δ > 0 such that ||Lx||Y ≤ 1 for all ||x||X ≤ δ. In particular, consider x ∈ X for
which ||x||X = δ. Then ∣∣∣∣∣∣L( x

||x||

)∣∣∣∣∣∣
Y
≤ 1

δ
.

This shows L is bounded for all unit vectors, so by the remark above, L is bounded for all
x ∈ X.

We make some observations about || · ||op. For any linear operator L, if x = 0 then
Lx = 0 so we need only check Lx for x 6= 0. Also, by an earlier remark, ||Lx|| ≤ c||x|| for
all x 6= 0 ⇐⇒ ||Lx|| ≤ c for all x ∈ X with ||x|| = 1. Therefore an equivalent definition of
the operator norm is

||L||op = sup{||Lx||Y : x ∈ X, ||x||X = 1}.

With this in mind, it is useful to think of ||L||op as the ‘maximum stretch’ of the unit vectors
in X by L.

Lemma 15.2.4. For any T ∈ L(X, Y ),

||T ||op = sup
x∈X
||x||X=1

||Tx||Y = inf{C ≥ 0 : ||Tx||Y ≤ C||x||X for all x ∈ X}.

Remark. If X
T−→ Y

S−→ Z are bounded operators, then for any x ∈ X,

||STx||Z ≤ ||S||op||T ||op||x||X .

In particular ||ST ||op ≤ ||S||op||T ||op < ∞, so ST ∈ L(X,Z). A special case of this shows
that L(X,X) is an algebra.
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Theorem 15.2.5. If Y is a Banach space then L(X, Y ) is a Banach space.

Proof. What this statement boils down to is that L(X, Y ) is complete if Y is complete. Let
(Ln) ⊂ L(X, Y ) be a Cauchy sequence of bounded linear operators Ln : X → Y . The first
step as with C[0, 1] is to show pointwise convergence of this sequence. Take x ∈ X and
consider the sequence (Ln(x)) in Y . Then

||Ln(x)− Lm(x)||Y = ||(Ln − Lm)x||Y ≤ ||Ln − Lm||op||x||X .

Since (Ln) is Cauchy, for any ε > 0 we may choose an N ∈ N such that ||Ln−Lm||op < ε
||x||X

for all n,m > N , which by the above gives us ||Ln(x) − Lm(x)||Y < ε for all n,m > N .
Hence (Ln(x)) ⊂ Y is Cauchy. Since Y is complete, this sequence converges to some element
y in Y . Define a function L : X → Y by L(x) = y for this element y.

We will next show that L ∈ L(X, Y ). For any x1, x2 ∈ X, consider

L(x1 + x2) = lim
n→∞

Ln(x1 + x2)

= lim
n→∞

Ln(x1) + Ln(x2) by linearity of the Ln

= lim
n→∞

Ln(x1) + lim
n→∞

Ln(x2) by pointwise convergence

= L(x1) + L(x2).

A similar proof shows L(αx) = αL(x) for all x ∈ X,α ∈ R, so L is linear. To show L is
bounded, note that Cauchy sequences are bounded in any space, so there exists an M > 0
such that ||Ln||op ≤M . Then

||Lx||Y = lim
n→∞

||Lnx||Y ≤ lim
n→∞

||Ln||op||x||X ≤ lim
n→∞

M ||x||X = M ||x||X .

Hence L is a bounded linear operator.
Finally, we prove that (Ln) converges to L. Using the triangle inequality, we can write

||Lnx− Lx||Y = ||Lnx− Lmx+ Lmx− Lx||Y
≤ ||Lnx− Lmx||Y + ||Lmx− Lx||Y
≤ ||Ln − Lm||op||x||X + ||Lmx− Lx||Y .

For a given ε > 0, we can choose N large enough so that ||Ln − Lm||op < ε for all n,m > N
by the Cauchy property. This gives us

||Lnx− Lx||Y < ε||x||X + ||Lmx− Lx||Y
and as m → ∞, ||Lmx − Lx||Y −→ 0 by pointwise convergence, so ||Lnx − Lx||Y < ε||x||X
for all x ∈ X and n > N . Hence ||Ln − L||op < ε for all n > N , so (Ln) → L in L(X, Y ).
We therefore conclude that L(X, Y ) is a complete normed linear space.

Proposition 15.2.6. Define the set D = {L ∈ L(X,X) : L is invertible with bounded inverse}
for a Banach space X.

(1) D is open.

(2) The function ϕ : D → D defined by ϕ(L) = L−1 is continuous.

Proof omitted.
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15.3 Rules of Differentiation

In this section we generalize the usual properties of derivatives in a single variable (Sec-
tion 4.2) to Fréchet derivatives. These are

1 (Additivity) Suppose f : X → Y and g : X → Y are differentiable at x0. Then f + g
is differentiable at x0 with D(f + g)(x0) = Df(x0) +Dg(x0).

2 (Product Rule) Let f : X → R and g : X → Y be differentiable at x0. Then
fg : X → Y is differentiable at x0 with D(fg)(x0) = Df(x0) · g(x0) + f(x0) ·Dg(x0).

3 (Chain Rule) Suppose f : X → Y is differentiable at x0 and g : Y → Z is differentiable
at f(x0). Then the composition g◦f : X → Z is differentiable at x0 with D(g◦f)(x0) =
Dg(f(x0)) ·Df(x0).

Notice that in 2 and 3 we must be careful with how we multiply and compose linear
operators. The product rule does not hold, for example, for two differentiable functions
f, g : X → Y since it is not clear how elements of Y should be multiplied.

Proof of 1 . Since f and g are differentiable, we have

(f + g)(x) = f(x) + g(x)

= [f(x0) +Df(x0)(x− x0) + of (x− x0)] + [g(x0) +Dg(x0)(x− x0) + og(x− x0)]

= (f(x0) + g(x0)) + (Df(x0) +Dg(x0))(x− x0) + of (x− x0) + og(x− x0).

Observe that Df(x0) +Dg(x0) is a linear operator, and

lim
x→x0

of (x− x0) + og(x− x0)

||x− x0||
= lim

x→x0

of (x− x0)

||x− x0||
+ lim

x→x0

og(x− x0)

||x− x0||
= 0 + 0 = 0.

So of (x− x0) + og(x− x0) = o(x− x0). Hence f + g is differentiable.

Proof of 2 . Again, differentiability allows us to write

(fg)(x) = f(x)g(x)

= [f(x0) +Df(x0)(x− x0) + of (x− x0)][g(x0) +Dg(x0)(x− x0) + og(x− x0)]

= f(x0)g(x0) + [g(x0)Df(x0) + f(x0)Dg(x0)](x− x0) + f(x0)o(x− x0)

+Df(x0)(x− x0)Dg(x0)(x− x0) +Df(x0)(x− x0)o(x− x0)

+ o(x− x0)g(x0) + o(x− x0)Dg(x0)(x− x0) + o(x− x0)o(x− x0).

We deal with the end terms one at a time to show they are each little o; by the proof of 1 ,
the sum of little o terms is again little o. Consider

lim
x→x0

f(x0)o(x− x0)

||x− x0||
= f(x0) lim

x→x0

o(x− x0)

||x− x0||
= 0.
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Similarly, o(x− x0)g(x0) = o(x− x0) — moreover, this shows that a constant times a little
o term is little o. Next,

lim
x→x0

o(x− x0)o(x− x0)

||x− x0||
= lim

x→x0
o(x− x0) lim

x→x0

o(x− x0)

||x− x0||
= 0 · 0 = 0,

and this also shows products of little o terms are little o. For the rest of the terms, it’s
helpful to observe how fast their norms shrink:

||Df(x0)(x− x0)o(x− x0)|| ≤ |Df(x0)(x− x0)| · ||o(x− x0)||
≤ ||Df ||op||x− x0|| · ||o(x− x0)||.

So we have

lim
x→x0

∣∣∣∣∣∣∣∣Df(x0)(x− x0)o(x− x0)

||x− x0||

∣∣∣∣∣∣∣∣ ≤ lim
x→x0

||Df ||op||x− x0|| · ||o(x− x0)|| = 0

and therefore Df(x0)(x − x0)o(x − x0) = o(x − x0). Similarly o(x − x0)Dg(x0)(x − x0) =
o(x− x0). Lastly,

lim
x→x0

∣∣∣∣∣∣∣∣Df(x0)(x− x0)Dg(x0)(x− x0)

||x− x0||

∣∣∣∣∣∣∣∣ ≤ lim
x→x0

||Df ||op||Dg||op
||x− x0||2

||x− x0||
= lim

x→x0
||Df ||op||Dg||op||x− x0|| = 0.

Thus most of the expression for (fg)(x) is little o, so we have

(fg)(x) = (fg)(x0) + [g(x0)Df(x0) + f(x0)Dg(x0)](x− x0) + o(x− x0).

Hence fg is differentiable.

Proof of 3 . For notational convenience, let y = f(x) and y0 = f(x0). Then differentiability
allows us to write

g(f(x)) = g(y0) +Dg(y0)(y − y0) + o(y − y0)

= g(y0) +Dg(y0)(f(x)− f(x0)) + o(y − y0)

= g(y0) +Dg(y0)[Df(x0)(x− x0) + o(x− x0)] + o(y − y0)

= g(y0) +Dg(y0)Df(x0)(x− x0) +Dg(y0)o(x− x0) + o(y − y0).

Consider Dg(y0)o(x−x0); the first part is a linear operator in L(X, Y ) and the little o term
is an element of Y , so this whole term lies in Z. Then

||Dg(y0)o(x− x0)||Z ≤ ||Dg||op||o(x− x0)||Y

so in the limit this becomes

lim
x→x0

||Dg(y0)o(x− x0)||Z
||x− x0||X

≤ lim
x→x0

||Dg||op
||o(x− x0)||Y
||x− x0||X

= 0.
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Next, consider

||o(y − y0)|| = ||o(y − y0)||
||y − y0||

||y − y0|| =
||o(y − y0)||
||y − y0||

||f(x)− f(x0)||

=
||o(y − y0)||
||y − y0||

||Df(x0)(x− x0) + o(x− x0)||.

Then taking norms and applying the triangle inequality produces

||o(y − y0)|| ≤ ||o(y − y0)||
||y − y0||

(||Df(x0)(x− x0)||+ ||o(x− x0)||)

=
||o(y − y0)||
||y − y0||

(||Df ||op||x− x0||+ ||o(x− x0)||)

=⇒ lim
x→x0

||o(y − y0)||
||x− x0||

≤ lim
x→x0

||o(y − y0)||
||y − y0||

(
||Df ||op +

||o(x− x0)||
||x− x0||

)
= lim

x→x0

||o(y − y0)||
||y − y0||

(||Df ||op + 0).

By continuity, y = f(x)→ f(x0) = y0 as x→ x0, so the entire limit goes to 0. Condensing
all the little o terms, we have

g(f(x)) = g(f(x0)) +Dg(f(x0))Df(x0)(x− x0) + o(x− x0).

Hence g ◦ f is differentiable.
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15.4 The Mean Value Theorem

Recall the mean value theorem from single-variable calculus (Theorem 4.3.3):

Theorem. For any function f ∈ C1[a, b], there exists a number c between a and b such that
f(b)− f(a) = f ′(c)(b− a).

The natural question is: Does the mean value theorem generalize to continuous functions
on normed linear spaces? For this to make sense, the equation would have to be

f(x)− f(x0) = Df(c)(x− x0)

for some element c ∈ X lying on a ‘segment’ between x and x0:

X

x0

c

x

Example 15.4.1. Consider the function f : R2 → R2 given by f(x, y) = (x2, y3). The
Fréchet derivative of this map is the linear operator

Df(x, y) =

[
2x 0
0 3y2

]
.

Let x0 = (0, 0) and x = (1, 1). If there were a point on the line segment between x0 and x,
it would be of the form (t, t), t ∈ (0, 1) and we would then have

f(1, 1)− f(0, 0) = Df(t, t)((1, 1)− (0, 0))(
1
1

)
=

[
2t 0
0 3t2

](
1
1

)
=

(
2t
3t2

)
.

However there is no such t satisfying 1 = 2t and 1 = 3t2 simultaneously, so a generalization
of the mean value theorem fails in this scenario.

Luckily, we can generalize the mean value theorem to continuous, real-valued functions.

Theorem 15.4.2 (Mean Value Theorem). Suppose f : X → R is continuously differentiable
and x0, x1 ∈ X. Then there is some c ∈ (0, 1) such that

f(x1)− f(x0) = Df(x0 + c(x1 − x0))(x1 − x0).

Proof. Let g(t) = f(x0 + t(x1 − x0)). Then g ∈ C1[0, 1] with derivative vector x1 − x0.
By the single-variable mean value theorem (above), there exists some c ∈ (0, 1) such that

g′(c) = (g(1)− g(0)) · 1. Using the chain rule ( 3 from Section 15.3),

f(x1)− f(x0) = g(1)− g(0) = g′(c) = Df(x0 + c(x1 − x0)) · (x1 − x0).
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For the general case f : X → Y , the previous example shows that we can’t hope for
a full mean value theorem analog. However, we still develop a slightly weaker mean value
inequality:

Theorem 15.4.3 (Mean Value Inequality). If f : X → Y is continuous and Fréchet differ-
entiable with bounded Fréchet derivative, then for any x0, x1 ∈ X,

||f(x1)− f(x0)||Y ≤M ||x1 − x0||X where M = sup ||DF (x)||op.

Proof. Suppose f : X → Y is differentiable and sup ||Df(x)||op = M > 0. As above, let
g(t) = f(x0 + t(x1 − x0)). We want to show taht ||f(x1)− f(x0)||Y ≤M ||x1 − x0||X so take
norms of the linear approximation:

f(x)− f(x0) = Df(x0)(x− x0) + o(x− x0)

||f(x)− f(x0)||Y = ||Df(x0)(x− x0) + o(x− x0)||Y
≤ ||Df(x0)(x− x0)||Y + ||o(x− x0)||Y by triangle inequality

≤ ||Df(x0)||op||x− x0||X +
||o(x− x0)||Y
||x− x0||X

||x− x0||X

≤M ||x− x0||X +
||o(x− x0)||Y
||x− x0||X

||x− x0||X .

Given ε > 0, we can choose δ > 0 such that
||o(x− x0)||Y
||x− x0||X

< ε whenever ||x− x0||X < δ by

the little o property. Thus for all t ≤ δ

||x1 − x0||
,

||f(x0 + t(x1 − x0))− f(x0)|| ≤ (M + ε)t||x1 − x0||.

Define T = sup{s > 0 : ||f(x0 + t(x1 − x0))− f(x0)|| ≤ (M + ε)t||x1 − x0|| for all t ∈ [0, s]}.
We know that T ≥ δ

||x1 − x0||
and by continuity,

||f(x0 + t(x1 − x0))− f(x0)|| ≤ (M + ε)t||x1 − x0||

for all 0 ≤ t ≤ T . We want to show that T = 1. Suppose to the contrary that T < 1. By a
similar argument as above, there exists a δT > 0 such that

||f(x)− f(x0 + T (x1 − x0))|| ≤ (M + ε)||x− (x0 + T (x1 − x0))||

for all x satisfying ||x − (x0 + T (x1 − x0))|| < δT . In particular, this inequality works for
x = x0 + (T + µ)(x1 − x0) for any arbitrarily small µ > 0. This implies

||(x0 + (T + µ)(x1 − x0))− (x0 + T (x1 − x0))|| = µ||x1 − x0|| < δT .

It follows that ||f(x0+t(x1−x0))−f(x0)|| ≤ (M+ε)t||x1−x0|| for all 0 ≤ t ≤ δT
||x1 − x0||

, but

this contradicts the definition of T as a supremum. Therefore T = 1 so ||f(x1) − f(x0)|| ≤
(M + ε)||x1 − x0||. Finally, ε > 0 was arbitrary, so we conclude that

||f(x1)− f(x0)|| ≤M ||x1 − x0||.
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15.5 Mixed Partials

In this section we use the mean value theorem to prove the property from multivariable calcu-
lus that for a twice-continuously differentiable function f(x, y), the mixed partial derivatives
fxy and fyx are equal.

Theorem 15.5.1. If f : R2 → R is a twice-continuously differentiable function on a neigh-
borhood of the point (x0, y0) then fxy(x0, y0) = fyx(x0, y0).

Proof. In terms of linear approximations, we can write the first and second partials as

fx(x0, y0) = lim
h→0

f(x0 + h, y0)− f(x0, y0)

h

fx(x0, y0 + k) = lim
h→0

f(x0 + h, y0 + k)− f(x0, y0 + k)

h

and fxy(x0, y0) = lim
k→0

fx(x0, y0 + k)− fx(x0, y0)

k

= lim
h,k→0

f(x0 + h, y0 + k)− f(x0, y0 + k)− f(x0 + h, y0) + f(x0, y0)

hk
.

Set ∆ = f(x0 + h, y0 + k)− f(x0 + h, y0)− f(x0, y0 + k) + f(x0, y0). For a fixed k, define the
function g(t) = f(x0 + t, y0 + k)− f(x0 + t, y0) and note that

g(h) = f(x0 + h, y0 + k)− f(x0 + h, y0)

and g(0) = f(x0, y0 + k)− f(x0, y0)

so ∆ = g(h)− g(0). By the mean value theorem, there’s some h̄ between 0 and h such that
∆ = g(h)− g(0) = g′(h̄)(h− 0) = hg′(h̄). Differentiating g, we have

g′(t) = fx(x0 + t, y0 + k)− fx(x0 + t, y0)

so ∆ = h(fx(x0 + h̄, y0 + k) − fx(x0 + h̄, y0)). Now let p(t) = fx(x0 + h̄, y0 + t) so we can
vary k. Then by the mean value theorem (15.4.2), for some k̄ between 0 and k,

∆ = h(p(k)− p(0)) = hkp′(k̄).

Consider ∆
hk

= fxy(x0 + h̄, y0 + k̄). By continuity of fxy,

lim
h,k→0

∆

hk
= fxy(x0, y0).

Now return to where we defined g(t) and vary k first and then h to show

lim
h,k→0

∆

hk
= fyx(x0, y0).

Hence the mixed partials are equal.
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15.6 Directional Derivatives

Since a normed linear space X is a vector space, we should be able to generalize the notion
of a derivative in any direction, along the lines of multivariable calculus. We define

Definition. Let f : X → Y be differentiable at u0 and let v ∈ X. The directional
derivative at u0 in the direction of v is

Dvf(u0) = lim
t→0

f(u0 + tv)− f(u0)

t
.

Using the fact that f is differentiable, we can actually evaluate this further:

Dvf(u0) = lim
t→0

f(u0 + tv)− f(u0)

t

= lim
t→0

(
tDf(u0)(v)

t
+

o(t)

t||v||
||v||

)
= Df(u0)(v) + 0 = Df(u0)(v).

Example 15.6.1. Consider the function F : C[0, 1]→ C1[0, 1] defined for all u ∈ C[0, 1] by

F (u) =

∫ 1

0

u2(x) dx.

If F is differentiable at u0 then for any v ∈ C[0, 1], the directional derivative in the direction
of v is computed as

DvF (u0) = lim
t→0

F (u0 + tv)− F (u0)

t

= lim
t→0

1

t

[∫ 1

0

(u0 + tv)2 −
∫ 1

0

u2
0

]
= lim

t→0

1

t

∫ 1

0

2tu0v + lim
t→0

1

t

∫ 1

0

t2v2

= lim
t→0

2

∫ 1

0

u0v + lim
t→0

t

∫ 1

0

v2

= 2

∫ 1

0

u0v + 0 = 2

∫ 1

0

u0v.

It’s easy to check that DvF (u0) is a linear operator. Moreover, we can write F (u) = F (u0)+
DF (u0)(u− u0) + error and solving for error produces

error = F (u)− f(u0)−DF (u0)(u− u0)

=

∫ 1

0

u2 −
∫ 1

0

u2
0 − 2

∫ 1

0

u0(u− u0)

=

∫ 1

0

(u2 − 2uu0 + u2
0) =

∫ 1

0

(u− u0)2.
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We can estimate the last expression by ||F (u− u0)|| ≤ ||u− u0||2∞ which shows that

lim
u→u0

||error||
||u− u0||

≤ lim
u→u0

||u− u0||2

||u− u0||
= 0.

Hence error = o(u− u0) so F is indeed differentiable and the directional derivative is well-
defined.

Example 15.6.2. Along similar lines, a formula for the directional derivatives of the integral

operator F (u) =

∫ 1

0

u(x) dx is DvF (u0) =

∫ 1

0

f ′(u0)v.
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15.7 Sard’s Theorem

A common problem in calculus is identifying critical points of a function on an inter-
val/domain. For example, the function below has two critical points, C = {c1, c2}, and
two critical values, f(C) = {f(c1), f(c2)}.

c1 c2

f(c1)

f(c2)

In loose terms, Sard’s Theorem says that the set f(C) of critical values of a function is
small. What does it mean to be small? There are many notions for measuring a set’s size
in mathematics. The ‘size’ used in Sard’s Theorem is measure – to state Sard’s Theorem, it
will suffice to define a measure zero set.

Definition. A set A ⊂ R has measure zero, denoted |A| = 0, if given any ε > 0, there is
a collection of intervals I1, . . . , In such that A ⊆

⋃n
k=1 Ik and

∑n
k=1 |Ik| < ε.

The length notation for an interval I = [a, b] is standard: |I| = b − a. Sard’s Theorem
states that |f(C)| = 0, that is, the set of critical values of a function has measure zero.

Examples.

1 A function may have infinitely many critical points, as in the function below. However,
the set of critical values is still small – in this case, there is a unique critical value.

[ ]
critical points

critical value

2 A finite number of critical values are easy to capture with small intervals, as in the
function below.
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3 Consider the function f(x) = x2 sin
(

1
x

)
.

Here, f(C) is countably infinite. However, we can still capture some of the critical
values with an interval of length ε

2
about the origin and a finite number of intervals

adding up to length ε
2

to capture the rest.

Theorem 15.7.1 (Sard’s Theorem). Let f ∈ C1[0, 1] and let C = {x ∈ [0, 1] : Df(x) = 0}.
Then the set of critical values f(C) has measure zero.

Proof. Let ε > 0. Since f is differentiable, we can write f(x) = f(x0) + f ′(x0)(x − x0) +
o(x− x0) for any x0 ∈ [0, 1], or even better, f(x) = f(x0) + o(x− x0). Then for x 6= x0,

f(x)− f(x0) = o(x− x0) =
o(x− x0)

|x− x0|
|x− x0|,

which is small. By the mean value theorem, there is some c between x and x0 such that we
can write

o(x− x0) = f(x)− f(x0)− f ′(x0)(x− x0)

= f ′(c)(x− x0)− f ′(x0)(x− x0)

= (f ′(c)− f ′(x0))(x− x0).

So |o(x−x0)|
|x−x0| = |f ′(c) − f(x0)| for such a number c. Recall that since f ′ is continuous on a

closed interval, it is uniformly continuous on that interval. Then since c is between x and
x0, |c−x0| ≤ |x−x0|. By uniform continuity, we can choose δ > 0 such that if |x1−x2| < δ,
then |f ′(x1)− f ′(x2)| < ε

2
. Thus |f ′(x)− f ′(c)| < ε

2
for |x−x0| < δ, so there is a single δ > 0

such that

|x− x0| < δ implies
|o(x− x0)|
|x− x0|

<
ε

2
.

Now choose n ∈ N such that 1
n
< δ and partition the interval [0, 1] into intervals I1, . . . , In of

length 1
n
. If Ik contains a critical point xk ∈ C, then for all x ∈ Ik, we have f(x)− f(xk) =

o(x− xk), so by our previous estimate,

|f(x)− f(xk)| = |o(x− xk)| <
ε

2
· |x− xk| <

ε

2
· 1

n
.
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Then f(Ik) ⊂ Jk :=
[
f(xk)− ε

2n
, f(xk) + ε

2n

]
and f(C) ⊂

⋃
1≤k≤n
Ik∩C6=∅

Jk. Additionally,

∑
1≤k≤n
Ik∩C6=∅

|Jk| ≤
n∑
k=1

ε

n
= n · ε

n
= ε.

Therefore f(C) has measure zero.

Sard’s Theorem can be generalized to differentiable functions on n-dimensional spaces.
First we need to define critical points and measure zero sets for Rn.

Definition. A differentiable function f : Rn → Rn has a critical point at x0 if the differ-
ential Df(x0) is not invertible. In this case the point f(x0) is called a critical value of the
function.

Definition. A set A ⊂ Rn is said to have measure zero if given any ε > 0, there is a
countable collection of rectangles {R1, R2, . . .} such that K ⊂

⋃∞
n=1Rn and

∑∞
n=1 |Rn| < ε.

Here the notation |R| denotes the volume of a rectangle R in n-dimensional Euclidean
space; if R = [a1, b1]× [a2, b2] · · · × [an, bn] then its volume is

|R| = (b1 − a1)(b2 − a2) · · · (bn − an) =
n∏
k=1

(bk − ak).

Sard’s Theorem for functions of n-dimensional space then reads:

Theorem 15.7.2 (Sard’s Theorem). Let f ∈ C1([0, 1]n,Rn) and let C = {x ∈ [0, 1]n :
Df(x) = 0}. Then the set f(C) of critical values of f has measure zero.

Proof. We prove the case when n = 2 and remark that things generalize to higher dimensions,
although the notation is cumbersome.

Suppose f = (f1, f2) ∈ C1([0, 1]2,R2). Then x0 ∈ [0, 1]2 is a critical point of the function
if detDf(x0) = 0. This happens precisely when the columns of the Jacobian are linearly
dependent. In particular, there is a vector v such that the columns are multiples of v and
for any w, Df(x0) ·w = cv for some c. As we did in the one-dimensional case, we first need
to estimate o(x− x0):

o(x− x0) = f(x)− f(x0)−Df(x0)(x− x0)

=

[
f1(x)− f1(x0)
f2(x)− f2(x0)

]
−
[
∇f1(x0)(x− x0)
∇f2(x0)(x− x0)

]
=

[
f1(x)− f1(x0)−∇f1(x0)(x− x0)
f2(x)− f2(x0)−∇f2(x0)(x− x0)

]
.

Now f1 and f2 are each real-valued functions so by the mean value theorem, there are
numbers c1 and c2 which let us write

o(x− x0) =

[
∇f1(c1)(x− x0)−∇f1(x0)(x− x0)
∇f2(c2)(x− x0)−∇f2(x0)(x− x0)

]
=

[
∇f1(c1)−∇f1(x0)
∇f2(c2)−∇f2(x0)

]
(x− x0).
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Taking norms,

||o(x− x0)|| =
∣∣∣∣∣∣∣∣[∇f1(c1)−∇f1(x0)
∇f2(c2)−∇f2(x0)

]
(x− x0)

∣∣∣∣∣∣∣∣ .
For the first component, the Cauchy-Schwartz inequality gives us

||(∇f1(c1)−∇f1(x0)) · (x− x0)|| ≤ ||∇f1(c1)−∇f1(x0)|| ||x− x0||
< ε ||x− x0|| when ||x− x0|| < δ1

for a well-chosen δ1 > 0; this is possible, as in the proof before, by the uniform continuity of
∇f1. Likewise we can choose a δ2 > 0 such that

||(∇f2(c2)−∇f2(x0)) · (x− x0)|| < ε ||x− x0|| when ||x− x0|| < δ2.

Let δ = min{δ1, δ2}. Then if ||x− x0|| < δ, ||o(x− x0)|| < ε ||x− x0|| by the above work.
Partition [0, 1]2 into small squares such that no two points inside the same square are

further than δ apart. We do this by choosing n ∈ N such that 1
n
< δ√

2
and setting

Sij =

[
i

n
,
i+ 1

n

]
×
[
j

n
,
j + 1

n

]
.

The squares {Sij}n−1
i,j=0 form our partition of [0, 1]2. Let S = Sij for some i, j and suppose x0 ∈

S is a critical point of f . Then for any x ∈ S, f(x) = f(x0)+Df(x0)(x−x0)+o(x−x0). Let v
be the unit vector such that Df(x0) = αv for some α ∈ R. Then f(x) = f(x0)+αv+o(x−x0)
for any x ∈ S. By Lemma 15.2.3, Df(x0) is bounded, i.e. ||Df(x0)|| ≤M for some M > 0.
Then for any x ∈ S,

||Df(x0)(x− x0)|| ≤ ||Df(x0)|| ||x− x0|| ≤M ||x− x0|| < M

√
2

n
.

So |α| < M
√

2
n

. Now we turn our attention to the error term o(x − x0). Since ||x − x0|| <√
2
n
< δ, we know ||o(x − x0)|| < ε. Let v⊥ be a unit vector perpendicular to v. Then

o(x− x0) = β1v + β2v
⊥ for some β1, β2 since {v, v⊥} is an orthonormal basis for R2. Thus

||o(x− x0)|| =
√
β2

1 + β2
2 < ε ||x− x0|| ≤ ε

√
2

n

which shows that |βi| < ε
√

2
n

for each i = 1, 2. Now f(x) = f(x0) + (α + β1)v + β2v
⊥ with

|α| < M
√

2
n

, |β1| < ε
√

2
n

and |β2| < ε
√

2
n

. Define a rectangle

R =
{
f(x0) + sv + tv⊥ : s ∈

[
−(M + ε)

√
2
n
, (M + ε)

√
2
n

]
, t ∈

[
−ε
√

2
n
, ε
√

2
n

]}
.

By construction, f(S) ⊆ R and the volume of R is

|R| =
(

2(M + ε)
√

2
n

)(
2ε
√

2
n

)
= 8ε(M + ε)

1

n2
.
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Let S1, . . . , SN be all of the squares in the collection {Sij} that contain critical points
of f . Let Rk be the rectangle constructed for Sk by the above procedure. Then f(C) is
contained in

⋃N
k=1 Rk and the total area of the rectangles is

N∑
k=1

|Rk| = 8ε(M + ε)
N

n2
≤ 8ε(M + ε).

Since ε > 0 was arbitrarily small, 8ε(M + ε) is also arbitrarily small so this proves that f(C)
has measure zero.

Intuitively, the 2-dimensional case says that under the function f , the neighborhood
around each critical point gets ‘squished’ to a line segment with zero area.

x

y

[0, 1]× [0, 1]

x

f

x

y

f(x)

Generalizing the proof above to a function f : Rn → Rn requires finding an orthonormal
basis of n−1 vectors, which is difficult but always possible by the Gram-Schmidt algorithm.

Corollary 15.7.3. For a differentiable function f : Rn → Rn, the set of critical values f(C)
has measure zero.

Proof. We prove the case when n = 2 and remark that the proof generalizes to n ≥ 3.
Let {Rij}(i,j)∈N2 be a countable collection of rectangles in R2 that contain all critical

points of f . If need be, let Rij = [i, i+ 1]× [j, j+ 1] so that {Rij}(i,j)∈N2 covers R2. For each
pair (i, j), consider the restriction fij = f |Rij : Rij → R2. Then Sard’s Theorem says that
the set Cij of critical values of fij has measure zero. In particular, for any ε > 0 there is a

collection of squares {Sijk } such that fij(Cij) ⊂
∞⋃
k=1

Sijk and
∞∑
k=1

|Sijk | ≤ ε
2i+j

. Then the set of

critical values of f is contained in the union of all the f(Cij), which is in turn contained in⋃
(i,j,k)∈N3

Sijk . Moreover,

∑
(i,j,k)∈N3

|Sijk | =
∞∑
i=1

∞∑
j=1

∞∑
k=1

|Sijk | ≤
∞∑
i=1

∞∑
j=1

ε

2i+j
= ε

∞∑
i=1

1

2i

∞∑
j=1

1

2j

= ε

∞∑
i=1

1

2i

( 1
2

1− 1
2

)
by geometric series

= ε
∞∑
i=1

1

2i
· 1 = ε

( 1
2

1− 1
2

)
by geometric series again

= ε · 1 = ε.

Therefore the set of critical values of f has measure zero.
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Another useful consequence is that whenever the codomain of f has higher dimension
than the domain, the entire image of f has measure zero.

Corollary 15.7.4. Suppose f : [0, 1]n ⊂ Rn → Rm is a continuously differentiable function
and m > n. Then f(D) has measure zero.

Proof. We prove the case where n = 2 and m = 3. Suppose f : D ⊂ R2 → R3 is continuously
differentiable, with

f(x, y) = (f1(x, y), f2(x, y), f3(x, y)).

We can view D as a subset of R3 via the inclusion map ι : R2 ↪→ R3, and redefine f as
F : D ⊂ R3 → R3 given by

F (x, y, z) = f(x, y, 0) = (f1(x, y, 0), f2(x, y, 0), f3(x, y, 0)).

F naturally inherits continuous differentiability from f , so by Sard’s Theorem, the set of
critical values of F has measure zero. We know that a point x̄0 ∈ D is a critical point of the
function if the Jacobian matrix is not invertible. But for any x̄0 ∈ D,

DF (x̄0) =


∂F1

∂x
∂F1

∂y
∂F1

∂z

∂F2

∂x
∂F2

∂y
∂F2

∂z

∂F3

∂x
∂F3

∂y
∂F3

∂z

 · x̄0 =


∂f1
∂x

∂f1
∂y

0

∂f2
∂x

∂f2
∂y

0

∂f3
∂x

∂f3
∂y

0

 · x̄0

which is clearly not invertible. Hence every point in D is a critical point of F . Then by the
above, f(D) has measure zero in R3.
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15.8 Inverse Function Theorem

One of the most important tools in modern analysis is the following generalization of Theo-
rem 3.2.5.

Theorem 15.8.1 (Inverse Function Theorem). Let X and Y by Banach spaces and let
f : X → Y be a continuously differentiable function. Suppose there is some point x0 ∈ X
such that Df(x0) has a bounded inverse, (Df(x0))−1. Then there are neighborhoods U and
V of x and f(x0), respectively, such that f : U → V is invertible with a continuously
differentiable inverse f−1 : V → U whose differential satisfies Df−1(f(x0)) = (Df(x0))−1.

In the one-dimensional case, the bounded inverse condition means that the slope of f at
x0 is nonzero, so there’s an interval U so that f ′(x) ≥ ε > 0 on the whole interval.

x

y
slope = nonzero

x0
( )

U

f(x0)

(
)

V

We prove the theorem in several steps. First we prove the special case when X = Y ,
x0 = 0, f(x0) = 0 and Df(x0) is the identity operator. Although these conditions seem
restrictive, we will see that there is only a small adjustment needed to make the proof run
in the general case.

Suppose X = Y, x0 = 0, f(x0) = 0 and Df(x0) = I. Observe that

f(x) = f(x0) +Df(x0)(x− x0) + o(x− x0) = x+ o(x).

Let F (x) = y − o(x) for a fixed y ∈ X. Then the problem comes down to finding a fixed
point of F , so that F (x) = x = y− o(x). To do this we will employ the contraction mapping
theorem (14.4.2).

Lemma 15.8.2. There is a δ > 0 such that ||o(x2) − o(x1)|| ≤ 1
2
||x2 − x1|| for all x1, x2 ∈

Bδ(0).

Proof. Observe that o(x) = f(x) − x so o(x) is continuously differentiable with Do(x) =
Df(x)− I. In particular,

Do(0) = Df(0)− I = I − I = 0,

the zero operator. By continuity, there is some δ > 0 such that ||Do(x)|| ≤ 1
2

on Bδ(0).
Then by the mean value inequality (Theorem 15.4.3), ||o(x2)− o(x1)|| ≤ 1

2
||x2 − x1|| for all

x1, x2 ∈ Bδ(0).

241



15.8. Inverse Function Theorem Chapter 15. Calculus on Normed Linear Spaces

Lemma 15.8.3. There is some neighborhood of 0 ∈ X such that Df(x0) has a bounded
inverse for all x0 in the neighborhood.

Proof. Consider the neighborhood Bδ(0). Let x0 ∈ Bδ(0); our goal is to show Df(x0)
has a bounded inverse L which is a linear operator. Let K = Df(x0) and notice that K =
I−(I−K) where I is the identity operator. We claim that K−1 = I+(I−K)+(I−K)2 +. . .
(the idea here is that 1

1−x = 1 + x+ x2 + . . . for small x in the real number case). Consider
the partial sum Sn = I + (I −K) + (I −K)2 + . . .+ (I −K)n and let J = I −K to compress
notation. Then if n > m,

||Sn − Sm||op = ||Jn + . . .+ Jm+1||op
≤ ||Jn||op + . . .+ ||Jm+1||op by the triangle inequality

≤ ||J ||nop + . . .+ ||J ||m+1
op by induction on Jk

≤
||J ||m+1

op

1− ||J ||op
.

By Lemma 15.8.2, ||Do(x)||op ≤ 1
2

and since J = K − I = Df(x0) − I = Do(x0), it follows
that Sn is a Cauchy sequence. Now since X is a Banach space, L(X,X) is complete so Sn
converges to some M ∈ L(X,X). Consider

KM = (I − J)M = lim
n→∞

(I − J)Sn

= lim
n→∞

[(I − J)(I + J + J2 + . . .+ Jn)]

= lim
n→∞

(I − Jn+1) = I.

This shows that M = K−1 and by construction, M = limSn = I + (I −K) + (I −K)2 + . . .
as claimed.

Returning to the function F (x) = y − o(x), we want to apply the contraction mapping
theorem (14.4.2) to find a fixed point of F . First, note that for all x ∈ Bδ(0) and y ∈ Bδ/2(0),

||F (x)|| = ||y − o(x)||
≤ ||y||+ ||o(x)|| by the triangle inequality

≤ ||y|+ 1
2
||x|| by Lemma 15.8.2

≤ ||y||+ δ
2

≤ δ
2

+ δ
2

= δ.

Additionally, for all x1, x2 ∈ Bδ(0), we have

||F (x2)− F (x1)|| = ||o(x2)− o(x1)|| ≤ 1
2
||x2 − x1||

So if y ∈ Bδ/2(0) then F : Bδ(0)→ Bδ(0) is a contraction. It is a fact that any closed subset
of a complete space is itself complete, so Bδ(0) is complete. Therefore by the contraction
mapping theorem, there is a unique x ∈ Bδ(0) such that F (x) = x, i.e. f(x) = y. Call
this x = f−1(y). Then we have constructed an inverse function f−1 : Bδ/2(0) → Bδ(0).
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Notice that this restricts to f−1 : Bδ/2(0) → Bδ(0) so define U = f−1(Bδ/2(0)) ∩ Bδ(0) and
V = Bδ/2(0). Then U and V are neighborhoods of 0 and f(0) that satisfy the inverse function
theorem as long as f−1 is continuously differentiable. Thus we have a bijection f : U → V
so it remains to check the differentiability of f−1.

Lemma 15.8.4. f−1 : V → U is Lipschitz continuous.

Proof. Let y1, y2 ∈ V = Bδ/2(0) and let x1, x2 ∈ U such that f(x1) = y1 and f(x2) = y2.
Then x1 + o(x1) = y1 and x2 + o(x2) = y2, so f−1(y1) + o(f−1(y1)) = y1 and f−1(y2) +
o(f−1(y2)) = y2. Consider

||f−1(y2)− f−1(y1)|| = ||(y2 − o(f−1(y2)))− (y1 − o(f−1(y1)))||
≤ ||y2 − y1||+ ||o(f−1(y2))− o(f−1(y1))||
≤ ||y2 − y1||+ 1

2
||f−1(y2)− f−1(y1)||.

So 1
2
||f−1(y2) − f−1(y1)|| ≤ ||y2 − y1||, or ||f−1(y2) − f−1(y1)|| ≤ 2||y2 − y1||. Hence f−1 is

Lipschitz continuous with Lipschitz constant k = 2.

Since Lipschitz continuity implies regular continuity, we get as a consequence that f−1 is
continuous. Next we verify differentiability.

Lemma 15.8.5. f−1 is differentiable at 0 with Df−1(0) = (Df(0))−1 = I.

Proof. Recall that f(x) = x + o(x), so f−1(y) + o(f−1(y)) = y for any y ∈ V . That is,
f−1(y) = y − o(f−1(y)) = f−1(0) + I(y − 0) − o(f−1(y)). It therefore suffices to prove
o(f−1(y)) = o(y). Consider

||o(f−1(y))||
||y||

=
||o(f−1(y))||
||f−1(y)||

· ||f
−1(y)||
||y||

≤ ||o(f
−1(y))||

||f−1(y)||
· 2||y||
||y||

by Lemma 15.8.4.

Now by continuity of f−1, as y → 0, f−1(y)→ f−1(0) = 0 so we have

lim
y→0

||o(f−1(y))||
||y||

= 2 lim
y→0

||o(f−1(y))||
||f−1(y)||

= 0.

Therefore o(f−1(y)) = o(y) so we conclude that f−1 is differentiable at 0.

We have proven all of the properties of f−1 in the special case, so now it remains to
generalize and finish the proof of the inverse function theorem.

Proof. Assume f : X → Y is continuously differentiable with an invertible derivative, with
bounded inverse, at x0 ∈ X. We have a sequence of invertible maps:

X X Y Y X
x 7→ x+ x0 f (Df(x0))−1

y 7→ y + y0
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Define f̄ : X → X by the composition along these maps:

f̄(x) = (Df(x0))−1(f(x+ x0)− f(x0)).

Notice that f̄(0) = 0 and by the chain rule (Section 15.3),

Df̄(0) = (Df(x0))−1)(Df(x0)− 0) = (Df(x0))−1Df(x0) = I.

So the hypotheses of the special case are satisfied for f̄ . Consider

f̄(x) = (Df(x0))−1(f(x+ x0)− f(x0))

= (Df(x0))−1(Df(x0)(x) + o(x)− f(x0))

= x+ (Df(x0))−1(o(x)).

By Lemmas 15.8.4 and 15.8.5, there exist open neighborhoods U and V of 0 such that
f̄ : U → V is invertible with all of the previously stated properties. Now we have

X

x0

U∗

f

Y

y0

y 7→ y + y0

Y

0

V ∗

(Df(x0))
−1

Y

V

Consider f−1(y) = x0 + f̄−1((Df(x0))−1(y− y0)) as illustrated above. Then f−1 : V ∗+ y0 →
U∗ is defined and the chain rule shows that it is invertible with Df−1(x0) = (Df(x0))−1.
This completes the proof.

Example 15.8.6. Consider the function f(x, y) = x2 − y2 at (1, 2), where f(1, 2) = −3. In
multivarible calculus, we would draw level curves to understand the graph of this function.
In doing so, we are using the inverse function theorem to say that there is a neighborhood of
(1, 2) on which f(x, y) ≈ −3 holds. Consider F (x, y) = (f(x, y), y). This map is differentiable
with

DF (x, y) =

[
fx fy
0 1

]
.

In particular, DF (1, 2) =

[
2 −4
0 1

]
which is invertible. We can even compute its inverse

quickly using linear algebra. By the inverse function theorem, there are neighborhood; g is
a smooth curve in R2 that is invertible within U . This is how we construct level curves and
graph the function locally.

x

y (1, 2)

f(x) = x2 − y2
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Chapter 16

Introduction

Part IV is comprised by notes from a graduate real analysis course taught by Dr. Tai Melcher
at the University of Virginia in Spring 2016. The companion text for the course is Folland’s
Real Analysis: Modern Techniques and Their Applications, 2nd ed. The main topics covered
are:

� A review of some concepts in set theory

� Measure theory

� Integration theory

� Differentiation

� Some functional analysis, including normed linear spaces

� The theory of Lp spaces

By far the most fundamental subject in real analysis is measure theory. In a general sense,
measure theory gives us a way of extending the concrete notions of length, area, volume,
etc. and also of extending the theory of Riemann integration from calculus. Recall that the
Riemann integral of a real-valued function f(x) on an interval [a, b] is defined as the limit of
the areas of a sequence of increasingly thinner rectangles that approximate the area under
the curve of f :

f∫ b

a

f(x) dx
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If we are to use this limiting process on say a function like the characteristic function

χQ(x) =

{
1 if x ∈ Q
0 if x 6∈ Q

then what should the value of
∫ 1

0
χQ(x) dx be? Riemann integration fails to give a value to

this integral, but since the “rectangles” summed up by such an integral would all have zero
area (Q is disconnected), we should expect the integral to equal 0.

We seek to develop an abstract notion of “length” to replace the length of the subintervals
in Riemann integration that allows for integration over a broader class of sets.

Two important set theoretic constructions are:

Definition. Given a sequence of sets {An}∞n=1 in a space X, the outer limit of the An is
the set of x ∈ X such that x ∈ An for infinitely many n:

lim supAn =
∞⋂
k=1

∞⋃
n=k

An.

This may also be written as the set {x ∈ X | x ∈ An i.o.}, where i.o. stands for “infinitely
often”.

Definition. Given a sequence of sets {An}∞n=1 in X, the inner limit of the An is the set of
x ∈ X such that x ∈ An for all but a finite number of n:

lim inf An =
∞⋃
k=1

∞⋂
n=k

An.

This is also written {x ∈ X | x ∈ An e.a.}, where a.a. stands for “eventually always”.

These may be viewed as generalizations of lim sup and lim inf from real analysis.
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16.1 The Discrete Sum

A concrete case of integration is found in the notion of a discrete sum:

Definition. Let X be a (not necessarily countable) set and let f : X → [0,∞] be a function.
The discrete sum of f over X is defined as

∑
X

f := sup

{∑
x∈A

f(x) : A ⊂ X is finite

}
.

We will develop the theory of the discrete sum as a case study for what is to come later
in the general theory of integration. The main theorems (Monotone Convergence Theorem,
Fatou’s Lemma, Dominated Convergence Theorem, etc.) will be proven again later with the
generalized notion of integration with respect to a measure.

Example 16.1.1. If X = N, the discrete sum is just the regular counting sum:

∑
N

f =
∞∑
n=1

f(n) = sup
N

N∑
n=1

f(n).

One of the most important theorems in the theory of sequences is the Monotone Conver-
gence Theorem. This theorem is often proven in an introductory real analysis course. The
version stated here is slightly more abstract.

Theorem 16.1.2 (Monotone Convergence for Sums). For a sequence of nonnegative func-
tions fn : X → [0,∞], if fn(x) ≤ fn+1(x) for all x ∈ X and for all n ∈ N, then

lim
n→∞

∑
x∈X

fn(x) =
∑
x∈X

lim
n→∞

fn(x).

Proof. First observe that since fn(x) is an increasing sequence for all x ∈ X,
∑

X fn(x) is
also an increasing sequence. Therefore limn→∞

∑
X fn(x) exists in [0,∞]. Fix n ∈ N. By

hypothesis, for all x ∈ X, f(x) = sup fn(x) ≥ fn(x). Thus for any finite subset A ⊂ X,∑
X

f(x) ≥
∑
A

f(x) ≥
∑
A

fn(x).

Taking the sup on the right over all finite A ⊂ X preserves the inequality, so we have∑
X

f(x) ≥
∑
X

fn(x).

Since this holds for all n ∈ N, taking the limit as n → ∞ again preserves the limit, giving
us one of the desired inequalities:∑

X

f(x) ≥ lim
n→∞

∑
X

fn(x).
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Now fix a finite set A ⊂ X. Then for all n ∈ N, we have∑
A

fn(x) ≤
∑
X

fn(x) ≤ lim
n→∞

∑
X

fn(x).

(The last inequality uses the fact that
∑

X fn(x) is an increasing sequence.) Taking the limit
on the left as n→∞ gives us∑

A

lim
n→∞

fn(x) ≤ lim
n→∞

∑
X

fn(x).

Finally, taking the sup on the left over all finite A ⊂ X preserves the inequality, producing∑
X

lim
n→∞

fn(x) ≤ lim
n→∞

∑
X

fn(x).

Since lim fn(x) = f(x), we have proven both inequalities required.

Lemma 16.1.3. If
∑

x∈X f(x) <∞ then the set {x ∈ X | f(x) > 0} is at most countable.

Proof. We can write

{x ∈ X | f(x) > 0} =
∞⋃
n=1

{
x | f(x) > 1

n

}
.

Now each set
{
x | f(x) > 1

n

}
is finite since the discrete sum is assumed to converge. Then

the countable union of these finite sets is countable, so the set in question is countable.

Theorem 16.1.4 (Tonelli’s Theorem for Sums). If X and Y are sets and f : X×Y → [0,∞]
is a function, then ∑

(x,y)∈X×Y

f(x, y) =
∑
x∈X

∑
y∈Y

f(x, y) =
∑
y∈Y

∑
x∈X

f(x, y).

Proof. By symmetry, it is sufficient to show the first equality. On one hand, let Λ ⊂ X × Y
be a finite subset. Choose finite subsets α ⊂ X and β ⊂ Y such that Λ ⊂ α × β. For any
such α, β, we have∑

Λ

f(x, y) ≤
∑
α×β

f(x, y) =
∑
α

∑
β

f(x, y) ≤
∑
α

∑
Y

f(x, y) ≤
∑
X

∑
Y

f(x, y).

Taking the supremum over all such Λ proves the inequality
∑

X×Y f(x, y) ≤
∑

X

∑
Y f(x, y).

Going the other way, for each x ∈ X choose a sequence of finite subsets βxn ⊂ Y such
that βxn ↗ Y and ∑

Y

f(x, y) = lim
n→∞

∑
y∈βxn

f(x, y).

If α ⊂ X is finite, then set βn =
⋃
x∈α β

x
n and observe that because βn are finite sets,∑

Y

f(x, y) = lim
n→∞

∑
y∈βn

f(x, y)
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holds for all x ∈ α. Hence∑
x∈α

∑
y∈Y

f(x, y) =
∑
x∈α

lim
n→∞

∑
y∈βn

f(x, y)

= lim
n→∞

∑
x∈α

∑
y∈βn

f(x, y) since α is finite

= lim
n→∞

∑
α×βn

f(x, y)

≤
∑
X×Y

f(x, y).

Taking the supremum over all such α ⊂ X, we get the other inequality:
∑

X

∑
Y f(x, y) ≤∑

X×Y f(x, y). Therefore equality holds.

Theorem 16.1.5 (Fatou’s Lemma for Sums). If fn : X → [0,∞] is a sequence of nonnegative
functions then ∑

X

lim inf fn ≤ lim inf
∑
X

fn.

Proof. Define gk = inf{fn | n ≥ k} so that the sequence (gk) increases from below to
lim inf fn. In particular, gk ≤ fn for all n ≥ k, so∑

X

gk ≤
∑
X

fn for all n ≥ k.

By the Monotone Convergence Theorem for discrete sums (Theorem 16.1.2),∑
X

lim inf fn =
∑
X

lim
k→∞

gk = lim
k→∞

∑
X

gk ≤ lim inf
∑
X

fn.

This proves Fatou’s Lemma for discrete sums.

Remark. If A =
∑

X f(x) then for every ε > 0, there exists a finite subset αε ⊂ X such
that A− ε ≤

∑
αε
f ≤ A. Furthermore, these inequalities hold for any set α containing αε.

Next we extend the discrete sum to complex-valued functions.

Definition. If f : X → C is a function, we say the sum
∑

X f =
∑

x∈X f(x) exists and
equals A ∈ C if for every ε > 0, there exists a finite subset αε ⊂ X such that for all finite
sets α ⊇ αε, ∣∣∣∣∣∑

α

f − A

∣∣∣∣∣ < ε.

Notice that unlike before, this does not allow for infinite sums. In order to access our work
with discrete sums of nonnegative functions, we will write a real-valued function f : X → R
as f = f+ − f−, where f+(x) := max{f(x), 0} and f−(x) := min{−f(x), 0} are called the
positive and negative parts of f , respectively. To describe all complex-valued functions, recall
that a function g : X → C may be divided into its real and imaginary parts, g = Re g+i im g.
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Definition. We say a function f : X → C is summable if
∑

X |f | <∞.

Proposition 16.1.6. The sum
∑

X f exists if and only if f is summable. In this case,∣∣∣∣∣∑
X

f

∣∣∣∣∣ ≤∑
X

|f |.

Proof. ( =⇒) Suppose
∑

X |f | <∞. Then
∑

X(Re f)± and
∑

X(im f)± are all finite. Con-
sider ∑

X

f =
∑
X

(Re f)+ −
∑
X

(Re f)− + i

[∑
X

(im f)+ −
∑
X

(im f)−

]
.

Now each piece on the right is finite, so the whole expression exists.
( =⇒ ) Conversely, suppose

∑
X |f | =∞. By the triangle inequality, |f | ≤ |Re f |+| im f |.

Then either
∑

X |Re f | = ∞ or
∑

X | im f | = ∞. Without loss of generality, let us suppose
that f is a real-valued function. Then |f | = f+ + f− and

∑
X |f | =

∑
X f

+ +
∑

X f
− =∞.

Thus at least one of
∑

X f
± is infinite. Without loss of generality, assume the discrete sum

of the positive part sums to infinity. Let X ′ = {x ∈ X | f(x) ≥ 0} so that
∑

X′ f = ∞.
Then there is a sequence of finite subsets αn ⊂ X ′ such that

∑
x∈αn f(x) ≥ n for each n ∈ N.

Thus for any finite subset α ⊂ X, we have

lim
n→∞

∑
α∪αn

f =∞.

It follows that
∑

X f cannot exist in R. The last statement of the proposition follows from
the definition of the discrete sum.

Theorem 16.1.7 (Dominated Convergence Theorem for Sums). Suppose fn : X → C is a
sequence of complex functions satisfying

(1) lim
n→∞

fn(x) = f(x) exists for every x ∈ X; and

(2) There exists a summable function g : X → [0,∞] such that |fn(x)| ≤ g(x) for every
x ∈ X and n ∈ N.

Then lim
n→∞

∑
x∈X

fn(x) =
∑
x∈X

f(x).

Proof. This will follow from the general Dominated Convergence Theorem in Section 18.2.

From the Dominated Convergence Theorem (DCT), we obtain some useful results about
continuity and differentiability in sums.

Corollary 16.1.8. Suppose X is a set, V ⊂ Rn is an open set and f : V × X → C is a
function satisfying

(a) for each x ∈ X, the function t 7→ f(t, x) is continuous on V , and
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(b) there is a summable function g : X → [0,∞) such that |f(t, x)| ≤ g(x) for all t ∈
V and x ∈ X.

Then the function F : V → C given by F (t) :=
∑

x∈X f(t, x) is a continuous function.

Proof. First, |f(t, x)| ≤ g(x) for all x ∈ X implies
∑

x∈X |f(t, x)| ≤
∑

x∈X g(x) < ∞ so
f(t, x) is summable for each t ∈ V . Thus the sum F (t) =

∑
x∈X f(t, x) is defined. Fix

t0 ∈ V . It suffices to show that for any sequence (tn) ⊂ V converging to t0, we have
limn→∞ F (tn) = F (t0). Let (tn) ⊂ V be such a sequence. This defines a sequence of
functions fn := f(tn, x) : X → C such that |fn(x)| ≤ g(x) for all x ∈ X and n ∈ N. Further,
since t 7→ f(t, x) is continuous, limn→∞ fn(x) = f(t0, x) for all x ∈ X. By DCT, we have

lim
n→∞

F (tn) = lim
n→∞

∑
x∈X

fn(x) =
∑
x∈X

f(t0, x) = F (t0).

This proves (F (tn))→ F (t0) so F is continuous at any t0 ∈ V .

Corollary 16.1.9. Suppose that X is a set, (a, b) is an open interval in R and f : (a, b)×
X → C is a function satisfying

(a) for each x ∈ X, the function t 7→ f(t, x) is differentiable on (a, b);

(b) there is a summable function g : X → [0,∞) such that

|f ′(t, x)| :=
∣∣∣∣ ∂∂tf(t, x)

∣∣∣∣ ≤ g(x) for all t ∈ (a, b) and x ∈ X; and

(c) there is a t0 ∈ (a, b) such that
∑

x∈X |f(t0, x)| <∞.

Then for F : (a, b)→ C given by F (t) =
∑

x∈X f(t, x), F is differentiable and

F ′(t) =
∑
x∈X

f ′(t, x).

Proof. We first show that for all t ∈ (a, b),
∑

x∈X |f(t, x)| < ∞. Let t0 ∈ (a, b) be as in
condition (c) and take any t ∈ (a, b), t 6= t0. By (a), we can apply the Mean Value Theorem
to produce c between t and t0 such that

f(t, x) = f(t0, x) +
∂f(c, x)

∂t
(t− t0).

This implies

|f(t, x)− f(t0, x)| = df(c, x)

dt
|t− t0| ≤ g(x)|t− t0|

=⇒ |f(t, x)| ≤ |f(t0, x)|+ g(x)|t− t0| by (b).

Now sum to obtain∑
x∈X

|f(t, x)| ≤
∑
x∈X

(
|f(t0, x)|+ g(x)|t− t0|

)
=
∑
x∈X

|f(t0, x)|+ |t− t0|
∑
x∈X

g(x) <∞.
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Therefore
∑

x∈X |f(t, x)| <∞ as claimed.
Now fix t ∈ (a, b) and let (tn) be a sequence in (a, b) r {t} such that (tn)→ t. For each

n ∈ N, set fn = f(tn)−f(t,x)
tn−t so that

F (tn)− F (t)

tn − t
=
∑
x∈X

f(tn, x)− f(t, x)

tn − t
=
∑
x∈X

fn(x).

Then by (a), we have

lim
n→∞

fn(x) = lim
n→∞

f(tn, x)− f(t, x)

tn − t
=
∂f

∂t
(t, x).

With this and (b), the conditions of the DCT are satisfied, so we conclude that

lim
n→∞

F (tn)− F (t)

tn − t
= lim

n→∞

∑
x∈X

fn(x) =
∑
x∈X

∂f

∂t
(t, x) =

∑
x∈X

f ′(t, x).

Moreover, |f ′(t, x)| ≤ g(x) for all x, so
∑

x∈X |f ′(t, x)| ≤
∑

x∈X g(x) <∞, proving f ′(t, x) is
summable. Thus the above proves that F is differentiable with derivative

F ′(t) =
∑
x∈X

f ′(t, x).

The Dominated Convergence Theorem is equivalent to the Monotone Convergence The-
orem and Fatou’s Lemma. We will prove all three in full generality in Chapter 18. DCT
(due to Lebesgue) provides another way to switch a limit with a discrete sum, as we saw in
the Monotone Convergence Theorem (16.1.2) and Fatou’s Lemma (16.1.5) for nonnegative
functions. Here, we must be able to control the sequence (fn) with a summable function g
in order to switch the limit and sum.

Theorem 16.1.10 (Fubini’s Theorem for Sums). Suppose f : X×Y → C is summable, i.e.∑
X×Y |f | <∞. Then ∑

X×Y

f(x, y) =
∑
X

∑
Y

f(x, y) =
∑
Y

∑
X

f(x, y).

This generalizes Tonelli’s Theorem (16.1.4) for complex-valued functions. When we de-
velop the theory of integration with respect to a general measure, the approach will be the
same: prove Tonelli’s Theorem for nonnegative functions and then generalize with Fubini’s
Theorem.
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Chapter 17

Measure Theory

Assigning length, area, volume, hypervolume, etc. to a set is a natural action on many spaces.
However, there are sets (e.g. the Cantor set) for which such a notion of measurement makes
no sense. The primary goal of measure theory is to generalize the idea of length/area/volume
to more abstract spaces and sets.

Let’s begin by discussing Rn. We want to define a function µ : P(Rn) → [0,∞] on the
power set of Rn which satisfies a few key properties:

(1) For every countable collection {Ei}∞i=1 of disjoint subsets of Rn, µ (
⋃∞
i=1Ei) =

∑∞
i=1 µ(Ei).

This property is called (disjoint) countable additivity.

(2) If two subsets E,F ⊆ Rn are equivalent under a rigid motion (a rotation, translation,
reflection, or composition of any of these), then µ(E) = µ(F ).

(3) If Q is the unit cube in Rn, then µ(Q) = 1.

The next example shows that it is impossible to meet all three criteria when constructing
such a function on all of P(Rn).

Example 17.0.1. Consider R and define an equivalence relation ∼ by x ∼ y if x− y ∈ Q.
This allows us to partition the unit interval [0, 1) into its equivalence classes under ∼. Let
N be a set containing one element from each equivalence class; such a set is possible to
construct using the Axiom of Choice. Set R = Q ∩ [0, 1). For each r ∈ R, define the set

Nr = {x+ r | x ∈ N, r ∈ N ∩ [0, 1− r)} ∪ {x+ r − 1 | r ∈ N ∩ [1, r − 1)}.

In nontechnical terms, Nr is a translation of N by r modulo 1, meaning if adding r to x
takes us out of the interval [0, 1) then we subtract 1, or “wrap back around” to add the rest
on after 0. This is illustrated below.

[ )

0 1

x x+ r

yy + r − 1
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Claim. The Nr for r ∈ R partition [0, 1).

Proof. Take x ∈ [0, 1). Then there is an element n ∈ N such that x ∼ n, since we chose
N to contain an element from every equivalence class of ∼. This means x − n ∈ Q, so set
r = n−x. Since x and n both lie in [0, 1), |n−x| < 1 which means that either n−x ∈ [0, 1)
or x − n ∈ [0, 1). Accordingly, either r ∈ R or −r ∈ R. Without loss of generality suppose
r ∈ R. Then by definition x ∈ Nr because x+ r = x+ (n−x) = n ∈ N . Hence the Nr cover
[0, 1).

Now suppose Nr ∩Ns is nonempty for some r, s ∈ R. Then for some x ∈ N and r ∈ R,
x + r ∈ Ns or x + r − 1 ∈ Ns. Say x + r ∈ Ns; the proof will be similar in the other case.
Then there is some y ∈ N such that x + r = y + s or x + r = y + s − 1. In either case, y
differs from x by a rational, r− s or r− s+ 1. Hence x ∼ y, but then y = x since N contains
exactly one element from each equivalence class of ∼. This implies x+ r = x+ s ⇐⇒ r = s
or x + r = x + s − 1 ⇐⇒ r = s − 1 but since r, s ∈ R ⊂ [0, 1), the latter is impossible.
Therefore r = s and hence Nr = Ns. Finally, we conclude that because the Nr are a disjoint
cover of [0, 1), they form a partition of [0, 1).

Now suppose µ : P(R)→ [0,∞] is a function satisfying conditions (1) – (3). Then for all
r ∈ R, we must have

µ(N) = µ(N ∩ [0, 1− r)) + µ(N ∩ [1− r, 1)) = µ(Nr),

using disjoint additivity (1) and translation-invariance (2). Moreover, by (1) and (3) we
should have

1 = µ([0, 1)) = µ

(⋃
r∈R

Nr

)
=
∑
r∈R

µ(Nr).

Since each µ(Nr) is equal, they can either add up to 0 or ∞, but nothing else in between.
This contradicts condition (3).

The above example shows that no matter how we define a measure, if we want it to
satisfy conditions (1) – (3) then it cannot possibly be defined on all of the power set P(R).

One may think, ‘Hey, wait! What if the problem was with countable additivity?!?’ Unfor-
tunately, this doesn’t resolve the issue. There is a famous theorem called the Banach-Tarski
Paradox that allows one to transform a sphere of the size of a pea, for example, into an-
other sphere the size of the Earth (or the Sun, or whatever size you want!) using only rigid
motions. The catch is that the procedure only breaks down the pea into a finite number of
sets, so countable additivity isn’t the issue here. In fact the sets used in the Banach-Tarski
Paradox are nonmeasurable, a concept we will define in the next section or two.
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17.1 σ-Algebras

To get around the issues presented in the introduction, we will define our measures µ on
certain restricted subsets of the power set P(X).

Definition. Given a set X, an algebra on X is a subset A of the power set P(X) such that

(1) ∅, X ∈ A.

(2) A is closed under taking complements: if A ∈ A then AC ∈ A.

(3) A is closed under finite intersections: if {Ai}ni=1 ⊂ A then
⋂n
i=1 Ai ∈ A.

Notice that (2), (3) and deMorgan’s Laws imply that an algebra A is also closed under
finite unions. We sometimes say an algebra is “closed under finite set operations” to capture
all of this at once.

Definition. An algebra A on X is a σ-algebra if A is also closed under countable in-
tersections: if {Ai}∞i=1 ⊂ A then

⋂∞
i=1Ai ∈ A. The pair (X,A) is called a measurable

space.

Compare this to the definition of a topology on X:

Definition. Given a set X, a topology on X is a subset T of the power set P(X) that
satisfies

(1) ∅, X ∈ T .

(2) T is closed under arbitrary unions: if {Aα}α∈I ⊂ T then
⋃
α∈I Aα ∈ T .

(3) T is closed under finite intersections: if {Ai}ni=1 ⊂ T then
⋂n
i=1 Ai ∈ T .

Sets A ∈ T are called open in X. If A ∈ T then its complement AC is called closed in X.
The pair (X, T ) is called a topological space.

Proposition 17.1.1. If E ⊆ P(X) is a collection of subsets of X, then there exist a unique
topology T (E), a unique algebra A(E) and a unique σ-algebra σ(E) which are respectively the
smallest topology, algebra and σ-algebra containing E.

Proof. Define

T (E) =
⋂

topologies
T ⊇E

T , A(E) =
⋂

algebras
A⊇E

A and σ(E) =
⋂

σ-algebras
A⊇E

A.

In each case, the object �(E) is the intersection of all �’s containing E . Beginning with T (E),
note that this is nonempty since ∅, X ∈ T for any topology T on X, and therefore ∅, X
are contained in the intersection. If {Aα}α∈I lie in T (E) then they all lie in any topology
T ⊇ E and so

⋃
α∈I Aα ∈ T for every such T . Therefore the union lies in T (E). Likewise,

256



17.1. σ-Algebras Chapter 17. Measure Theory

if {Ai}ni=1 ⊂ T (E) then the Ai lie in every topology T ⊇ E so
⋂n
i=1Ai ∈ T and therefore⋂n

i=1Ai ∈ T (E). This shows T (E) is a topology.
The proofs for A(E) and σ(E) are similar. We will show the proof for A(E). Since

each A in the intersection is an algebra, ∅, X ∈ A and so ∅, X ∈
⋂
A⊇E A = A(E). Now if

A ∈ A(E) then A lies in each algebraA ⊇ E . So AC ∈ A and therefore AC ∈ A(E). Similarly,
if {Ai}ni=1 ⊂ A(E) then Ai ∈ A for all i and for all algebras A ⊇ E . Thus

⋂n
i=1 Ai ∈ A for

every such A, and so
⋂n
i=1Ai ∈ A(E). This proves that A(E) is an algebra.

Example 17.1.2. On the set X = {1, 2}, we can define various topologies. The trivial
topology T0 = {∅, X} is a topology on any set X. The power set P(X) is also always a
topology. The only nontrivial topologies on this space are

T1 = {∅, {1}, X} = T ({1}) and T2 = {∅, {2}, X}.

As with topologies, the trivial collection {∅, X} and the power set P(X) are always (σ-
)algebras on any X. An example of a different algebra here is

σ1 = {∅, {1}, {2}, X} = σ({1}) = σ({2}).

Example 17.1.3. Let X = {1, 2, 3}. Then some topologies and algebras on X include:

T0 = {∅, X}, the trivial topology/algebra

T1 = T ({1}) = {∅, {1}, X}
T2 = T ({1}, {2}) = {∅, {1}, {2}, {1, 2}, X}
T3 = T ({1, 2}, {2, 3}) = {∅, {1, 2}, {2, 3}, {2}, X}
σ1 = σ({2}) = {∅, {2}, {1, 3}, X}
σ2 = σ({1}, {2}) = P(X).

Definition. The Borel σ-algebra on a topological space (X, T ) is the σ-algebra generated
by T , written BX = σ(T ).

Example 17.1.4. The most important Borel σ-algebra is that of the real numbers, B = BR,
which contains all of the subsets of R for which it makes sense to define “length” (plus
their complements, intersections, etc.) Consider the following σ-algebras generated by four
different sets:

(i) σ(standard open sets)

(ii) σ({(a,∞) : a ∈ R})

(iii) σ({(a,∞) : a ∈ Q})

(iv) σ({[a,∞) : a ∈ Q}).

We claim that all four are in fact the same σ-algebra, which is the Bore σ-algebra on R.
Let M1 be the σ-algebra in (i); M2 in (ii); M3 in (iii); and M4 in (iv). We will show
M4 ⊆ M3 ⊆ M2 ⊆ M1 ⊆ M4 in order to prove the claim. For each step, it will suffice
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to show the sets generating Mi are all contained in Mi−1 in order to prove Mi ⊆Mi−1 by
definition of a σ-algebra generated by a set.

To show M4 ⊆M3, take an interval [a,∞), a ∈ Q. This can be written

[a,∞) =
∞⋃
n=1

(
a+

1

n
,∞
)

and clearly each
(
a+ 1

n
,∞
)

lies in M3, so because σ-algebras are closed under countable
unions, we see that [a,∞) ∈M3. Hence M4 ⊆M3.

The next inclusion, M3 ⊆ M2, is trivial since the generators of M3 are already among
the generators of M2, and hence lie in M2 itself.

Next, take (a,∞) for a ∈ R and write this as

(a,∞) =
∞⋃
n=1

(a, a+ n).

Then each (a, a+ n) is a standard open set on R and thus lies in M1. Since σ-algebras are
closed under countable unions, we have (a,∞) ∈M1 which implies as before thatM2 ⊆M1.

Finally, take a standard open set (a, b) ⊆ R where −∞ < a < b < ∞. First, we can
approximate the left endpoint using the density of Q in any nonempty subset of R:

(a, b) =
⋃

r∈(a,b)∩Q

[r, b).

This is of course a countable union since Q is countable. Now for each of these intervals
[r, b), we can write

[r, b) = [r,∞) ∩
∞⋂
n=N

[
b− 1

n
,∞
)

where N is the first natural number such that a < b − 1
N

, which exists since b − a > 0 by
assumption. Thus each [r, b) is a countable intersection of sets of the form [x,∞) so we have
shown that (a, b) is a countable union of a countable intersection of sets of the form [x,∞).
Thus (a, b) ∈M4, so M1 ⊆M4. This completes the proof that M1 =M2 =M3 =M4.

Let X be a set and E ⊆ P(X). Denote by Ef the collection of all finite intersections of
sets in E ∪ {∅, X}.

Lemma 17.1.5. T (E) is equal to T , the collection of all arbitrary unions of sets in Ef .

Proof. Notice that E is trivially contained in both Ef and T . Let A,C ∈ T and set E ′ =
E ∪ {∅, X}. Then

A =
⋃
α∈I

Aα =
⋃
α∈I

⋂
B∈Fα

B and C =
⋃
β∈J

Cβ =
⋃
β∈J

⋂
D∈Gβ

D

where each Fα,Gβ ⊂ E ′ is a finite subcollection. Consider

A ∩ C =

(⋃
α

Aα

)
∩

(⋃
β

Cβ

)
=
⋃
α,β

(Aα ∩ Cβ).
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This lies in T since each Aα ∩ Cβ ∈ Ef . Thus T is closed under finite intersections. Clearly
T is also closed under arbitrary unions by construction, so T is a topology containing E and
hence T (E) ⊆ T .

Conversely, if A ∈ T then we want to show A lies in every topology containing E . Write

A =
⋃
α

Aα =
⋃
α

⋂
β∈Fα

B for finite Fα ⊂ E ′.

Then each Aα is a finite intersection of sets in E ′ and so it lies in any topology T ′ ⊇ E .
Taking unions keeps us in T ′, so we see that A ∈ T ′ for all such T ′. In particular A ∈ T (E).
This proves T (E) = T as claimed.

Now let Ec = E ∪ {∅, X} ∪ EC , where EC = {AC | A ∈ E}.

Lemma 17.1.6. A(E) is equal to the collection of finite unions of finite intersections of sets
in Ec.

Proof. Similar.

Example 17.1.7. On R, consider the set E = {(a, b] : −∞ ≤ a < b} ∪ {∅,R}. Then
T (E) consists of all arbitrary unions of sets from E . In general, it’s not guaranteed that
σ(E) = σ(T (E)) but when E contains enough sets, such as the example above, this does
hold. In this case, Ec = E ∪ {(−∞, a] ∪ (b,∞) : a < b} and A(E) is the collection of finite
unions of sets in Ec. Notice that

(a, b) =
∞⋃
n=1

(a, bn] ∈ σ(E), where bn ↗ b

{b} =(a, b] r (a, b) ∈ σ(E) and [a, b] = {a} ∪ (a, b] ∈ σ(E)

so all “reasonable” sets, or sets that we would normally want to measure, are in σ(E). In
fact, σ(E) = B, the Borel σ-algebra on R.

We next prove the suprising fact that every countable σ-algebra (on an arbitrary space
X) must be finite. To do so, we need a lemma:

Lemma 17.1.8. Suppose that M ⊂ P(X) is a σ-algebra and that M is countable. Then
there is a unique partition F ⊂M such that for each A ∈M,

A =
⋃

α∈F,α⊂A

α.

Proof. For each x ∈ X, set Ax =
⋂
{A ∈ M : x ∈ A}. Since M is a σ-algebra and

therefore closed under countable intersections, and this is a countable intersection since M
is countable by hypothesis, Ax is the smallest element ofM containing x. Suppose x, y ∈ X
such that Ax ∩Ay 6= ∅. Then neither Ax nor Ay is empty, so x ∈ Ax ∩Ay and y ∈ Ax ∩Ay.
Since Ax, Ay ∈M andM is closed under intersections, we have Ax∩Ay ∈M. But as shown
above, Ax is the smallest element ofM containing x, so it must be that Ax ⊆ Ax∩Ay, which
implies Ax = Ax ∩ Ay. Likewise, Ay is the smallest element of M containing y, so we have
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Ay ⊆ Ax ∩ Ay, implying Ay = Ax ∩ Ay = Ax. Hence Ax = Ay, so F = {Ax ∈ M : x ∈ X} is
a partition.

Now fix A ∈ M. Then clearly
⋃

α∈F,α⊂A

α ⊆ A since each α in the union is a subset of A.

On the other hand, for each x ∈ A, x ∈ Ax ⊂ A so Ax is one of the α in the union, which

means x ∈ Ax ⊂
⋃

α∈F,α⊂A

α. Since this holds for each x ∈ A, we have A ⊆
⋃

α∈F,α⊂A

α and

therefore A =
⋃

α∈F,α⊂A

α.

To show uniqueness, suppose G is another partition of M such that for any A ∈ M, we
have

A =
⋃

α∈F,α⊂A

α =
⋃

β∈G,β⊂A

β.

Pick out one of these β ∈ G, β ⊂ A. Then β ∈M so we can write it as a disjoint countable
union of sets in F (since F ⊂M is countable):

β =
∞∐
k=1

αk where each αk ⊂ β.

In turn, each αk ∈ F ⊂ M so we can write them as disjoint countable unions of sets in G:
αk =

∐∞
i=1 βik where βik ∈ G, βik ⊂ αk for all i ∈ N. Now we have

β =
∞∐
k=1

∞∐
i=1

βik

which is a disjoint union of sets in G. Since G is a partition, it must be that β = βik for
unique choices of i, k ∈ N. This shows β = βik ⊂ αk for this particular k, but recall that
αk ⊂ β originally. Therefore β = αk ∈ F. Since β ∈ G was arbitrary, we have shown that
G ⊆ F. This argument is symmetric in F and G, so these partitions are equal. Hence F is
the unique partition of M with the prescribed property.

Theorem 17.1.9. Suppose M ⊂ P(X) is a σ-algebra such that M is countable. Then M
is finite.

Proof. Suppose to the contrary thatM is infinite and let F be the partition from Lemma 17.1.8.
This implies two things: (1) X must be infinite, since if X were finite, |M| ≤ |P(X)| = 2|X| <
∞; and (2) F is infinite, since if it were a finite partition of M, M would be finite as well.
By hypothesis,M is countable so F ⊂M is countable is as well. Write F = {αm}Nm=1, where
N is possibly equal to ∞. Define a set function

f :M−→ Z = {(z1, z2, . . . , ) : zi ∈ {0, 1} for each i = 1, . . . , N}

A 7−→ (zi) where zi =

{
0 if αi 6⊂ A

1 if αi ⊂ A.

We claim f is bijective. Note that sinceM is a σ-algebra, it is closed under countable unions
so any countable union of sets in F lie inM. Take an arbitrary sequence (z1, z2, . . .) ∈ Z and
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let m1 be the first index such that zm1 = 1; m2 the second occurrence of 1; m3 the third; and
so on. Then A = αm1 ∪ αm2 ∪ · · · is an element of M by the comment above, and we have
f(A) = (zi) by construction, so f is surjective. Now suppose f(A) = f(B) = (z1, z2, . . .)
for sets A,B ∈ M. Let zi1 be the first occurrence of 1 in the sequence; zi2 be the second
occurrence; and so on. Then A by Lemma 17.1.8, A can be written uniquely as the union

A =
⋃

αi∈F,αi⊂A

αi ⊇
⋃
r

αir

where r ranges over all indices such that zir = 1. The containment above is clear by the
definition of the the function f . On the other hand, if some α` ∈ F is not a subset of A
then it does not show up in the partition A =

⋃
αi. Therefore A =

⋃
r αir and the same

argument holds for B, showing A = B. Hence f is a bijection, meaning |M| = |Z| = 2|F|.
Now either |F| < ∞, in which case 2|F| < ∞ and M is not infinite, or |F| = |N|, in which
case |M| = 2|N| > |N| and M is not countable. Both are contradictions, so M must have
been finite to begin with.
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17.2 Measures

Let X be a set and consider a function µ : F→ [0,∞] on some subset F ⊂ P(X).

Definition. We say µ is additive if for any disjoint sets {Ai}ni=1 ⊂ F such that their union
A =

∐n
i=1Ai also lies in F, we have

µ(A) =
n∑
i=1

µ(Ai).

Further, µ is σ-additive if the property holds for any countable collection of disjoint sets
whose union is in F.

Definition. We say µ is subadditive if for any sets Ai ∈ F such that their (not necessarily
disjoint) union A =

⋃∞
i=1Ai lies in F, we have

µ(A) ≤
∞∑
i=1

µ(Ai).

Definition. The function µ : F → [0,∞] is σ-finite if there exists a countable collection
{An}∞n=1 ⊂ F such that X =

⋃∞
n=1An and µ(An) <∞ for all n.

This is not to be confused with:

Definition. µ is finite if µ(X) <∞.

The most important definition in measure theory is the notion of a measure:

Definition. Let (X,M) be a measurable space. A measure on M is a function µ :M→
[0,∞] which is σ-additive and satisfies µ(∅) = 0. We call the triple (X,M, µ) a measure
space, and sets E ∈M are measurable sets.

If A is an algebra and µ : A → [0,∞] is additive and satisfies µ(∅) = 0, then µ is
sometimes called a finitely additive measure.

A measure satisfies some important properties:

Proposition 17.2.1. Let µ : M → [0,∞] be a measure on a measurable space (X,M).
Then

(1) (Monotonicity) If E,F ∈M and E ⊆ F then µ(E) ≤ µ(F ).

(2) (Subadditivity) If {An}∞n=1 ⊂M then µ

(
∞⋃
n=1

An

)
≤

∞∑
n=1

µ(An).

(3) (Continuity from below) If {En}∞n=1 ⊂ M converges to E from below, then µ(En)
converges to µ(E) from below.

(4) (Continuity from above) If {En}∞n=1 ⊂M converges to E from above and µ(E1) <∞
then µ(En) converges to µ(E) from above.
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Proof. (1) Write F = E ∪ (F r E) ∈ M by closure under unions and complements. Then
by (disjoint) additivity, we have

µ(F ) = µ(E) + µ(F r E) ≥ µ(E)

since µ is nonnegative.
(2) Define a new sequence {A′n}∞n=1 by A′1 = A and for each n ≥ 2, A′n = An r

⋃n−1
j=1 Aj.

By construction the A′n are disjoint and
⋃∞
n=1 A

′
n =

⋃∞
n=1An. Then A′n ⊆ An for each n, so

by (1),

µ

(
∞⋃
n=1

An

)
= µ

(
∞⋃
n=1

A′n

)
=
∞∑
n=1

µ(A′n) ≤
∞∑
n=1

µ(An).

This proves subadditivity.
(3) Define E ′n = En r

⋃n−1
j=1 Ej = En r En−1 for each n. Then for every N ∈ N,

EN =
⋃N
n=1 E

′
n and the E ′n are disjoint. By additivity, we hvae

µ(EN) = µ

(
N⋃
n=1

E ′n

)
=

N∑
n=1

µ(E ′n)

=⇒ µ(E) = µ

(
∞⋃
n=1

E ′n

)
=
∞∑
n=1

µ(E ′n) = lim
N→∞

µ(EN).

Finally, the convergence is from below by monotonicity.
(4) By assumption E =

⋂∞
n=1En. Consider E1 r E =

⋃∞
n=1(E1 r En). For each n, set

An = E1 r En. Then by construction, An ↗ (E1 r E). By (3),

lim
n→∞

µ(An) = lim
n→∞

µ(E1 r En) = µ(E1 r E)

= µ(E1)− µ(E) = lim
n→∞

(µ(E1)− µ(En))

= µ(E1)− lim
n→∞

µ(En).

Since µ(E1) < ∞, we can subtract it from the two expressions above in which it appears,
leaving us with limn→∞ µ(En) = µ(E).

Note that if µ is a finite measure, that is µ(X) < ∞, then continuity from above holds
for all converging sequences {En} ↘ E.

Definition. A collection E ⊆ P(X) is an elementary class if

(1) ∅ ∈ E.

(2) E is closed under finite intersections.

(3) If E ∈ E then EC =
⋃n
i=1 Fi for finitely many disjoint sets Fi ∈ E.

Note that E is an elementary class then A(E) consists of disjoint unions of sets in E .

Example 17.2.2. The collection E = {(a, b] ∩ R : a < b and a, b ∈ R ∪ {−∞,∞}} is an
elementary class on R.
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Proposition 17.2.3. Let A ⊂ P(X) and B ⊂ P(X) be elementary classes. Then

E = A× B = {A×B : A ∈ A, B ∈ B}

is an elementary class on X ×X.

Proof. First, ∅ ∈ A and ∅ ∈ B so ∅ × ∅ ∈ A × B. Next, if {Ci}ni=1 ⊂ A × B then
each Ci is of the form Ci = Ai × Bi for Ai ∈ A and Bi ∈ B. We claim

⋂n
i=1(Ai × Bi) =

(
⋂n
i=1Ai)× (

⋂n
i=1 Bi). For any (a, b) ∈ X ×X, consider

(a, b) ∈
n⋂
i=1

(Ai ×Bi) ⇐⇒ (a, b) ∈ Ai ×Bi for all i

⇐⇒ a ∈ Ai and b ∈ Bi for all i

⇐⇒ a ∈
n⋂
i=1

Ai and b ∈
n⋂
i=1

Bi

⇐⇒ (a, b) ∈

(
n⋂
i=1

Ai

)
×

(
n⋂
i=1

Bi

)

The claim holds. Now since A and B are elementary classes,
⋂n
i=1 Ai ∈ A and

⋂n
i=1 Bi ∈ B.

Therefore
⋂n
i=1Ci =

⋂n
i=1(Ai ×Bi) ∈ A× B.

Finally, take E ∈ E . Then E = A×B where A ∈ A and B ∈ B. We claim the complement
of E is precisely (A×BC) ∪ (AC ×B) ∪ (AC ×BC). Indeed, for any (a, b) ∈ X ×X,

(a, b) ∈ (A×B)C ⇐⇒ (a, b) 6∈ A×B ⇐⇒ a 6∈ A or b 6∈ B
⇐⇒ (a, b) ∈ (A×BC) ∪ (AC ×B) ∪ (AC ×BC).

Observe that this union is disjoint. Now since A ∈ A, there are disjoint sets {Fi}ni=1 ⊂ A
such that AC =

∐n
i=1 Fi. Likewise, since B ∈ B, there are disjoint sets {Gj}mj=1 ⊂ B such

that BC =
∐m

j=1 Gj. Then we have

EC = (A×BC) ∪ (AC ×B) ∪ (AC ×BC)

=

(
A×

(
m∐
j=1

Gj

))
∪

((
n∐
i=1

Fi

)
×B

)
∪

((
n∐
i=1

Fi

)
×

(
m∐
j=1

Gj

))

=

(
m∐
j=1

(A×Gj)

)
∪

(
n∐
i=1

(Fi ×B)

)
∪

(
n∐
i=1

m∐
j=1

(Fi ×Gj)

)

where in the last step we use the same distributive law of unions over products as we proved
for intersections earlier in the proof. This exhibits EC as a finite disjoint union of sets of the
form

(A×Gj), (Fi ×B) or (Fi ×Gj),

each of which lies in A× B. Therefore E = A× B is an elementary class.
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An important question in measure theory is, given an algebra A on a set X and a measure
µ : σ(A) → [0,∞], is µ completely determined by its values on A? The answer in general
is no, but with an additional criterion we can study extensions of finitely additive measures
on algebras to their σ-algebras.

Some notation: if E ⊂ P(X) is a collection of sets in X then we let Eσ denote the collection
of countable unions of sets in E , and Eδ denote the collection of countable intersections of
sets in E .

Definition. A monotone class on a set X is a collection F ⊂ P(X) with the property that
if {Bn}∞n=1 ⊂ F and Bn ↗ B then B ∈ F, and if Bn ↘ B then B ∈ F. In other words, F is
closed under monotone sequences of subsets.

Example 17.2.4. Every σ-algebra is a monotone class.

The following theorem, due to Halmos, is the most important result regarding monotone
classes.

Theorem 17.2.5 (Monotone Class Theorem). If A is an algebra on X and A ⊆ F ⊆ P(X)
for a monotone class F, then σ(A) ⊆ F.

To prove the theorem, we need the following lemma.

Lemma 17.2.6. A monotone class which is an algebra is a σ-algebra.

Proof. We just need to check that if {An}∞n=1 ⊂ M then
⋃∞
n=1An ∈ M. Define Bn =⋃n

k=1 Ak for each n ∈ N. Then B1 ⊂ B2 ⊂ · · · and
⋃∞
n=1Bn =

⋃∞
n=1 An. Since M is a

monotone class,
⋃∞
n=1 Bn ∈M.

Now for the proof of Theorem 17.2.5:

Proof. First define m(F0) to be the monotone class generated by F0, that is the small-
est monotone class containing F0. It suffices to show m(F0) is an algebra and then apply
Lemma 17.2.6.

(1) Ω ∈ m(F0) since Ω ∈ F0 ⊂ m(F0) by definition of an algebra.
(2) Suppose G = {A | AC ∈ m(F0)}. Since the definition of monotone class is symmetric

with respect to complements, we see G is a monotone class. Moreover, since F0 is an algebra,
G ⊃ F0 so by minimality of m(F0), G ⊃ m(F0). Thus AC ∈ m(F0).

(3) Define G1 = {A ∈ m(F0) | A ∪ B ∈ m(F0) for all B ∈ F0}. If {Ai}∞i=1 ⊂ G1 with
Ai ⊂ Ai+1 for all i, then for any B ∈ F0,(

∞⋃
i=1

Ai

)
∪B =

∞⋃
i=1

(Ai ∪B)

and each of these pieces is in G1. Hence G1 is a monotone class. Now G1 ⊃ F0 since F0 is a
field, so by Lemma 17.2.6 G1 must contain σ(F0). Set

G2 = {B ∈ m(F0) | A ∪B ∈ m(F0) for all A ∈ m(F0)}.
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For the same reason as above, G2 is a monotone class, and G2 ⊃ F0 since G1 ⊃ m(F0). This
shows that G2 ⊃ m(F0) so for every A,B ∈ m(F0), A ∪B is also in m(F0).

Hence we conclude that m(F0) is an algebra, and applying Lemma 17.2.6 shows that
m(F0) is a σ-algebra. By definition σ(F0) is the smallest σ-algebra containing F0), so this
proves finally that M⊃ σ(F0).

Theorem 17.2.7 (Regularity). Let (X,M) be a measurable space and take A to be an
algebra on X such that M = σ(A). Suppose µ, ν : M → [0,∞] are measures defined on a
measurable space (X,M) such that µ = ν on A, and there exists a sequence {Xn} ⊂ A such
that Xn ↗ X and µ(Xn) = ν(Xn) <∞ for all n. Then

(1) µ = ν on all of M.

(2) For any A ∈M, µ(A) = inf{µ(B) | B ∈ Aσ, A ⊆ B}.

Proof. (1) Assume µ(X) = ν(X) < ∞. Let F = {A ∈ M = σ(A) | µ(A) = ν(A)}. By
assumption, A ⊆ F. We claim that F is a monotone class. Let An ∈ F be a sequence of sets
converging to A from below. Then since µ(An) = ν(An) for all n,

µ(A) = lim
n→∞

µ(An) = lim
n→∞

ν(An) = ν(A)

by continuity from below. Therefore A ∈ F. The proof for a descending sequence An ↘ A
is similar, using continuity from above. Hence F is a monotone class, so the Monotone Class
Theorem implies σ(A) ⊆ F, that is, µ = ν on σ(A).

(2) First suppose µ is finite, that is, µ(X) <∞. Set µ∗(A) = inf{µ(B) | B ∈ Aσ, A ⊆ B}
for all A ∈M and define the collection

F = {A ∈M | µ∗(A) = µ(A)}.

Note that A ⊆ Aσ ⊆ F so we’re done once we show F is a monotone class. Let {An}∞n=1 ⊂ F
so that An ↗ A and let ε > 0. For each n ∈ N, there exists a Bn ∈ Aσ such that An ⊆ Bn

and µ(BnrAn) = µ(Bn)−µ(An) = ε
2n

. (Note that the subtraction property is only possible
in a finite measure space.) Then if B =

⋃∞
n=1Bn, we have A ⊆ B and

µ(B r A) = µ(B)− µ(A) = µ

((
∞⋃
n=1

Bn

)
r A

)

= µ

(
∞⋃
n=1

(Bn r A)

)

≤
∞∑
n=1

µ(Bn r A) by subadditivity

≤
∞∑
n=1

µ(Bn r An) <
∞∑
n=1

ε

2n
= ε.

Since ε > 0 was arbitrary, we have µ(A) = inf{µ(B) | B ∈ Aσ, A ⊆ B} = µ∗(A). So F is
closed under ascending sequences. On the other hand, if {An}∞n=1 ⊂ F so that An ↘ A and
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let ε > 0. Then there exist Bn ∈ Aσ such that An ⊆ Bn and µ(Bn r An) < ε
2

for each n.
Then A ⊆ An ⊆ Bn implies that

µ(Bn r A) = µ(Bn r An) + µ(An r A) <
ε

2
+ µ(An)− µ(A).

Since µ is finite, continuity from above gives us µ(An) ↘ µ(A) as n → ∞. Thus for
sufficiently large n, µ(Bn r A) < ε

2
+ ε

2
= ε. Therefore µ(A) = inf{µ(B) | B ∈ Aσ, A ⊆

B} = µ∗(A) once again, so F is closed under descending sequences. Hence F is a monotone
class, so by the Monotone Class Theorem we have M = σ(A) ⊆ F, i.e. µ∗ = µ on M.

Now in the infinite case, the σ-finite property allows us to define set functions µn :M→
[0,∞] by µn(A) = µ(A∩Xn) for all n ∈ N and A ∈M, where the Xn are as in the statement
of the theorem. Then each µn is a finite measure since µn(X) = µ(Xn) <∞ by assumption.
Thus for any ε > 0, there are sets Bn ∈ Aσ such that A ⊆ Bn and

µn(Bn r A) <
ε

2n
.

Let B =
⋃∞
n=1(Bn ∩Xn). Then B ∈ Aσ, A ⊆ B, and we have

µ(B r A) = µ

((
∞⋃
n=1

(Bn ∩Xn)

)
r A

)

= µ

(
∞⋃
n=1

(Bn ∩Xn) r A

)

≤
∞∑
n=1

µ((Bn ∩Xn) r A) by subadditivity

≤
∞∑
n=1

µ(Xn ∩ (Bn r A))

=
∞∑
n=1

µn(Bn r A) <
∞∑
n=1

ε

2n
= ε.

As before, this proves µ(B) = µ∗(B) on all of M, proving (2).

Corollary 17.2.8 (Extension Theorem). Suppose µ0 : A → [0,∞] is an additive measure
on an algebra A that is σ-finite and σ-additive on A. Then there is a unique measure µ on
M = σ(A) such that µ|A = µ0 and for all A ∈M,

µ(A) = inf

{
∞∑
n=1

µ0(An) : An ∈ A, A ⊆
∞⋃
n=1

An

}
.

The infimum definition above is an example of an outer measure, defined in general below.

Definition. A set function µ∗ : P(X)→ [0,∞] is called an outer measure on X if

(1) µ∗(∅) = 0.
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(2) (Monotonicity) For all A ⊆ B, µ∗(A) ≤ µ∗(B).

(3) (Subadditivity) For any collection {Ai}∞i=1 of sets in X, µ∗ (
⋃∞
i=1Ai) ≤

∑∞
i=1 µ

∗(Ai).

Example 17.2.9. The function µ∗(A) = inf{µ(B) : B ∈ Aσ, A ⊆ B} is an example of an
outer measure on Aσ. The extension theorem then says that if µ0 is σ-additive and σ-finite
on A, then µ0 extends uniquely to the outer measure µ∗ on σ(A).

Definition. Given an outer measure µ∗ : P(X)→ [0,∞], a set A ⊆ X is µ∗-measurable if
for every E ⊆ X, µ∗(E) = µ∗(A ∩E) + µ∗(AC ∩E). This is also called the Carathéodory
condition.

Definition. A measure space (X,M, µ) is complete if for all A ∈ M with µ(A) = 0 and
for all B ⊆ A, B ∈M and µ(B) = 0.

Theorem 17.2.10. Given an outer measure µ∗ : P(X)→ [0,∞], the collection

M = {A ∈ P(X) | A is µ∗-measurable}

is a σ-algebra on X and (X,M, µ∗) is complete.

There is an analagous notion of inner measure:

Definition. A set function µ∗ : P(X)→ [0,∞] is an inner measure on X if

(1) µ∗(∅) = 0.

(2) For any disjoint sets A,B ∈ P(X), µ∗(A ∪B) ≥ µ∗(A) + µ∗(B).

(3) For any descending sequence An ↘ A such that µ∗(A1) <∞,

µ∗

(
∞⋂
n=1

An

)
= lim

n→∞
µ∗(An).

(4) If µ∗(A) =∞ then for all M > 0, there is a set B ⊆ A such that M ≤ µ∗(B) <∞.

One can define an inner measure from a σ-additive set function µ0 : A → [0,∞] by

µ∗(A) = sup{µ(B) : B ∈ Aσ, A ⊇ B}.

Then A ∈ A is measurable (with respect to µ0) if and only if µ∗(A) = µ∗(A).
The uniqueness statement in Theorem 17.2.7 can also be proven using π- and λ-systems.

Definition. A π-system is a collection P ⊂ P(X) for which A1, A2 ∈ P =⇒ A1 ∩A2 ∈ P.

Definition. A λ-system is a collection L ⊂ P(X) satisfying

(1) X ∈ L.

(2) A ∈ L =⇒ AC ∈ L.
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(3) If {Ai}∞i=1 are disjoint sets in L then
∞⋃
i=1

Ai ∈ L.

Notice that a λ-system is almost a σ-algebra – the disjoint requirement in (3) is a key
difference. Further, a collection that is both a λ-system and a π-system is automatically a
σ-algebra. To see this, let {Ai}∞i=1 be a collection of not necessarily disjoint sets in such a
system. Then by setting Bi = Ai r

⋃n−1
j=1 Aj we see that the Bi have the same union as the

Ai and are disjoint.

Remark. Notice that an equivalent condition to (2), given that (1) and (3) are true, is
A1, A2 ∈ L and A1 ⊂ A2 =⇒ A2 r A1 ∈ L.

Theorem 17.2.11 (Dynkin’s π-λ Theorem). Suppose P is a π-system and L is a λ-system
with P ⊂ L. Then σ(P) ⊂ L.

Proof. Define L0 to be the λ-system generated by P, i.e. the smallest λ-system containing
P. Then P ⊂ L0 ⊂ L. We will show that σ(P) ⊂ L0 which implies the result. We do this by
showing L0 is a π-system and by the comments above this will mean L0 is a σ-algebra.

Define LA = {B ⊂ L0 | B ∩A ∈ L0} for a set A ⊂ X. First assume that A ∈ L0. Under
this hypothesis we can show that LA is a λ-system:

(1) X ∩ A = A ∈ L0 so X ∈ LA.

(2) Suppose B1, B2 ∈ LA and B1 ⊂ B2. Then A ∩ (B2 r B1) = (A ∩ B2) r (A ∩ B1) and
we notice that A ∩ B2 and A ∩ B1 are both in L0. Since L0 is a λ-system, the whole
expression above is in L0. Hence B2 rB1 ∈ LA so (2) holds by the remark.

(3) Suppose {Bi}∞i=1 are disjoint elements of LA. Then A ∩ (
⋃∞
i=1Bi) =

⋃∞
i=1(A ∩ Bi)

and A ∩ Bi ∈ L0 for each i, so because L0 is a λ-system,
⋃∞
i=1(A ∩ Bi) ∈ L0. Thus⋃∞

i=1 Bi ∈ LA.

Now suppose A,B ∈ P, which implies A∩B ∈ P since P is a π-system. That means that
if A ∈ P then LA ⊃ P and moreover LA is a λ-system containing P, so LA ⊃ L0. Therefore
if A ∈ P and B ∈ L0 then A ∩ B ∈ L0. Switching the roles of A and B, we can see that
LB ⊃ P if B ∈ L0. Thus for every B ∈ L0, LB is a λ-system containing P , which implies
LB ⊃ L0. Finally, for all A,B ∈ L0, A ∩B ∈ L0 which shows L0 is a π-system. Hence L0 is
a σ-algebra and the theorem is proved.

The following gives an alternate proof of the uniqueness statement of Theorem 17.2.7.

Theorem 17.2.12. Let P be a π-system and suppose µ and ν are measures on σ(P) satisfying
µ|P = ν|P. Then µ = ν.

Proof. Let L = {A ∈ σ(P) | P1(A) = P2(A)}. We will prove that L is a λ-system, which will
imply L ⊃ σ(P) by the π-λ Theorem.

(1) Clearly X ∈ L.

(2) If A ∈ L then P1(AC) = 1− P1(A) = 1− P2(A) = P2(AC) so AC ∈ L.
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(3) If {An}∞n=1 are disjoint sets in L then

P1

(
∞⋃
n=1

An

)
=
∞∑
n=1

P1(An)

=
∞∑
n=1

P2(An)

= P2

(
∞⋃
n=1

An

)

because P1 and P2 are both countably additive.

Hence L is a λ-system and the result follows.

The regularity theorem (17.2.7) generalizes in the following way.

Theorem 17.2.13. Suppose T is a topology on X with the property that, for every closed
C ⊂ X, there exists {Vn}∞n=1 ⊂ T such that Vn ↘ C. Let M = σ(T ) and µ : M→ [0,∞]
be a measure which is σ-finite on T .

(i) For all ε > 0 and A ∈M, there exists V ∈ T and a closed set F such that F ⊂ A ⊂ V
and µ(V r F ) < ε.

(ii) For all B ∈ M, there exists A ∈ Fσ and C ∈ Gδ such that A ⊂ B ⊂ C and
µ(C r A) = 0.

Proof. (i) Let G be the collection of all A ∈ M such that for every ε > 0, there exist an
open set V and a closed set F such that F ⊂ A ⊂ V and µ(V r F ) < ε. We will prove G
is a σ-algebra containing T . The second part is easy: If U is open, UC is closed so there is
an open sequence Vn ↘ UC . Taking complements, we get a closed sequence V C

n ↗ U , so for
any ε > 0, there is a closed set V C

n such that µ(U r V C
n ) < ε. Therefore every open set U

lies in G, and hence T ⊂ G.
To prove G is a σ-algebra, first observe that ∅ ∈ G since ∅ is both open and closed,

and µ(∅) = 0. For the rest of the proof, let ε > 0 be arbitrary. Take any A ∈ G and
let V be open and F be closed such that F ⊂ A ⊂ V and µ(V r F ) < ε. Then taking
complements gives us V C ⊂ AC ⊂ FC where FC is now open and V C is closed. Moreover,
µ(FCrV C) = µ(FC∩V ) = µ(V ∩FC) = µ(V rF ) < ε. So we see that AC ∈ G. Finally, take
a countable collection {An}∞n=1 ⊂ G and set A =

⋃∞
n=1An. Consider the sets Bm :=

⋃m
n=1 An.

Then Bm ↗ A as m→∞. By continuity from below, we have

lim
m→∞

µ(Bm) = µ(A).

Since the Bm ∈ M, for every m ∈ N there is a closed set Fm and an open set Vm such
that Fm ⊂ Bm ⊂ Vm and µ(Vm r Fm) < 1

m
. Set V =

⋃∞
m=1 Vm and F =

⋂∞
m=1 Fm, so

that V is open, F is closed and (Vm r Fm) ↗ (V/F ) by construction. For each m ∈ N,
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Am ⊆ Bm ⊆ Vm ⊆ V so in particular A ⊂ V . Similarly, for each m ∈ N, A ⊇ Bm ⊃ Fm ⊃ F ,
so in particular A ⊃ F . Then we have F ⊂ A ⊂ V . Finally,

µ(V r F ) = lim
m→∞

µ(Vm r Fm) by continuity from below

= lim
m→∞

1

m
= 0.

Therefore A =
⋃∞
n=1An lies in G, so G is a σ-algebra. We proved that T ⊂ G, so we conclude

that M⊂ G.
(ii) Let B ∈ M. Then by (i), for every n ∈ N there is a closed set An and an open set

Cn such that An ⊂ B ⊂ Cn and µ(Cn r An) ≤ 1
n
. Setting A =

⋃∞
n=1An and C =

⋂∞
n=1Cn,

we see that A ∈ Fσ and C ∈ Gδ. Moreover, let X have a cover
⋃∞
k=1Xk = X such that

µ(Xk) <∞ for each k ∈ N. Then, intersecting the Cn with Xk’s if necessary, we may assume
each Cn has finite measure. Therefore we may apply continuity from above to the convergent
sequence (Cn r An)↘ (C r A) to obtain

µ(C r A) = lim
n→∞

µ(Cn r An) ≤ lim
n→∞

1

n
= 0.

So µ(C r A) = 0 as required.

Lemma 17.2.14. Suppose (X, ρ) is a metric space and T = Tρ is the topology generated by
ρ. Then for every closed set F , there exists a sequence of open sets Fε ↘ F as ε↘ 0.

Proof. Given a set F ⊂ X and ε > 0, let Fε be the open set

Fε =
⋃
x∈F

B(x, ε)

where B(x, ε) is the ρ-ball centered on x of radius ε. First, we show that if F is closed, then
Fε ↘ F as ε↘ 0. Suppose 0 < ε1 ≤ ε0. Then for each y ∈ Fε1 , y ∈ B(x, ε1) for some x ∈ F .
Since ε1 ≤ ε0, we have B(x, ε1) ⊆ B(x, ε0) so y ∈ B(x, ε0) as well. Thus y ∈ B(x, ε0) as well,
so Fε1 ⊆ Fε0 . This proves the sequence Fε is descending. We finish by proving

⋂
ε>0 Fε = F .

On one hand, every x ∈ F lies in B(x, ε) for every ε > 0, so x ∈ Fε for all ε > 0, and thus
x ∈

⋂
ε>0 Fε. This proves F ⊆

⋂
ε>0 Fε. On the other hand, suppose y ∈

⋂
ε>0 Fε. Then for

every n ∈ N, there is some xn ∈ F such that y ∈ B
(
xn,

1
n

)
. Then as n → ∞, ρ(xn, y) → 0

so the sequence (xn) converges to y. Thus y is a limit point of F , but as F is closed, this
means y ∈ F . Hence F =

⋂
ε>0 Fε. We conclude that Fε ↘ F as ε↘ 0.

Corollary 17.2.15 (Regularity on Rn). Let B be the Borel σ-algebra on Rn and suppose
that µ : B → [0,∞] is a measure such that µ(A) <∞ for all bounded sets A ∈ B. Then

(i) For all A ∈ B and ε > 0, there exist a closed set F and an open set V such that
F ⊂ A ⊂ V and µ(V r F ) < ε.

(ii) If µ(A) <∞, then the set F in (i) may be chosen to be compact.

(iii) For all A ⊂ B, we have

µ(A) = inf{µ(V ) | A ⊂ V and V is open} = sup{µ(K) | A ⊃ K and K is compact}.
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Proof. (i) Lemma 17.2.14 shows that the hypotheses of Theorem 17.2.13 are satisfied, so (i)
follows immediately.

(ii) If µ(A) <∞, by (i) there is a closed set F and open set V such that F ⊂ A ⊂ V and
µ(V r F ) < ε

2
. Consider the sequence

Kj = {x ∈ F : |x| ≤ j}.

Then each Kj is closed and bounded in Rn and thus compact. Moreover, Kn ↗ F which
implies (V rKn)↘ (V rF ). Since µ(A) <∞ and µ(V rA) ≤ µ(V rF ) < ε

2
by monotonicity,

we see that µ(V ) <∞. Therefore by continuity from above,

µ(V rKn)↘ µ(V r F ).

Thus there is a sufficiently large J ∈ N such that K = KJ satisfies K ⊂ A ⊂ V and

µ(V rK) = µ(V rKJ) = µ(V rKJ)− µ(V r F ) + µ(V r F ) <
ε

2
+
ε

2
= ε.

This proves (ii).
(iii) Finally, if µ(A) <∞, the two equalities follow from (i) and (ii), respectively. In the

case that µ(A) =∞, the closed set F from (i) may be chosen so that µ(Ar F ) < 1, which
implies µ(F ) =∞. Then the same sequence Kj of compact sets in (ii) will work.

We next prove an analog of the extension theorem for elementary classes.

Lemma 17.2.16. Let E be an elementary class on X. Then A(E) consists of finite disjoint
unions of sets in E.

Proof. Let A denote the collection of all finite disjoint unions of sets in E . Clearly ∅, X ∈ A
and A is closed under finite unions. Take A ∈ A and write A =

⋃n
i=1 Ei, where the Ei ∈ E

are disjoint. Then

AC =
n⋂
i=1

EC
i =

n⋂
i=1

Ni⋃
k=1

Fik for some Fik ∈ E

which is possible since E is an elementary class. This can alternatively be written

AC =

N1,...,Nn⋃
k1,...,kn=1

(F1k1 ∩ · · · ∩ Fnkn).

It is clear that AC ∈ A so A is an algebra. Since E ⊆ A, we have A(E) ⊆ A. By definition,
A(E) consists of all intersections of finite unions from E , so A(E) ⊇ A and therefore they
are equal.

Theorem 17.2.17. Let E be an elementary class on X and suppose µ0 : E → [0,∞] is an
additive set function. Then

(1) There exists a finitely additive measure µ1 : A(E)→ [0,∞] such that µ1|E = µ0.

(2) If µ0 is subadditive on E then µ1 is σ-additive on A(E) and µ1(∅) = 0.
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(3) If µ0 is subadditive on E then there exists a measure µ : σ(E) → [0,∞] such that
µ|E = µ0.

Proof. (1) If A ∈ A(E) then A =
∐n

i=1 Ei for disjoint sets Ei ∈ E by Lemma 17.2.16. Set
µ1(A) =

∑n
i=1 µ0(Ei). Then clearly µ1 is finitely additive and µ1|E = µ0 so we need only

check that µ1 does not depend on the Ei chosen to represent A. Suppose that A =
∐m

j=1 Fj
for Fj ∈ E as well. For 1 ≤ i ≤ n, we can write

Ei = Ei ∩ A = Ei ∩

(
m⋃
j=1

Fj

)
=

m⋃
j=1

(Ei ∩ Fj).

Then additivity gives us µ0(Ei) =
∑m

j=1 µ0(Ei∩Fj). Finally, summing over the Ei, we obtain

n∑
i=1

µ0(Ei) =
n∑
i=1

m∑
j=1

µ0(Ei ∩ Fj) =
m∑
j=1

n∑
i=1

µ0(Ei ∩ Fj) =
m∑
j=1

µ0(Fj).

Hence µ1(A) is well-defined for all A ∈ A(E).
(2) The property µ1(∅) = 0 follows directly from subadditivity. Suppose Ak ∈ A := A(E)

such that A =
∐∞

k=1Ak ∈ A. Then for any N , we can write A as a disjoint union:

A =

(
N∐
k=1

Ak

)
∪

(
Ar

N∐
k=1

Ak

)
and both pieces are in A, so we have

µ1(A) =
N∑
k=1

µ1(Ak) +
∑

1

(
Ar

N∐
k=1

Ak

)
≥

N∑
k=1

µ1(Ak).

Since this holds for all N , we can take a limit to obtain

µ1(A) ≥
∞∑
k=1

µ1(Ak).

On the other hand, A =
∐N

j=1 Ej for some Ej ∈ E , and each Ak can be written Ak =
∐Nk

i=1 Fik
for Fik ∈ E . Then

A =
N∐
j=1

Ej =
∞∐
k=1

Ak =
∞∐
k=1

Nk∐
i=1

Fik

=⇒ Ej = Ej ∩ A =
∞∐
k=1

Nk∐
i=1

(Fik ∩ Ej) ∈ E .

Since µ1 is subadditive on E , µ1(Ej) ≤
∑∞

k=1

∑Nk
i=1 µ1(Fik ∩ Ej) for each j, so we have

µ1(A) =
N∑
j=1

µ1(Ej) ≤
∞∑
k=1

Nk∑
i=1

N∑
j=1

µ1(Fik ∩ Ej) =
∞∑
k=1

µ1(Ak)

(using Tonelli’s Theorem to switch the sums in the last step). Hence µ1 is σ-additive on A.
(3) follows directly from the extension theorem when we observe that σ(E) = σ(A).
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17.3 Borel Measures

For this section, let E = {(a, b] ∩ R : −∞ ≤ a < b ≤ ∞}, A = A(E) and B = σ(A) = σ(E),
the Borel σ-algebra on R. Our goal is to classify all measures µ : B → [0,∞] such that
µ((a, b]) <∞ for all −∞ < a < b <∞.

If µ is such a measure, define the function Fµ : R→ R by

Fµ(x) =

{
µ((0, x] ∩ R) 0 ≤ x ≤ ∞
−µ((x, 0]) −∞ ≤ x < 0.

This is called a (cumulative) distribution function for µ on R, since it is of the form Fµ(x) =
µ((−∞, x]) for all x ∈ R.

Lemma 17.3.1. Let F = Fµ be the distribution function for a measure µ on B. Then

(1) F is nondecreasing.

(2) F is right continuous and is continuous at ±∞.

(3) F (0) = 0.

(4) For all −∞ ≤ a < b ≤ ∞, µ((a, b]) = F (b)− F (a).

Proof. (1) follows from monotonicity of µ.
(4) First suppose a < 0 < b. Then

µ((a, b]) = µ((a, 0] ∪ (0, b]) = µ((a, 0]) + µ((0, b]) = −F (a) + F (b).

Now suppose 0 < a < b. Then

µ((a, b]) = µ((0, b] r (0, a]) = µ((0, b])− µ((0, a]) = F (b)− F (a).

The other case when a < b < 0 is similar.
(2) Suppose b ∈ R and bn is a sequence in R which converges to b from above. Then

(a, bn]↘ (a, b] =⇒ µ((a, bn])↘ µ((a, b]) by continuity from above

=⇒ lim
n→∞

(F (bn)− F (a)) = F (b)− F (a) by (4)

=⇒ lim
n→∞

F (bn) = F (b).

Thus F is continuous from the right. Continuity at ±∞ is easily checked.
(3) follows from right continuity and the definition of F for x ≥ 0.

Theorem 17.3.2. If F : R→ R is right continuous and nondecreasing, there exists a unique
measure µ : B → [0,∞] such that µ((a, b] ∩ R) = F (b)− F (a) for all −∞ ≤ a < b ≤ ∞.
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Proof. We will use Theorem 17.2.17 to construct µ : B → [0,∞]. Let E be the elementary
class defined above and define µ0 : E → [0,∞] by µ0((a, b] ∩ R) = F (b) − F (a). First we
prove µ0 is finitely additive. Take (a, b] ∈ E and write it as a disjoint union:

(a, b] =
N⋃
i=1

(ai, bi] where a = a1 < b1 = a2 < b2 = . . . < bN = b.

Then we have

N∑
i=1

µ0((ai, bi]) =
N∑
i=1

(F (bi)− F (ai)) = F (b)− F (a) = µ0((a, b]).

This implies finite additivity for all disjoint unions in E .
To prove µ0 is subadditive, it suffices to prove subadditivity for disjoint unions, since any

union in E can be written
⋃∞
i=1 Bi =

∐∞
i=1Ai where A1 = B1 and Ai = Bi r

(⋃i−1
j=1Bj

)
.

Again choose (a, b] ∈ E and write (a, b] =
∐∞

i=1(ai, bi]. For the moment, assume a, b ∈ R.

Fix ã ∈ (a, b] and for each i ∈ N, choose b̃i > bi. Then

[ã, b] ⊆
∞⋃
i=1

(ai, b̃i)

is an open cover of a compact set in R. By the Heine-Borel theorem, there is some N ∈ N
such that

(ã, b] ⊂ [ã, b] ⊆
N⋃
i=1

(ai, b̃i).

By finite subadditivity and monotonicity, we have

µ0((ã, b]) ≤
N∑
i=1

µ0((ai, b̃i]) ≤
∞∑
i=1

µ0((ai, b̃i])

=⇒ F (b)− F (a) ≤
∞∑
i=1

(F (b̃i)− F (ai)).

Let ã decrease to a. Then by right continuity of F , we get

F (b)− F (a) ≤
∞∑
i=1

(F (b̃i)− F (bi)) +
∞∑
i=1

(F (bi)− F (ai)).

Finally, letting the sequence bi decrease to b, right continuity of F once more gives us

µ0((a, b]) = F (b)− F (a) ≤
∞∑
i=1

(F (bi)− F (ai)) =
∞∑
i=1

µ0((ai, bi]).

This establishes subadditivity in the finite case; the infinite cases are proven similarly. There-
fore by Theorem 17.2.17, there is a unique measure extending µ0 to B = σ(E).
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Definition. Given a nondecreasing, right continuous function F : R→ R, the unique mea-
sure µ : B → [0,∞] satisfying µ((a, b]) = F (b)− F (a) for all −∞ ≤ a < b ≤ ∞ is called the
Lebesgue-Stieltjes measure associated to F .

Take a Lebesgue-Stieltjes measure µ with distribution function F . The completion of B
with respect to µ is Bµ := σ(B ∪ N ), where N = {F ⊂ X | F ⊂ N ∈ B, µ(N) = 0}. We
extend µ to Bµ by

µ̄(A ∪ F ) = µ(A) for all A ∈ B, F ∈ N .

As the name suggests, (R,Bµ, µ̄) is a complete measure space.

Lemma 17.3.3. For every set E ∈ Bµ,

µ̄(E) = inf

{
∞∑
j=1

µ((aj, bj)) : E ⊂
∞⋃
j=1

(aj, bj)

}
.

Theorem 17.3.4. For every set E ∈ Bµ,

µ̄(E) = inf{µ(U) : E ⊂ U,U is open in X} = sup{µ(K) : K ⊂ E,K is compact in X}.

In other words, Theorem 17.3.4 says that µ extends to Bµ as both an inner and an outer
measure.

Let Gδ denote the collection of countable intersections of closed sets in B, and let Fσ
denote the collection of countable unions of open sets in B. The next result gives a charac-
terization of µ̄-measurable sets where µ is some Lebesgue-Stieltjes measure on R.

Theorem 17.3.5. Let µ be a Lebesgue-Stieltjes measure on R. For any E ⊆ R, the following
are equivalent:

(1) E ∈ Bµ.

(2) E = V rN1 for some Gδ set V and N1 ∈ B such that µ(N1) = 0.

(3) E = H ∪N2 for some Fσ set H and N2 ∈ B such that µ(N2) = 0.

Definition. When F (x) = x, the Lebesgue-Stieltjes measure λ := µF is called the Lebesgue
measure on R.

Notice that λ((a, b]) = b − a for all a, b ∈ R, so Lebesgue measure is precisely the
‘length’ measure we have been after all along. The following proposition states that all of
the properties of such a length function that we expect hold for Lebesgue measure.

Proposition 17.3.6. Let λ be the Lebesgue measure on R. Then

(1) For all b ∈ R, λ({b}) = 0.

(2) For all a, b ∈ R,

λ((a, b)) = λ([a, b)) = λ([a, b]) = λ((a, b]) = b− a.
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(3) λ is invariant under translations: if a ∈ R then for all B ∈ B, λ(a+B) = λ(B).

(4) λ is invariant under dilations: if c ∈ R then for all B ∈ B, λ(cB) = |c|λ(B)

Proof. (1) Write {b} =
⋂∞
n=1

(
b− 1

n
, b
]
. Then for each n ∈ N, {b} ⊂

(
b− 1

n
, b
]

and
λ
(
b− 1

n
, b
]

= 1
n
. So λ({b}) < 1

n
for all n ∈ N, and thus λ({b}) = 0.

(2) follows from (1) and additivity, since each of the different intervals can be written as
a disjoint union of (a, b) with one or both of its endpoints.

(3) It’s easy to check that the function λa(B) = λ(a+B) is a measure on B. Then

λa((c, d]) = λ(a+ (c, d]) = λ((a+ c, a+ d]) = (a+ d)− (a+ c) = d− c = λ((c, d]).

By uniqueness, we have λa = λ on all of B.
(4) Similarly, define λc(B) = 1

|c|λ(cB) for all B ∈ B. One can show λc is a measure on B
that satisfies λc((a, b]) = b− a so uniqueness again gives the result.

Example 17.3.7. We can generalize Lebesgue measure to R2, and even Rn, as we will
see in later sections. If (a,b] = (a1, b1] × (a2, b2] is a half-open rectangle in R2, define the
distribution function F : R2 → R by F (x) = F (x, y) = xy. Then the Lebesgue measure on
R2 is defined as

λ((a,b]) = λ((a1, b1]× (a2, b2]) = (a2 − a1)(b2 − b1).

This captures the notion of area on R2, as we would expect. Generalizing this to Rn for
n ≥ 3 is done in an analogous fashion.

Example 17.3.8. Let D ⊆ R be any set and define a measure µD : B → [0,∞] by µD(A) =
#(A ∩ D), called the counting measure with respect to D. We can alternatively express
this as µD =

∑
x∈D δx. Consider the counting measures µD1 and µD2 defined from D1 = Q

and D2 =
{
m
2n

: m is odd and n ∈ N
}

. Note that both D1 and D2 are dense in R and
µD1((a, b]) =∞ = µD2((a, b]) for all distinct a, b ∈ R, but µD1 6= µD2 . Although µD1 and µD2

are both σ-finite on B, they are not σ-finite on the algebra generated by E = {(a, b] : a < b}.
This is a counterexample to the extension theorem when the condition of σ-finiteness is
removed.
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17.4 Measurable Functions

First we recall the following facts from the theory of metric spaces.

Definition. If ρ : X ×X → [0,∞) is a metric on X, a set V ⊆ X is open with respect to
ρ if for every x ∈ V , there is some ε > 0 such that B(x, ε) ⊆ V .

Lemma 17.4.1. The collection Tρ = {V ⊆ X | V is open with respect to ρ} is a topology
on X, and is equal to the topology generated by {B(x, ε) | x ∈ X, ε > 0}.

Proposition 17.4.2. Let X be a space.

(1) If E ⊆ P(X) is countable, then σ(E) = σ(T (E)).

(2) If (X, ρ) is a metric space containing a countable dense subset D ⊂ X, then

BX = σ(Tρ) = σ({B(x, ε) | x ∈ X, ε > 0}).

Proof. (1) Clearly E ⊂ T (E) so σ(E) ⊆ σ(T (E)). For the other containment, consider a set

A ∈ T (E). Then A =
⋃
α∈I

⋂
E∈Fα

E where I is an arbitrary index set and Fα ⊂ E is finite. Since

E is countable, any such index set I may be chosen to be countable. Therefore A ∈ σ(E) so
σ(E) = σ(T (E)).

(2) Note that Tρ = T
({
B
(
x, 1

n

)
: x ∈ D,n ∈ N

})
. Applying (1) gives the result.

Lemma 17.4.3. For metric spaces (X, ρ) and (Y, d), and any function f : X → Y , the
following are equivalent:

(1) f is continuous: for all ε > 0, there is a δ > 0 such that if ρ(x1, x2) < δ, then
d(f(x1), f(x2)) < ε.

(2) f−1(V ) is open in X for all open subsets V ⊂ Y .

(3) f−1(C) is closed in X for all closed subsets C ⊂ Y .

(4) limn→∞ f(xn) = f(x) for all convergent sequences (xn)→ x ∈ X.

For any E ⊆ P(X) and F ⊆ P(Y ) and a function f : X → Y , we write f−1(F) = {f−1(V ) :
V ∈ F} to denote the pullback of F under f and f∗(E) = {A ⊂ Y : f−1(A) ∈ E} to denote
the pushforward of E under f . The next four results are usually proven in a general topology
course. We restate them here in order to compare to similar statements about measurable
spaces to follow.

Lemma 17.4.4. Let f : X → Y be a function between spaces.

(1) If F is a topology on Y then f−1(F) is a topology on X.

(2) If T is a topology on X then f∗(T ) is a topology on Y .
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If F is a topology on Y , then T = f−1(F) is the smallest topology on X such that f is
continuous with respect to T and F. Similarly, if T is a topology on X, then F = f∗(T ) is
the largest topology on Y such that f is continuous with respect to T and F.

Proposition 17.4.5. Let E ⊂ P(Y ) and let f : X → Y be any function. Then T (f−1(E)) =
f−1(T (E)).

Corollary 17.4.6. If f : (X, T ) → (Y,F) is a function between topological spaces and
E ⊆ P(X) is a basis for F, then f is continuous if and only if T (f−1(E)) ⊂ T .

Lemma 17.4.7. If (X, T )
f−→ (Y,F)

g−→ (Z,G) are continuous functions between topological
spaces, then g ◦ f : (X, T )→ (Z,G) is also continuous.

It is useful to think of a topology not just as an abstract collection of sets, but as a system
on which we can study continuous functions between spaces. Analogously, σ-algebras are
the system on which we can study measurable functions, which we define next.

Definition. Let (X,M) and (Y,F) be measurable spaces and let f : X → Y be a function.
We say f is (M,F)-measurable if f−1(V ) ∈M for every V ∈ F.

We now prove analogs to Lemma 17.4.4, Proposition 17.4.5, Corollary 17.4.6 and Lemma 17.4.7
for measurable functions.

Lemma 17.4.8. Let f : X → Y be a function between spaces.

(1) If F is a σ-algebra on Y then f−1(F) is a σ-algebra on X.

(2) If M is a σ-algebra on X then f∗(M) is a σ-algebra on Y .

Proof. Exercise.

As in the topological case, if F is a σ-algebra on Y , then M = f−1(F) is the smallest
σ-algebra on X such that f is measurable with respect to M and F. Similarly, if M is a
σ-algebra on X, then F = f∗(M) is the largest σ-algebra on Y such that f is measurable
with respect to M and F.

Proposition 17.4.9. Let E ⊂ P(Y ) and let f : X → Y be any function. Then σ(f−1(E)) =
f−1(σ(E)).

Proof. Clearly f−1(E) ⊆ f−1(σ(E)) so σ(f−1(E)) ⊆ f−1(σ(E)). Conversely, consider the
pushforward M := f∗(σ(f−1(E))) = {A ⊆ Y : f−1(A) ∈ σ(f−1(E))}. Clearly E ⊆ M
so σ(E) ⊆ M. That is, if A ∈ σ(E) then f−1(A) ∈ σ(f−1(E)). This proves f−1(σ(E)) ⊆
σ(f−1(E)), so we’re done.

Corollary 17.4.10. If f : (X,M) → (Y,F) is a function between measurable spaces and
E ⊆ P(X) such that M = σ(E), then f is measurable if and only if σ(f−1(E)) ⊂M.

Proof. Apply Proposition 17.4.9.

Lemma 17.4.11. If (X,M)
f−→ (Y,F)

g−→ (Z,G) are measurable functions between measur-
able spaces, then g ◦ f : (X,M)→ (Z,G) is also measurable.
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Proof. This follows from the fact that (g ◦ f)−1(G) = f−1(g−1(G)) ⊆ f−1(F) ⊆M.

Definition. If (X, TX) and (Y, TY ) are topological spaces, a function f : X → Y is Borel
measurable if f−1(BY ) = BX .

Example 17.4.12. A function f : R → R is Borel measurable (we usually shorten this to
measurable for functions R → R) if f−1(B) ⊆ B. In addition, we call f : R → R Lebesgue
measurable if f−1(B) ⊆ L := Bλ, where λ is the Lebesgue measure on R and L is the comple-
tion of B with respect to λ. Notice that Borel measurability implies Lebesgue measurability,
but the converse is false. In particular, if f, g : R → R are Lebesgue measurable functions,
it is not guaranteed that their composition g ◦ f is Lebesgue measurable.

Lemma 17.4.13. Every continuous function f : X → Y between topological spaces is Borel
measurable with respect to BX and BY .

Proof. By Proposition 17.4.9, f−1(BY ) = f−1(σ(TY )) = σ(f−1(TY )) ⊆ σ(TX).

Definition. The Borel σ-algebra on the extended reals R = R ∪ {±∞} is B :=
σ({[a,∞] : a ∈ R}).

It is useful to write B in a couple different ways:

B = {A ⊆ R : A ∩ R ∈ B} = {B,B ∪ {∞}, B ∪ {−∞}, B ∪ {±∞} : B ∈ B}.

Proposition 17.4.14. Let fn : (X,M) → (R,B) be a sequence of measurable functions.
Then

(1) supn{fn(x)} is measurable.

(2) infn{fn(x)} is measurable.

(3) lim sup fn(x) and lim inf fn(x) are measurable.

Proof. (1) Set f+(x) = sup{fn(x)}. Then

f−1
+ ([−∞, b]) = {x | f+(x) ≤ b} = {x | fn(x) ≤ b for all n}

=
∞⋂
n=1

{x | fn(x) ≤ b}

=
∞⋂
n=1

f−1
n ([−∞, b])

which lies in M. Since the sets [−∞, b] for b ∈ R generate B, we’re done.
(2) is similar to (1), using the sets [a,∞] to generate B.
(3) Write the limsup and liminf as lim sup fn(x) = infn{sup fk(x) | k ≥ n} and lim inf fn(x) =

supn{inf fk(x) | k ≥ n}. Then measurability of these functions follows from (1) and (2).

Lemma 17.4.15. If f : R→ R is monotone, then f is Borel measurable.
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Proof. B is generated by the sets (a,∞), and f−1((a,∞)) = [b,∞) or (b,∞) for some
b ∈ R.

Definition. Let X be a space and A an index set such that for all α ∈ A, (Yα,Fα) are
measurable (resp. topological) spaces and there are given functions fα : X → Yα. Then

σ(fα | α ∈ A) := σ

(⋃
α∈A

f−1
α (Fα)

)
and T (fα | α ∈ A) := T

(⋃
α∈A

f−1
α (Fα)

)

are the σ-algebra (resp. topology) generated by the fα. Each is equal to the smallest σ-
algebra (resp. topology) on X with respect to which each fα is measurable (resp. continuous).

Proposition 17.4.16. Let fα : X → (Y,Fα) be functions. A function g : (Z,M) → X
between measurable spaces is measurable with respect to M and σ(fα | α ∈ A) if and only
if fα ◦ g is (M,Fα)-measurable for each α ∈ A. Similarly, g is continuous on M and
T (fα | α ∈ A) if and only if fα ◦ g is continuous on M and Fα for each α ∈ A.

The most important case of the above situation is when X =
∏

α∈A Yα and fα = πα :
X → Yα is the canonical projection for each α ∈ A.

Definition. For X = Y1 × Y2, with (Y1,M1) and (Y2,M2) measurable spaces and π1 :
X → Y1 and π2 : X → Y2 the canonical projections, the product σ-algebra on X is
M1 ⊗M2 := σ(π1, π2). Similarly, if Ti is a topology on Yi, i = 1, 2, the product topology
on X is T1 ⊗ T2 := T (π1, π2).

Example 17.4.17. If X = R2 = R×R, the Borel σ-algebra on R2 is equal to B⊗B, where
B is the Borel σ-algebra on R. In general, Bn := BRn = B ⊗ · · · ⊗ B︸ ︷︷ ︸

n

= B⊗n.

Proposition 17.4.18. Suppose f, g : (X,M)→ (R,B) are measurable functions. Then

(1) fg : X → R, defined by (fg)(x) = f(x)g(x) for all x ∈ X, is measurable.

(2) f ± g : X → R, defined by (f ± g)(x) = f(x)± g(x) for all x ∈ X, are measurable.

(3) If g(x) 6= 0 for all x ∈ X, then f
g

: X → R, defined by f
g
(x) = f(x)

g(x)
for all x ∈ X, is

measurable.

Proof. Define F : X → R2 by F (x) = (f(x), g(x)). Then F is measurable since it’s measur-
able componentwise, by Proposition 17.4.16. The functions R2 → R given by (a, b) 7→ ab, a±b
or a

b
are continuous and therefore measurable by Lemma 17.4.13, so their compositions with

F are measurable. These compositions are precisely fg, f ± g and, when g 6= 0, f
g
.

For i = 1, 2, let Xi be a space, Ei ⊆ P(Xi) a collection of subsets such that Xi ∈ Ei,
Ti = T (Ei) and Mi = σ(Ei). Also let πi : X1 × X2 → Xi be the canonical coordinate
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projections. Then we have a few ways of writing the product σ-algebra and topology on
X1 ×X2:

M1 ⊗M2 = σ(π1, π2)

= σ({A×X2 | A ∈M1} ∪ {X1 ×B | B ∈M2})
= σ({A×B | A ∈M1, B ∈M2});

and T1 ⊗ T2 = T (π1, π2)

= T ({A×X2 | A ∈ T1} ∪ {X1 ×B | B ∈ T2})
= T ({A×B | A ∈ T1, B ∈ T2}).

Each description is useful in certain scenarios, so it is good to state them now.

Theorem 17.4.19. For X1 and X2 with the setup above,

(1) M1 ⊗M2 = σ(E1 × E2).

(2) T1 ⊗ T2 = T (E1 × E2).

(3) If E1 and E2 are countable, then σ(Ei) = σ(Ti) for each i = 1, 2. In particular,
BX1×X2 = σ(T1 ⊗ T2) = B1 ⊗ B2.

Proof. (1) On one hand, E1 × E2 ⊆ {A × B | A ∈ M1, B ∈ M2} so by the preceding
remarks, σ(E1 × E2) ⊆ σ(M1 × M2) = M1 ⊗ M2. To show the other containment, it
suffices to show that all sets of the form A × X2 and X1 × B are in σ(E1 × E2). For any
A ∈ M1, A × X2 ∈ σ(E1 × X2) ⊆ σ(E1 × E2) since X2 ∈ E2. Likewise, for any B ∈ M2,
X1 ×B ∈ σ(X1 × E2) ⊆ σ(E1 × E2). Hence σ(E1 × E2) =M1 ⊗M2.

(2) is proven similarly.
(3) Clearly σ(E1) ⊆ σ(T1) and σ(E2) ⊆ σ(T2) since Ti = T (Ei) for each i = 1, 2.

Example 17.4.20. The Borel σ-algebra on R can be generated by the collection of intervals
with rational endpoints, which is a countable collection. By (3) of Theorem 17.4.19, the Borel
σ-algebra Bn on Rn can be generated by the (countable) collection of n-hyperrectangles with
rational coordinates, or alternatively by the open n-balls with rational center and radius.

Corollary 17.4.21. For any m,n ≥ 1, Bm+n = Bm ⊗ Bn.
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Chapter 18

Integration Theory

The main topic in measure theory is integration, which both generalizes and vastly improves
upon classical Riemann integration on Rn. We define the integral with respect to a measure
and prove the most important theorems: Monotone Convergence, Fatou’s Lemma, Domi-
nated Convergence, Tonelli’s and Fubini’s theorems and the change-of-variables formula. We
will prove that Lebesgue integration properly captures the Riemann integral.
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18.1 Lebesgue Integration

Let (X,M, µ) be a measure space and consider a function f : X → C. We want to be able to
integrate f by mimicking the approximation method used to construct the Riemann integral,
but this may not always be possible if f is not reasonably ‘nice’. We start by defining a class
of functions that are nice.

Definition. A function ϕ : X → C is simple if ϕ is (M,BC)-measurable and the set
{ϕ(x) | x ∈ X} is finite, that is, ϕ has finite range.

X

R

ϕ

We will assume all functions in this section are (M,BC)-measurable. Consider a simple
function ϕ : X → C. Then for each a ∈ C, ϕ−1({a}) ∈M.

Definition. For a set A ⊂ X, the characteristic function of A is

χA(x) =

{
1 x ∈ A
0 x 6∈ A.

Clearly χA is measurable if and only if A ∈ M. Notice that if A ∈ M, then χA is a
simple function. If ϕ : X → C is any simple function, then ϕ can be represented as a sum
of characteristic functions:

ϕ(x) =
∑
a∈C

aχϕ−1({a}).

This sum is finite since χϕ−1({a}) 6= 0 for only finitely many a ∈ R.
We now proceed to define integration on simple functions, then use this to construct

Lebesgue integrals for nonnegative functions and finally for all measurable functions.

Definition. The Lebesgue integral of a simple function ϕ : X → R is∫
X

ϕdµ =
∑
a∈R

aµ(ϕ−1({a})).
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Definition. If f : X → [0,∞] is a nonnegative measurable function on a measure space
(X,M, µ), the Lebesgue integral of f over X is∫

X

f dµ = sup

{∫
X

ϕdµ : ϕ is simple, 0 ≤ ϕ(x) ≤ f(x) for all x ∈ X
}
.

We immediately observe that
∫
X
f dµ exists (although it may be infinite) for all measur-

able functions f : X → [0,∞], since for every simple function ϕ : X → [0,∞],
∫
X
ϕdµ is

defined and the set of all integrals for 0 ≤ ϕ ≤ f is bounded.

Lemma 18.1.1. Let f : X → [0,∞] be a measurable function on X. Then there exists a
sequence of simple functions ϕn : X → [0,∞) such that ϕn converge pointwise from below to
f as n→∞.

Proof. (Sketch) For each n ≥ 1, define the function ϕn by

ϕn =
22n−1∑
k=0

k

2n
χf−1(( k

2n
, k+1
2n ]) + 2nχf−1((2n,∞]).

X

R f

f−1
((

k
2n
, k+1

2n

])

(
k

2n
, k+1

2n

]
2n

Clearly each ϕn is simple – they are finite sums of characteristic functions. By construction
ϕn ≤ f pointwise and ϕn is a monotonically increasing sequence, so it converges. Further,
one can show that the ϕn converge pointwise to f .

Definition. If A ⊆ X is a subset, we define integration over A for simple functions ϕ by∫
A

ϕdµ =

∫
X

χAϕdµ

and extend to nonnegative functions by taking suprema.
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It is clear that for any simple function ϕ, χAϕ is still a simple function, so the integral
over A is well-defined.

In the next proposition, we collect some basic properties of the Lebesgue integral for
simple functions.

Proposition 18.1.2. Let ϕ, ψ : X → [0,∞] be simple functions. Then

(1) For any real number λ ≥ 0,

∫
X

λϕdµ = λ

∫
X

ϕdµ.

(2)

∫
X

(ϕ+ ψ) dµ =

∫
X

ϕdµ+

∫
X

ψ dµ.

(3) (Monotonicity) If ϕ ≤ ψ pointwise then

∫
X

ϕdµ ≤
∫
X

ψ dµ.

(4) Define ν(A) =

∫
A

ϕdµ for each set A ∈M. Then ν is a measure on X.

Proof. (1) First if λ = 0 then 0ϕ = 0 which is a simple function. By definition of the
Lebesgue integral for simple functions, we have

∫
X

0 dµ = 0, so the statement holds. Now
assume λ > 0. Then we have∫

X

λϕdµ =
∑
a∈R

aµ((λϕ)−1({a})) =
∑
a∈R

aµ
(
ϕ−1

({
a
λ

}))
=
∑
b∈R

λbµ(ϕ−1({b}))

= λ
∑
b∈R

bµ(ϕ−1({b})) = λ

∫
X

ϕdµ.

(2) The sum of simple functions is clearly still a simple function, so we have∫
X

(ϕ+ ψ) dµ =
∑
a∈R

aµ((ϕ+ ψ)−1({a})).

The preimage can be written

(ϕ+ ψ)−1({a}) = {x ∈ X | ϕ(x) + ψ(x) = a} =
⋃
b≥0

[ϕ−1({b}) ∩ ψ−1({a− b})].

This union is disjoint and finite since ϕ is simple. Therefore we can write∫
X

(ϕ+ ψ) dµ =
∑
a∈R

a
∑
b∈R

µ(ϕ−1({b}) ∩ ψ−1({a− b})) by additivity

=
∑
b,c∈R

(b+ c)µ(ϕ−1({b}) ∩ ψ−1({c})) letting c = a− b

=
∑
b,c∈R

bµ(ϕ−1({b}) ∩ ψ−1({c})) +
∑
b,c∈R

cµ(ϕ−1({b}) ∩ ψ−1({c})).
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Consider the first term:∑
b,c∈R

bµ(ϕ−1({b}) ∩ ψ−1({c})) =
∑
b∈R

b
∑
c∈R

µ(ϕ−1({b}) ∩ ψ−1({c}))

=
∑
b∈R

bµ(ϕ−1({b})) =

∫
X

ϕdµ.

Likewise, ∑
b,c∈R

cµ(ϕ−1({b}) ∩ ψ−1({c})) =
∑
c∈R

c
∑
b∈R

µ(ϕ−1({b}) ∩ ψ−1({c}))

=
∑
c∈R

cψ−1({c}) =

∫
X

ψ dµ.

So in the full sum we have

∫
X

(ϕ+ ψ) dµ =

∫
X

ϕdµ+

∫
X

ψ dµ.

(3) Suppose 0 ≤ ϕ ≤ ψ pointwise. Then by definition of the Lebesgue integral for simple
functions, we have∫

X

ϕdµ =
∑
a∈R

aµ(ϕ−1({a})) =
∑
a∈R

a
∑
b∈R

µ(ϕ−1({a}) ∩ ψ−1({b})) by additivity

≤
∑
a∈R

∑
b∈R

bµ(ϕ−1({a}) ∩ ψ−1({b})) since ϕ ≤ ψ

=
∑
b∈R

∑
a∈R

bµ(ϕ−1({a}) ∩ ψ−1({b}))

=
∑
b∈R

b
∑
a∈R

µ(ϕ−1({a}) ∩ ψ−1({b}))

=
∑
b∈R

bµ(ψ−1({b})) =

∫
X

ψ dµ.

(4) It’s enough to check additivity. Let {a1, . . . , aN} be the range of f and, for each
1 ≤ i ≤ N , write Bi = ϕ−1({ai}). Then ϕ =

∑N
i=1 aiχBi so for any A ∈M,

ν(A) =

∫
X

χA

N∑
i=1

aiχBi dµ =

∫
X

N∑
i=1

aiχA∩Bi dµ =
N∑
i=1

aiµ(A ∩Bi),

by (2). Now if A =
⋃∞
k=1Ak for disjoint sets Ak ∈M, we have

ν(A) =
N∑
i=1

aiµ(A ∩Bi) =
N∑
i=1

ai

∞∑
k=1

µ(Ak ∩Bi) by σ-additivity of µ

=
∞∑
k=1

N∑
i=1

aiµ(Ak ∩Bi) by Tonelli’s theorem (16.1.4)

=
∞∑
k=1

∫
Ak

ϕdµ =
∞∑
k=1

ν(Ak).

Thus ν is a measure.
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Example 18.1.3. Let X be a countable space and set M = P(X). For any nonnegative
function ρ : X → [0,∞], we can define a measure µ :M→ [0,∞] by

µ(A) =
∑
x∈A

ρ(x) =
∑
X

ρ(x)χA(x).

Proposition 18.1.4. Let X be countable and M = P(X), and suppose ρ and µ are defined
as above. For any measurable function f : X → [0,∞],∫

X

f dµ =
∑
X

ρf.

Proof. First, if f(x0) = ∞ for some x0 ∈ X and ρ(x0) > 0, then
∫
X
f dµ = ∞ =

∑
X ρf .

Now assume f is finite anywhere that ρ is positive. For any simple function ϕ : X → [0,∞],∫
X

ϕdµ =
∑
a∈R

aµ(ϕ−1({a})) =
∑
a∈R

a
∑
x∈X
ϕ(x)=a

ρ(x)

=
∑
a∈R

∑
x∈X

aρ(x)χϕ−1({a})(x)

=
∑
x∈X

∑
a∈R

aρ(x)χϕ−1({a})(x) by Tonelli’s theorem (16.1.4)

=
∑
X

ρϕ.

So the formula holds for simple functions. Now if 0 ≤ ϕ ≤ f ,
∫
X
ϕdµ =

∑
X ρϕleq

∑
X ρf

so taking the supremum over all such ϕ ≤ f gives∫
X

f dµ = sup

{∫
X

ϕdµ : 0 ≤ ϕ ≤ f, ϕ simple

}
≤
∑
X

ρf.

On the other hand, let Λ ⊂ X be a finite subset and set ϕΛ = fχΛ, which is a simple
function. Then ∑

Λ

ρf =
∑
X

ρϕΛ =

∫
X

ϕΛ dµ ≤
∫
X

f dµ.

Taking the supremum over all finite Λ yields∑
X

ρf = sup
finite
Λ⊂X

ρf ≤
∫
X

f dµ.

Hence we have
∫
X
f dµ =

∑
X ρf .

We now prove the Monotone Convergence Theorem (MCT) for Lebesgue integrals. This
generalizes the analagous theorem for discrete sums (16.1.2).
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Theorem 18.1.5 (Monotone Convergence Theorem). Suppose fn : X → [0,∞] is a sequence
of measurable functions such that for all x ∈ X, limn→∞ fn(x) = f(x) exists and fn(x) ≤
fn+1(x) for all n ∈ N, that is, fn ↗ f pointwise. Then

lim
n→∞

∫
X

fn dµ =

∫
X

lim
n→∞

fn dµ =

∫
X

f dµ.

Proof. First note that convergence from below implies∫
X

fn dµ ≤
∫
X

fn+1 dµ ≤
∫
X

f dµ

for all n ∈ N by Proposition 18.1.2(b), so L = limn→∞
∫
X
fn dµ exists by the classic monotone

convergence theorem. Moreover, L ≤
∫
X
f dµ, where both may be infinite. Let ϕ be a simple

function such that 0 ≤ ϕ ≤ f and let α ∈ (0, 1). Define En = {x ∈ X | fn(x) ≥ αϕ(x)}.
Note that En ↗ X by the hypotheses on fn and ϕ. Also, for each n ∈ N,∫

X

fn dµ ≥
∫
En

fn dµ =

∫
X

fnχEn dµ ≥
∫
X

αϕχEn dµ = α

∫
En

ϕdµ

by Proposition 18.1.2(b) and (a). Taking n→∞, the inequality is preserved:

L = lim
n→∞

∫
X

fn dµ ≥ α sup

{∫
X

ϕdµ : 0 ≤ ϕ ≤ f, ϕ simple

}
= α

∫
X

f dµ.

Finally, taking the supremum over all α ∈ (0, 1), we have L ≥
∫
X
f dµ. Therefore

L = lim
n→∞

∫
X

fn dµ =

∫
X

f dµ.

The next proposition says that the Lebesgue integral coincides with the Riemann integral,
at least for continuous, nonnegative functions.

Proposition 18.1.6. Let f : [a, b]→ [0,∞] be continuous and let λ be the Lebesgue measure
on R. Then ∫

[a,b]

f dλ =

∫ b

a

f(x) dx.

Proof. Choose a sequence of partitions Pk = {a = xk0 < xk1 < . . . < xknk = b} such that
Pk ⊆ Pk+1 for each k ≥ 1 and the mesh, max{|xki − xk,i+1| : 0 ≤ i ≤ nk − 1} approaches 0
as k →∞. For each partition Pk, let fk : [a, b]→ [0,∞] be defined by

fk(x) =

nk−1∑
i=0

min{f(y) | y ∈ [xki, xk,i+1]}χ[xki,xk,i+1](x).
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R

f

fk

a = xk0 xk1 xk2 xk3 · · · xknk = b

By construction, fk ↗ f pointwise, so by the Monotone Convergence Theorem,

lim
k→∞

∫
[a,b]

fk dλ =

∫
[a,b]

f dλ.

For each k, the integral over [a, b] of fk is∫
[a,b]

fk dλ =

nk−1∑
j=0

(
min

xj≤x≤xj+1

f(x)

)
(xj+1 − xj)

which is clearly a Riemann sum. Therefore

lim
k→∞

∫
[a,b]

fk dλ =

∫ b

a

f(x) dx.

Improper integrals are handled in the same way as for Riemann integrals.
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18.2 Properties of Integration

In this section we prove the important general theorems for Lebesgue integration.

Theorem 18.2.1 (Fatou’s Lemma). Suppose fn : X → [0,∞] is a sequence of nonnegative
measurable functions. Then ∫

X

lim inf fn dµ ≤ lim inf

∫
X

fn dµ.

Proof. Define gk = inf{fn | n ≥ k} so that the sequence (gk) increases from below to
lim inf fn. In particular, gk ≤ fn for all n ≥ k, so∫

X

gk ≤
∫
X

fn for all n ≥ k.

By the Monotone Convergence Theorem,∫
X

lim inf fn =

∫
X

lim
k→∞

gk =

∫
k→∞

∑
X

gk ≤ lim inf

∫
X

fn.

This generalizes Theorem 16.1.5 to Lebesgue integrals. Next we extend integration to
functions f : X → R and X → C.

Definition. Let f : X → R be a real-valued function. If
∫
X
|f | dµ < ∞, we say f is

integrable with respect to µ and define the Lebesgue integral of f to be∫
X

f dµ =

∫
X

f+ dµ−
∫
X

f− dµ,

where f+(x) = max{f(x), 0} and f−(x) = max{−f(x), 0}. The definition extends to
complex-valued functions g : X → C by∫

X

g dµ =

∫
X

Re g dµ+ i

∫
X

im g dµ.

Theorem 18.2.2. If fn : X → [0,∞] is a sequence of measurable, nonnegative functions,
then ∫

X

∞∑
n=1

fn dµ =
∞∑
n=1

∫
X

fn dµ.

Proof. First consider two functions, f1, f2 : X → [0,∞]. By Lemma 18.1.1, there exist
sequences 0 ≤ ϕk ≤ f1 and 0 ≤ ψk ≤ f2 of simple functions such that ϕk ↗ f1 and
ψk ↗ f2. Then (ϕk + ψk) ↗ (f1 + f2), and by Proposition 18.1.2(b),

∫
X

(ϕk + ψk) dµ =∫
X
ϕk dµ+

∫
X
ψk dµ for all k ∈ N. Thus by the Monotone Convergence Theorem,∫

X

(f1 + f2) dµ =

∫
X

f1 dµ+

∫
X

f2 dµ.
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By induction, this holds for all finite sums. For each N ∈ N, set FN =
∑∞

n=1 fn, so that
FN ↗

∑∞
n=1 fn as N → ∞. Then by the Monotone Convergence Theorem and the above

work, we have∫
X

∞∑
n=1

fn dµ =

∫
X

lim
N→∞

FN = lim
N→∞

∫
X

FN dµ = lim
N→∞

N∑
n=1

∫
X

fn =
∞∑
n=1

∫
X

fn.

The next proposition extends linearity of the Lebesgue integral from Proposition 18.1.2(a)
and (b) to real- and complex-valued functions.

Proposition 18.2.3. Suppose f, g : X → C are integrable functions and λ ∈ R. Then∫
X

(f + λg) dµ =

∫
X

f dµ+ λ

∫
X

g dµ.

Proof. Considering the real and imaginary parts of each function separately, we may assume
f and g are real-valued. The case when λ = 0 is the same as in Proposition 18.1.2(a). To
obtain the result for any λ 6= 0, it suffices to consider when λ = 1. Let h = f + g and write

f = f+ − f−, g = g+ − g−, h = h+ − h− = (f+ + g+)− (f− + g−).

Then h+ + f− + g− = h− + f+ + g+ so by Proposition 18.1.2(b),∫
X

h+ dµ+

∫
X

f− dµ+

∫
X

g− dµ =

∫
X

(h+ + f− + g−) dµ

=

∫
X

(h− + f+ + g+) dµ =

∫
X

h− dµ+

∫
X

f+ dµ+

∫
X

g+ dµ.

Since each function is integrable, we can subtract to obtain∫
X

h dµ =

∫
X

h+ dµ−
∫
X

h− dµ

=

(∫
X

f+ dµ−
∫
X

f− dµ

)
+

(∫
X

g+ dµ−
∫
X

g− dµ

)
=

∫
X

f dµ+

∫
X

g dµ.

One of the most useful results in forming integral estimations is Chebyshev’s lemma.

Theorem 18.2.4 (Chebyshev’s Lemma). Suppose f : X → [0,∞] is measurable and M ∈
(0,∞). Then

µ(f−1([M,∞))) ≤ 1

M

∫
X

f dµ.

Proof. First note that χf−1([M,∞)) ≤ χf−1([M,∞))
f
M
≤ f

M
pointwise. Then monotonicity,

µ(f−1([M,∞))) =

∫
X

χf−1([M,∞)) dµ ≤
∫
X

f

M
dµ =

1

M

∫
X

f dµ.
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We say a condition holds almost everywhere (abbreviated a.e.) if that condition holds on
a subset of X whose complement has measure zero. One of the key properties of Lebesgue
integration is that it ‘ignores’ function values on sets of measure zero. In this way, the
Lebesgue integral generalizes the corresponding property for the classic Riemann integral,
which assigns zero weight to point-sets.

Lemma 18.2.5. Suppose f and g are nonnegative functions on a measure space (X,M, µ).
Then

(1)
∫
X
f dµ = 0 if and only if f = 0 a.e.

(2) If f ≤ g a.e. then
∫
X
f dµ ≤

∫
X
g dµ.

(3) If f = g a.e. then
∫
X
f dµ =

∫
X
g dµ.

Proof. (1) If f = 0 a.e. then µ(f−1(0,∞]) = 0. If ϕ is a simple function such that 0 ≤ ϕ ≤ f
then ϕ−1(0,∞] ⊆ f−1(0,∞] so by monotonicity (Proposition 17.2.1), µ(ϕ−1(0,∞]) = 0.
Thus ϕ = 0 a.e. as well. Now∫

X

ϕdµ =
∑
a≥0

aµ(ϕ−1({a})) = 0 +
∑
a>0

aµ(ϕ−1({a})) = 0.

Taking the supremum over all such simple functions gives us
∫
X
f dµ. Conversely, if

∫
X
f dµ =

0 then by Chebyshev’s lemma, for all n ∈ N,

µ

(
f−1

[
1

n
,∞
))
≤ 1

n

∫
X

f dµ = 0.

Using subadditivity (Proposition 17.2.1), we can write

µ(f−1((0,∞))) = µ

(
∞⋃
n=1

f−1

([
1

n
,∞
)))

≤
∞∑
n=1

µ

(
f−1

([
1

n
,∞
)))

=
∞∑
n=1

0 = 0.

Lastly, note that µ(f−1({∞})) = 0 so we get µ(f−1((0,∞])) = 0, i.e. f = 0 a.e.
(2) Let E = {x ∈ X : f(x) ≤ g(x)} so that µ(EC) = 0. Write f = fχE + fχEC and

g = gχE + gχEC . By linearity (Proposition 18.2.3), we have∫
X

f dµ =

∫
X

fχE dµ+

∫
X

fχEC dµ

=

∫
X

fχE dµ+ 0 by (1)

≤
∫
X

gχE dµ by hypothesis

=

∫
X

gχE dµ+

∫
X

gχEC dµ =

∫
X

g dµ.

(3) Apply (1) and Proposition 18.2.3 to the function f − g.
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Corollary 18.2.6. For any measurable functions f, g : X → R, if f ≤ g a.e. then
∫
X
f dµ ≤∫

X
g dµ.

Proof. Apply Lemma 18.2.5 to each part of the expressions f = f+−f− and g = g+−g−.

Theorem 18.2.7 (Lebesgue Dominated Convergence Theorem). Suppose fn : X → C are
measurable functions such that fn → f pointwise on X. If |fn| ≤ g a.e. for some integrable
function g : X → [0,∞] and for all n ∈ N, then fn and f are all integrable, and

lim
n→∞

∫
X

fn dµ =

∫
X

f dµ.

Proof. First, Lemma 18.2.5 gives us
∫
X
|fn| dµ ≤

∫
X
g dµ < ∞ so all the fn are integrable.

Moreover, since fn converges to f , by Proposition 17.4.14 f is measurable. Therefore |f | ≤ g
a.e. implies

∫
X
|f | dµ < ∞ by monotonicity, so f is integrable. Writing f = Re f + i im f

and considering the real and imaginary parts separately, we may assume f is real-valued.
We have g + fn ≥ 0 and g − fn ≥ 0 for all n ∈ N. By Fatou’s Lemma,∫

X

g dµ+

∫
X

f dµ =

∫
X

(g + f) dµ ≤ lim inf

∫
X

(g + fn) dµ =

∫
X

g dµ+ lim inf

∫
X

fn dµ.

Since g is integrable, we can subtract the finite integral
∫
X
g dµ from each side to obtain∫

X

f dµ ≤ lim inf

∫
X

fn dµ.

Similarly,∫
X

g dµ−
∫
X

f dµ =

∫
X

(g − f) dµ ≤ lim inf

∫
X

(g − fn) dµ =

∫
X

g dµ− lim sup

∫
X

fn dµ.

Here subtracting
∫
X
g dµ from each side gives∫

X

f dµ ≥ lim sup

∫
X

fn dµ.

Therefore lim sup
∫
X
fn dµ ≤

∫
X
f dµ ≤ lim inf

∫
X
fn dµ, which shows that limn→∞

∫
X
fn dµ

exists and equals

lim
n→∞

∫
X

fn dµ =

∫
X

f dµ.

Proposition 18.2.8. Suppose f : X → C is integrable. Then∣∣∣∣∫
X

f dµ

∣∣∣∣ ≤ ∫
X

|f | dµ.
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Proof. Set
∫
X
f dµ = reiθ for some r ∈ R, θ ∈ [0, 2π). Then by Proposition 18.2.3,∣∣∣∣∫

X

f dµ

∣∣∣∣ = r = e−iθ
∫
X

f dµ =

∫
X

e−iθf dµ =

∫
X

Re(e−iθf) dµ+ i

∫
X

im(e−iθf) dµ.

Since r ∈ R, we must have i
∫
X

im(e−iθf) dµ = 0. Moreover, Re(e−iθf) ≤ |e−iθf | = |f | so by
monotonicity, ∣∣∣∣∫

X

f dµ

∣∣∣∣ =

∫
X

Re(e−iθf) dµ ≤
∫
X

|f | dµ.

The following theorem says that Riemann integrable functions may always be approxi-
mated by Borel measurable functions.

Theorem 18.2.9. Let f : [a, b]→ R be Riemann integrable. Then there exist Borel measur-
able functions g,G : [a, b]→ R such that

(1) g ≤ f ≤ G pointwise.

(2) g = G a.e.

(3)

∫ b

a

f(x) dx =

∫
[a,b]

g(x) dλ.
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18.3 Types of Convergence

Let (X,M, µ) be a measure space.

Definition. For any p ≥ 1, the pth Lebesgue space of functions on X is

Lp(µ) :=

{
f : X → C measurable :

∫
X

|f |p dµ <∞
}
.

Definition. For each p ≥ 1, define the Lp-norm (sometimes just p-norm) of a function
f ∈ Lp(µ) by

||f ||Lp :=

(∫
X

|f |p dµ
)1/p

.

Examples.

1 For p = 1, the space L1(µ) consists of all integrable functions X → C with respect to
µ. The L1-norm on this space is just

∫
X
|f | dµ, so L1(µ) alternatively consists of all

complex-valued functions on X having finite L1-norm.

2 By convention, we let L0 denote the class of measurable functions X → C, with L+

further denoting the class of nonnegative measurable functions X → [0,∞].

For the next three definitions, let fn : X → C be a sequence of measurable functions and
let f : X → C be any function.

Definition. We say fn converges almost everywhere to f , written fn
a.e.−−→ f , if there

exists a set E ∈M such that µ(E) = 0 and for all x ∈ EC,

lim
n→∞

fn(x) = f(x).

Definition. The sequence fn converges in measure to f , denoted fn →µ f , if for every
ε > 0, µ({x ∈ X : |fn(x) − f(x)| > ε}) −→ 0 as n → ∞. This is sometimes also called
L0-convergence.

Definition. For any p ≥ 1, we say fn has Lp-convergence, written fn →p f , if

||fn − f ||Lp −→ 0 as n→∞.

Remark. Uniform convergence implies pointwise convergence, which implies convergence
almost everywhere. Additionally, the Dominated Convergence Theorem shows that domi-
nated almost everywhere convergence, i.e. fn → f a.e. and |fn| ≤ g for some measurable
function g, implies L1-convergence: fn →1 f . Finally, Chebyshev’s lemma (18.2.4) shows
that Lp-convergence implies convergence in measure.

The following examples show that some of the implications in the Remark are strict.

Example 18.3.1. For X = [0,∞) with Lebesgue measure λ, define the sequence of functions
fn = 1

n
χ[0,n]. The first three functions of this sequence are illustrated below.
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1

1
2

1
3

1 2 3

f1

f2

f3 · · ·

(In the literature, this sequence is sometimes referred to as the “steamroller”.) It’s easy to
see that fn → 0 uniformly, but

∫
X
fn dλ = 1 for all n ∈ N, so the integrals

∫
X
fn dλ do not

converge to 0. This is a counterexample to the Dominated Convergence Theorem when no
dominating function g ≥ |fn| exists. So fn does not converge in L1, but notice that for any
p > 1, ∫

X

|fn|p dλ =

∫
X

fpn dλ =
1

np
−→ 0

as n → ∞, so fn converges to the zero function in Lp. Also, λ({x ∈ X : |fn(x)| > ε}) = 0
for any ε > 0 when n is large enough, so we see that fn →λ 0, that is, fn converges to 0 in
measure.

Example 18.3.2. Let X = [0, 1] be a measure space with Lebesgue measure λ. Define the
sequence fn = nχ[0, 1n ], called the “teepee”.

1

2

3

1
3

1
2 1

f1

f2

f3

Let E = {0}. Then fn(x)→ 0 on EC , so fn → 0 pointwise a.e. However,
∫
fn dµ = 1 for all

n, so fn → 0 6= 1 in L1 (or in Lp for any p ≥ 1). One can show that fn converges to 0 in
measure as well.

Example 18.3.3. Again consider X = [0, 1] with Lebesgue measure λ. Using dyadic parti-
tions of [0, 1], we can define a sequence of functions

f1 = χ[0, 12 ] f2 = χ[ 12 ,1]

f3 = χ[0, 14 ] f4 = χ[ 14 ,
1
2 ] f5 = χ[ 12 ,

3
4 ] f6 = χ[ 34 ,1]

etc.

Then fn does not converge pointwise for any x ∈ [0, 1], but for any p ≥ 1,
∫
fpn dµ → 0 as

n→∞, meaning fn → 0 in Lp.
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Example 18.3.4. Let X = [0,∞) with Lebesgue measure λ and define the sequence of
functions fn = χ[n−1,n], called the “train”.

1

1 2 3

f1 f2 f3

Here fn → 0 pointwise (and hence pointwise a.e.) but for all n, |fn(x)− f(x)| = 1 on a set
of positive measure, so fn does not converge to 0 in measure. Likewise, fn does not converge
to 0 in Lp.

Definition. Let (X,M, µ) be a measure space and suppose {fn : X → C}∞n=1 is a sequence
of complex-valued functions. We say the sequence {fn} is Cauchy in measure if for all
ε > 0, M({x ∈ X : |fn(x)− fm(x)| > ε})→ 0 as n,m→∞.

Lemma 18.3.5. Suppose {an}∞n=1 ⊂ C is a sequence such that

∞∑
n=1

|an+1 − an| <∞.

Then limn→∞ an exists in C.

Proof. Without loss of generality suppose m > n ≥ 1. Then

|am − an| = |am − am−1 + am−1 − . . .+ an+1 − an|

=
m∑

k=n+1

|ak − ak−1|

≤
∞∑

k=n+1

|ak − ak−1|.

The latter is the tail of a convergent series, so it must approach 0 as n → ∞. This shows
that |am − an| → 0 as n → ∞, and in particular the sequence {an} is Cauchy and hence it
converges.

Proposition 18.3.6. Let (X,M, µ) be a measure space and suppose {fn : X → C}∞n=1 is
Cauchy in measure. Then there exists a subsequence gk = fnk such that limk→∞ gk exists a.e.
Moreover, if E is the negligible set outside of which gk converges, and f(x) = limk→∞ χECgk,
then gk → f pointwise a.e. and fn → f in measure µ.

Proof. Since fn is Cauchy in measure, we may choose εk > 0 for each k ∈ N such that∑∞
k=1 εk <∞ and define the subsequence gk = fnk such that

µ({x ∈ X : |gk+1(x)− gk(x)| > εk}) < εk

298



18.3. Types of Convergence Chapter 18. Integration Theory

for each k. Set Ek = {x ∈ X : |gk+1(x)− gk(x)| > εk}. Then by construction,

∞∑
k=1

µ(Ek) ≤
∞∑
k=1

εk <∞.

Note that by Tonelli’s theorem, this sum can be written

∞∑
k=1

µ(Ek) =
∞∑
k=1

∫
X

χEk dµ =

∫
X

∞∑
k=1

χEk dµ.

Let E = lim supEk = {x ∈ X : x ∈ Ek i.o.}. Then for any N ∈ N, µ(E) ≤
∑∞

j=N µ(Ej) ≤∑∞
j=N εj which must approach 0 as N →∞ since

∑∞
j=1 εj converges. Thus µ(E) = 0. Now

for each x ∈ EC , there exists an N ∈ N such that for all k ≥ N , |gk+1(x)−gk(x)| ≤ εk. Thus

∞∑
k=N

|gk+1(x)− gk(x)| ≤
∞∑
k=N

εk <∞.

By Lemma 18.3.5, this implies limk→∞ gk(x) exists for all x ∈ EC .
Set f(x) = limk→∞ χECgk(x) and consider the set {x ∈ X : |fn(x) − f(x)| > ε} for a

given ε > 0. By the triangle inequality, we have

{x ∈ X : |fn(x)− f(x)| > ε} ⊆ {x ∈ X : |fn(x)− gk(x)|+ |gk(x)− f(x)| > ε}
⊆
{
x ∈ X : |fn(x)− gk(x)| > ε

2

}
∪
{
x ∈ X : |gk(x)− f(x)| > ε

2

}
.

Now by monotonicity and subadditivity of µ, we can write

µ({x : |fn(x)− f(x)| > ε}) ≤ µ
({
x : |fn(x)− gk(x)| > ε

2

}
∪
{
x : |gk(x)− f(x)| > ε

2

})
≤ µ

({
x : |fn(x)− gk(x)| > ε

2

})
+ µ

({
x : |gk(x)− f(x)| > ε

2

})
−→ 0 + µ

({
x : |gk(x)− f(x)| > ε

2

})
by the Cauchy hypothesis

−→ 0 since lim
k→∞

gk = f.

Hence fn → f in measure.

Theorem 18.3.7 (Egoroff’s Theorem). Suppose (X,M, µ) is a finite measure space and fn
is a sequence of functions converging pointwise a.e. to f . Then for all ε > 0, there exists a
subset E ⊆ X such that µ(E) < ε and fn → f uniformly on EC.

Proof. For each n, k ∈ N, let E
(k)
n be the set of x ∈ X such that |fm(x)− f(x)| > 1

k
for some

m ≥ n. For a fixed k, if there were an element x ∈ E(k)
n for all n then for every N ≥ 1, we

would have |fn(x) − f(x)| > 1
k

for some n ≥ N . Then fn would not converge pointwise to

f at x. Therefore by the convergence a.e. hypothesis, the set E(k) =
⋃∞
n=1E

(k)
n has measure

zero. Let ε > 0. Then for each k, there is an Nk such that for all n ≥ Nk, µ(E
(k)
n ) < ε

2k
.

Finally, let E =
⋃∞
k=1 E

(k)
Nk

. By subadditivity,

µ(E) ≤
∞∑
k=1

µ(E
(k)
Nk

) <
∞∑
k=1

ε

2k
= ε
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so E has Lebesgue measure < ε as desired. Moreover, let K ∈ N such that 1
K
< ε by the

Archimedean principle. Then for all k ≥ K and x ∈ EC ,

|fn(x)− f(x)| ≤ 1

k
≤ 1

K
< ε.

Therefore fn converges uniformly to f on EC .

Definition. A sequence of functions fn is said to have almost uniform convergence,
written a.u. convergence, if for any ε > 0, there is a set E ⊂ X such that µ(E) < ε and fn
converges uniformly on EC.

Remark. Almost uniform convergence implies both convergence a.e. and convergence in
measure. Egoroff’s theorem says that on a finite measure space, pointwise convergence a.e.
implies a.u. convergence, so the two are equivalent.
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18.4 Product Measures

In this section we prove the theorems of Tonelli and Fubini, which generalize Theorems 16.1.4
and 16.1.10 for any arbitrary spaces. Let (X,M, µ) and (Y, T , ν) be σ-finite measure space.

Lemma 18.4.1. There is a unique measure π on (X × Y,M⊗ F) such that π(A × B) =
µ(A)ν(B) for all A ∈M and B ∈ F.

Proof. By Proposition 17.2.3, E := M× F is an elementary class. Define π0 : E → [0,∞]
by π0(A × B) = µ(A)ν(B) for all A ∈ M and B ∈ F. Then π0 inherits σ-finiteness and
σ-additivity from µ and ν. Therefore by Theorem 17.2.17, π0 extends uniquely to a measure
on M⊗ F satisfying the desired property.

Informally, Lemma 18.4.1 says that there is a unique measure on the product σ-algebra
M ⊗ F that integrates ‘rectangles’ A × B ∈ M × F correctly, i.e. by multiplying their
individual measures. We will write this unique measure as π = µ× ν.

Theorem 18.4.2 (Tonelli’s Theorem). Suppose f : X×Y → [0,∞] is (M⊗F)-measurable.
Then

(i) For all x ∈ X, the assignment y 7→ f(x, y) is an F-measurable function.

(ii) For all y ∈ Y , the assignment x 7→ f(x, y) is an M-measurable function.

(iii) The function y 7→
∫
X
f(x, y) dµ(x) is F-measurable.

(iv) The function x 7→
∫
Y
f(x, y) dν(y) is M-measurable.

(v)

∫
X×Y

f dπ =

∫
X

∫
Y

f dν dµ =

∫
Y

∫
X

f dµ dν.

Proof. Recall that by Theorem 17.4.19, M⊗ F = σ(M× F). For any ‘rectangle’ A × B,
with A ∈ M and B ∈ F, it is clear that χA×B(x, y) = χA(x)χB(y). It follows immediately
that χA×B(−, y) is M-measurable and χA×B(x,−) is F-measurable, so (i) and (ii) hold for
indicator functions – and for all simple functions after extending by linearity. Further,
y 7→

∫
X
χA×B(x, y) dµ is just equal to the function χB(y)µ(A) which is a simple function and

hence F-measurable. Similarly, x 7→
∫
Y
χA×B(x, y) dν is M-measurable, so (iii) and (iv) are

seen to hold for indicator (and, by linearity, simple) functions. We have∫
X

∫
Y

χA×B(x, y) dν dµ = ν(B)µ(A) = µ(A)ν(B) =

∫
Y

∫
X

χA×B(x, y) dµ dν

but by Lemma 18.4.1, ∫
X×Y

χA×B(x, y) dπ = π(A×B) = µ(A)ν(B).

Hence Tonelli’s theorem holds for all indicator, and therefore simple, functions.
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Set A = A(E) where E = M× F and consider a set E =
∏∞

k=1(Ak × Bk) ∈ Aσ, where
Ak ∈M and Bk ∈ F for each k. Then by the same argument as above,

χE(x, y) =
∞∑
k=1

χAk(x)χBk(y)

so we have ∫
Y

χE(x, y) dν =
∞∑
k=1

∫
Y

χAk(x)χBk(y) dν by Theorem 16.1.4

=
∞∑
k=1

ν(BK)χAk(x)

which isM-measurable since sums and limits of measurable functions are measurable. Like-
wise,

∫
X
χE(x, y) dµ is F-measurable. If C is the collection of measurable sets E ∈ M⊗ F

such that χE satisfies conditions (i) – (v), then we have already shown A ⊆ C. If µ(X) and
ν(Y ) are finite, one can show that C is a monotone class, so the Monotone Class Theorem
says that M⊗ F ⊆ C, meaning (i) – (v) hold for all indicator functions. Extending by
linearity, we have that (i) – (v) hold for all simple functions.

To generalize to the case when µ and ν are σ-finite, take sequences Xn ↗ X and Yn ↗ Y
such that µ(Xn), ν(Yn) <∞ and define

µn(A) := µ(A ∩Xn), νn(B) := ν(B ∩ Yn) and µn × νn(E) := π(E ∩ (Xn × Yn))

for all A ∈M, B ∈ F, E ∈M⊗ F and n ∈ N. For any function f : X → [0,∞], we have∫
X

f dµn =

∫
X

fχXn dµ and

∫
Y

f dνn =

∫
Y

fχYn dν,

and χXn ↗ χX = 1 and χYn ↗ χY = 1 be construction. So we get Tonelli’s theorem for
all simple functions when µ and ν are σ-finite. To generalize to all nonnegative functions,
use approximating sequences of simple functions ϕk ↗ f and the Monotone Convergence
Theorem.

Theorem 18.4.3 (Fubini’s Theorem). Suppose f ∈ L1(µ× ν). Then

(i) For all x ∈ X, y 7→ f(x, y) is an L1(ν) function.

(ii) For all y ∈ Y , x 7→ f(x, y) is an L1(µ) function.

(iii) The function y 7→
∫
X
f(x, y) dµ(x) is in L1(ν).

(iv) The function x 7→
∫
Y
f(x, y) dν(y) is in L1(µ).

(v)

∫
X×Y

f dπ =

∫
X

∫
Y

f dν dµ =

∫
Y

∫
X

f dµ dν.

Proof. Write f = Re f + i im f and separate each part into its positive and negative parts.
Then the result follows from Tonelli’s theorem on each piece.
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18.5 Lebesgue Integration on Rn

Let n ≥ 1 and consider the measurable space (Rn,Bn) where Bn = BRn is the Borel σ-algebra
on Rn. Define λn := λ× · · ·λ︸ ︷︷ ︸

n

where λ is Lebesgue measure on R.

Definition. The function λn : Bn → [0,∞] is called the (n-dimensional) Lebesgue mea-
sure on Rn.

Note that λn is the unique measure that gives the correct hypervolume to hyperrectangles:

λn

(
n∏
k=1

(ak, bk]

)
=

n∏
k=1

(bk − ak).

Lemma 18.5.1. λn is translation invariant.

Proof. For all A ∈ Bn and x ∈ Rn, define µx(A) = λn(x + A). Then µx(B) = λn(B) on
hyperrectangles B =

∏n
k=1(ak, bk]. Then µx = λn by uniqueness.

Definition. Let Ω ⊂ Rn be an open subset and T : Ω→ Rn. Then T is a C1-diffeomorphism
if T = (T1, . . . , Tn) where each Tk is a C1-function, T is one-to-one, T (Ω) ⊆ Rn is open and
T−1 : T (Ω)→ Ω is also C1.

One of the most important theorems in calculus is the change-of-variables formula for
integration. Here we prove the general statement for Lebesgue integrals.

Theorem 18.5.2. If T : Ω→ Rn is a C1-diffeomorphism, then for all Lebesgue measurable
functions f : T (Ω)→ [0,∞],∫

T (Ω)

f(y) dλn(y) =

∫
Ω

f ◦ T (x)| detDxT | dλn(x),

where DxT : Rn → Rn is the differential operator DxT (v) = d
dt

∣∣
t=0

T (x+ tv).

Proof. (Sketch) Set λ = λn. First suppose the result holds for C1-diffeomorphisms Ω
T−→

T (Ω)
S−→ Rn. Then by the chain rule,

det(Dx(S ◦ T )) = det(DT (x)S ◦DxT ) = det(DT (x)S) det(DxT ).

Assuming the theorem holds, we then have∫
Ω

(f ◦ S ◦ T )(x)| det(Dx(S ◦ T ))| dλ(x) =

∫
T (Ω)

(f ◦ S)(y)| det(DyS)| dλ(y)

=

∫
S(T (Ω))

f(z) dλ(z).

Thus it suffices to prove the change-of-variables formula for invertible operators. If T is an
invertible linear operator, DxT = T and the result follows for T by Tonelli’s theorem (18.4.2),
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viewing T as the composition of elementary transformations (i.e. operators represented by
elementary matrices). Now for an arbitrary diffeomorphism T , take a Borel measurable set
B ⊆ T (Ω) and set A = T−1(B) ∈ Bn. We want to show

λ(B) = λ(T (A)) =

∫
A

| detDxT | dλ = | detDxT |λ(A),

since then we have

λ(B) =

∫
B

dλ =

∫
T (Ω)

χB dλ =

∫
Ω

χB ◦ T | detDxT | dλ.

Approximate λ(T (A)) by using the linear operator DxT :

λ(T (A)) ≈ λ(DxT (Ar {x})) = | detDxT |λ(Ar {x}) = | detDxT |λ(A).

Now for a set Q ⊆ Ω, partition Q by M-sets: Q =
⋃
A∈M
A⊆Q

A. Then

λ(T (Q)) =
∑
A∈M
A⊆Q

λ(T (A)) ≈
∑
A∈M
A⊆Q

| detDxT |λ(A) −→
∫
Q

| detDxT | dλ

as the mesh of the partition goes to 0. This proves the theorem.
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Chapter 19

Signed Measures and Differentiation

In this chapter we develop the notion of abstract differentiation as an analog to differentiation
and integration in the classical case. To do so, we must first introduce signed measures,
complex measures and signed and complex integration. The principal result in this chapter
is the Lebesgue-Radon-Nikodym theorem, which then allows us to define the derivative of a
measure.
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19.1 Signed Measures

Definition. A signed measure on a measurable space (X,M) is a σ-additive function
ν :M→ R = R ∪ {±∞} such that

(1) ν(∅) = 0.

(2) Either ν(M) ⊆ [−∞,∞) or ν(M) ⊆ (−∞,∞].

Note that finite measures µ :M→ [0,∞) are signed measures. We will call these positive
measures to distinguish them from the general case.
Examples.

1 If µ1, µ2 :M→ [0,∞) are (positive) measures on X, then ν(A) = µ1(A)− µ2(A) is a
signed measure on X.

2 If µ is a positive measure on X and f : X → [−∞,∞] is a function such that either∫
X
f+ dµ <∞ or

∫
X
f− dµ <∞, then

ν(A) =

∫
A

f dµ =

∫
X

χAf dµ

is a signed measure on X. We denote this dν = f dµ.

We will show that these are in some sense the only types of signed measures.

Proposition 19.1.1. Suppose ν :M→ R is a signed measure. Then

(1) (Continuity from below) If {An}∞n=1 ⊂ M converges to A from below, then ν(An)
converges to ν(A).

(2) (Continuity from above) If {An}∞n=1 ⊂ M converges to A from above, then ν(An)
converges to ν(A).

Proof. Similar to Proposition 17.2.1.

Definition. Let ν be a signed measure on (X,M) and let A ∈M be a measurable set. We
say A is null (with respect to ν) if ν(B) = 0 for any measurable subset B ⊆ A. Similarly,
A is positive if ν(B) ≥ 0 for any measurable B ⊆ A; and A is negative if ν(B) ≤ 0 for
any measurable B ⊆ A.

Proposition 19.1.2. Let (X,M) be a measurable space with signed measure ν : M → R.
Then

(1) If {Pn}∞n=1 ⊂M is a sequence of positive sets, then
⋃∞
n=1 Pn is positive.

(2) If {En}∞n=1 ⊂M is a sequence of negative sets, then
⋃∞
n=1En is negative.

(3) If {An}∞n=1 ⊂M is a sequence of null sets, then
⋃∞
n=1 An is null.
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Proof. We prove (1); the proofs of (2) and (3) are similar. Suppose {Pn} is a sequence of

positive sets. Set P̃1 = P1 and for all n ≥ 2, set P̃n = Pnr
⋃n−1
k=1 Pk. Then for any measurable

set A ⊆
⋃∞
n=1 Pn, we have A =

∐∞
n=1A ∩ P̃n, so by σ-additivity,

ν(A) =
∞⋃
n=1

ν(A ∩ P̃n) ≥ 0

since each P̃n ⊆ Pn is positive. Hence
⋃∞
n=1 Pn is positive.

Lemma 19.1.3. If A ⊆ X is a subset and ν is a signed measure on X such that ν(A) ∈
(0,∞), then there exists a positive set P ⊆ A such that ν(P ) ≥ ν(A).

Proof. Set n(A) = min(1, sup{−ν(B) : B ∈ M, B ⊆ A}). Then n(A) ≥ 0 with equality
if and only if A itself is positive, so assume n(A) > 0. Then there exists some B1 ⊆ A
with −ν(B1) ≥ 1

2
ν(A). Take E1 = A r B1. Now for n ≥ 2, suppose B1, . . . , Bn and

E1, . . . , En−1 have been given. Set En = A r
⋃n
k=1Bk and choose Bn+1 ⊆ En such that

−ν(Bn+1) ≥ 1
2
ν(En). Then

A =

(
∞∐
n=1

Bn

)
∪

(
Ar

∞∐
n=1

Bn

)

=⇒ ν(A) =
∞∑
n=1

ν(Bn) + ν

(
Ar

∞∐
n=1

Bn

)
by additivity

=⇒
∞∑
n=1

−ν(Bn) = ν

(
Ar

∞∐
n=1

Bn

)
− ν(A) since ν(A) <∞.

But now −ν(Bn) → 0 as n → ∞, so 1
2
ν(En) → 0. Thus P = A r

∐∞
n=1 Bn is the desired

positive set.

Lemma 19.1.4. If A ⊆ X is a positive set with respect to a signed measure ν : M → R,
then ν|A is a positive measure.

Theorem 19.1.5 (Hahn Decomposition). For every signed measure ν : M → R, there
exists a measurable set P ∈M such that P is positive and N = PC is negative. As a result,
X = P ∪N is a decomposition of X into a positive and a negative set.

Proof. Without loss of generality, suppose ν(A) ∈ [−∞,∞) for all A ∈ M. Take s =
sup{ν(E) : E ∈ M} ≥ 0. If s = 0, take P = ∅ and we’re done. Otherwise, s > 0 so there
exists a sequence {Aj}∞j=1 ⊂ M such that ν(Aj) > 0 and ν(Aj) → s. By Lemma 19.1.3,
for each j there is a positive set Pj ⊆ Aj with ν(Pj) ≥ ν(Aj). We have ν(Pj) ≤ s by
definition, so ν(Pj) → s by the squeeze theorem. Take P =

⋃∞
j=1 Pj. Then P is positive

by Proposition 19.1.2 and we have s ≥ ν(P ). Moreover, ν|P is a positive measure by
Lemma 19.1.4, so by monotonicity, s ≥ ν(P ) ≥ ν(Pn)→ s. Hence ν(P ) = s > 0.

It remains to show N = PC is a negative set. If not, there is some E ⊆ N such that
ν(E) > 0. Then by σ-additivity,

ν(P ∪ E) = ν(P ) + ν(E) = s+ ν(E) > s.
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Of course this is a contradiction, so N is negative. This proves that X = P ∪ N is a
decomposition of X into a positive and a negative set.

Definition. If ν is a signed measure on X, a pair {P,N} such that P is positive, N is
negative and X = P ∪N is called a Hahn decomposition of X.

Remark. Hahn decompositions are unique up to null sets. If {P,N} is a Hahn decompo-
sition with respect to a signed measure ν, then for any other decomposition {P ′, N ′} where
P ′ is positive and N ′ is negative, we have ν(P ′4P ) = 0 and ν(N ′4N) = 0.

Definition. Two signed measures µ, ν :M→ R are said to be mutually singular, denoted
µ ⊥ ν, if there is a set E ∈M such that µ(E) = 0 and ν(EC) = 0.

Corollary 19.1.6 (Jordan Decomposition). Let ν be a signed measure on X. Then ν =
ν+ − ν− for unique positive measures ν+ and ν− satisfying ν+ ⊥ ν−.

Proof. Suppose X = P ∪ N is a Hahn decomposition of X. Define ν+(A) = ν(A ∩ P ) and
ν−(A) = −ν(A ∩ N) for all measurable sets A. By Lemma 19.1.4, ν+ and ν− are positive
measures, and clearly ν+ ⊥ ν− (using P and N = PC), so we need only check that this
decomposition of ν is independent of choice of Hahn decomposition. Suppose ν̃+ and ν̃− is
another pair of positive measures such that ν = ν̃+ − ν̃−. Let P̃ ∈ M be a set such that
ν̃−(P̃ ) = 0 and ν̃+(Ñ) = 0, where Ñ = P̃C . Note that {P̃ , Ñ} is a Hahn decomposition of
X. Then for any A ∈M,

ν̃+(A) = ν(A ∩ P̃ ) = ν(A ∩ P ) = ν+(A)

and similarly
ν̃−(A) = −ν(A ∩ Ñ) = −ν(A ∩N) = ν−(A).

Therefore ν = ν+ − ν− is well-defined. Uniqueness is guaranteed by uniqueness of Hahn
decomposition up to null sets.

Definition. For a signed measure ν on X, the decomposition ν = ν+ − ν− is called the
Jordan decomposition of ν; ν+ is called the positive variation of ν; ν− is the negative
variation of ν; and |ν| := ν+ + ν− is the total variation of ν.

Definition. A signed measure ν :M→ R is said to be finite if |ν| is a finite measure.

Example 19.1.7. If f ∈ L1(X,M, µ) where µ is a positive measure and f is real-valued,
then ν(A) =

∫
A
f dµ is a signed measure, written dν = f dµ. In particular, if f is nonnegative

then ν is a positive measure. Notice that f ∈ L1(µ) implies |ν| = ν+ + ν− < ∞. A Hahn
decomposition for ν can be written down explicitly in terms of f :

P = {x ∈ X : f(x) > 0} and N = {x ∈ X : f(x) ≤ 0}.

Then the Jordan decomposition of ν is

ν+(A) =

∫
A

f+ dµ and ν−(A) =

∫
A

f− dµ

with total variation |ν|(A) =
∫
A
|f | dµ.
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Remark. In some sense, the types of signed measures in Example 19.1.7 are the only signed
measures, for if ν is a signed measure with Hahn decomposition {P,N}, we can write ν(A) =
ν+(A)− ν−(A) =

∫
A
g d|ν|, where g = χP − χN .

Definition. For a signed measure ν = ν+− ν−, the space of signed integrable functions
is L1(ν) := L1(ν+) ∩ L1(ν−). For any f ∈ L1(ν), we define the signed integral of f to be∫

X

f dν :=

∫
X

f dν+ −
∫
X

f dν−.

Remark. If dν = g dµ for some positive measure µ and integrable function g, then for any
µ-integrable function f ,∫

X

f dν =

∫
X

fg+ dµ−
∫
X

fg− dµ =

∫
X

f(g+ − g−) dµ =

∫
X

fg dµ.

This shows that f ∈ L1(ν+) if and only if
∫
X
|f |g+ dµ <∞, and similarly f ∈ L1(ν−) if and

only if
∫
X
|f |g− dµ <∞. Hence L1(ν) = L1(|g| dµ).

Lemma 19.1.8. Let ν be a signed measure on (X,M). Then

(a) L1(ν) = L1(|ν|).

(b) If f ∈ L1(ν),
∣∣∫ f dν∣∣ ≤ ∫ |f | d|ν|.

(c) If E ∈M, |ν|(E) = sup
{∣∣∫

E
f dν

∣∣ : |f | ≤ 1
}

.

Proof. (a) By definition L1(ν) = L1(ν+) ∩ L1(ν−). On the other hand, write |ν| = ν+ + ν−.
Then

∫
|f | d|ν| < ∞ if and only if

∫
|f | dν+ +

∫
|f | dν− < ∞ which is valid if and only if∫

|f | dν+ <∞ and
∫
|f | dν− <∞. Hence L1(|ν|) = L1(ν+) ∩ L1(ν−) as well.

(b) Let f ∈ L1(ν). Then∣∣∣∣∫ f dν

∣∣∣∣ =

∣∣∣∣∫ f dν+ −
∫
f dν−

∣∣∣∣ ≤ ∣∣∣∣∫ f dν+

∣∣∣∣+

∣∣∣∣∫ f dν−
∣∣∣∣

≤
∫
|f | dν+ +

∫
|f | dν− since ν+, ν− are positive measures

=

∫
|f | d|ν|.

(c) For any measurable function f such that |f | ≤ 1, we have∫
fχE d|ν| =

∫
E

|f | d|ν| ≤
∫
E

d|ν| = |ν|(E) <∞.

In particular, this shows fχE ∈ L1(|ν|) = L1(ν) by (a). Now (b) gives us∣∣∣∣∫
E

f dν

∣∣∣∣ =

∣∣∣∣∫ fχE dν

∣∣∣∣ ≤ ∫ |f | |χE| d|ν| ≤ ∫ χE d|ν| = |ν|(E).
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Taking the sup over all such f yields |ν|(E) ≥ sup
{∣∣∫

E
f dν

∣∣ : |f | ≤ 1
}

. On the other hand,
use Hahn decomposition to decompose X = P ∪ N into a positive set P and a negative
set N = PC . Then the function g = χP∩E − χN∩E satisfies |g| ≤ 1. Moreover, indicator
functions are measurable so g ∈ L1(ν). Now∣∣∣∣∫

E

g dν

∣∣∣∣ =

∣∣∣∣∫
E

χP∩E dν −
∫
E

χN∩E dν

∣∣∣∣ = |ν(P ∩ E) + ν(N ∩ E)|

= |ν+(E) + ν−(E)| by Jordan decomposition

= |ν|(E).

Then sup
{∣∣∫

E
f dν

∣∣ : |f | ≤ 1
}
≥
∣∣∫
E
g dν

∣∣ = |ν|(E) so we have both inequalities.
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19.2 Lebesgue-Radon-Nikodym Theorem

Definition. If ν is a signed measure and µ is a positive measure, both defined on (X,M),
then we say ν is absolutely continuous with respect to µ, denoted ν << µ, provided for
all A ∈M such that µ(A) = 0, ν(A) = 0 as well.

Example 19.2.1. If f ∈ L1(µ) then the signed measure ν(A) =
∫
A
f dµ is absolutely

continuous with respect to µ.

Lemma 19.2.2. For a signed measure ν = ν+ − ν− and a positive measure µ on (X,M),
the following are equivalent:

(a) ν << µ.

(b) |ν| << µ.

(c) ν+ << µ and ν− << µ.

Proof. Throughout the proof, let E denote a measurable set. Use Hahn decomposition to
write X = P ∪N , so that ν+(E) = ν(P ∩ E) and ν−(E) = −ν(N ∩ E).

(a) =⇒ (c) First, suppose ν << µ. If µ(E) = 0 then P ∩ E ⊆ E so by monotonicity
of positive measures, µ(P ∩ E) = 0, and ν << µ implies ν+(E) = ν(P ∩ E) = 0. Similarly,
N ∩ E ⊆ E implies µ(N ∩ E) = 0 which implies ν−(E) = −ν(N ∩ E) = 0. Hence ν+ << µ
and ν− << µ.

(c) =⇒ (b) Now assume ν+ << µ and ν− << µ. Then if µ(E) = 0, we have ν+(E) = 0
and ν−(E) = 0, so |ν|(E) = ν+(E) + ν−(E) = 0 + 0 = 0. Hence |ν| << µ.

(b) =⇒ (a) Finally, assume |ν| << µ. Then if µ(E) = 0, we have 0 = |ν|(E) = ν+(E)+
ν−(E). Thus ν+(E) = −ν−(E), but since ν+, ν− are positive measures, this is only possible
if ν+(E) = ν−(E) = 0. Hence ν(E) = ν+(E)− ν−(E) = 0− 0 = 0 and we have ν << µ. In
total, we have proven (ν << µ) =⇒ (ν+, ν− << µ) =⇒ (|ν| << µ) =⇒ (ν << µ), so all
three statements are equivalent.

Lemma 19.2.3. Suppose {νj}∞j=1 is a sequence of positive measures. Then

(a) If νj ⊥ µ for all j, then
∑∞

j=1 νj ⊥ µ.

(b) If νj << µ for all j, then
∑∞

j=1 νj << µ.

Proof. (a) Suppose νj ⊥ µ for all j ∈ N. This means there exists a sequence of sets {Ej}∞j=1

in our σ-algebra such that for each j ∈ N, νj(Ej) = 0 and µ(EC
j ) = 0. Set E =

⋂∞
j=1Ej,

so that EC =
⋃∞
j=1E

C
j by deMorgan’s Laws. Then by monotonicity of positive measures,

νj(E) ≤ νj(Ej) = 0 and hence νj(E) = 0 for each j ∈ N. So

∞∑
j=1

νj(E) =
∞∑
j=1

0 = 0.

On the other hand, subadditivity of µ gives us

µ(EC) = µ

(
∞⋃
j=1

EC
j

)
≤

∞∑
j=1

µ(EC
j ) =

∞∑
j=1

0 = 0.
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Hence
∑∞

j=1 νj ⊥ µ.
(b) Now assume νj << µ for all j ∈ N. Then if µ(E) = 0 for some measurable set E,

this means νj(E) = 0 for each j ∈ N, and hence
∑∞

j=1 νj(E) =
∑∞

j=1 0 = 0. Therefore∑∞
j=1 νj << µ.

Lemma 19.2.4. If ν is a finite signed measure and µ is a positive measure on (X,M), then
ν << µ if and only if for all ε > 0, there is a δ > 0 such that for all A ∈ M, µ(A) < δ
implies |ν(A)| < ε.

Proof. Since |ν(A)| ≤ |ν|(A) for all measurable sets A, we may assume ν is a positive
measure.

( =⇒) is trivial: if µ(A) = 0 < δ for all δ > 0, then ν(A) = 0 < ε for all ε > 0.
( =⇒ ) We prove the contrapositive. Suppose the conclusion does not hold. Then we

can find an ε > 0 such that for each n ∈ N, there is a set An ∈ M with ν(An) ≥ ε but
µ(An) < 1

2n
. Let A = lim supAn = {x ∈ X : x ∈ An i.o.}. Then by continuity from above,

ν(A) = limN→∞ ν (
⋃∞
k=N Ak) ≥ ε > 0 but for all N ∈ N,

µ(A) ≤ µ

(
∞⋃
k=N

An

)
≤

∞∑
n=N

µ(An) ≤ 1

2N−1

which approaches 0 as N → ∞. Therefore µ(A) = 0. Hence ν is not absolutely continuous
with respect to µ.

Lemma 19.2.5. If µ and ν are finite, positive measures on (X,M) then either µ ⊥ ν or
there exist ε > 0 and E ∈M such that µ(E) > 0 and ν ≥ εµ on E.

Proof. For each n ∈ N, ν − 1
n
µ is a signed measure, so there is a Hahn decomposition

X = Pn ∪ Nn for each of these. Set P =
⋃∞
n=1 Pn and N =

⋂∞
n=1 Nn = PC . Then

0 ≤ ν(N) ≤ 1
n
µ(N) for all n, so ν(N) = 0 and the same logic shows that N is a negative set

for each ν− 1
n
µ. If µ(P ) = 0, then ν ⊥ µ. On the other hand, if µ(P ) > 0 then µ(Pn) > 0 for

some n, so Pn is a positive set for ν − 1
n
µ. Taking ε = 1

n
and E = Pn, the second statement

is seen to hold.

Theorem 19.2.6 (Lebesgue-Radon-Nikodym). Given two σ-finite measures µ and ν on
(X,M), with µ positive and ν signed, there are unique signed measures ρ and λ such that
ρ << µ, λ ⊥ µ and ν = ρ + λ. Moreover, there exists an (extended) µ integrable function
f : X → R such that dρ = f dµ.

Proof. First suppose that ν is positive and ν and µ are both finite measures. For any µ-
integrable function f : X → [0,∞], define µf =

∫
X
f dµ which is a positive measure by

Example 19.1.7. Set F = {f ∈ L1(µ) : µf ≤ ν}. If f, g ∈ F then h = max{f, g} ∈ F as well,
since for any A ∈M, we have

µh(A) =

∫
A

h dµ =

∫
A∩{x:f(x)>g(x)}

f dµ+

∫
A∩{x:f(x)≤g}

g dµ

≤ ν(A ∩ {x : f(x) > g(x)}) + ν(A ∩ {x : f(x) ≤ g(x)}) = ν(A).
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Let M = sup{µf (X) : f ∈ F} and for each n ∈ N, choose fn ∈ F such that µfn(X) → M .
Since F is closed under taking maxima, each f̃n = max{f1, . . . , fn} lies in F. Then M ≥
µf̃n(X) ≥ µfn(X) for each n, so it follows that µfn(X)→M as well. We also have

M = lim
n→∞

µfn(X) = lim
n→∞

∫
X

fn dµ =

∫
X

lim
n→∞

fn dµ

by the Monotone Convergence Theorem, so f = limn→∞ f̃n ∈ F. Set ρ =
∫
X
f dµ = µf .

Then by Example 19.2.1, ρ << µ. It remains to check that λ = ν − ρ satisfies λ ⊥ µ. Since
f ∈ F, it is clear that λ ≥ 0. Suppose there is an ε > 0 and a set E ∈M such that µ(E) > 0
and λ− εµ is positive on E. Then∫

E

ε dµ ≤
∫
E

dλ ≤
∫
X

dλ = λ(X) = ν(X)−
∫
X

f dµ

since λ ≥ 0. This implies
∫
X

(f + εχE) dµ ≤ ν(X), or in other words f + εχE ∈ F. So
µf+εχE(X) ≤M , but on the other hand,

µf+εχE(X) =

∫
(f + εχE) dµ =

∫
f dµ+ ε

∫
E

dµ by linearity

=

∫
f dµ+ εµ(E) = M + εµ(E) > M.

This is a contradiction, so no such ε and E exist. Hence by Lemma 19.2.5, λ ⊥ µ.
To prove ρ and λ are unique, suppose ν = ρ′+λ′ with ρ′ << µ, dρ′ = f ′ dµ and λ′ << µ.

Then ρ+ λ = ρ′ + λ′ implies

λ′ − λ = ρ− ρ′ = f dµ− f ′ dµ = (f − f ′) dµ.

Since λ′ − λ = (f − f ′) dµ is simultaneously mutually singular and absolutely continuous
with respect to µ, it must be the zero measure. Hence λ′ = λ, ρ′ = ρ and the theorem holds
in the positive finite case.

In the σ-finite case, there are countable sequences of µ-finite and ν-finite sets increasing
to X, so we may intersect these and get a sequence Xn ↗ X such that µ(Xn) < ∞ and
ν(Xn) < ∞ for all n ∈ N. Define µn(E) = µ(E ∩ Xn) and νn(E) = ν(E ∩ Xn), so
that each µn and νn is a finite measure. Then by the first part of the proof, for each
n ∈ N, νn =

∫
fn dµn + λn for some fn ∈ L1(µn) and λn ⊥ µn. By Tonelli’s theorem,

ρ =
∑∞

n=1

∫
fn dµn =

∫ ∑∞
n=1 fn dµn so if f =

∑∞
n=1, then f ∈ L1(µ) and dρ = f dµ is σ-

finite. We also have λn(Xn) = νn(Xn)−
∫
Xn
fn dµn <∞. So λ =

∑∞
n=1 λn is σ-finite. Finally,

ν = ρ+ λ and by Lemma 19.2.3, ρ << µ and λ ⊥ µ, so this is the desired decomposition.
If ν is a signed measure, apply the results above to the positive measures ν+ and ν− and

subtract.

Definition. For a signed measure ν which is absolutely continuous with respect to a positive
measure µ, the Lebesgue decomposition of ν with respect to µ is ν = ρ+λ, where ρ << µ
and λ ⊥ µ as in the Lebesgue-Radon-Nikodym theorem.
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Corollary 19.2.7. If ν << µ then there is an extended f ∈ L1(µ) which is unique up to
a.e. equivalence such that dν = f dµ.

Definition. For ν << µ, the function f such that dν = f dµ is called the Radon-Nikodym
derivative of ν with respect to µ, denoted f = dν

dµ
.

Proposition 19.2.8. Suppose ν, ν1, ν2 are σ-finite signed measures and µ, λ are σ-finite
positive measures on (X,M). Then

(a) If ν1, ν2 << µ then d(ν1+ν2)
dµ

= dν1
dµ

+ dν2
dµ

.

(b) If ν << µ and µ << λ then ν << λ and dν
dλ

= dν
dµ

dµ
dλ

a.e.

Proposition 19.2.9. For j = 1, 2, let µj, νj be σ-finite measures on (Xj,Mj) such that
νj << µj. Then ν1 × ν2 << µ1 × µ2 and

d(ν1 × ν2)

d(µ1 × µ2)
(x1, x2) =

dν1

dµ1

(x1)
dν2

dµ2

(x2).

Proof. Let µ = µ1 × µ2, ν = ν1 × ν2,M = M1 ⊗M2 and suppose νj << µj for j = 1, 2.
Then for any E ∈M, Fubini’s theorem implies that the function x1 7→

∫
X2
χE(x1, x2) dµ2 is

µ1-measurable and x2 7→
∫
X1
χE(x1, x2) dµ1 is µ2-measurable. For any x1 ∈ X1, x2 ∈ X2, set

Ex1 = {y2 ∈ X2 | (x1, y2) ∈ E} and Ex2 = {y1 ∈ X1 | (y1, x2) ∈ E}. Then Fubini’s theorem
allows us to write

µ(E) =

∫
X1×X2

χE dµ =

∫
X2

∫
X1

χE(x1, x2) dµ1 dµ2 =

∫
X2

∫
X1

χEx2 (x1) dµ2 =

∫
X2

µ1(Ex2) dµ2

and

ν(E) =

∫
X1×X2

χE dν =

∫
X2

∫
X1

χE(x1, x2) dν1 dν2 =

∫
X2

∫
X1

χEx2 (x1) dν2 =

∫
X2

ν1(Ex2) dν2

If µ(E) = 0 then by the top line, ∫
X2

µ1(Ex2) dµ2 = 0

which means that µ1(Ex2) as a function on X2 is 0 a.e. Thus there is some set A ∈M2 such
that µ2(A) = 0 and µ1(Ex2) = 0 for all x2 ∈ AC . By hypothesis, ν2(A) = 0 and ν1(Ex2) = 0
for all x2 ∈ AC . Then the second line above becomes

ν(E) =

∫
X2

ν1(Ex2) dν2 =

∫
A

ν1(Ex2) dν2 +

∫
AC
ν1(Ex2) dν2 = 0 + 0 = 0.

Therefore ν << µ as claimed.
Now set F = dν

dµ
, f1 = dν1

dµ1
and f2 = dν2

dµ2
. (Since ν << µ from above, F is defined.) Then

by definition of Radon-Nikodym derivatives, the functions F, f1 and f2 satisfy

ν(E) =

∫
E

F dµ, ν1(E1) =

∫
E1

f1 dµ1, ν2(E2) =

∫
E2

f2 dµ2
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for any E ∈ M and Ej ∈ Mj, j = 1, 2. By the Lebesgue-Radon-Nikodym theorem, F ∈
L1(µ) and fj ∈ L1(µj) for j = 1, 2. Then by Fubini’s theorem, for any E = E1 × E2 ∈
M1 ×M2,

ν(E) =

∫
E

F dµ =

∫
E1

∫
E2

f1f2 dµ1 dµ2 =

∫
E1

f1 dµ1

∫
E2

f2 dµ2 = ν1(E1)ν2(E2).

So ν(E) = ν1(E1)ν2(E2) whenever E1 ∈ M1, E2 ∈ M2. But by Lemma 18.4.1, ν is the
unique measure onM such that ν(E1×E2) = ν1(E1)ν2(E2) for all Ej ∈Mj, j = 1, 2. Thus
for any E ∈M, ∫

E

F dµ =

∫
E

f1f2 dµ

by the Fubini’s theorem argument above, and since Radon-Nikodym derivatives are unique
(up to a.e.), we must have F = f1f2 as required.
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19.3 Complex Measures

Definition. A complex measure on a measurable space (X,M) is a complex-valued set
function ν :M→ C which is σ-additive and satisfies ν(∅) = 0. The real and imaginary
parts of ν are defined as νr = Re ν and νi = im ν, so that ν(A) = νr(A) + iνi(A) for all
A ∈M.

Definition. For a complex measure ν, we say a function f : X → C is integrable if
f ∈ L1(ν) := L1(νr) ∩ L1(νi). For f ∈ L1(ν), we define its complex integral by∫

X

f dν =

∫
X

f dνr + i

∫
X

f dνi.

Remark. By the definition of signed integrable functions, for any complex measure ν

L1(ν) = L1(νr) ∩ L1(νi) = L1(ν+
r ) ∩ L1(ν−r ) ∩ L1(ν+

i ) ∩ L1(ν−i ).

Example 19.3.1. For any positive measure µ : M → [0,∞] and complex-valued, µ-
integrable function g ∈ L1(µ), the measure ν(A) =

∫
A
g dµ is a complex measure.

Lemma 19.3.2. Let ν be a complex measure and µ be a positive measure. Then

(1) ν << µ if and only if νr << µ and νi << µ.

(2) ν ⊥ µ if and only if νr ⊥ µ and νi ⊥ µ.

Theorem 19.3.3 (Lebesgue-Radon-Nikodym for Complex Measures). Given two σ-finite
measures µ and ν on (X,M), with µ positive and ν complex, there are unique complex
measures ρ and λ such that ν = ρ+ λ, ρ << µ, λ ⊥ µ and dρ = f dµ for some f ∈ L1(µ).

Proof. Apply the Lebesgue-Radon-Nikodym theorem from Section 19.2 to the signed mea-
sures νr and νi and add together the results using linearity and Lemma 19.3.2.

Definition. For a complex measure ν and µ ≥ 0 such that ν << µ, ν = ρ + λ is called the
Lebesgue decomposition of ν with respect to µ.

Definition. If ν is a complex measure and ν << µ, the a.e.-unique function f such that
dν = f dµ is called the Radon-Nikodym derivative of ν with respect to µ, denoted f = dν

dµ
.

Corollary 19.3.4. For every complex measure ν, there is a positive measure µ and complex-
valued function g ∈ L1(µ) such that dν = g dµ.

Proof. Take µ = |νr|+ |νi|. Then µ is positive and ν << µ, so the Lebesgue-Radon-Nikodym
theorem for complex measures implies the result.

Definition. Let ν be a complex measure with dν = g dµ for finite, positive µ and g ∈ L1(µ).
Then the total variation |ν| of ν is defined by

|ν|(A) =

∫
A

|g| dµ

for all A ∈M.
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Proposition 19.3.5. The total variation of a complex measure ν is independent of the
choices of µ and g such that dν = g dµ.

Proof. Suppose dν = g1 dµ1 = g2 dµ2 for finite, positive µ1, µ2 and fj ∈ L1(µj), for j = 1, 2.
Then by Proposition 19.2.8,

g1
dµ1

d(µ1 + µ2)
d(µ1 + µ2) = g1 dµ1 = ν = g2 dµ2 = g2

dµ2

d(µ1 + µ2)
d(µ1 + µ2).

So by uniqueness of the Radon-Nikodym derivative, g1
dµ1

d(µ1+µ2)
= g2

dµ2
d(µ1+µ2)

a.e. with respect
to µ1 + µ2. Since µ1 and µ2 are positive, it follows that

|g1| dµ1 = |g1|
dµ1

d(µ1 + µ2)
d(µ1 + µ2) = |g2|

dµ2

d(µ1 + µ2)
d(µ1 + µ2) = |g2| dµ2.

Hence the definition of |ν| is well-defined.

Proposition 19.3.6. Let ν be a complex measure on (X,M). Then

(a) For all A ∈M, |ν(A)| ≤ |ν|(A).

(b) ν << |ν| and if f = dν
d|ν| then |f | = 1 a.e. with respect to |ν|.

(c) L1(ν) = L1(|ν|).

(d) For every f ∈ L1(ν),
∣∣∫
X
f dν

∣∣ ≤ ∫
X
|f | d|ν|.

Proof. (a) By Corollary 19.3.4, we may write dν = g dµ for some positive µ and g ∈ L1(µ).
Then for any A ∈M,

|ν(A)| =
∣∣∣∣∫
A

f dµ

∣∣∣∣ ≤ ∫
A

|f | dµ = |ν|(A)

by Proposition 18.2.8 and the definition of total variation.
(b) ν << |ν| follows from (a). Then f = dν

d|ν| is defined and g dµ = dν = f d|ν| = f |g| dµ
which shows that g = f |g| µ-a.e. Hence f = g

|g| |ν|-a.e. Since µ is positive, |g| > 0 µ-a.e.

which implies |f | = 1 |ν|-a.e.
(c) – (d) Similar to the proof of Lemma 19.1.8(a) and (b).

Theorem 19.3.7. Let A ⊆ P(X) be an algebra, M = σ(A) and suppose ν is a complex
measure on (X,M). Define

µ0(E) = sup

{
n∑
j=1

|ν(Ej)| : Ej ∈ AE is a partition of E

}

µ1(E) = sup

{
n∑
j=1

|ν(Ej)| : Ej ∈ME is a partiion of E

}

µ2(E) = sup

{
∞∑
j=1

|ν(Ej)| : Ej ∈ME is a partition of E

}

µ3(E) = sup

{∣∣∣∣∫
E

f dµ

∣∣∣∣ : |f | ≤ 1

}
.

Then µ0 = µ1 = µ2 = µ3 = |ν|.
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Proof. First consider ∣∣∣∣∫
E

f dν

∣∣∣∣ =

∣∣∣∣∫
E

fg d|ν|
∣∣∣∣

≤
∫
E

|f | |g| d|ν|

≤ |ν|(E) since g(E) ⊆ S1.

Thus µ3(E) ≤ |ν|(E). On the other hand, take f = ḡ = g−1 to see that µ3(E) = |ν|(E) for
all E ∈M.

Next, it is clear that µ0 ≤ µ1 ≤ µ2. Note that if {Ej} is a partition of E, then

∞∑
j=1

|ν(Ej)| =
∞∑
j=1

∣∣∣∣∫
E

g d|ν|
∣∣∣∣

≤
∞∑
j=1

∫
Ej

|g| d|ν|

=
∞∑
j=1

|ν|(Ej)

= |ν|(E) = µ3(E).

So µ2 ≤ µ3.
Finally, we complete the proof by showing |ν| ≤ µ0. Recall (as in Lemma 18.1.1) that

there are simple functions

gn =
Nn∑
k=1

znkχAnk

for znk ∈ D2 and Ank ∈ AE disjoint such that gn ↗ g pointwise and
∫
|g− gn| d|ν| → 0. Then

|ν|(E) =

∫
E

1 d|ν| =
∫
E

ḡ dν = lim
n→∞

∫
E

ḡn dν

and ∣∣∣∣∫
E

ḡn dν

∣∣∣∣ =

∣∣∣∣∣
Nn∑
k=1

z̄nk ν(E ∩ Ank)

∣∣∣∣∣
≤

Nn∑
k=1

|znk | |ν(E ∩ Ank)|

≤
Nn∑
k=1

|ν(E ∩ Ank)| ≤ µ0(E).

Taking the limit as n→∞ gives

|ν|(E) = lim
n→∞

∫
E

ḡn dν ≤ µ0(E).

Hence all five measures are equal.
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19.4 Complex Lebesgue Integration

Let ν be a complex measure on Rn and λ be Lebesgue measure on Rn. Then by the Lebesgue-
Radon-Nikodym theorem (19.3.3), ν = ρ+ λ′ for measures ρ << λ and λ′ ⊥ λ, and there is
some g ∈ L1(λ) such that dρ = g dλ. Write dν = gdλ+ dλ′. Our goal is to prove:

Theorem 19.4.1. If f(x) = x a.e. with respect to Lebesgue measure, then

lim
r↘0

ν(B(f(x), r))

λ(B(f(x), r))
= g(x).

Lemma 19.4.2 (Covering Lemma). Let E be a collection of open balls in Rn and let U =⋃
B∈E B. If c < λ(U) then there exist disjoint B1, . . . , Bk ∈ E such that

c < 3n
k∑
j=1

λ(Bj).

Proof. By Corollary 17.2.15(ii), choose is a compact set K ⊆ U such that λ(K) > c and
let E1 ⊆ E be a finite subcover of K. There is some B1 ∈ E1 of largest diameter (though it
need not be unique). Let E2 = {A ∈ E1 | A ∩ B1 = ∅}. If E2 6= ∅, choose B2 ∈ E2 with
largest diameter and repeat until Ek+1 = ∅. This gives us our B1, . . . , Bk ∈ E . For any
ball B = B(x, r), let B∗ = B(x, 3r). We will show that K ⊆

⋃k
j=1B

∗
j to prove the desired

formula. For each A ∈ E1, there is a smallest 1 ≤ j ≤ k such that Bj ∩ A 6= ∅. In this

case, diam(A) ≤ diam(Bj) so A ⊆ B∗j . Therefore A ⊆
⋃k
j=1 B

∗
j so K ⊆

⋃
A∈E1 A ⊆

⋃k
j=1B

∗
j .

Finally, subadditivity yields

λ(K) ≤
k∑
j=1

λ(B∗j ) ≤ 3n
k∑
j=1

λ(Bj).

Definition. A function f : Rn → C is locally integrable if fχK ∈ L1(λ) for all bounded
sets K ∈ Bn. The set of all such f is denoted L1

loc(λ).

Definition. For f ∈ L1
loc(λ), x ∈ Rn and r > 0, we define the averaging integral

(Arf)(x) =
1

λ(B(x, r))

∫
B(x,r)

f dλ.

Lemma 19.4.3. A•f : (0,∞)× Rn → C is jointly continuous in r > 0 and x ∈ Rn.

Let Er = B(x, r). We begin proving Theorem 19.4.1 through a series of refinements.

Lemma 19.4.4. Let ρ, λ′ be complex measures.

(1) If ρ << λ, then ρ(Er)
λ(Er)

→ dρ
dλ

(x) as r ↘ 0.

(2) If λ′ ⊥ λ, then λ′(Er)
λ(Er)

→ 0 as r ↘ 0.
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Proof. (2) Suppose λ′ ≥ 0. Then λ′ ⊥ λ means there exists some A ∈ B such that λ′(A) = 0
and λ(AC) = 0. Given ε > 0, there exists Vε ⊂ Rn such that A ⊆ Vε and λ′(Vε) < ε by
Corollary 17.2.15(iii). Let

Fk =

{
x ∈ A : lim sup

r→0

λ′(Er)

λ(Er)
>

1

k

}
and set F =

⋂∞
k=1 Fk. For x ∈ Fk, there exists rx > 0 such that B(x, rx) ⊆ Vε and

λ′(B(x, rx)) >
1

k
λ(B(x, rx)).

Consider the collection E = {B(x, rx) | x ∈ F}. Let U =
⋃
B∈E B ⊆ Vε and note that

Fk ⊆ U . So for all c < λ(U), the covering lemma (19.4.2) produces B1, . . . , BN ∈ E such
that c < 3n

∑N
j=1 λ(Bj). Thus

c < 3n
N∑
j=1

λ(Bj) < 3nk
N∑
j=1

λ′(Bj) ≤ 3nkλ′(U) < 3nkε.

Taking the limit as c ↗ λ(U), we get λ(U) < 3nkε so since ε > 0 was arbitrary, we must
have λ(U) = 0. Hence λ(Fk) = 0 for all k ≥ 1 since Fk ⊆ U and λ ≥ 0. This implies

λ(F ) = 0 so λ′(Er)
λ(Er)

→ 0 as required. For general λ′, the statement follows from the fact that

λ′ is regular (in the sense of Corollary 17.2.15) if and only if |λ′| is.
(1) is proven similarly.

Lemma 19.4.5. If f is a continuous function, then limr→0Arf(x) = f(x) pointwise a.e.

Proof. For continuous f and any x ∈ Rn, we have

|Arf(x)− f(x)| =

∣∣∣∫B(x,r)
(f(y)− f(x)) dy

∣∣∣
|λ(B(x, r))|

≤

∫
B(x,r)

|f(y)− f(x)| dy
λ(B(x, r))

≤ sup
y∈B(x,r)

|f(y)− f(x)|

and the latter converges to 0 as r → 0 by continuity of f .

Definition. The Hardy-Littlewood maximal function of any f ∈ L1
loc(λ) is

Hf(x) = sup
r>0

Ar|f |(x).

Lemma 19.4.6. For any f ∈ L1
loc(λ), Hf(x) is measurable.

Proof. By Lemma 19.4.3, Ar|f |(x) is jointly continuous in r and x, hence measurable by
Lemma 17.4.13. Apply Proposition 17.4.14.
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Theorem 19.4.7 (Maximal Theorem). If f ∈ L1
loc(λ) then for all α > 0,

λ ({x : Hf(x) > α}) ≤ 3n

α

∫
Rn
|f | dλ.

Proof. Set Eα = {x : Hf(x) > α}. For all x ∈ Eα, there exists some rx such that Arx |f |(x) >
α by Corollary 17.2.15(iii). Thus

λ(B(x, rx)) <
1

α

∫
B(x,rx)

|f | dλ.

Then Eα ⊆
⋃
x∈Eα B(x, rx) and if c < λ(Eα) < λ

(⋃
x∈Eα B(x, rx)

)
. The covering lemma

(19.4.2) says that there exist x1, . . . , xN ∈ Eα such that Bi = B(xi, rxi) satisfy

c <

N∑
i=1

3nλ(Bi) <
3n

α

N∑
i=1

∫
Bi

|f | dλ

=
3n

α

∫
Rn

N∑
i=1

χBi |f | dλ by Tonelli’s theorem (18.4.2)

<
3n

α

∫
Rn
|f | dλ.

Now let c↗ λ(Eα) to finish.

Theorem 19.4.8. For any f ∈ L1
loc(λ), limr→0Arf(x) = f(x) pointwise a.e.

Proof. If f ∈ L1
loc(λ), then f̃ := fχ[−N,N ] is integrable for every N ∈ N, so it suffices to

prove the theorem for f ∈ L1(λ). A generalization of Theorem 18.2.9 shows that we can
find a continuous g ∈ L1(λ) approximating f with respect to Lebesgue measure. Then by
Lemma 19.4.5, Arg(x)→ g(x) pointwise a.e. so

|Arf(x)− f(x)| ≤ |Arf(x)− Arg(x)|+ |Arg(x)− g(x)|+ |g(x)− f(x)|
≤ sup

r>0
Ar|f − g|(x) + 0 + |f − g|(x).

For α > 0, let

Eα =

{
x : lim sup

r>0
|Arf(x)− f(x)| > α

}
⊆
{
x : H|f − g|(x) >

α

2

}
∪
{
x : |f − g| > α

2

}
.

Then by the maximal theorem,

λ(Eα) ≤ λ
({
x : H|f − g| > α

2

})
+ λ

({
x : |f − g| > α

2

})
≤ 3n

α/2

∫
Rn
|f − g| dλ+

1

α/2

∫
Rn
|f − g| dλ

which can be made small since g approximates f . Since α > 0 was arbitrary, λ(Eα) = 0.
Hence limr→0Arf(x) = f(x) for all x 6∈

⋃∞
n=1E1/n so the converges is pointwise a.e.
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Definition. For f ∈ L1
loc(λ), the Lebesgue set of f is

Lf =

{
x : lim

r→0

1

λ(B(x, r))

∫
B(x,r)

|f(y)− f(x)| dy = 0

}
.

The proof of Theorem 19.4.8 implies:

Corollary 19.4.9. For all f ∈ L1
loc(λ), λ(LCf ) = 0.

Definition. We say a family of sets {Er} shrinks nicely to x ∈ Rn if for every r, Er ⊆
B(x, r) and there exists α > 0 such that λ(Er) > αλ(B(x, r)).

Corollary 19.4.10 (Lebesgue Differentiation). For every f ∈ L1
loc(λ) and x ∈ Lf ,

lim
r→0

1

λ(Er)

∫
Er

f dλ = f(x)

for every family {Er} shrinking nicely to x.

We now prove Theorem 19.4.1 by proving the following generalization.

Theorem 19.4.11. Let ν be a regular complex Borel measure on Rn and let dν = f dλ+dλ′.
Then for almost every x ∈ Rn,

lim
r→0

ν(Er)

λ(Er)
= f(x)

for every family {Er} shrinking nicely to x.

Proof. Note that if ν is regular, then λ′ and f dλ are as well and thus f ∈ L1
loc(λ). By

Corollary 19.4.10, it then suffices to show that for almost x,

lim
r→0

λ′(Er)

λ(Er)
= 0

for every family shrinking nicely to x. We have this already for Er = B(x, r) (Lemma 19.4.4),
but for any {Er} shrinking nicely to x, there is some α > 0 such that∣∣∣∣λ′(Er)λ(Er)

∣∣∣∣ ≤ |λ′|(Er)λ(Er)
≤ |λ|(B(x, r))

λ(Er)
≤ |λ|(B(x, r))

αλ(B(x, r))
.

Therefore the limit for Er follows from the limit for B(x, r) and we are done.
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19.5 Functions of Bounded Variation

Recall (Section 17.3) that for finite, positive Borel measures µ on R, there is a distribution
function F (x) = µ((−∞, x]). If λ is Lebesgue measure on R and µ << λ, this distribution
can be written

F (x) =

∫
(−∞,x]

f dλ

where f = dµ
dλ

is the Radon-Nikodym derivative of µ. Recall that F also satisfies µ((a, b]) =
F (b)− F (a).

Theorem 19.5.1. Let F : R→ R be an increasing function and define

G(x) = F (x+) = lim
y→x+

F (y).

Then

(1) G is increasing and right continuous.

(2) For x ∈ R, G(x) = lim
y→x+

F (y−).

(3) The set of discontinuities of F is countable.

(4) There exists a unique Borel measure µ = µG on R such that µ((a, b]) = G(b) − G(a)
for all a < b.

(5) For x ∈ R, F ′(x) and G′(x) exist a.e. and F ′(x) = G′(x) a.e.

(6) F ′(x) ∈ L1
loc(λ) and there exists a unique positive Borel measure νs on R such that

νs ⊥ λ and

G(b)−G(a) = F (b+)− F (a+) =

∫
(a,b]

F ′ dλ+ vs((a, b]).

Moreover, if F is bounded then F ′ ∈ L1(λ).

We want to generalize this for complex measures and ultimately obtain a generalized
version of the fundamental theorem of calculus. Let µ be a complex measure on (R,B) and
define a distribution F by F (x) = µ((−∞, x]) for all x ∈ R. Then as in Lemma 17.3.1, we
have:

� µ((a, b]) = F (b)− F (a) for all a < b.

� F is right continuous.

� |µ|((a, b]) = sup
P

∑
xi∈P

|F (xi+1)− F (xi)| where the supremum is over all partitions P =

{a = x0 < x1 < . . . < xn = b}.
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Definition. Given a function F : R→ C, the total variation of F is

TF ((a, b]) = sup
P

∑
xi∈P

|F (xi+1)− F (xi)|

for partitions P and a < b,

TF ((−∞, b]) = lim
a→∞

TF ((a, b]) for all b ∈ R

and TF (R) = lim
b→∞

TF ((−∞, b]).

In particular, when F is a distribution for a complex measure µ : B → C, we have
|µ| = TF .

Definition. A function F : R→ C has bounded variation if TF (R) <∞. Set

BV = {F : R→ C | F has bounded variation}
NBV = {F ∈ BV | F (−∞) = 0}.

For any F ∈ BV , the function G(x) = F (X+)− F (−∞) is right continuous and F = G
a.e.

Theorem 19.5.2. There is a bijective correspondence{(
NBV right continuous functions

F : R→ C

)}
←→

{(
finite complex Borel

measures µ

)}
F (x) 7−→ µF such that µF ((−∞, x]) = F (x).

To prove this, first consider F : R→ R with total variation TF (x) = µ((−∞, b]).

Lemma 19.5.3. TF + F is nondecreasing on R.

Proof. Let x < y and take ε > 0. Choose a partition P of (−∞, x] such that∑
P

|F (xi)− F (xi−1)| ≥ TF (x)− ε.

Then P ∪ {y} is a partition of (−∞, y], so

TF (y) ≥
∑
P

|F (xi)− F (xi−1)|+ |F (y)− F (x)|.

Now we have

TF (y) + F (y) ≥
∑
P

|F (xi)− F (xi−1)|+ |F (y)− F (x)|+ F (y)

=
∑
P

|F (xi)− F (xi−1)|+ |F (y)− F (x)|+ (F (y)− F (x)) + F (x)

≥
∑
P

|F (xi)− F (xi−1)|+ F (x)

≥ TF (x) + F (x)− ε.

Taking ε→ 0, we get that TF (y)− F (y) ≥ TF (x)− F (x).
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Similarly:

Lemma 19.5.4. TF (x)− F (x) is nondecreasing on R.

Definition. For a function F ∈ BV , we define its positive variation by F+ = 1
2
(TF + F )

and its negative variation by F− = 1
2
(TF − F ).

Clearly F = F+ − F−, so any F ∈ BV can be expressed as the difference of two non-
decreasing functions of bounded variation. This implies Theorem 19.5.2 for F : R → R as
follows. Write F = F+ − F− for nondecreasing, right continuous functions F+, F− ∈ BV .
Then by Theorem 17.3.2, there exist unique, finite, positive measures µF+ and µF− on B cor-
responding to F+ and F−, respectively. Then the signed measure µF := µF+ − µF− satisfies
µF ((−∞, x]) = F (x) by definition. We call F = F+ − F− and µF = µF+ − µF− the Jordan
decomposition of F (and/or µF ).

Now suppose F : R → C is a function of bounded variation. Then ReF, imF ∈ BV as
well. Applying the result for each of these gives us unique positive measures µReF and µimF

on B, and µF := µReF +iµimF is the desired complex measure satisfying µF ((−∞, x]) = F (x)
whenever x ∈ R. This completes the proof of Theorem 17.3.2.

To define differentiation for functions of bounded variation, start again with F : R→ R
and write F = F+ − F−. Then by Theorem 19.5.1, F has a countable set of discontinuities
and F ′+ and F ′− are defined almost everywhere.

Definition. The derivative of F : R→ R is F ′ = F ′+ − F ′−.

Note that µF has a Lebesgue decomposition by Theorem 19.2.6: µF =
∫
g dλ + λ′ for

g ∈ L1(λ) and λ′ ⊥ λ. Moreover, for almost every x ∈ R,

g(x) = lim
r↘0

µF (Er)

λ(Er)

for any family Er shrinking nicely to {x}, by Corollary 19.4.10. In particular, these limits
exist for E+

r = (x, x+r] and E−r = (x−r, x] and we are able to define left and right derivatives
for F .

Definition. For F ∈ BV , the right derivative of F is

d+

dx
F = lim

r↘0

µF (E+
r )

λ(E+
r )

= lim
r↘0

F (x+ r)− F (x)

r

and the left derivative of F is

d−

dx
F = lim

r↘0

µF (E−r )

λ(E−r )
= lim

r↘0

F (x)− F (x− r)
r

.

In particular, if g = dµF
dλ

then g(x) = d+

dx
F (x) = d−

dx
F (x) and F ′ = g almost everywhere.

For a < b, we almost have the fundamental theorem of calculus:

F (b)− F (a) =

∫ b

a

F ′(x) dλ(x) + λ((a, b]).
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Theorem 19.5.5 (Fundamental Theorem of Calculus for Lebesgue Integration). Let F :
R→ R be a function of bounded variation. Then∫ b

a

F ′(x) dλ(x) = F (b)− F (a)

if and only if µF << λ.

Recall from Lemma 19.2.4 that µF << λ if and only if for all ε > 0, there exists a δ > 0
such that |µF (E)| < ε for all measurable sets E having λ(E) < δ. Taking E =

∐n
i=1(ai, bi]

motivates the following definition.

Definition. A function F : R → R is absolutely continuous if for every ε > 0, there
exists a δ > 0 such that for all ai, bi ∈ R for which (ai, bi] are disjoint,

n∑
i=1

(bi − ai) < δ implies
∣∣∣∑ i = 1n(F (bi)− F (ai))

∣∣∣ < ε.

Proposition 19.5.6. F is absolutely continuous if and only if µF << λ.

Lemma 19.5.7. Suppose F is absolutely continuous on R. Then

(a) F is continuous on R.

(b) TF ((a, b]) <∞ for all a < b in R.

Theorem 19.5.8. If F ∈ NBV , then F ′ ∈ L1(λ) and

(1) µF ⊥ λ if and only if F ′ = 0 a.e.

(2) µF << λ if and only if F (x) =
∫ x
−∞F

′(t) dλ(t) for all x ∈ R.

Corollary 19.5.9 (Fundamental Theorem of Calculus). For any function F : [a, b] → C,
the following are equivalent:

(1) F is absolutely continuous on [a, b].

(2) There exists some f ∈ L1([a, b]) such that

F (x)− F (a) =

∫ x

a

f(t) dt.

(3) F is differentiable a.e. on [a, b], F ′ ∈ L1([a, b]) and

F (x)− F (a) =

∫ x

a

F ′(t) dt.
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20.1 More on Banach Spaces

Let F be a field (usually taken to be R or C) and let X be a normed linear space over F.
Recall that X is a Banach space if it is complete with respect to the metric ρ(x, y) = ||x−y||.

Example 20.1.1. Suppose (X,M, µ) is a measure space. For any Borel measurable function
f : X → F, define

||f ||∞ := inf{M > 0 : |f | ≤M µ-a.e.}.

Then L∞(µ) = {a.e. equivalence classes of Borel measurable f : X → F : ||f ||∞ < ∞} is a
Banach space with the norm || · ||∞.

Definition. For a normed linear space (X, || · ||) over F = R or C, the dual space of X is
X∗ = L(X,F). Elements of X∗ are called linear functionals on X.

Example 20.1.2. Consider the normed linear space X = C[0, 1] over C. An example of a
functional on this space is L ∈ L(X,C) defined for each f ∈ C[0, 1] by

L(f) =

∫ 1

0

f(x) dx.

More generally, for a finite or complex Borel measure µ on [0, 1], define an operator

Lµ(f) :=

∫ 1

0

f dµ.

Then Lµ is bounded, since

||Lµ(f)|| ≤
∫ 1

0

|f | d|µ| ≤ ||f ||u|µ|([0, 1])

=⇒ ||Lµ||op ≤ |µ|([0, 1]) <∞.

Hence Lµ ∈ C[0, 1]∗.

Remark. To distinguish between types of dual spaces, we write X∗ for the topological dual
(defined above) and X ′ = {linear operators f : X → F} for the algebraic dual.

The following result allows us to reduce from studying complex functionals to real func-
tionals. Let X∗R denote the real dual space to XR.

Proposition 20.1.3. If X is a complex vector space, then

(1) If f ∈ X∗ and u = Re f , then for all x ∈ X, f(x) = u(x)− iu(ix).

(2) Conversely, then for any u ∈ X∗R, f(x) = u(x)− iu(ix) is an element of the dual X∗.

(3) If X is a normed linear space, then ||f ||X∗ = ||u||X∗R for u = Re f .

328



20.1. More on Banach Spaces Chapter 20. Function Spaces

Proof. (1) Clearly u is (real) linear and im f(x) = −Re(if(x)) = −u(ix), so f(x) = u(x)−
iu(ix).

(2) Since u is real linear, f(x) = u(x) − iu(ix) is also real linear. Moreover, f(ix) =
u(ix)− iu(−x) = u(ix) + iu(x) = i(u(x)− iu(ix)) = if(x) so f is complex linear as well.

(3) For any x ∈ X, |u(x)| = |Re f(x)| ≤ |f(x)| implies that ||u|| ≤ ||f ||. On the other
hand, choose x ∈ X such that f(x) 6= 0 and choose λ ∈ S1 ⊆ C such that λf(x) = |f(x)|.
Then |f(x)| = f(λx) = Re f(λx) = u(λx) so

|f(x)|
||x||

=
u(λx)

|λ| ||x||
=
u(λx)

||λx||
≤ sup

y 6=0

u(y)

||y||
= ||u||.

Taking the sup over all x 6= 0, we get ||f || ≤ ||u|| so they are equal.

Definition. A sublinear (or Minkowski) functional on an F-vector space X is a function
P : X → [0,∞) such that

(1) P (x+ y) ≤ P (x) + P (y) for any x, y ∈ X.

(2) P (λy) = λP (y) for all λ ≥ 0 in F.

Example 20.1.4. Every seminorm is a sublinear functional.

Theorem 20.1.5 (Hahn-Banach). Suppose X is a real vector space, P : X → [0,∞) is a
sublinear functional and M ⊆ X is a subspace such that f ∈ M ′ and f ≤ P on M . Then
there exists a functional F ∈ X ′ such that F |M = f and F ≤ P on X.

Proof. Given x 6∈M , we will find an extension F of f to M⊕Rx such that F ≤ P on M⊕Rx.
If such an F exists, set α = F (x). Then F (m + λx) = f(m) + λα for all m ∈ M,λ ∈ R.
So if we can find α such that f(m) + λα ≤ P (m + λx) for all m ∈ M,λ ∈ R, then we’ll be
done. This inequality is equivalent to each of the following inequalities:

α ≤ P (m+ λx)− f(m)

λ
for λ > 0 (20.1)

α ≥ f(m̃)− P (m̃− λ̃x)

λ̃
for λ̃ > 0. (20.2)

In turn, (1) and (2) are equivalent to

f(m̃)− P (m̃− λ̃x)

λ̃
≤ α ≤ P (m+ λx)− f(m)

λ

⇐⇒ f(λm̃+ λ̃m) ≤ λ̃P (m+ λx) + λP (m̃− λ̃x)

= P (λ̃m+ λλ̃x) + P (λm̃− λλ̃x).

But by assumption,

= P (λm̃− λλ̃x+ λλ̃x+ λ̃m)

= P (λm̃− λλ̃x) + P (λλ̃x+ λ̃m).
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So such an α exists and therefore so does the extension F to M ⊕ Rx.
Now we use Zorn’s Lemma to extend this to all of X. For g : X → R, let D(g) ⊆ X

denote any subspace on which g is linear. For f, g : X → R which are linear on some
subspace of X, we will write f < g if g extends f , i.e. D(f) ⊆ D(g) and g|D(f) = f . Set

F = {F : X → R | F ≤ P on D(f) and f < F}.

Then (F , <) is a poset. If Φ ⊆ F is a totally ordered subset, then

D =
⋃
g∈Φ

D(g)

must be a subspace of X. Define F on D = D(F ) by F (x) = g(x) if x ∈ D(g). So F ∈ F
and g < F for all g ∈ Φ. Hence every totally ordered subset of F has an upper bound so we
can apply Zorn’s Lemma to see that F contains a maximal element F . That is, F has no
extension in F . However, the first construction implies D(F ) = X, so we are finished.

Corollary 20.1.6 (Complex Hahn-Banach). If X is a complex normed linear space, P :
X → R≥0 is a seminorm and f : X → C is a linear functional such that |f | ≤ P on D(f),
then there exists a functional F ∈ X ′ such that F |D(f) = f and |F | ≤ P on X.

Proof. First let u = Re f and note that u ≤ |Re f | ≤ |f | ≤ P on D(f) = D(u), so by
Theorem 20.1.5, there exists a real functional U ∈ X ′R such that U |D(u) = u and U ≤ P .
Now −U(x) = U(−x) ≤ P (−x) = P (x) so we have |U | ≤ P on X. By the proof of
Proposition 20.1.3, F (x) = U(x)− iU(ix) is the extension we are looking for.

Corollary 20.1.7. Suppose (X, || · ||) is a normed linear space and M ⊆ X is a closed
subspace. For x ∈ X rM , let δ = dist(x,M) = inf{||x− y|| : y ∈ M}. Then there exists a
linear functional f ∈ X∗ satisfying:

(1) ||f ||op = 1.

(2) f |M = 0.

(3) f(x) = δ.

Proof. Define F (m + λx) = λδ for all λ ∈ C,m ∈ M . Then F ∈ (M ⊕ Cx)′ and obviously
F |M = 0. Notice that for all λ 6= 0 and m ∈M , m

λ
∈M implies

||m+ λx|| = |λ|
∣∣∣∣∣∣m
λ

+ x
∣∣∣∣∣∣ ≥ |λ|δ = |F (m+ λx)|.

Thus the operator norm of F on M ⊕ Cx may be computed:

||F ||op = sup
m∈M
λ∈C

|F (m+ λx)|
||m+ λx||

= sup
m∈M
λ∈C

|λ|δ
||m+ λx||

=
δ

δ
= 1.
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In particular, |F | ≤ || · || so the complex Hahn-Banach theorem (Corollary 20.1.6) gives us
f ∈ X ′ such that f |M⊕Cx = F and |f(z)| ≤ ||z|| for all z ∈ X. This in fact means ||f ||op ≤ 1,
so f ∈ X∗. On the other hand,

||f ||op = sup
z∈X

|f(z)|
||z||

≥ sup
m∈M
λ∈C

|f(m+ λx)|
||m+ λx||

= sup
m∈M
λ∈C

|F (m+ λx)|
||m+ λx||

= ||F ||op = 1.

So ||f ||op = 1.

Corollary 20.1.8. For every x ∈ X, there exists a functional f ∈ X∗ such that f(x) = ||x||
and ||f ||op = 1.

Proof. Apply Corollary 20.1.7 to the subspace M = 0.

Corollary 20.1.9. The map

X −→ X∗∗

x 7−→ (x̂ : f 7→ f(x))

is an isometry and in particular an injection.

Proof. For any f ∈ X∗, we have

|x̂(f)| = |f(x)| ≤ ||f ||X∗ ||x||X = ||x||X ||f ||op.

So ||x̂||X∗∗ ≤ ||x||X . On the other hand, if f ∈ X∗ satisfies the conditions of Corollary 20.1.8,
then

|x̂(f)| = |f(x)| = ||x||X = ||x||X ||f ||X∗

so that ||x̂||X∗∗ ≥ ||x||X . Hence ||x̂||X∗∗ = ||x||X for all x ∈ X, so x 7→ x̂ is indeed an
isometry.

Definition. A Banach space X is said to be reflexive if X → X∗∗, x 7→ x̂ is also surjective.

Remark. Denote the image of X in X∗∗ under the isometry in Corollary 20.1.9 by X̂. This
is sometimes called the completion of X. If X is a Banach space, then X̃ is closed in X∗∗. In
particular, a Banach space X is reflexive if and only if it embeds as a dense subset of X∗∗.

More generally, we say an arbitrary normed linear space X is reflexive if X̂ = X∗∗.
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20.2 Hilbert Spaces

Definition. An inner product space (H, 〈·, ·〉) consists of a vector space H over C and a
map 〈·, ·〉 : H ×H → C satisfying

(1) 〈x, y〉 = 〈y, x〉 for all x, y ∈ H.

(2) For all y ∈ H, x 7→ 〈x, y〉 is linear and 〈x, ay + bz〉 = ā〈x, y〉+ b̄〈x, z〉.

(3) For all x ∈ H, 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0.

Example 20.2.1. Let H = L2(µ) be the Lebesgue space associated to a measure space
(X,M, µ), as defined in Section 18.3. Then the pairing

〈f, g〉 =

∫
X

f(x)g(x) dµ(x)

makes L2(µ) into an inner product space.

Example 20.2.2. As an example of the above, let X = {1, 2, . . . , n} and let µ be the
counting measure (Example 17.3.8). Then H = Cn is an inner product space with inner
product

〈x, y〉 =
n∑
i=1

xiȳi.

This extends naturally to `2 by taking infinite sums.

Proposition 20.2.3. Define ||x|| =
√
〈x, x〉. Then (H, ||x||) is a normed linear space.

Lemma 20.2.4 (Cauchy-Schwarz Inequality). Let (H, 〈·, ·〉) be an inner product space. Then
for any x, y ∈ H, |〈x, y〉| ≤ ||x|| ||y||.

Proof. Suppose x, y 6= 0. Then by orthogonal projection,

0 ≤
∣∣∣∣∣∣∣∣y − 〈y, x〉||x||2

x

∣∣∣∣∣∣∣∣2
= ||y||2 + 2 Re

〈
y,
〈y, x〉
||x||2

x

〉
+

∣∣∣∣∣∣∣∣〈y, x〉||x||2
x

∣∣∣∣∣∣∣∣2
= ||y||2 − 2 Re

(
〈y, x〉
||x||2

〈y, x〉

)
+
|〈y, x〉|
||x||4

||x||2

= ||y||2 − |〈y, x〉|
2

||x||2
.

Rearranging, we get |〈y, x〉|2 ≤ ||y||2||x||2.

Lemma 20.2.5 (Parallelogram Law). For any x, y ∈ H, ||x+y||2+||x−y||2 = 2||x||2+2||y||2.
Conversely, if || · || is a norm on H satisfying the parallelogram law, then there exists an
inner product 〈·, ·〉 on H such that ||x||2 = 〈x, x〉.
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Definition. Let (H, 〈·, ·〉) be an inner product space. Two vectors x, y ∈ H are orthogonal
if 〈x, y〉 = 0. More generally, a set S ⊆ H is orthogonal if x, y are orthogonal for all x 6= y
in S.

Proposition 20.2.6 (Pythagorean Theorem). If S is a finite orthogonal set, then∣∣∣∣∣
∣∣∣∣∣∑
x∈S

x

∣∣∣∣∣
∣∣∣∣∣
2

=
∑
x∈S

||x||2.

Proof. Using the properties of an inner product, we have∣∣∣∣∣
∣∣∣∣∣∑
x∈S

x

∣∣∣∣∣
∣∣∣∣∣
2

=

〈∑
x∈S

x,
∑
y∈S

y

〉
=
∑
x∈S

∑
y∈S

〈x, y〉 =
∑
x∈S

〈x, x〉

since all cross-terms are zero.

Definition. An inner product space (H〈·, ·〉) is called a Hilbert space if H is complete
with respect to the topology induced by the norm || · ||.

If A ⊆ H is a subset of an inner product space, denote by A⊥ the set of all vectors x ∈ H
orthogonal to every element of A.

Lemma 20.2.7. If A ⊆ H is any set, then A⊥ is a closed subspace of H.

Proof. For each x ∈ H, let px be the linear map px(y) = 〈y, x〉. Then

A⊥ =
⋂
x∈A

ker px =
⋂
x∈A

p−1
x ({0}).

Definition. A set K ⊆ H is convex if for all x, y ∈ K, tx + (1 − t)y lies in K for all
t ∈ [0, 1].

Example 20.2.8. Any vector subspace of H is convex.

Theorem 20.2.9. If H is a Hilbert space and K is a closed, convex subset, then for all
x ∈ H, there exists a unique y ∈ K so that ||x− y|| = dist(x,K).

Proof. Let δ = dist(x,K) and assume x 6∈ K. Then there exists a sequence (yn) ⊆ K such
that ||x− yn|| → δ as n→∞. Let n,m ≥ 1 and consider

2||x− yn||2 + 2||x− ym||2 = ||2x− yn − ym||2 + ||yn − ym||2 by Lemma 20.2.5

= 4

∣∣∣∣∣∣∣∣x− yn + ym
2

∣∣∣∣∣∣∣∣2 + ||yn − ym||2.

Now yn+ym
2
∈ K by convexity, so

4

∣∣∣∣∣∣∣∣x− yn + ym
2

∣∣∣∣∣∣∣∣2 + ||yn − ym||2 ≥ 4δ2 + ||yn − ym||2.
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Taking the limsup as n,m→∞, we get

2δ2 + 2δ2 ≥ 4δ2 + lim sup
n,m→∞

||yn − ym||2

which implies ||yn − ym|| → 0. Hence (yn) is Cauchy in H, meaning (yn) converges to some
y ∈ H by completeness. Moreover, since K is closed, y ∈ K. Now by continuity of || · ||,

||x− y|| = lim
n→∞

||x− yn|| = δ.

To see y is unique, suppose z ∈ K also satisfies ||x−z|| = δ. Then y+z
2
∈ K by convexity,

so

4δ2 = 2||x− y||2 + 2||x− z||2

= ||2x− y − z||2 + ||y − z||2

= 4

∣∣∣∣∣∣∣∣x− y + z

2

∣∣∣∣∣∣∣∣2 + ||y − z||2

= 4δ2 + ||y − z||2.

Therefore ||y − z|| = 0, so y = z.

Corollary 20.2.10. If M is a closed subspace of H, then for all x ∈ H there exists a unique
y ∈ M such that ||x − y|| = dist(x,M). Moreover, y is the unique element of M having
x− y ∈M⊥.

Proof. The first statement follows immediately from Theorem 20.2.9. For the second state-
ment, suppose y ∈M is such that x− y ∈M⊥. Then for all z ∈M ,

||x− z||2 = ||(x− y) + (y − z)||2

= ||x− y||2 + ||y − z||2 by Prop. 20.2.6

≥ ||x− y||2.

Moreover, this is an equality only if ||y−z|| = 0. Thus y, if it exists, is the unique element of
M minimizing ||x− y||. Conversely, suppose y ∈ M is such that ||x− y|| = δ = dist(x,M).
Then for any z ∈M , define gz(t) = ||x− y + tz||2. Since M is convex, −y + tz ∈M and

gz(t) = ||x− y||2 + 2tRe〈x− y, z〉+ t2||z||2.

Thus gz(t) has a minimum at t = 0, so Re〈x−y, z〉 = 0 for all z ∈M . Hence x−y ∈M⊥.

Definition. If M is a closed subspace of H and x ∈ H, the unique y ∈ M such that
x− y ∈M⊥ is called the orthogonal projection of x onto M , denoted projM x.

Proposition 20.2.11. Let M be a closed subspace and P = projM the orthogonal projection
map H → H. Then

(1) P is linear.
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(2) imP = M .

(3) kerP = M⊥.

(4) P 2 = P .

(5) P = P ∗.

Proof. (1) For x, z ∈ H and λ ∈ C,

x+ λz − Px− λPz = x− Px+ λ(z − Pz) ∈M⊥.

In particular, P (x+ λz) = Px+ λPz by uniqueness.
(2) It’s clear that imP ⊆M . On the other hand, if m ∈M , then Pm = m so M ⊆ imP .
(3) x ∈ kerP ⇐⇒ Px = 0 ⇐⇒ x = x− 0 ∈M⊥.
(4) is obvious from the definition of P .
(5) For any x, y ∈ H,

〈Px, y〉 = 〈Px, y − Py + Py〉
= 〈Px, y − Py〉+ 〈Px, Py〉
= 0 + 〈Px, Py〉 = 〈Px, Py〉.

Similarly 〈x, Py〉 = 〈Px, Py〉 so we get that 〈Px, y〉 = 〈x, Py〉. In other words, P = P ∗.

Corollary 20.2.12 (Orthogonal Decomposition). If M is a proper closed subspace of a
Hilbert space H, then H = M ⊕M⊥.

Proof. If x ∈ H, then x = y + (x − y) for y = projM x. Then y ∈ M and x − y ∈ M⊥, so
we see that H = M + M⊥. Further, it is clear that 0 is the unique vector orthogonal to all
vectors in H, so we get M ∩M⊥ = {0}.

Theorem 20.2.13 (Riesz Representation). Let H be a Hilbert space. Then the map ϕ :
H → H∗ given by ϕ(z) = 〈·, z〉 is a conjugate-linear isometric isomorphism.

Proof. The fact that ϕ is conjugate-linear follows from the definition of the inner product.
Since isometries are always injective, it suffices to show that ϕ is a surjective isometry. Fix
z ∈ H. Then

||ϕ(z)||H∗ = ||〈·, z〉||H∗ = sup
||y||=1

|〈y, z〉| ≤ sup
||y||=1

||y|| · ||z|| = ||z||,

by the Cauchy-Schwarz inequality (Lemma 20.2.4). Hence ||ϕ(z)||H∗ ≤ ||z||. Also, equality
is achieved when y = z: (ϕ(z))(z) = 〈z, z〉 = ||z||2, so ||ϕ(z)||H∗ = ||z||. Therefore ϕ is an
isometry.

Now to show surjectivity, choose a nonzero linear functional f ∈ H∗. Let M = ker f
and take x0 ∈ M⊥ = (ker f)⊥. Since M⊥ is a subspace, we may assume ||x0|| = 1. For any
x ∈ H, we have that u = f(x)x0 = f(x0)x ∈ ker f , so

0 = 〈u, x0〉 = f(x)||x0||2 − f(x0)〈x, x0〉 = f(x)− 〈x, f(x0)x0〉.

Therefore f(x) = 〈x, f(x0)x0〉 for all x ∈ H. Taking xf = f(x0)x0, we have that f =
〈·, xf〉 = ϕ(xf ) so ϕ is surjective.
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Suppose that X and Y are normed vector spaces and T ∈ L(X, Y ).

Definition. Define T † : Y ∗ → X∗ by T †f = f ◦ T . Then T † is called the adjoint or
transpose of T .

Lemma 20.2.14. T † ∈ L(Y ∗, X∗) and ||T †|| = ||T ||.

Proof. Set L = L(X, Y ). For any f ∈ Y ∗ and x ∈ X,

|T †f(x)| = |f ◦ T (x)| ≤ ||f ||Y ∗||T (x)||Y ≤ ||f ||Y ∗||T ||L||x||X .

Then since f : Y → F is a bounded linear operator to the ground field and T ∈ L, ||f ||Y ∗ and
||T ||L are both defined (and finite). The above then shows that ||T †f ||X∗ ≤ ||T ||L||f ||Y ∗ for
all f ∈ Y ∗, so it follows that T † ∈ L(Y ∗, X∗), with ||T †||L(Y ∗,X∗) ≤ ||T ||L. On the other hand,
for any ε > 0 there is some x ∈ X, ||x||X = 1, such that ||Tx||Y > ||T ||L − ε by definition
of the L-norm. For this x, Corollary 20.1.8 says there is some f ∈ Y ∗ with ||f ||Y ∗ = 1 and
f(Tx) = ||Tx||Y . Then we have

|T †f(x)| = |f ◦ T (x)| = ||Tx||Y > ||T ||L − ε.

So ||T †f ||X∗ > ||T ||L − ε, and since ||f ||Y ∗ = 1, this shows ||T ||L ≤ sup||f ||=1 ||T †f ||X∗ =

||T †||L(Y ∗,X∗). Hence ||T †||L(Y ∗,X∗) = ||T ||L as claimed.

Applying the adjoint operation twice, one obtains T †† ∈ L(X∗∗, Y ∗∗). The following
states that bounded linear operators satisfy a type of duality.

Lemma 20.2.15. If X and Y are identified with their natural images X̂ and Ŷ in X∗∗ and
Y ∗∗, then T ††|X = T .

Proof. For any x̂ ∈ X̂, let x ∈ X such that x̂(f) = f(x) for all f ∈ X∗. Then for any such
f ∈ X∗,

(T ††x̂)(f) = (x̂ ◦ T †)(f) = x̂(f ◦ T ) = f ◦ T (x) = T̂ x(f).

This shows that T ††x̂ = T̂ x in Ŷ , and since x̂ ∈ X̂ was arbitrary, T †† = T .

Lemma 20.2.16. T † is injective iff the range of T is dense in Y .

Proof. ( =⇒ ) If T (X) is not dense in Y , there exists a y ∈ Y such that y 6∈ T (X).
By Corollary 20.1.7, there exists f ∈ Y ∗ satisfying ||f ||Y ∗ = 1, f |T (X) = 0 and f(y) =

dist(y, T (X)) 6= 0. Applying T †, we see that for any x ∈ X, T †f(x) = f(Tx) = 0 since
Tx ∈ T (X). This implies T †f = 0, so T † is not injective.

( =⇒) If T † is not injective, kerT † 6= 0, meaning we can find a nonzero functional
f ∈ kerT †. Since f is nonzero, f(y) 6= 0 for some y ∈ Y , but by continuity of linear
operators, f is nonzero on some (nonempty) neighborhood V ⊂ Y containing y. Of course
V 6= Y since f is linear, meaning f(0) = 0. By assumption T †f = 0, i.e. f(Tx) = 0 for
any x ∈ X, so none of the elements of V can be of the form Tx for x ∈ X. In other words,
T (X) ⊆ V C , but since V is an open neighborhood, V C is closed. It follows that T (X) ⊆ V C

but V C 6= Y since V is nonempty. In particular, T (X) 6= Y .
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Lemma 20.2.17. If the range of T † is dense in X∗, then T is injective; the converse is true
if X is reflexive.

Proof. Suppose T is not injective. Then there is some nonzero x ∈ X with Tx = 0 in Y . We

may scale x so that ||x||X = 1, since T
(

x
||x||

)
= 0 by linearity. By Corollary 20.1.8, there is a

functional f ∈ X∗ with ||f ||X∗ = 1 and f(x) = ||x||X = 1. In particular, for any g ∈ B(f, 1)
in X∗, i.e. ||f − g||X∗ < 1, we get

|1− g(x)| = |f(x)− g(x)| ≤ ||f − g||X∗||x||X = ||f − g||X∗ < 1.

If g(x) = 0, we get 1 < 1, a contradiction, so g(x) 6= 0. However, notice that for all h ∈ Y ∗,
T †h(x) = h(Tx) = h(0) = 0 so g 6= T †h for any h ∈ Y ∗. Since g ∈ B(f, 1) was arbitrary, we
get T †(Y ∗) ⊆ B(f, 1)C . As in Lemma 20.2.16, B(f, 1)C is a closed proper subset of X∗, so
T †(Y ∗) ⊆ B(f, 1)C ( X∗. Hence T †(Y ∗) is not dense in X∗.

For the second statement, assume X is reflexive but T †(Y ∗) is not dense in X∗. Then
we can find some f ∈ X∗ such that f 6∈ T †(Y ∗), which means δ = dist(f, T †(Y ∗)) > 0. By
Corollary 20.1.7, choose x̂ ∈ X∗∗ such that ||x̂||X∗∗ = 1, x̂|T †(Y ∗) = 0 and x̂(f) = δ 6= 0.
Since X is reflexive, x̂ is the image of some x ∈ X under the isometry X → X∗∗. Then
||x||X = ||x̂||X∗∗ = 1 6= 0 so x 6= 0. Suppose Tx 6= 0. Then by Corollary 20.1.8, there is
some g ∈ Y ∗ so that g(Tx) 6= 0. However, g(Tx) = x̂(g ◦ T ) = x̂(T †g) = 0, contradicting
the fact that x̂ is 0 on T †(Y ∗). Thus we must have Tx = 0, but x was nonzero, so T is not
injective.

Now let H be a Hilbert space and T ∈ L(H,H). Let V : H → H∗ be the conjugate-linear
isomorphism (V y)(x) = 〈x, y〉 in Theorem 20.2.13.

Definition. The operator T ∗ = V −1T †V ∈ L(H,H) is called the adjoint of T .

Proposition 20.2.18. For every T ∈ L(H,H), T ∗ is the unique element of L(H,H) satis-
fying 〈Tx, y〉 = 〈x, T ∗y〉 for all x, y ∈ H.

Proof. Letting x, y ∈ H, we have

〈x, T ∗y〉 = (V (T ∗y))(x) = (V (V −1T †V y))(x) = (T †V y)(x) = (V y)(Tx) = 〈Tx, y〉.

For uniqueness, suppose S ∈ L(H,H) is another operator satisfying 〈Tx, y〉 = 〈x, Sy〉 for all
x, y ∈ H. For a fixed y ∈ H, 〈x, Sy〉 = 〈x, T ∗y〉 for all x, so V (Sy) = V (T ∗y), but since V
is an isomorphism, Sy = T ∗y. Since y was arbitrary, we must have S = T ∗, so the adjoint is
unique.

Lemma 20.2.19. The adjoint T ∗ : H → H satisfies the following properties:

(i) ||T ∗|| = ||T ||.

(ii) ||T ∗T || = ||T ||2.

(iii) (aS + bT )∗ = āS∗ + b̄T ∗.

(iv) (ST )∗ = T ∗S∗.
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(v) T ∗∗ = T .

Proof. (v) Let x, y ∈ H. Then by sesquilinearity, 〈T ∗x, y〉 = 〈y, T ∗x〉 = 〈Ty, x〉 = 〈x, Ty〉.
Since T ∗∗ is the unique operator satisfying 〈T ∗x, y〉 = 〈x, T ∗∗y〉 by Proposition 20.2.18, we
must have T = T ∗∗.

(i) For all x ∈ H,

||Tx||2 = 〈Tx, Tx〉 = 〈x, T ∗Tx〉
≤ ||x|| · ||T ∗Tx|| by Cauchy-Schwarz (20.2.4

≤ ||x|| · ||T ∗|| · ||Tx||.

From this we see that ||Tx|| ≤ ||x|| · ||T ∗||, and since this holds for all x, we get ||T || ≤ ||T ∗||.
Applying this once more to T and T ∗∗ = T , we get ||T ∗|| ≤ ||T ∗∗|| = ||T || so we have
equality: ||T ∗|| = ||T ||.

(ii) From the proof of (i), we have

||x|| · ||T ∗Tx|| ≤ ||x|| · ||T ∗|| · ||Tx|| = ||x|| · ||T || · ||Tx|| ≤ ||T ||2||x||2.

So it follows that ||T ∗T || ≤ ||T ||2. On the other hand, let y ∈ H with ||y|| = 1. The
calculation in (i) shows that ||Ty||2 ≤ ||T ∗T || ||y||2 = ||T ∗T || so we get ||T ||2 ≤ ||T ∗T ||.
Hence ||T ∗T || = ||T ||2 as claimed.

(iii) Let a, b ∈ C and S, T ∈ L(H,H). For any f ∈ H∗, we have (aS + bT )†f =
f ◦ (aS + bT ) = f ◦ (aS) + f ◦ (bT ) = a(f ◦ S) + b(f ◦ T ) = aS†f + bT †f = (aS† + bT †)f by
linearity. Thus we see that (aS + bT )† = aS† + bT †. Now by definition of the adjoint,

(aS + bT )∗ = V (aS + bT )†V −1 = V (aS† + bT †)V −1

= V (aS†)V −1 + V (bT †)V −1

= āV S†V −1 + b̄V T †V −1 since V is conjugate linear

= āS∗ + b̄T ∗.

(iv) Let S, T ∈ L(H,H). Notice that for any f ∈ H∗, (ST )†f = f ◦ (ST ) = (f ◦S) ◦T =
T †(f ◦ S) = T †(S†f). So (ST )† = T †S†. Now by definition of the adjoint,

(ST )∗ = V (ST )†V −1 = V T †S†V −1 = V T †V −1V S†V −1 = T ∗S∗.

Corollary 20.2.20. For any T ∈ L(H,H), T is unitary iff T is invertible and T−1 = T ∗.

Proof. ( =⇒ ) Every unitary transformation is an isometry, so in particular invertible. For
any x, y ∈ H, we see that 〈x, T−1y〉 = 〈Tx, TT−1y〉 = 〈Tx, y〉. By the uniqueness of T ∗ from
Proposition 20.2.18, this implies T−1 = T ∗.

( =⇒) Suppose T is invertible with T−1 = T ∗. Then for all x, y ∈ H, we must show
〈x, y〉 = 〈Tx, Ty〉. But we have 〈Tx, Ty〉 = 〈x, T ∗Ty〉 = 〈x, T−1Ty〉 = 〈x, y〉 so T is indeed
unitary.
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Definition. If B = {uα}α∈A is a subset of a Hilbert space H, we say B is orthogonal if
〈uα, uβ〉 = 0 for every α 6= β in A. Further, B is orthonormal if 〈uα, uβ〉 = δαβ for all
α, β ∈ A, where δαβ denotes the Kronecker delta.

Example 20.2.21. Let {e1, e2, e3} be the standard basis in R3. Considering R3 with the
standard inner product (the dot product), {e1, e2, e3} is an orthonormal set. for any vector
x = (x1, x2, x3) ∈ R3, we have 〈x, ej〉 = xj for each of j = 1, 2, 3. Notice that

||x||2 = x2
1 + x2

2 + x2
3 ≥ x2

1 + x2
2 = ||PM(x)||2

where M = Span(e1, e2). This is generalized by Bessel’s inequality, proven next.

Proposition 20.2.22 (Bessel’s Inequality). Let {uα}α∈A be an orthonormal set in a Hilbert
space H. Then for all x ∈ H, ∑

α∈A

|〈x, uα〉|2 ≤ ||x||2.

Proof. Let Γ ⊂ A be a finite subset. Then

0 ≤

∣∣∣∣∣
∣∣∣∣∣x−∑

α∈Γ

〈x, uα〉uα

∣∣∣∣∣
∣∣∣∣∣
2

= ||x||2 − 2Re
∑
α∈Γ

〈x, uα〉〈x, uα〉+

∣∣∣∣∣
∣∣∣∣∣∑
α∈Γ

〈x, uα〉uα

∣∣∣∣∣
∣∣∣∣∣
2

= ||x||2 − 2
∑
α∈Γ

|〈x, uα〉|2 +
∑
α∈Γ

||〈x, uα〉uα||2 by the Pythagorean theorem

= ||x||2 −
∑
α∈Γ

|〈x, uα〉|2.

Rearranging, we obtain
∑

α∈Γ |〈x, uα〉|2 ≤ ||x||2. Finally, taking the supremum over all finite
subsets Γ ⊂ A gives the result.

Definition. Let X be a normed linear space and suppose {vα}α∈A is a sequence in X. We
say the limit s =

∑
α∈A vα exists in X if for all ε > 0, there is some finite subset Γε ⊂ A

such that ∣∣∣∣∣
∣∣∣∣∣s−∑

α∈Λ

vα

∣∣∣∣∣
∣∣∣∣∣ < ε

for all finite subsets Λ ⊂ A with Γε ⊆ Λ.

Lemma 20.2.23. Suppose X is a Banach space and {vα}α∈A is a sequence in X. Consider
the formal expression s =

∑
α∈A vα.

(1) If s exists in X, then {α ∈ A | vα 6= 0} is at most countable.

(2) If s exists, then every linear operator T ∈ L(X, Y ) on X satisfies

T

(∑
α∈A

vα

)
=
∑
α∈A

Tvα.
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(3) If
∑

α∈A ||vα||2 <∞ then s =
∑

α∈A vα exists in X.

Proposition 20.2.24. If H is a Hilbert space and A ⊆ H is an orthogonal set, then s =∑
v∈A v exists in H if and only if

∑
v∈A ||v||2 <∞. Moreover, if

∑
v∈A ||v||2 <∞,

(1) ||s|| =
∑

v∈A ||v||2.

(2) For all x ∈ H, 〈s, x〉 =
∑

v∈A〈v, x〉.

Example 20.2.25. If {vn}∞n=1 ⊆ H is an orthogonal sequence in a Hilbert space, then
s =

∑∞
n=1 vn = limN→∞

∑N
n=1 vn exists in H if and only if the series

∑∞
n=1 ||vn||2 converges.

Corollary 20.2.26. For a Hilbert space H, suppose β ⊆ H is an orthonormal set and let
M = Span(β). Then for all x, y ∈ H,

(1) PMx =
∑

u∈β〈x, u〉u.

(2)
∑

u∈β〈x, u〉〈u, y〉 = 〈Pmx, y〉.

(3)
∑

u∈β |〈x, u〉|2 = ||PMx||2.

Proof. (1) By Bessel’s inequality (Proposition 20.2.22),
∑

u∈β ||〈x, u〉u||2 =
∑

u∈β |〈x, u〉|2 ≤
||x||2 so

∑
u∈β〈x, u〉u is convergent in H by Proposition 20.2.24. Define an operator P by

Px =
∑

u∈β〈x, u〉u for all x ∈ H. We want to show P = PM . Clearly Px ∈M for all x ∈ H,

so it’s enough to show x− Px ∈M⊥. Take u0 ∈ β and consider

〈x− Px, u0〉 = 〈x, u0〉 − 〈Px, u0〉 = 〈x, u0〉 −
∑
u∈β

〈x, u〉〈u, u0〉

= 〈x, u0〉 − 〈x, u0〉〈u0, u0〉 by orthogonality

= 〈x, u0〉 − 〈x, u0〉 = 0 since ||u0|| = 1.

Thus x−Px is orthogonal to u0, but since u0 ∈ β was arbitrary and M = Span(β), it follows
that x − Px ∈ M⊥. By uniqueness of orthogonal decompositions (Corollary 20.2.10), we
must have Px = PMx for all x, and so P = PM .

(2) and (3) are easy to prove using (1).

Definition. An orthonormal set β ⊆ H is complete (or maximal, or an orthonormal
basis) if x ∈ β⊥ implies x = 0.

Theorem 20.2.27. Let H be a Hilbert space and β ⊆ H an orthonormal set. Then the
following are equivalent:

(1) β is complete.

(2) For all x ∈ H, x =
∑

u∈β〈x, u〉u.

(3) For all x, y ∈ H, 〈x, y〉 =
∑

u∈β〈x, u〉〈u, y〉.

(4) For all x ∈ H, ||x||2 =
∑

u∈β |〈x, u〉|2.
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Proof. (1) =⇒ (2) Let M = Span(β). By completeness, M = H so applying (1) of
Corollary 20.2.26 gives us x = PMx =

∑
u∈β〈x, u〉u.

(2) =⇒ (3) =⇒ (4) are straightforward.
(4) =⇒ (1) If x ∈ β⊥ then 〈x, u〉 = 0 for all u ∈ β, so using the assumption in (4), we

have ||x||2 =
∑

u∈β |〈x, u〉|2 =
∑

u∈β 0 = 0 but this is only possible if x = 0.

We briefly recall the Gram-Schmidt orthonormalization process from linear algebra. Sup-
pose {vn}∞n=1 is a linearly independent set of vectors in an inner product space (X, 〈·, ·〉).
Then one can “build” an orthonormal basis of the subspace M = Span{vn}n∈N as follows:

(1) Set u1 = v1
||v1|| .

(2) Given u1, . . . , uk−1, set u′k = vk −
∑k−1

j=1〈vk, uj〉uj. Then set uk =
u′k
||u′k||

.

(3) The resulting vectors {uk}k∈N are an orthonormal basis of M .

Example 20.2.28. Consider the Hilbert space H = L2([−1, 1],m), where m is Lebesgue
measure. For the basis consisting of monomials, {1, x, x2, . . .}, the Gram-Schmidt algorithm
produces an orthonormal basis {

1, x,
1

2
(3x2 − 1), . . .

}
,

called the Legendre polynomials on [−1, 1].
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20.3 Lp Spaces

Let (X,M, µ) be a measure space. Recall the following definitions from Section 18.3.

Definition. For p ≥ 0 and a measurable function f : X → C, the Lp-norm of f is

||f ||p =

(∫
X

|f(x)|p dµ
)1/p

.

Extend this to p =∞ by

||f ||∞ = inf{M ≥ 0 : |f | ≤M µ-a.e.}.

Then the pth Lebesgue space for (X,M, µ) is

Lp = Lp(X,M, µ) = {f : X → C | f is µ-measurable and ||f ||p <∞}.

Theorem 20.3.1. Let 0 ≤ p ≤ ∞. Then

(1) || · ||p is a norm on Lp.

(2) (Lp, || · ||p) is a Banach space for all 1 ≤ p ≤ ∞.

Proof. We will prove p =∞; the cases where p is finite require some further results first.
(1) It suffices to show the triangle inequality holds for ||·||∞. For any f ∈ L∞, |f | ≤ ||f ||∞

µ-a.e. so given measurable functions f and g, we see that

|f + g| ≤ |f |+ |g| ≤ ||f ||∞ + ||g||∞ µ-a.e.

=⇒ ||f + g||∞ ≤ ||f ||∞ + ||g||∞.

(2) Take a sequence (fn) ⊂ L∞ witih
∑
||fn||∞ < ∞. We will show

∑
fn exists in L∞.

Set Mn = ||fn||∞. Then
∑
Mn < ∞ and the sets En = {x : |fn(x)| > Mn} hae µ(En) = 0

for all n. Further, by subadditivity, the set E =
⋃∞
n=1En has measure 0. Now for x ∈ EC ,

|fn(x)| ≤Mn for all n and therefore

∞∑
n=1

|fn(x)| ≤
∞∑
n=1

Mn <∞.

This shows that the function

S(x) =

{∑∞
n=1 fn(x), x ∈ EC

0, x ∈ E

is defined on X → C. Also, ||S||∞ <∞ because for all x ∈ EC ,

|S(x)| ≤
∞∑
n=1

|fn(x)| ≤
∞∑
n=1

Mn <∞.
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Finally, note that for all x ∈ EC ,∣∣∣∣∣S(x)−
N∑
n=1

fn(x)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

n=N+1

fn(x)

∣∣∣∣∣ ≤
∞∑

n=N+1

|fn(x)| ≤
∞∑

n=N+1

Mn

which tends to 0 as N → ∞. So
∣∣∣S(x)−

∑N
n=1 fn(x)

∣∣∣ → 0 as N → ∞ on EC , meaning

µ-a.e. since µ(E) = 0. Hence∣∣∣∣∣
∣∣∣∣∣S −

N∑
n=1

fn

∣∣∣∣∣
∣∣∣∣∣
∞

≤
∞∑

n=N+1

Mn −→ 0 as N →∞,

so in particular,
∑N

n=1 fn → S in L∞. This finishes the proof for p =∞.

For the finite cases, we prove the following sequence of inequalities which generalize
Lemmas 13.2.2 and 20.3.4.

Lemma 20.3.2 (Young’s Inequality). For any p, q ∈ N satisfying 1
p

+ 1
q

= 1, the inequality

ab ≤ 1

p
ap +

1

q
bq

holds for all a, b ≥ 0.

Proof. Consider the function y = xp−1 and the point (a, b) on the graph below:

A B

y = xp−1

a

b

(a, b)

The areas of the regions A and B shown above are given by

B =

∫ a

0

xp−1 dx =
1

p
ap

A =

∫ b

0

y1/(p−1) dy =

∫ b

0

yq−1 dy =
1

q
bq.

Then by examination ab ≤ A+B = 1
p
ap + 1

q
bq.

The following easy equivalences will be useful.

Lemma 20.3.3. For p, q ∈ N, the following are equivalent:

(a) 1
p

+ 1
q

= 1.
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(b) q = p
p−1

.

(c) q
p

= 1
p−1

.

(d) q
p

= q − 1.

(e) q − 1 = 1
p−1

.

Formally, if p = 1 we say q = ∞ satisfies 1
p

+ 1
q

= 1. The next step is to prove Hölder’s

inequality which generalizes the Cauchy-Schwarz inequality (Lemma 20.2.4), the p = q = 2
case.

Lemma 20.3.4 (Hölder’s Inequality). For any p, q ∈ N ∪ {∞} satisfying 1
p

+ 1
q

= 1,

||fg||1 ≤ ||f ||p||g||q

for all f, g : X → C.

Proof. If p = 1, we have

||fg||1 =

∫
|fg| dµ ≤ ||g||∞

∫
|f | dµ = ||f ||1||g||∞.

If p > 1, note that∫ (
|f(x)|
||f ||p

)(
|g(x)|
||g||q

)
dµ ≤

∫ (
1

p
· |f(x)|p

||f ||pp
+

1

q
· |g(x)|q

||g||qq

)
dµ by Young’s inequality

=

∫
1

p
· |f(x)|p

||f ||pp
dµ+

∫
1

q
· |g(x)|q

||g||qq

=
1

p
+

1

q
= 1.

Multiplying both sides by ||f ||p||g||q, we get ||fg||1 ≤ ||f ||p||g||q as desired.

We are now ready to give the proof of Theorem 20.3.1 for p <∞.

Proof. (1) For all f, g ∈ Lp,

||f + g||pp =

∫
|f + g|p dµ =

∫
|f + g| |f + g|p−1 dµ

≤
∫

(|f |+ |g|)|f + g|p−1 dµ by the triangle inequality

=

∫
|f | |f + g|p−1 dµ+

∫
|g| |f + g|p−1 dµ

≤
(∫
|f |p dµ

)1/p(∫
|f + g|(p−1)q dµ

)1/q

+

(∫
|g|p dµ

)1/p(∫
|f + g|(p−1)q dµ

)1/q

by Hölder’s inequality, with q =
p

p− 1

= ||f ||pp||f + g||p/qq + ||g||pp||f + g||p/qq

=
(
||f ||pp + ||g||pp

)
||f + g||p/qq .
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Raising each side to 1
p

= 1 − 1
q

gives the triangle inequality – this is also sometimes called
Minkowski’s inequality.

(2) It remains to show that for p ∈ [1,∞), Lp is a Banach space. Let (fn) ⊆ Lp be a
Cauchy sequence. By Chebyshev’s inequality (Theorem 18.2.4), for any ε > 0 we have

µ ({x ∈ X : |fn − fm| > ε}) = µ ({x ∈ X; |fn − fm|p > εp})

≤ 1

εp

∫
|fn − fm|p dµ

=
1

εp
||fn − fm||pp

which tends to 0 as n,m → ∞ since the sequence is Cauchy. This shows that {fn} is
Cauchy in measure, so by Proposition 18.3.6, there exists a subsequence gk = fnk such that
f(x) := limk→∞ gk(x) exists µ-a.e. Consider

||f − gk||pp =

∫
lim inf
n→∞

|gn − gk|p dµ

≤ lim inf
n→∞

∫
|gn − gk|p dµ by Fatou’s lemma (Theorem 18.2.1)

= lim inf
n→∞

||gn − gk||pp

which goes to 0 as k → ∞ since (gk) is Cauchy. Thus we see that gk converges to f in Lp.
As in the proof for p = ∞, this implies f ∈ Lp (use the triangle inequality on a similarly
defined S(x)) and that fn → f in Lp since (fn) is Cauchy. Hence every Cauchy sequence in
Lp converges, so Lp is complete.

Lemma 20.3.5 (Hölder’s Inequality II). For all 0 < p, q, r ≤ ∞ and measurable functions
f, g : X → C, we have

||fg||r ≤ ||f ||p||g||q.

Proof. The proof when p = q = r =∞ is easy. Assume 0 < p, q, r <∞. Then 1 = r
p

+ r
q

=
1
p/r

+ 1
q/r

so by the first version of Hölder’s inequality (Lemma 20.3.4),

||fg||rr =

∫
|f |r|g|r dµ =

∫
||f |r|g|r| = |||f |r|g|r||1

≤ |||f |r||p/r|||g|
r||q/r = ||f ||rp||g||rq.

Taking the rth root on either side finishes the proof.

Corollary 20.3.6. For any 0 < p < q < r ≤ ∞, Lq ⊆ Lp + Lr.

Example 20.3.7. Let X = N with the counting measure µ (Example 17.3.8). We typically
denote the Lebesgue space Lp(N, µ) by `p. Here, the norm of a function f : N→ C is given
by

||f ||p =

(
∞∑
n=1

|f(n)|p
)1/p

.
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Then for any 0 < p ≤ q ≤ ∞ and any 0 < r ≤ ∞, we can write

||f ||p = ||f · 1||p ≤ ||f ||q||1||q
by the second version of Hölder’s inequality. Since ||1||r < ∞, we get that f ∈ `q if f ∈ `p.
Hence `p ⊆ `q.

This result generalizes:

Proposition 20.3.8. Suppose (X,µ) is a finite measure space. Then for all 0 < p ≤ q ≤ ∞,
Lp ⊆ Lq.

To close, we describe the dual of an Lp space. Fix 1
p

+ 1
q

= 1, g ∈ Lq(µ) and define

ϕg ∈ Lp(µ)∗ by ϕg(f) =
∫
fg dµ for f ∈ Lp(µ). This map is valid because Hölder’s inequality

(the first version) gives us

|ϕg(f)| ≤
∫
|fg| dµ = ||fg||1 ≤ ||f ||p||g||q,

so ||ϕg||Lq(µ)∗ ≤ ||g||q <∞.

Proposition 20.3.9. For a finite measure space X, ||ϕg|| = ||g||q for all g ∈ Lq(µ) and
1 ≤ p ≤ ∞ satisfying 1

p
+ 1

q
= 1. In particular, the map ϕ : Lq → (Lp)∗ is injective.

Proof. First suppose p = ∞ so that q = 1. Fix g ∈ L1 and set f = sgn g where sgn g =
g
|g|χD(g) and D(g) = {x ∈ X : g(x) 6= 0}. Then ||f ||∞ = 1 by construction and we have

ϕg(f) =

∫
fg dµ =

∫
|g| dµ = ||g||1 = ||f ||∞||g||1.

Thus ||ϕg|| ≥ ||g||1 which implies ||ϕg|| = ||g||1.
Now suppose 1 < p, q <∞ with 1

p
+ 1

q
= 1. For g ∈ Lq, set f = sgn g |g|q/p ∈ Lp. Then

ϕg(f) =

∫
|g|q/p+1 dµ =

∫
|g|q dµ = ||g||qq

and ||f ||pp =

∫
|g|q dµ = ||g||qq

which implies
ϕg(f)

||f ||p
=
||g||qq
||g||q/pq

= ||g||q.

Thus ||ϕg|| ≥ ||g||q, so ||ϕg|| = ||g||q.
Finally, suppose p = 1 and q =∞. Let Xn be a sequence converging to X from below so

that µ(Xn) <∞ for all n. Let M = ||g||∞ <∞ and suppose ε > 0. Set

f = sgn gχXn∩{x:|g(x)|≥M−ε}.

Note that we make take n large enough so that µ (Xn ∩ {x : |g(x)| ≥M − ε}) > 0. Then

ϕg(f) =

∫
Xn∩{x:|g(x)|≥M−ε}

|g| dµ

≥ (M − ε)µ (Xn ∩ {x : |g(x)| ≥M − ε})
= (M − ε) ||f ||1.

Thus for all ε > 0, ||ϕg|| ≥ ||g||∞−ε which implies ||ϕg|| ≥ ||g||∞. Hence they are equal.
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Theorem 20.3.10. For all σ-finite measure spaces (X,µ), the map

ϕ : Lq(µ) −→ Lp(µ)∗

g 7−→ ϕg

is an isometry for all 1 ≤ p, q <∞ satisfying 1
p

+ 1
q

= 1.

Proof. We proved in Proposition 20.3.9 that ϕ is injective and preserves norms, so it suffices
to show the map is surjective. First assume µ(X) < ∞. Let ψ ∈ (Lp)∗ and define ν(A) =
ψ(χA) for all A ∈ M. Because µ is finite, we get L∞ ⊆ Lp for all 1 ≤ p < ∞. Write
A =

∏∞
k=1 Ak for disjoint, µ-measurable sets Ak. Then

χA =
∞∑
k=1

χAk ∈ Lp(µ).

By linearity and continuity of ψ, we have

ν(A) = ψ(χA) = ψ

(
∞∑
k=1

χAk

)
=
∞∑
k=1

ψ(χAk) =
∞∑
k=1

ν(Ak).

So ν is σ-additive. Clearly also ν(∅) = 0, so ν is a measure on (X,M). Further, if µ(A) = 0
then χA = 0 in Lp(µ), so ν(A) = ψ(χA) = ψ(0) = 0 by linearity. Hence ν << µ. By
the Lebesgue-Radon-Nikodym theorem (19.2.6), there is a function g ∈ L1(µ) such that
dν = g dµ. That is, ψ(χA) =

∫
gχA dµ for all A ∈ M. By linearity, ψ(s) =

∫
gs dµ for all

simple functions s ∈ Lp(µ). Suppose p = 1 and choose f ∈ L∞(µ). Then by Lemma 18.1.1,
there exists a sequence sn of simple functions in L1(µ) converging pointwise to f from below
and satisfying |sn| ≤ |f | for all n. By the dominated convergence theorem (18.2.7), sn → f
in L1(µ) so ψ(f) =

∫
fg dµ.

Now, if p > 1, we need to show that the Radon-Nikodym derivative g = dν
dµ

lies in Lq(µ).

For M <∞, let gM = gχ{x:|g(x)|≤M} ∈ L∞(µ) ⊆ Lq(µ). Then

ψM(f) = ψ(fχ{x:|g(x)|≤M}) =

∫
fgχ{x:|g(x)|≤M} dµ = ψgM (f).

So

|ψM(f)| = |ψ(fχ{x:|g|≥M})|
≤ ||ψ||(Lp)∗||fχ{x:|g|≥M}||p
≤ ||ψ||(Lp)∗||f ||p.

In particular, ||ψM ||(Lp)∗ ≤ ||ψ||(Lp)∗ . By Proposition 20.3.9, ||gM ||q = ||ψM ||(Lp)∗ ≤ ||ψ||(Lp)∗

for all M <∞. Taking the limit as M →∞ and using the monotone convergence theorem
(18.1.5), we get ||g||q ≤ ||ψ||(Lp)∗ < ∞. Hence g ∈ Lq(µ). Finally, repeat the proof that
ψ(f) =

∫
fg dµ for all f ∈ Lp(µ) using the sequence sn → f and the dominated convergence

theorem.
Now assume µ is a σ-finite measure on X. Choose sets Xn ∈ M such that µ(Xn) < ∞

for each n and Xn ↗ X. For f ∈ Lp(Xn, µ), we identify f with fχXn ∈ Lp(X,µ), so one
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may consider Lp(Xn, µ) as a subspace of Lp(X,µ) for each 1 ≤ p < ∞ and n ≥ 1. By the
finite case, there exists gn ∈ Lq(Xn, µ) such that ψ(f) =

∫
Xn
fg dµ for all f ∈ Lp(Xn, µ).

Then
||gn||q = sup{|ψ(f)| : f ∈ Lp(Xn, µ), ||f ||p = 1}.

In particular, ||gn||q ≤ ||ψ||(Lp)∗ . It’s clear that gn = gm a.e. on Xn ∩ Xm for all n,m ≥ 1.
This means that g := lim gn exists µ-a.e. By Fatou’s lemma (Theorem 18.2.1),

||g||q ≤ lim inf
n→∞

||gn||q ≤ ||ψ||(Lp)∗ .

Now since ψ(f) =
∫
Xn
fg dµ =

∫
fgn dµ for all f ∈ Lp(Xn, µ) and

⋃∞
n=1 L

p(Xn, µ) is dense in

Lp(X,µ), it follows from continuity that any f ∈ Lp(X,µ) satisfies ψ(f) =
∫
fg dµ. Hence

ϕg = ψ in all cases, so ϕ is surjective.
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Chapter 21

Introduction

The contents of Part V were compiled from a course on probability theory taught by Dr.
Sarah Raynor in Spring 2015 at Wake Forest University. The companion text for the course
is Probability and Measure, 4th ed., by P. Billingsley.

One of the best examples to illustrate the nuance of measure theory and probability is
the Cantor set. The Cantor set C is defined as follows. Let A0 = [0, 1], the unit interval. Let
A1 be the set A0 −

(
1
3
, 2

3

)
formed by deleting the middle third of A0. Next, A2 is similarly

formed by deleting the middle thirds
(

1
9
, 2

9

)
and

(
7
9
, 8

9

)
from each component of A1. The

process is continued to define a sequence

An = An−1 −
∞⋃
k=0

(
1 + 3k

3n
,
2 + 3k

3n

)
.

Finally, the Cantor set is the subset of [0, 1] given by C =
∞⋂
n=0

An, that is, the points remaining

in the unit interval after iterating this process over the natural numbers.
Length is our first idea of measure, from which many others will stem. If we take the

usual length of an interval on the real line to be end point minus starting point, then the
unit interval [0, 1] has length 1. One may then ask: How long is the Cantor set? To measure
the length of C, we instead calculate the length of its complement and subtract it from 1.
This is the following infinite sum:

1

3
+

2

9
+

4

27
+

8

81
+ . . .

which is a geometric series converging to
1/3

1− 2/3
= 1. Thus the complement of the Cantor

set has length 1, but the total unit interval has length 1 meaning the Cantor set has length
0. This is our first example of a set of measure zero.

Area, volume, hypervolume, etc. are all extensions of length to higher dimensions —
these are also examples of measures. For example, the area of an annulus is easy to compute.
Consider the following region R.

350



Chapter 21. Introduction

R

1 2

We compute the area A by A = 4π − π = 3π. However, one may also want to compute the
mass of the annulus, say if it were made of aluminum or steel. Given a density function, e.g.
ρ = e−r

2
kg/cm2, find the mass of the annular region. This is computed by a double integral,∫∫

R

ρ dA =

∫ 2π

0

∫ 2

1

e−r
2

r dr dθ = −1

2

∫ 2π

0

(e−2 − e−1) dθ = π(e−1 − e−2).

If we think of a double integral as the limit of the process of breaking the region into smaller
regions and adding together all their masses, we see the same concept at work as in the
Cantor set example.

How does this relate to probability?

Example 21.0.1. What is the probability of rolling a prime number on a standard six-sided
die? This can be computed by the same divide-and-conquer approach:

P (prime) = P (2) + P (3) + P (5) =
3

6
=

1

2
.

Example 21.0.2. When playing craps (rolling two dice), what is the probability of rolling
either a 7 or an 11?

P (7 or 11) = P (7) + P (11) =
6

36
+

2

36
=

2

9
.

Example 21.0.3. Given a dartboard of unit area, the probability of hitting a small region
on the board with your dart is precisely the area of that region:
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There is a common theme among the above examples, which is that the calculation of
probability relies on our ability to measure things and compare the relative measures. We
will use the following version of the definition of a measure from Chapter 17.

Definition. A measure µ on a set S is a function µ : P(S) → [0,∞] such that µ is

countably additive, that is, if A is a subset of S of the form
∞⋃
n=1

An and An ∩Am = ∅ for all

n 6= m, then µ(A) =
∞∑
n=1

µ(An).

Some interesting questions arise from defining a measure this way:

1 Is every subset of S measurable? When the set is finite, the answer is yes. However,
for the unit interval with length as a measure, the answer is no. A counterexample is
difficult to produce at this time.

2 The Banach-Tarski Paradox (sometimes called the Banach-Tarski Theorem) says that
it is possible to take a solid ball of any size, say the size of a basketball, decompose it
into finitely many pieces and put them back together only using rigid motions to get
a ball the size of the sun. How is this possible?

The domain of a measure must have a special structure, which is called a σ-field (some-
times σ-algebra in the literature).

Definition. Let S be a set and F a collection of subsets of S. F is a σ-algebra provided

(1) S ∈ F .

(2) If A ∈ F then AC ∈ F as well.

(3) If A1, A2, . . . ∈ F (this may be a countable list) then
∞⋃
n=1

An ∈ F .

It turns out that this is just enough structure to allow us to define a measure on F . This
will be the main ‘universe’ in which we work, defining probability measures and developing
their applications.
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Chapter 22

Probability and Normal Numbers

In these notes we will denote a sample space by Ω and a particular event taken from this
sample space by ω. Our prototypical example will have Ω = (0, 1]. For technical reasons
we will always assume an interval of the real line is of the form (a, b] so that collections of
intervals may be chosen disjointly (so they don’t overlap at the endpoints). If I = (a, b] we
will denote the usual notion of length by |I| = |b− a|.

Suppose A =
n⋃
i=1

Ii where Ii = (ai, bi] are pairwise disjoint intervals in the sample space

Ω = (0, 1]. We define

Definition. The probability of event A occuring within the sample space Ω is

P (A) :=
n∑
i=1

|Ii| =
n∑
i=1

|bi − ai|.

At this point we are carefully avoiding complicated subsets of Ω, such as the Cantor set
in the introduction. These will be the focus in later chapters.

If A and B are disjoint subsets of Ω and each of A,B is a finite disjoint union of intervals,
then

P (A ∪B) = P (A) + P (B).

This is called the finite additivity of probability. So far we have brushed over something
important: is our definition of P (A) well-defined? That is, if A has two different represen-
tations as finite disjoint unions of intervals in Ω, do they both give the same probability?

Well suppose A =
n⋃
i=1

Ii =
m⋃
j=1

Jj. We create a collection of intervals Kij = Ii ∩ Jj, called a

refinement of the Ii and Jj. Notice that

A =
m⋃
j=1

n⋃
i=1

Kij =
m⋃
j=1

n⋃
i=1

(Ii ∩ Jj).

This implies well-definedness of our definition of P (A).
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Example 22.0.1. This relates to the Riemann integral in an important way. For a sub-
set A ⊂ Ω which is a disjoint union of finitely many intervals in Ω = (0, 1], define the
characteristic function

fA =
n∑
i=1

χIi where χIi(x) =

{
1 x ∈ Ii
0 x 6∈ Ii.

Similarly define gB =
m∑
j=1

χJj . Then finite additivity of probability implies the additive

property of Riemann integrals:∫ 1

0

(fA + gB) dx =

∫ 1

0

fA dx+

∫ 1

0

gB dx.

This is because ∫ 1

0

χI(x) dx = |I| = b− a.

Keep in mind that for the moment we are only dealing with event spaces that are finite
disjoint unions of half-open intervals; when we encounter more complicated subsets of Ω,
Riemann integration breaks down. In that case we will need to use Lebesgue integration,
one of the main tools in modern integration theory.

Our next goal is to equate the probabilistic notion of selecting points from the unit
interval with the physical act of flipping an infinite number of coins and counting heads and
tails. Define di(ω) to be the result of the ith flip of the infinite sequence of coin flips; we will
denote this numerically by

di(ω) =

{
1 if heads

0 if tails.

The event ω can be represented as a sequence of 1’s and 0’s: (d1(ω), d2(ω), d3(ω), . . .). We
will also make use of the dyadic (binary) representation

ω =
∞∑
i=1

di(ω)2−i.

Each sequence of 0’s and 1’s corresponds to a unique real number in the interval [0, 1].
However, not every real number in [0, 1] has a unique dyadic representation. For exam-
ple, 5

8
can be represented by 0.101000 . . . but also by the non-terminating 0.100111 . . . It is

convention to prefer the non-terminating representation, since this will coincide with our
other preference for half-open intervals (a, b]. Notice that picking only non-terminating dec-
imal representations excludes 0 = 0.000 . . . from our probability space, so we are indeed
constructing (0, 1].

Now, drawing at random with uniform probability from Ω = (0, 1] is equivalent to the
dyadic representation of an infinite sequence of coin flips. The reason is that P [di(ω) = 1] is

equal to the sum of the lengths of 2i

2
intervals, each of which has length 1

2i
. This is illustrated

below.
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0 1
2 1

( ]( ]

d1 = 0 d1 = 1

0 1
4

1
2

3
4 1

( ]( ]( ]( ]

d2 = 0 d2 = 1 d2 = 0 d2 = 1

These are sometimes called dyadic intervals. From this we can see that the probability of
any single flip coming up heads is 1

2
, since at any level, half of the 2i intervals are included

in this event. The 2n intervals of length 2−n for any n are called the set of rank n dyadic
intervals; they have the nice property of being nested. Formally, if n > m and Ii is an
interval of rank n, there is a unique Jj of rank m such that Ii ⊂ Jj.

Example 22.0.2. The binomial formula expresses the probability that k heads will be
flipped in n trials. Using the interval construction above, we see that

P (k heads in the first n flips) = P (k of the first n bigits are 1)

= #
{

subsets of {1, . . . , n} with k elements
}
· 2−n

=

(
n

k

)
2−n

which is exactly the same as provided by the binomial formula.

Notice that if {Ii}i∈N is a collection of rank n dyadic intervals and n ≥ m, then dm(x) is
constant on Ii for all Ii of rank n.
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22.1 The Weak Law of Large Numbers

This brings us to the Law of Large Numbers. In probability theory, the LLN states that a
sequence of random trials converges to a particular value or outcome: the expected value
(EV). In this course, we will distinguish between two different versions of the LLN.

Theorem 22.1.1 (Weak Law of Large Numbers). Let ω be an event in the sample space
Ω = (0, 1] which may be expressed as a finite disjoint union of intervals. Then for any ε > 0,

lim
n→∞

P

(∣∣∣∣∣ 1n
n∑
i=1

di(ω)− 1

2

∣∣∣∣∣ > ε

)
= 0.

Proof. To prove the Weak LLN, we first define the Rademacher functions,

ri(ω) = 2di(ω)− 1 =

{
1 if heads

−1 if tails

for each i, and the cumulative Rademacher function of rank n,

sn(ω) =
n∑
i=1

ri(ω).

In this language, the above probability may be expressed as

lim
n→∞

P
(∣∣ 1
n
sn(ω)

∣∣ > ε
)

= 0.

In addition, the Rademacher functions are defined so P [ri = 1] = 1
2

and P [ri = −1] = 1
2
,

meaning they have an average value of 0:∫ 1

0

ri(ω) dω = 0.

This implies that the cumulative function also has average value 0. Furthermore, it’s easy
to see that whenever i 6= j, ∫ 1

0

ri(ω)rj(ω) dω = 0

by looking at their graphs. However, r2
i (ω) = 1 for all i, so∫ 1

0

r2
i (ω) dω =

∫ 1

0

1 dω = 1.
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Putting this all together, we get∫ 1

0

s2
n(ω) dω =

∫ 1

0

(
n∑
i=1

ri(ω)

)2

dω

=

∫ 1

0

n∑
i=1

ri(ω)
n∑
j=1

rj(ω) dω

=

∫ 1

0

 n∑
i=1

r2
i (ω) +

n∑
i,j=1
i 6=j

ri(ω)rj(ω)

 dω

=
n∑
i=1

1 +
n∑
i=1

0 = n+ 0 = n.

Finally, we need the following facts: if f is a nonnegative step function and α > 0, then

(1) The set {ω | f(ω) > α} is a finite union of intervals, and

(2) P [ω | f(ω) > α] ≤ 1

α

∫ 1

0

f(ω) dω. (This is Chebyshev’s Inequality (Theorem 18.2.4).)

This is used in the following calculation of the original probability limit:

P

(∣∣∣∣ 1nsn(ω)

∣∣∣∣ > ε

)
= P [|sn(ω)| > nε]

= P [s2
n(ω) > n2ε2]

≤ 1

n2ε2

∫ 1

0

s2
n(ω) dω by Chebyshev’s inequality

=
1

n2ε2
n =

1

nε2

which converges to 0 as n→∞. This completes the proof of the Weak LLN.
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22.2 The Strong Law of Large Numbers

Definition. A normal number is a real number ω ∈ (0, 1] such that

lim
n→∞

1

n

n∑
i=1

di(ω) =
1

2
.

The Strong Law of Large Numbers says the following about normal numbers:

Theorem 22.2.1 (Strong Law of Large Numbers). The set N of normal numbers has prob-
ability P (N) = 1.

Instead of proving the SLLN, we will instead be proving an equivalent statement known
as Borel’s Theorem on Normal Numbers (22.2.5). The only measure theory we need so far
is the definition of a measure zero set:

Definition. A set W ⊂ Ω is said to be negligible (alternatively, has measure zero) if for
every ε > 0, there is a countable collection of intervals {Ik}∞k=1 such that

(a) W ⊂
∞⋃
k=1

Ik.

(b)
∞∑
k=1

|Ik| < ε.

Lemma 22.2.2. Suppose {Wi}∞i=1 are all negligible sets in Ω. Then W =
∞⋃
i=1

Wi is also

negligible. That is, the countable union of negligible sets is negligible.

Proof. Let ε > 0 and let i ∈ N. Since Wi is negligible, there is a countable collection {I ik}∞k=1

so that Wi ⊂
∞⋃
k=1

I ik, and
∞∑
k=1

|I ik| <
ε

2i
. Then

W ⊂
∞⋃
i=1

∞⋃
k=1

I ik and
∞∑
i=1

∞∑
k=1

|I ik| <
∞∑
i=1

ε

2i
= ε.

Since the doubly-indexed collection {I ik}(i,k)∈N2 is countable, we conclude that W is negligible.

This has an immediate and important consequence.

Corollary 22.2.3. All countable sets are negligible.

Proof. If we can prove that any singleton set is negligible, then Lemma 22.2.2 immediately
applies since a countable set is just the countable union of singletones. This is easy to
establish, since for any singleton {x} ⊂ Ω,

(
x− ε

2
, x+ ε

2

]
covers {x} and has length ε.
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Example 22.2.4. By Corollary 22.2.3, Q is a negligible set. This is odd, however, since we
know that Q is an example of a set that is dense in the real numbers. It turns out that there
are even larger sets than Q that are still negligible.

Corollary 22.2.3 suggests an interesting question: Is every negligible set countable? The
answer turns out to be no; for example, the Cantor set is uncountable, but as we saw in the
introduction, C has measure 0.

Recall that we want to prove the complement of the normal numbers has measure 0. It
would be nice if NC were countable, but unfortunately this is not the case. To see this,

what are some numbers in NC =

{
ω : lim

n→∞

1

n

n∑
i=1

di(ω) 6= 1

2

}
? Some obvious examples are

(0, 1, 1, 1, 1, 1, . . .) and (1, 0, 1, 1, 1, 1, . . .), but a more interesting one is (1, 0, 0, 1, 0, 0, 1, 0, 0, . . .).
In fact, anything of the form (a, 0, 0, b, 0, 0, c, 0, 0, d, 0, 0, . . .) is in NC because

n∑
i=1

di ≤
1

3
.

Now (a, b, c, d, . . .) is an infinite sequence of 0’s and 1’s, of which there are uncountably many.
Therefore there are uncountably many sequences of the form (a, 0, 0, b, 0, 0, c, 0, 0, . . .) in NC .
Hence NC must be uncountable.

Nevertheless, there is a way to prove P (NC) = 0, which is given below.

Theorem 22.2.5 (Borel’s Normal Number Theorem). NC is negligible.

Proof. Clearly N =
{
ω | 1

n
sn(ω)→ 0

}
in the language of Rademacher functions. Then the

theorem may be restated as
P [ω : |sn(ω)| > εn] = 0

for any ε > 0. By Chebyshev’s Inequality (see Theorem 24.3.4),

P [ω : |sn(ω)| > εn] = P [ω : |s4
n(ω)| > ε4n4]

≤ 1

n4ε4

∫ 1

0

s4
n(ω) dω.

To evaluate this integral, note that

s4
n(ω) =

(
n∑

α=1

rα(ω)

)(
n∑
β=1

rβ(ω)

)(
n∑
γ=1

rγ(ω)

)(
n∑
δ=1

rδ(ω)

)

=
n∑

α,β,γ,δ=1

rα(ω)rβ(ω)rγ(ω)rδ(ω).

Recall that even powers of the r(ω) functions are equal to 1, while odd powers are equal to
−1. The possible values of the Rademacher functions, as well as what they contribute for
the integral, are shown in the table below.
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different values functions integral number of instances

1 (α = β = γ = δ) r4
i (ω)

∫ 1

0

r4
i (ω) dω = 1 n

2 r2
i (ω)r2

j (ω)

∫ 1

0

r2
i (ω)r2

j (ω) dω = 1 3n(n− 1)

2 r3
i (ω)rj(ω)

∫ 1

0

r3
i (ω)rj(ω) dω = 0

...

3 r2
i (ω)rj(ω)rk(ω)

∫ 1

0

r2
i (ω)rj(ω)rk(ω) dω = 0

4 ri(ω)rj(ω)rk(ω)rl(ω)

∫ 1

0

ri(ω)rj(ω)rk(ω)rl(ω) dω = 0

Thus the only parts that don’t integrate to 0 are the first two:

s4
n(ω) = 1 · n+ 1 · 3n(n− 1) + 0 + 0 = 3n2 − 2n < 3n2.

This gives us P [ω : |sn(ω)| < εn] <
1

ε4n4
· 3n2 =

3

ε4n2
. For a given n, choose εn = n1/8.

Then we have

P [ω : |sn(ω)|] < 3

ε4
nn

2
=

3

(n1/8)
4
n2

<
3

n3/2

and this tends to 0 as n→∞. We will use this calculation in a moment.
Let An =

{
ω : 1

n
|sn(ω)| > εn

}
. We need to verify three things:

(i) NC ⊂
∞⋃
n=m

An for any m ≤ n;

(ii) The An are all finite unions of intervals; and

(iii)
∞∑
n=m

|An| is sufficiently small.

First, note that (i) is the same as N ⊃
∞⋂
n=m

ACn by DeMorgan’s Laws. If ω0 ∈ ACn and r is

some number such that n > r ≥ m, then

ω0 ∈
{
ω :

1

n
|sn(ω)| ≤ εn

}
⊆
{
ω :

1

n
|sn(ω)| ≤ εr

}
.

So lim
n→∞

1

n
|sn(ω)| ≤ εr and as r → ∞, εr → 0 which makes this limit go to 0. Hence ω is

normal.
(ii) For a fixed n, we claim that An is a finite union of disjoint intervals. From this it will

follow that
∞⋃
n=m

An is a countable union of intervals, since countable unions of finite unions

are countable. Consider An =
{
ω : 1

n
|sn(ω)| > εn

}
. For any n, sn(ω) is a step function and
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therefore so is 1
n
|sn(ω)|. Hence by (1) of Chebyshev’s inequality (Theorem 18.2.4), An is a

finite union of intervals.

(iii) By (ii), An is a finite union of some intervals {Ik}. Note that
∞∑
k=1

|Ik| ≤
∞∑
n=m

P (An)

since all the intervals Ik on the left appear in the sum on the right. By our work above,

∞∑
n=m

P (An) <
∞∑
n=m

3

n3/2
≤ 3c√

m

for some constant c, by the integral test. Given ε > 0, we can choose m sufficiently large so

that ε > 3c√
m

. Hence
∞∑
k=1

|Ik| < ε which completes the proof that NC is negligible.

We now have at our disposal a ‘weak’ and ‘strong’ law of large numbers; naturally from
the way they are named, the Strong LLN implies the Weak LLN. However, at the moment
we don’t have the tools to prove this.

So far we have several good examples of negligible sets, so one might be tempted to think
that all sets are negligible. Of course that isn’t true, or else the very concept of negligibility
would be meaningless, so let’s find some non-negligible sets.

Proposition 22.2.6. Ω = (0, 1] is not negligible.

Proof. Given {Ik}∞k=1 a countable collection of intervals such that Ω ⊂
∞⋃
k=1

Ik, we want to

show that
∞∑
k=1

|Ik| ≥ |Ω| = 1. This results from the more general theorem below.

Theorem 22.2.7. Let I and {Ik}∞k=1 be intervals.

(1) If
∞⋃
k=1

Ik ⊂ I and the Ik are disjoint, then
∞∑
k=1

|Ik| ≤ |I|.

(2) If
∞⋃
k=1

Ik ⊃ I then
∞∑
k=1

|Ik| ≥ |I|.

(3) If
∞⋃
k=1

Ik = I and the Ik are disjoint, then
∞∑
k=1

|Ik| = |I|.

Proof. First note that (1) and (2) imply (3). We use induction to prove (1) and (2). First
suppose there’s only one interval I1 ⊂ I. Then clearly |I1| ≤ |I|. Now assume inductively
that the conclusion holds for I1, . . . , In and consider the case for n + 1 intervals. Write
{Ik}n+1

k=1 in order, using the fact that they are disjoint:

a ≤ a1 < b1 ≤ a2 < b2 ≤ · · · < bn ≤ an+1 < bn+1 ≤ b
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where I = (a, b] and Ik = (ak, bk]. Since
n⋃
k=1

Ik ⊂ (a, bn], the inductive hypothesis gives us

∞∑
k=1

|Ik| ≤ |bn − a| ≤ |an+1 − a|.

Then

n+1∑
k=1

|Ik| =
n∑
k=1

|Ik|+ |bn+1 − an+1|

≤ |an+1 − a|+ |bn+1 − an+1|
≤ |an+1 − a|+ |b− an+1|
= |b− a|

since the differences are all positive by our chosen ordering. So property (1) holds for finite
collections of disjoint intervals. Now consider a countable collection of disjoint intevals

{Ik}∞k=1. For any finite n,
∞∑
k=1

|Ik| ≤ |I| and taking the limit as n → ∞ preserves the

inequality (e.g. by the monotone convergence theorem); hence
∞∑
k=1

|Ik| ≤ |I| as well.

(2) The case with one interval is the same as above. Assume the inequality holds for
n intervals and let {Ik}n+1

k=1 be a collection of intervals, not necessarily disjoint, so that
n+1⋃
k=1

Ik ⊃ I. This is the same as (a, b] ⊂
n+1⋃
k=1

(ak, bk]. Because the intervals are not disjoint, we

can’t order the ak and bk like we did last time; however we can write

bn+1 ≥ bn ≥ · · · b1 with bn+1 ≥ b.

If an+1 ≤ a we’re done since then (a, b] ⊂ (an+1, bn+1]. Otherwise (a, an+1] ⊂
n⋃
k=1

(ak, bk]. By

the inductive hypothesis, |an+1 − a| ≤
n∑
k=1

|bk − ak| so

|b− an+1|+ |an+1 − a| ≤

(
n∑
k=1

|bk − ak|

)
+ |b− an+1|

=⇒ |b− a| ≤

(
n∑
k=1

|bk − ak|

)
+ |b− an+1|

≤

(
n∑
k=1

|bk − ak|

)
+ |bn+1 − an+1|

=
n+1∑
k=1

|bk − ak|.
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Hence (2) holds for finite collections of intervals.
To prove the property for countable collections, we will exploit the completeness of R via

the Heine-Borel Theorem (13.2.13), which states that any closed, bounded interval of real
numbers is compact. Thus any open cover of such an interval will have a finite subcover and
we can reduce to the finite case. At the moment though, we have neither a closed interval
nor an open cover of the interval. To remedy this, let ε > 0 be arbitrarily small. Enlarge I
to a closed interval [a+ ε, b] and consider the open cover

∞⋃
k=1

(
ak, bk +

ε

2k

)
⊃ [a+ ε, b].

The Heine-Borel Theorem implies there is a finite subcover

J⋃
j=1

(
akj , bkj +

ε

2kj

)
⊃ [a+ ε, b]

so the finite case above tells us that

|b− a− ε| ≤
J∑
j=1

∣∣∣bkj +
ε

2kj
− akj

∣∣∣
|b− a| − ε ≤

J∑
j=1

(
|bkj − akj |+

ε

2kj

)
≤

∞∑
k=1

(
|bk − ak|+

ε

2k

)
=
∞∑
k=1

|Ik|+ ε.

Letting ε→ 0 proves (2) in the countable case.

We obtain two immediate and useful results of this theorem.

Corollary 22.2.8. Any finite interval on the real line is not negligible. In particular, Ω =
(0, 1] is not negligible.

Corollary 22.2.9. If A is negligible then AC is not negligible.

Corollary 22.2.8 is subtle but quite vital to the foundations of probability theory: now
that we know our universe (Ω = (0, 1] in this section) is not negligible, we can show sets have
full measure by demonstrating that their complements are negligible (Corollary 22.2.9).
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22.3 Properties of Normal Numbers

In Section 22.1 we proved that N is not negligible by showing that its complement NC

is negligible. In this section we explore some consequences of this fact and highlight the
difference between negligibility and various other measures of ‘smallness’.

Proposition 22.3.1. N and NC are both dense in (0, 1].

Proof. Suppose ω ∈ (0, 1]. Given ε > 0, let j be the natural number such that 2−j < ε/2.

Write ω =
∑
i∈N

2−idi(ω). Then the number n =

j−1∑
i=1

2−idi(ω) +
∞∑
i=j

2−iei, where ei = 0 when

i is odd and 1 when i is even, is a normal number since the tail looks like . . . 0101010101 . . .
In addition,

|ω − n| =

∣∣∣∣∣
∞∑
i=j

2−i(di(ω)− ei)

∣∣∣∣∣
≤

∞∑
i=j

2−i|di(ω)− ei| by the triangle inequality

≤
∞∑
i=j

2−i · 1 =
2−j

1− 1/2
= by geometric series

= 2−j+1 < ε by our choice of j above.

Hence N is dense in (0, 1].
On the other hand, given the same ω ∈ (0, 1], we can append the sequence 100100100100 . . .

since we know this makes the average term go to 1
3
6= 1

2
. By the same logic as above, this

new number is within ε of ω so NC is dense in (0, 1].

Definition. A set A is trifling if for each ε there exists a finite sequence of intervals Ik
satisfying

(i) A ⊂
⋃
k

Ik and

(ii)
∑
k

|Ik| < ε.

Clearly a trifling set is negligible, and finite unions of trifling sets are trifling. Trifling
sets are especially ‘small’ and have some nice properties.

Proposition 22.3.2. If A is trifling then Cl(A) is trifling.

Proof. Suppose A if trifling, so that there is a finite collection of intervals {Ik}nk=1 covering
A and their total length is less than ε

2
. Write Ik = (ak, bk]. We enlarge each Ik to form a

new collection {Jk}nk=1 given by

Jk =
(
ak −

ε

2k−1
, bk

]
.
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Notice that the maximum length added to the length of the Ik is

n∑
k=1

ε

2k−1
≤ ε

∞∑
k=1

1

2k−1
=
ε

2

so that their total length is still less than ε
2

+ ε
2

= ε. Also, since each Ik ⊂ Jk and the Ik
cover A, {Jk}nk=1 is also a finite cover of A. Moreover, each closed interval [ak, bk] ⊂ Jk and

therefore their union
n⋃
k=1

[ak, bk] contains the closure of A. This proves that Cl(A) is trifling

if A is trifling.

Examples.

1 By Corollary 22.2.3, Q ∩ (0, 1] is negligible. Since Q is dense in the reals, the closure
of Q ∩ (0, 1] is (0, 1] so the contrapositive to Proposition 22.3.2 implies that Q ∩ (0, 1]
is not trifling.

2 The Cantor set C, as defined in the Introduction, is an uncountable set. However, C is
trifling. To see this, let ε > 0 be given and take n to be the natural number such that(

2
3

)n
< ε. Then part (b) of this problem shows that at the nth level, every number in

C is contained in one of 2n intervals, each of which has length 3−n. Clearly the sum
of the lengths of these intervals is

(
2
3

)n
< ε by our choice of n, and 2n is finite so the

collection of these intervals satisfies conditions (i) and (ii), proving C is trifling.

Definition. A set A ⊂ Ω is nowhere dense if for every interval J ⊂ Ω, there is a subin-
terval I ⊂ J such that I ∩ A = ∅.

Proposition 22.3.3. A ∈ Ω is nowhere dense ⇐⇒ the interior of the closure of A is
empty.

Proof omitted.

Proposition 22.3.4. A trifling set is nowhere dense.

Proof. Suppose x ∈ Int(Cl(A)). Then there exists an ε > 0 such that J = (x − ε, x + ε) ⊂
Cl(A). Since the closure of a trifling set is trifling, we can cover Cl(A) with a collection of

intervals {Ik}nk=1 such that
n∑
k=1

|Ik| < ε. However, notice that |J | = |(x+ε)−(x−ε)| = 2ε > ε

so by (2) of Theorem 22.2.7,

J 6⊆
n⋃
k=1

Ik,

a contradiction. Hence A is nowhere dense.

Proposition 22.3.5. A compact negligible set is trifling.

Proof. Suppose A ⊂ Ω is compact and negligible. For a given ε > 0, negligible implies there
exists a collection {Ik}∞k=1 with the following properties:
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� For each k, Ik = (ak, bk].

�

∞⋃
k=1

Ik ⊇ A.

�

∞∑
k=1

|Ik| <
ε

2
.

From this collection we form an open cover {Jk}∞k=1 where Jk =
(
ak, bk + ε

2k+1

)
. Observe

that the most length we could have added to the original collection of Ik’s is

∞∑
k=1

ε

2k+1
=
ε

2
by geometric series.

So
∞∑
k=1

|Jk| < ε and {Jk} is an open cover of A. By compactness, there exists a finite (open)

subcover {Jki}ni=1 of A. Then the collection {J∗ki}
n
i=1, where J∗ki =

(
aki , bki + ε

2ki+1

]
, is a finite

collection of intervals covering A and satisfying

n∑
i=1

|J∗ki| =
n∑
i=1

|Jki | ≤
∞∑
k=1

|Jk| < ε.

Hence A is trifling.

Example.

3 Let B =
⋃
n(rn− 2−n−2, rn + 2−n−2], where r1, r2, . . . is an enumeration of the rationals

in (0, 1]. Then BC = (0, 1]−B is nowhere dense but not trifling (or even negligible).

Proof. To prove BC is nowhere dense, we will prove that every interval contains a
subinterval which is contained in (BC)C = B. An additional fact we will exploit is
that, given an enumeration r1, r2, . . . of the rationals in (0, 1], the set {rm}∞m=n for any
n ≥ 1 is dense in (0, 1].

Suppose J is an interval in Ω; denote the midpoint of J by x and let |J | = ε. To buy
ourselves some space away from the endpoints of J , we will consider the subinterval
J∗ =

(
x− ε

4
, x+ ε

4

]
. Let n be a natural number such that 2−n−2 < ε

2
, which can

be written 2−n−1 < ε
4
. By the comments above, {rm}∞m=n is dense in (0, 1] for this

choice of n, so a rational rm,m ≥ n can be found in J∗. Then the interval I =
(rm − 2−m−2, rm + 2−m−2] is contained in B, that is, I ∩ BC = ∅. What’s more,
|I| = 2−m−1 < 2−n−1 < ε

4
and since rm ∈ J∗, I extends at most ε

4
to the right or left

of the endpoints of J∗. This shows that I ⊂ J and therefore we conclude that BC is
nowhere dense in Ω.

Definition. We say a set is of the first category if the set can be represented as a countable
union of nowhere dense sets.
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This is a topological notion of smallness, just as negligibility is a metric notion of small-
ness. The following examples illustrate that neither of these conditions implies the other.

Examples.

4 The non-negligible set N of normal numbers is of the first category.

Proof. To prove the statement, we will show that Am =
⋂∞
n=m

[
ω : |n−1sn(ω)| < 1

2

]
is

nowhere dense and N ⊂
⋃
mAm. Consider Am for a fixed m ∈ N. To prove Am is

nowhere dense in Ω = (0, 1], we will show that for any J ⊂ Ω there is a subinterval
I ⊂ J such that I∩Am = ∅. Given such an interval J = (a, b], choose a dyadic interval
J ⊂ I of order n0 > m such that

1
n0
|sn0(ω)| > 1

2
for all ω ∈ I.

Such a choice of I is possible because specifying I is equivalent to a choice of the first
n0 of every ω ∈ I (so that I ⊂ J), and taking the rest of the digits to be 1’s, with n0

large enough so that 1
n0
|sn0(ω)| is sufficiently close to 1 for all ω ∈ I. We then claim

that I ∩ Am = ∅. To see this, recall the definition of Am:

Am = ∩∞n=m

[
ω : 1

n
|sn(ω)| < 1

2

]
.

If ω ∈ I then our choice of n0 means that ω 6∈
[
ω : 1

n0
|sn0(ω)| < 1

2

]
and therefore ω

does not lie in the intersection defining Am. Hence Am and I are disjoint.

Now to prove N ⊂
⋃
mAm, recall that the set of normal numbers may be defined by

N =
{
ω : lim

n→∞
1
n
|sn(ω)| = 0

}
=
{
ω : for all ε > 0, 1

n
|sn(ω)| < ε for all n ≥ some n0

}
.

Let ω ∈ N and choose ε = 1
2
. Then for all n ≥ n0 for the appropriate choice of n0,

1
n
|sn(ω)| < 1

2
. This shows that ω ∈ An0 and so ω ∈

⋃
mAm. Hence N ⊂

⋃
mAm.

5 On the other hand, the negligible set NC is not of the first category.

Proof. If NC were a countable union of nowhere dense sets, then (0, 1] = N ∪ NC

would be as well since by example 4 , N is of the first category. However, a famous
theorem of Baire (see Royden’s Real Analysis) says that a nonempty interval is not of
the first category, so it follows that NC is not of the first category.
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23.1 Probability Measures

All the discussion about negligible sets and normal numbers highlights the utility of com-
puting ‘lengths’ of more complicated sets than finite unions of intervals. If we try to define
a function giving length for any subset of (0, 1], there are immediate logical contradictions
(e.g. the Banach-Tarski Paradox in R3 and similar issues in other dimensions). So we need
to restrict our attention to certain types of subsets. For instance, we want to calculate the
length of the normal numbers, which may be written

N =
∞⋂
k=1

∞⋃
m=1

∞⋂
n=m

{
ω :

1

n
|sn(ω)| < 1

k

}
.

Notice that for any particular n and k, the set inside all the unions and intersections is a
finite union of intervals. Measure theory comes to the rescue with the following definition.
Let Ω = (0, 1] as before.

Lemma 23.1.1. B0 = {A ⊂ Ω | A is a finite union of intervals} is an algebra.

Proof. Note that Ω ∈ B0 and that the complement of a finite union of intervals is a finite
union of intervals: if

A =
n⋃
i=1

(ai, bi]

then AC =
n⋂
i=1

(ai, bi]
C =

n⋂
i=1

(
(0, ai] ∪ (bi, 1]

)
which is a finite union of intervals. The proof

that B0 is closed under finite unions is similar.

Note that B0 is not a σ-algebra, since for example
(
0, 1

2

)
is not in B0 but this can be

expressed as a countable union of sets in B0:(
0,

1

2

)
=
∞⋃
n=1

(
0,

1

2
− 1

n

]
.

Definition. The Borel σ-algebra on Ω = (0, 1] is defined as B = σ(B0). An element of
B is called a Borel set. Any countable sequence of set operations applied to an interval
(a, b] ⊂ Ω will produce a Borel set.

It is important to note that not every Borel set is obtained in this way; that is, not every
Borel set is the result of applying countably many set operations on an interval.

The Borel σ-algebra is our favourite σ-algebra in probability theory, as it allows us to
define measures in a meaningful way, i.e. so that they are compatible with all Borel sets.
However, the one important type of set that we have seen so far – a negligible or measure
zero set – is not always a Borel set.

Example 23.1.2. Open sets (and therefore closed sets) are Borel sets. This is because an
open set U ⊂ (0, 1] contains a countable, dense set Q ∩ U . Therefore for any x ∈ U , there
exist rationals px, qx ∈ Q such that

x− ε ≤ px < x ≤ qx < x+ ε.
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Then x ∈ (px, qx] ⊂ (x − ε, x + ε] ⊂ U . We can thus express U as a countable union of
intervals:

U =
⋃
x∈U

(px, qx].

Hence U is Borel.

Example 23.1.3. The set of normal numbers N is a Borel set.

Definition. Let Ω be a space and let F be an algebra on Ω. A measure P : F → R is called
a probability measure provided

(1) 0 ≤ P (A) ≤ 1 for all A ∈ F .

(2) P (Ω) = 1 and P (∅) = 0.

Remark. If A ∈ F then by (2),

P (A) + P (AC) = P (A ∪ AC) = P (Ω) = 1.

Hence P (AC) = 1 − P (A) for all A. This actually implies P (∅) = 0, so stating it in the
definition was redundant. Further, since P (AC) = 1− P (A) ≥ 0, P (A) ≤ 1 for all A ∈ F so
this was redundant in the definition too.

Definition. Let F be an algebra on Ω and P : F → R be a probability measure on F . The
triple (Ω,F , P ) is called a probability space.

Definition. If F ∈ F such that P (F ) = 1, F is called a support of P on F .

Example 23.1.4. Let Ω = N = {1, 2, 3, . . .} and define the function p : Ω→ R by p(n) = 1
2n

.

Notice that
∞∑
n=1

1

2n
= 1. For any A ⊂ Ω, we define a probability measure P by

P (A) =
∑
a∈A

p(a).

The right σ-algebra to use here is F = P(Ω), which makes (Ω,F , P ) into what is called a
discrete probability space (see below).

Example 23.1.5. Let Ω = (0,∞) and consider the σ-algebra F = P(Ω). We can use exactly
the same formula for p to define

P (A) =
∑
a∈A∩Z

p(a).

For example, P
([

1
2
, 101

2

])
= 1

2
+ 1

4
+ . . . + 1

210
. Oddly, many intervals have zero probability

in this space: P
([

1
3
, 1

2

])
= 0. In this example, Z is a support for P .

Definition. Let Ω be a countable space. For a nonnegative function p : Ω→ [0,∞) such that∑
ω∈Ω p(ω) = 1, define P (A) =

∑
ω∈A p(ω). Then (Ω, P ) is called a discrete probability

space.
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Lemma 23.1.6. A discrete probability space cannot contain an infinite sequence A1, A2, . . .
of independent events each of probability 1

2
.

Proof. Suppose Ω is such a space. Consider a number ω ∈ Ω. Then ω must lie in one of the
following sets:

A1 ∩ A2 A1 ∩ AC2 AC1 ∩ A2 or AC1 ∩ AC2 ,

each of which has probability 1
2
· 1

2
= 1

4
by independence. Thus P (ω) ≤ 1

4
. Likewise at the

“nth” level we have a collection of intersections

A1 ∩ · · · ∩ An A1 ∩ · · · ∩ ACn · · · AC1 ∩ · · · ∩ ACn

which partition Ω, and by independence each of these sets has probability 2−n. Then ω must
lie in one of these intersections, so again P (ω) ≤ 2−n. Taking n→∞, we conclude P (ω) = 0
but this is not possible in a discrete probability space, since we would have

P (Ω) =
∑
ω∈Ω

P (ω) =
∑
ω∈Ω

0 = 0 6= 1.

This can be generalized as follows.

Lemma 23.1.7. Suppose that 0 ≤ pn ≤ 1, and put αn = min{pn, 1−pn}. If
∑

n αn diverges,
then no discrete probability space can contain independent events A1, A2, . . . such that An has
probability pn.

Proof. As above, define at the nth level a collection of intersections

{B1 ∩ · · · ∩Bn}

where Bi is a choice of either Ai or ACi . For a particular choice of the Bi, the intersection
B = ∩ni=1Bi has probability

P (B) ≤
n∏
i=1

(1− αi)

by independence, since 1− αn corresponds to the maximum of {pn, 1− pn}. However notice
that for each i, 1 − αi ≤ e−αi (y = e−x is increasing on (0, 1]). Thus the above product is
bounded by

n∏
i=1

(1− αi) ≤
n∏
i=1

e−αi = e−
∑n
i=1 αi .

Since the series in the exponent above is assumed to diverge, the term on the right approaches
zero as n→∞. This shows that P (B)→ 0 as n gets large, so in particular for any ω ∈ Ω,
ω must lie in such an intersection as B at every level n, and so P (ω) = 0 for all ω ∈ Ω. As
in the previous proof, this cannot happen if Ω is a discrete probability space. Hence no such
sequence A1, A2, . . . exists.
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Let Ω = (0, 1] with the Lebesgue measure λ defined on B0. Then Theorem 17.2.7 says
that there exists an extension of λ to B = σ(B0), which we also call the Lebesgue measure
λ. Notice that I = {(a, b] : 0 ≤ a < b ≤ 1} is a π-system, and further, σ(I) = B because
σ(I) ⊃ B0. Then by Theorem 17.2.12, λ is the only measure on Ω that restricts to the
length function on the collection I of intervals. This means that whenever we make a choice
of measure on (0, 1] and want it to coincide with the natural notion of length of an interval,
we have no choice but to choose the Lebesgue measure.

Example 23.1.8. Suppose {ri}∞i=1 is an enumeration of Q ∩ (0, 1]. Let ε > 0 and for each
i ∈ N, let Ii =

(
ri − ε

2i+1 , ri + ε
2i+1

)
∩ (0, 1]. Then Ii is open so A =

⋃∞
i=1 Ii is open and

λ(A) ≤
∞∑
i=1

ε

2i
= ε

by subadditivity. On the other hand, λ(A) is clearly positive since A contains nonempty
intervals of nonzero length. It turns out that AC is nowhere dense, but λ(B) ≥ 1 − ε, i.e.
λ(B) is almost always 1.

Example 23.1.9. Let An = {ω ∈ Ω | di(ω) = dn+i(ω) = d2n+i(ω) for all i = 1, . . . , n}. For
example, an element of A5 might look like

0.010110101101011 01000110100 . . .
anything

Then P (An) = 2n

(23)n
for each n, and if A =

⋃∞
n=1 An, λ(A) ≤ 1

3
. As in the previous example,

AC turns out to be nowhere dense, but with (relatively) large measure: λ(AC) = 2
3
.
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23.2 Convergence in Probability

Assume (Ω,F , P ) is a generic probability space for a σ-field F . We will assume in this
section that all sets are F -sets. Our goal is to explore some more complicated concepts in
probability with infinite sequences of subsets (events) in a probability space Ω.

Proposition 23.2.1. Let {An}∞n=1 be a countable collection of sets in Ω.

(1) If P (An) = 0 for all n then P (
⋃∞
n=1An) = 0.

(2) If P (Bn) = 1 for all n then P (
⋂∞
n=1Bn) = 1.

Proof. (1) is proven by subadditivity, and (1) =⇒ (2) by DeMorgan’s Law.

Definition. For a sequence {An}∞n=1 of measurable sets in Ω, the limit superior and limit
inferior of the An are

lim sup
n→∞

An =
∞⋂
n=1

∞⋃
m=n

Am and lim inf
n→∞

An =
∞⋃
n=1

∞⋂
m=n

Am.

If there exists A ∈ F such that lim supAn = lim inf An = A, we say the An converge to A.

Remark. Notice that x ∈ lim supAn if for every n ∈ N there is some m ≥ n such that
x ∈ Am, or equivalently, if x lies in some subsequence of {An}. It is sometimes said that
such an x lies in the collection {An} infinitely often (i.o.).

On the other hand, x ∈ lim inf An if there exists an n ∈ N such that for every m ≥ n,
x ∈ Am, or alternatively if x lies in every Am beyond some cutoff An. It is also said that x
lies in all but finitely many of the An.

For fixed n,

∞⋃
m=n

Am ⊃
∞⋂
m=n

Am =⇒
∞⋂
n=1

∞⋃
m=n

Am ⊃
∞⋂
m=n

Am

=⇒
∞⋂
n=1

∞⋃
m=n

Am ⊃
∞⋃
n=1

∞⋂
m=n

Am.

Hence lim supAn ⊃ lim inf An, just as is the case with the numerical lim sup and lim inf.

Example 23.2.2. For ω ∈ Ω, define the value `n(ω) to be the length of the run of heads in
a sequence of coin tosses starting at the nth flip. Explicitly,

`n(ω) = {k | dn+k(ω) = 1 and dn+i(ω) = 0 for i = 0, . . . , k − 1}.

Notice that for any nonzero values of k and r,

P [`n(ω) = k] =
k+1∏
i=1

1

2
=

1

2k+1

and P [`n(ω) ≥ r] =
∞∑
k=r

1

2k+1
=

1

2r
.

373



23.2. Convergence in Probability Chapter 23. Probability Measures

Set An = {ω | `n(ω) ≥ r}. Then for any ω ∈ Ω,

ω ∈ An infinitely often ⇐⇒ ω ∈ lim sup
n→∞

An =
∞⋂
n=1

∞⋃
m=n

Am

⇐⇒ for every n there is some m ≥ n such that ω ∈ Am
⇐⇒ there is an infinite subsequence {Am} containing ω.

Theorem 23.2.3. For any collection of sets {An}∞n=1,

(1) P (lim inf An) ≤ lim inf P (An) ≤ lim supP (An) ≤ P (lim supAn).

(2) If limAn exists, the above inequalities are equalities.

Proof. Note that (2) follows from (1) since if a limit exists, it equals lim inf An and lim supAn.
The middle inequality in (1) is obvious. Further, the third inequality is obtained by taking
complements in the first inequality, so it suffices to prove the latter. Note that if Bn =⋂∞
m=nAm so that

lim inf An =
∞⋃
n=1

(
∞⋂
m=n

Am

)
=
∞⋃
n=1

Bn,

then Bn ⊂ An for all n. So by monotonicity, P (Bn) ≤ P (An). Moreover, the Bn are ascend-
ing and their limit is lim inf An. By continuity from below (Proposition 17.2.1), limP (Bn) =
P (lim inf An) so together this gives us P (lim inf An) = limP (Bn) ≤ lim inf P (An).

Remark. Theorem 23.2.3 only holds in the finite measure case, that is, when P (ω) <
∞. When Ω is a space of infinite measure, we cannot take complements and subtract the
probability from 1, so the arguments above – including continuity from below – do not apply.

In Example 23.2.2, we can apply Theorem 23.2.3 to see that

P [ω | `n(ω) ≥ r i.o.] = P (lim supAn) ≥ lim supP (An) =
1

2r
.
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23.3 Independence

Definition. Suppose P (A) > 0. Then the conditional probability of B given A is

P (B | A) =
P (B ∩ A)

P (A)
.

This definition can be rearranged as P (A ∩ B) = P (A)P (B | A) and inducted on to
produce the formula

P (A ∩B ∩ C) = P (A)P (B | A)P (C | A ∩B), and so on.

Proposition 23.3.1. If {An}∞n=1 partition Ω then for any B ∈ Ω,

P (B) =
∞∑
n=1

P (B | An).

Proof sketch. Since B may be expressed as a disjoint, countable union B =
⋃∞
n=1(B ∩ An),

use countable additivity to produce the result.

Definition. Two events A,B ∈ Ω are said to be independent if P (A ∩B) = P (A)P (B).

If P (A), P (B) > 0, the definition of independence is equivalent to

P (B) = P (B | A) and P (A) = P (A | B).

Definition. A (finite) collection {Ai}ni=1 is an independent collection if for any subcol-
lection {Akj}mj=1,

m∏
j=1

P (Akj) = P

(
m⋂
j=1

Akj

)
.

Example 23.3.2. Note that simple pairwise independence is not the same as independence
on the whole collection. For instance, define Buv = {ω | du(ω) = dv(ω)}. Then B12, B13 and
B23 are pairwise independence events, but the collection of all three is not independent.

Remarks.

1 For a collection of n sets, there are 2n − n− 1 possible conditions on those sets.

2 Any subcollection of a collection of independent events is also independent.

3 Independence is invariant under reordering of the sets in a collection.

4 We say an arbitrary collection of sets {Aθ}θ∈Θ is independent if and only if every finite
subcollection is independent.

Definition. Given two collections A1 and A2, we say these are independent collections,
or A1 is independent of A2, if for every A1 ∈ A1 and A2 ∈ A2, P (A1 ∩ A2 = P (A1)P (A2).
Similarly, a collection of collections {Ak}nk=1 is independent if A1, . . . , An are independent
whenever Ak ∈ Ak. This can be extended to arbitrary collections in the same way as before.
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Example 23.3.3. Let Hn = {ω | dn(ω) = 0}, which represents the event of getting heads
on the nth coin flip (if we identify heads with 0 and tails with 1). Then {Hn}∞n=1 is an
independent collection of events. Furthermore, if we define A1 = {H2k+1 | k ∈ N} the
collection of heads on odd flips and A2 = {H2k | k ∈ N} the collection of heads on even flips,
then A1 and A2 are independent.

Theorem 23.3.4. Suppose {Ak}nk=1 is an independent collection of collections, where Ak is
a π-system for k = 1, . . . , n. Then {σ(Ak)}∞k=1 is independent.

Proof. For each k define Bk = Ak ∪ {Ω} which are all still π-systems. The fact that the Ak
are independent is equivalent to

n∏
k=1

P (Bk) = P

(
n⋂
k=1

Bk

)
for all Bk ∈ Bk.

Fix B2 ∈ B2, . . . , Bn ∈ Bn and define

L =

{
B ∈ F : P (B)

n∏
k=2

P (Bk) = P

(
B ∩

(
n⋂
k=2

Bk

))}
.

Clearly L contains B1. We claim that L is a λ-system.

(1) Ω ∈ B1 =⇒ Ω ∈ L.

(2) For any B ∈ L,

P (BC)
n∏
k=2

P (Bk) = (1− P (B))
n∏
k=2

P (Bk)

= P (Ω)
n∏
k=2

P (Bk)− P (B)
n∏
k=2

P (Bk)

= P

(
Ω ∩

(
n⋂
k=2

Bk

))
− P

(
B ∩

(
n⋂
k=2

Bk

))
since Ω, B ∈ L

= P

(
(Ω rB) ∩

(
n⋂
k=2

Bk

))
by additivity

= P

(
BC ∩

(
n⋂
k=2

Bk

))
.

Hence BC ∈ L.

(3) follows similarly, again breaking A ∪B into sets in L and using additivity.
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Hence L is a λ-system, so by the π-λ theorem (17.2.11), L ⊃ σ(B1). This shows that σ(B1)
is independent of B2, . . . ,Bn.

Now, since σ(B1) is a π-system, a similar argument can be made by fixingB1 ∈ σ(B1), B3 ∈
B3, . . . , Bn ∈ Bn to show that {σ(B1), σ(B2),B3, . . . ,Bn} are independent. Repeating shows
that {σ(Bk)} are independent, but notice that σ(Ak) = σ(Bk) for all k, so we’re done.

Corollary 23.3.5. If {Aθ}θ∈Θ is an independent, arbitrary collection of π-systems then
{σ(Aθ)}θ∈Θ is also independent.

Corollary 23.3.6. Given a matrix of events

A11 A12 A13 · · ·
A21 A22 A23 · · ·

...
...

...
. . .

such that the collection {Aij}(i,j)∈N2 is independent, define Fi to be the σ-algebra of the events
in the ith row. Then the collection of Fi is an independent collection.

Proof. Let Ai be the collection of finite intersections of events in the ith row. This is a π-
system by construction. Clearly σ(Ai) ⊂ Fi, and since a single set is a (trivial) intersection,
Fi ⊂ σ(Ai) as well, which shows σ(Ai) = Fi for each i. Now we verify that the Ai are
independent. Given B1 ∈ Ak1, . . . , Bj ∈ Akj, each one is a finite intersection of the Aij so
we have

j∏
i=1

P (Bi) =

j∏
i=1

mi∏
r=1

P (Air) = P

(
j⋂
i=1

mi⋂
r=1

Air

)
= P

(
j⋂
i=1

Bi

)
.

Therefore Theorem 23.3.4 applies to give us independence of the Fi.

Examples.

1 For the even/odd coin flips, we have a matrix

H1 H3 H5 · · ·
H2 H4 H6 · · ·

which is independent by Example 23.3.3. By Corollary 23.3.6, the σ-algebras of the
two rows are independent, but these just correspond to the even and odd flips. What
this says is that any event constructed with the odd-numbered coin flips is independent
of any other event constructed with the even flips.

2 Recall Buv = {ω | du(ω) = dv(ω)}. The collections A1 = {B12, B13} and A2 = {B23}
are independent, but we know their union is not, so σ(A1) and σ(A2) must not be
independent. This suggests that some condition of Theorem 23.3.4 fails to be met – in
fact, A1 is not a π-system.

3 Suppose A = {Ai} is a partition of Ω and for some set B ∈ F , P (B | Ai) = p for
each i such that P (Ai) > 0. Then P (B) = p by Proposition 23.3.1 and B = {B} is
independent of σ(A).
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It is common in probability theory to only have partial information about an event. This
can mean several things, such as knowing some class of sets the event lies in or knowing
conditions on the probability of the event based on other events. For a probability space
(Ω,F , P ), such partial information information can be represented in terms of a subalgebra
A ⊂ F where A is a σ-algebra (or sometimes just a algebra). If B ∈ F is independent of A,
then P (B) = P (B ∩ A)P (A) for every A ∈ A. This shows that knowing information about
P (A) does not necessarily tell you anything about P (B).

Define an equivalence relation ∼A on Ω by ω ∼A ω′ if and only if for every A ∈ A,
χA(ω) = χA(ω′), where χ denotes the characteristic function on a set:

χA(ω) =

{
1 if ω ∈ A
0 if ω 6∈ A.

As an example of so-called ‘partial information’ in probability theory, even if we know ev-
erything about the characteristic functions on a collection A, we still cannot distinguish
between ω and ω′ that satisfy ω ∼ ω′.

Proposition 23.3.7. For a subalgebra A ⊂ F , ∼A and ∼σ(A) are the same equivalence
relation.

Proof. It is clear that ∼σ(A) is a finer partition of Ω than ∼A, since A ⊂ σ(A). Fix ω, ω′ ∈ Ω.
Then Aω,ω′ = {A ∈ F : χA(ω) = χA(ω′)} is a σ-algebra. Notice that if ω ∼A ω′ then
Aω,ω′ ⊃ A so by the π-λ theorem, Aω,ω′ ⊃ σ(A). Hence ω ∼σ(A) ω

′.

Examples.

1 Consider A = {H2n}n∈N where H2n are as defined in Example 23.3.3. Then ω ∼A ω′ if
and only if ω and ω′ have the same results on even coin flips, but this tells us nothing
about the odd flips of either event.

2 Let A be the σ-algebra generated by countable and cocountable subsets of Ω, which
is a subalgebra of the Borel σ-algebra B on Ω = (0, 1]. Then B is independent of
A so we get practically no information about events in A; in fact, every countable
set has measure 0 and every cocountable set has measure 1, but this does nothing to
distinguish events.

On the other hand, A is generated by the singletons, so ω ∼A ω′ ⇐⇒ ω = ω′. In this
sense, we have all the information on events inA, paradoxically. The difference between
these two situations, where we either have no information or complete information is
that there is a measure present on B but not on A. The mathematics is actually
contained in the statement of independence, and while it may be useful to think of σ-
algebras and subalgebras in terms of ‘information’, it is clear that this analogy breaks
down in situations such as this.
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23.4 The Borel-Cantelli Lemmas

Lemma 23.4.1. If
∑∞

n=1 P (An) converges then P (lim supAn) = 0.

Proof. Fix n. Then lim supAn ⊂
⋃∞
k=nAk so by subadditivity we have

P (lim supAn) ≤
∞∑
k=n

P (Ak).

But the tail of a convergent series tends to 0 as n gets big, so the right side of this inequality
goes to 0. Hence P (lim supAn) = 0.

The first Borel-Cantelli Lemma would have been useful at the end of the proof of Borel’s
Normal Number Theorem (22.2.5); however, at the time we did not have the constructions
required to describe this lemma. The second Borel-Cantelli Lemma is

Lemma 23.4.2. If
∑∞

n=1 P (An) diverges and the events {An}∞n=1 are independent, then
P (lim supAn) = 1.

Proof. We want to show that P (lim supAn) = P

(
∞⋂
n=1

∞⋃
k=n

Ak

)
= 1. Note that this is the

same as showing

P

(
∞⋂
n=1

∞⋃
k=n

Ak

)C

= P

(
∞⋃
n=1

∞⋂
k=n

ACk

)
= 0,

which will be true if P
(⋂∞

k=nA
C
k

)
= 0 for all n ≥ 1. By independence, we have

P

(
∞⋂
k=n

ACk

)
=
∞∏
k=n

P (ACk ) =
∞∏
k=n

(1− P (Ak))

≤
∞∏
k=n

e−P (Ak) since 1− x ≤ e−x on (0, 1]

= e−
∑∞
k=n P (Ak) = 0

since
∑∞

k=n P (Ak) diverges.

Examples.

1 Recall the funtion `n(ω) which denotes the length of the run of 0’s (heads) starting at
the nth term in the sequence expression of ω. Let (rn) be a sequence of real numbers

such that
∞∑
n=1

1

2rn
converges. Then P [ω : `n(ω) ≥ rn i.o.] = 0. To see this, note that

P [ω : `n(ω) ≥ rn i.o.] = P (lim sup{ω | `n(ω) ≥ rn})

and we have computed P [ω : `n(ω) ≥ rn] = 1
2rn

. Applying the first Borel-Cantelli
Lemma gives the result.

379



23.4. The Borel-Cantelli Lemmas Chapter 23. Probability Measures

For ε > 0, set rn = (1 + ε) log2 n so that 2rn = n1+ε. Then
∑∞

n=1 2−rn barely converges,
but the first Borell-Cantelli Lemma says that

P [ω : `n(ω) ≥ (1 + ε) log2 n i.o.] = 0

=⇒ P

[
ω : lim sup

(
`n(ω)

log2 n

)
> 1

]
= 0.

2 Notice that the collection of {ω : `n(ω) = 0} = {ω : dn(ω) = 1} for all n are in-
dependent events, each with probability 1

2
. By the second Borel-Cantelli Lemma,

P [ω : `n(ω) = 0 i.o.] = 1. On the other hand, define

An = {ω : `n(ω) = 1} = {ω : dn(ω) = 0, dn+1(ω) = 1}.

Then P (An) = 1
4

so
∑∞

n=1 P (An) diverges, but we cannot directly apply BC2 since
the An are not independent. However, the collection {A2n}∞n=1 is independent with
P (A2n) = 1

4
for all n, so BC2 tells us P [ω | ω ∈ A2n i.o.] = 1. Further, we see that

{ω | ω ∈ A2n i.o.} ⊆ {ω : `n(ω) = 1 i.o.} so by subadditivity, P [ω : `n(ω) = 1 i.o.] = 1
as well. In the same way, one can prove that P [ω : `n(ω) = k i.o.] = 1 for any k ∈ N.

3 Suppose (rn) is a nondecreasing sequence such that
∑∞

n=1
1

rn2rn
diveges. We claim that

P [ω : `n(ω) ≥ rn i.o.] = 1. First, it is known that
∑∞

n=1
1

rn2rn
diverges if and only if∑∞

n=1
1

sn2sn
diverges, where sn = drne. Thus without loss of generality we may assume

the rn are integers.

Define n1 = 1 and nk+1 = nk + rnk for each k ≥ 2. The events Ak = {ω : `nk(ω) ≥ rnk}
for all k ∈ N are independent events. By BC2, P [ω | ω ∈ Ak i.o.] = 1 if

∑∞
k=1 P (Ak)

diverges, but this series can be written

∞∑
k=1

1

2rnk
=
∞∑
k=1

1

2nk+1−nk

=
∞∑
k=1

nk+1 − nk
rnk2

rnk

=
∞∑
k=1

nk+1∑
n=nk+1

1

rnk2
rnk

≥
∞∑
k=1

nk+1∑
n=nk+1

1

rn2rn
since the rn are nondecreasing

=
∞∑
n=1

1

rn2n

which diverges. Hence P [ω | ω ∈ Ak i.o.] = 1, and since {ω : `n(ω) ≥ rn i.o.} ⊇
lim supAk, we have shown that P [ω : `n(ω) ≥ rn i.o.] = 1.
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4 Let rn = log2 n as before. Then
∑∞

n=1
1

rn2rn
=
∑∞

n=1
1

n log2 n
diverges, so BC2 tells us

that P [ω : `n(ω) ≥ rn i.o.] = 1, which implies

P

[
ω : lim sup

(
`n(ω)

log2 n

)
≥ 1

]
= 1

but before we showed that

P

[
ω : lim sup

(
`n(ω)

log2 n

)
> 1

]
= 0

(notice the strict inequality). By additivity, this implies that

P

[
ω : lim sup

(
`n(ω)

log2 n

)
= 1

]
= 1.

Definition. Suppose {An}∞n=1 ⊂ F and set

T =
∞⋂
k=1

σ(Ak, Ak+1, Ak+2, . . .).

T is called the tail σ-algebra of the An.

The most important theorem related to the tail σ-algebra is stated below. This is some-
times known as Kolmogorov’s 0-1 Law.

Theorem 23.4.3 (Kolmogorov). Suppose {An}∞n=1 are independent and A ∈ T . Then either
P (A) = 0 or P (A) = 1.

Proof. Clearly σ(A1), σ(A2), . . . , σ(An), σ(An+1, An+2, . . .) are independent for any fixed n
since the Ak are independent (Theorem 23.3.4). So if A ∈ T then A ∈ σ(An+1, An+2, . . .).
Thus A is independent of σ(A1), . . . , σ(An) for any n, which shows that A,A1, A2, . . . is an in-
dependent sequence of events. By Theorem 23.3.4, σ(A) and σ(A1, A2, . . .) are independent,
but A ∈ T ⊆ σ(A1, A2, . . .) so we have shown that A is independent of itself. Finally,

A is independent of itself ⇐⇒ P (A) = P (A ∩ A) = P (A)P (A)

⇐⇒ P (A) = 0 or 1.
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Simple Random Variables

Definition. Given a probability space (Ω,F , P ), we say X : Ω → R is a simple random
variable if

(1) X(Ω) is finite. This is the simple condition.

(2) For any x ∈ R, the set {ω : X(ω) = x} is an F-set. This is sometimes called the
measurable condition.

The measurability condition (2) will allow us to integrate simple random variables over
P -measurable sets. Of course, the sets {ω : X(ω) = x} need not be intervals. For example,
consider the rational indicator function on Ω = [0, 1]:

X(ω) =

{
1 if x ∈ Q
0 if x 6∈ Q.

[ ]
Ω

R

Q

I

Example 24.0.1. Recall the functions dn, rn and sn introduced in Chapter 22 for the space
of infinite sequences of coin flips (equivalently, dyadic representations of ω ∈ (0, 1]). Each of
these is a simple random variable. On the other hand, the length function `n is a random
variable because it’s measurable, but `n is not simple since its range is infinite.

Proposition 24.0.2. X is a simple random variable ⇐⇒ there exists a finite collection of
Ai ∈ F such that {Ai}ri=1 is a finite partition of Ω and there exist xi ∈ R such that for any
ω ∈ Ω, X(ω) may be expressed in the form

X(ω) =
r∑
i=1

xiχAi(ω).
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Proof sketch. The backward direction is easy. For the forward direction, suppose X is a
simple random variable. Let {x1, . . . , xr} = X(Ω). For i = 1, . . . , r, let Ai = X−1(xi). Then
the Ai partition Ω.

Notice that the partition {Ai} need not be unique. Even more importantly, the xi may
not be unique – they may even repeat so that in some cases Ai and Aj, i 6= j, have the same
value under X. This is useful if we are comparing simple random variables X and Y and
want to use the same partition of Ω for each.

Definition. For a subfield G ⊂ F , we say a simple random variable X is G-measurable if
{ω : X(ω) = x} ∈ G for every x ∈ R.

Proposition 24.0.3. If X is G-measurable and H ⊂ R then {ω : X(ω) ∈ H} lies in G.

Proof. Notice that {ω : X(ω) = H} =
⋃
x∈H

{ω : X(ω) = x} is a finite union.

Proposition 24.0.3 can also be stated: if X is G-measurable then X−1(H) is measurable
for every H ⊂ R. Define σ(X) to be the smallest σ-field G (equivalently, the intersection of
all G) for which X is G-measurable. The next theorem characterizes σ(X) for collections of
simple random variables.

Theorem 24.0.4. Suppose X1, . . . , Xn and Y are simple random variables on a probability
space (Ω,F , P ). Write X = (X1, . . . , Xn) so that for any ω ∈ Ω, X(ω) ∈ Rn.

(1) σ(X) = {{(X1(ω), . . . , Xn(ω)) ∈ H} | ω ∈ Ω, H ⊂ Rn} = {X−1
(H) | H ⊂ Rn}.

Moreover, the H may be taken as finite subsets of Rn.

(2) Y is σ(X)-measurable if and only if there exists a function f : Rn → R such that
Y = f(X) = f(X1, . . . , Xn).

Proof. (1) Let M = {X−1
(H) | H ⊂ Rn}. We will show that M = σ(X). Consider a set

X
−1

(H) ∈M. Clearly

X
−1

(H) =
r⋃
i=1

X
−1

(~x) =
r⋃
i=1

(
n⋂
j=1

X−1
j (xj)

)
,

where ~x = (x1, . . . , xn), and each
⋂n
j=1X

−1
j (xj) lies in σ(X), so X

−1
(H) ∈ σ(X). This shows

M⊂ σ(X). Additionally, M is a σ-field since

(i) Ω = X−1(Rn) ∈M.

(ii) If A ∈M then A = X
−1

(H) =⇒ AC = X
−1

(HC) ∈M.

(iii) For Ai ∈M,
∞⋃
i=1

Ai =
∞⋃
i=1

X
−1

(Hi) = X
−1

(
∞⋃
i=1

Hi

)
which lies in M.
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Finally, for fixed i, {ω : Xi(ω) = xi} ∈ M but this is precisely the set

{ω : X(ω) ∈ R× R× · · · × {xi} × · · · × R}

which lies inM. We have shown thatM is a σ-field contained in σ(X) on which the Xi are
measurable, so it follows that M = σ(X).

(2) On one hand, suppose Y = f(X). Then {ω : Y (ω) = y} = {ω : X(ω) ∈ f−1(y)} ∈ M
which lies in σ(X), so Y is σ(X)-measurable. On the other hand, if Y is σ(X)-measurable
then let Y (Ω) = {y1, . . . , yr}. By (1), there exist subsets H1, . . . , Hr ⊂ Rn such that for all
1 ≤ i ≤ r, {ω : Y (ω) = yi} = {ω : X(ω) ∈ Hi}. By construction the Hi are disjoint, and we

can define f(X) =
r∑
i=1

yiχHi(xi). This completes the proof.

As a result of this theorem, functions of simple random variables are simple random
variables, so in probability theory we can take simple random variables X and Y and form
new simple random variables: X2, etX , X + Y, logX, etc.

Examples.

1 Consider d1, . . . , dn for sequences ω of coin flips. Then dn 6∈ σ(d1, . . . , dn−1) which
implies that dn is independent of the other di. These di are defined in this way so as
to make different coin flips independent.

2 The Rademacher functions r1, . . . , rn and the cumulative Rademacher functions s1, . . . , sn
generate the same σ-field:

σ(r1, . . . , rn) = σ(s1, . . . , sn).

This is because for each k, sk =
∑k

i=1 ri and rk = sk − sk−1 so one can apply (2) of
Theorem 24.0.4.

3 The characteristic function χA is G-measurable if and only if A ∈ G.
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24.1 Convergence in Measure

Suppose we have a sequence {Xn}∞n=1 of simple random variables and X a simple random
variable to which the Xn might converge. We are interested in pointwise convergence almost
everywhere.

Definition. The sequence (Xn) is said to converge to X pointwise almost everywhere

if P
[
ω : lim

n→∞
Xn(ω) = X(ω)

]
= 1, that is, limXn ≡ X on all of Ω except possibly on a set

of measure zero.

In analytic terms, limXn(ω) = X(ω) ⇐⇒ for every ε > 0, there exists an N ∈ N such
that for all n > N , |Xn(ω) −X(ω)| < ε. Thus for a given ω ∈ Ω, Xn does not converge to
X(ω) if and only if there is some ε > 0 such that |Xn(ω)−X(ω)| ≥ ε infinitely often.

Because we want to utilize countable unions, we replace ε with 1
m

(these are equivalent
by the Archimedean Principle). Then the set {ω : limXn(ω) = X(ω)} has complement⋃∞
m=1

{
ω : |Xn(ω)−X(ω)| ≥ 1

m
i.o.
}

and its probability may be expressed as

P
[
ω : lim

n→∞
Xn(ω) = X(ω)

]C
= P

(
∞⋃
m=1

{
ω : |Xn(ω)−X(ω)| ≥ 1

m
i.o.
})

= P

(
∞⋃
m=1

lim sup
{
ω : |Xn(ω)−X(ω)| ≥ 1

m

})

=
∞∑
m=1

0 = 0.

This suggests a different notion of convergence.

Definition. We say a sequence of simple random variables (Xn) converges in measure
to X, denoted (Xn)→p X, if for every ε > 0,

lim
n→∞

P [ω : |Xn(ω)−X(ω)| ≥ ε] = 0.

We can see from the work above that pointwise convergence (a.e.) implies convergence
in measure, so the latter is a weaker form of convergence. In several sections we will see that
the notions of pointwise convergence (a.e.) and convergence in measure can be translated
into generalized laws of large numbers, with the weaker convergence corresponding to the
weak law.

Examples.

1 Define An = {ω : `n(ω) ≥ log2 n}. We proved that P (An) = 1
n

so this tends to 0 as

n→∞, showing (An) converges in measure to ∅. However, we proved in Example 4
of Section 23.4 that P [ω : ω ∈ An i.o.] = 1 using the Borel-Cantelli lemmas. So (An)
clearly does not converge to ∅ pointwise.
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2 The following sequence of simple random variables is sometimes called ‘the typewriter’
in measure theory.

1

1

f1 f2

f3 f4 f5 f6

Define the sequence beginning with

f1 = χ[0, 1
2

] f2 = χ[ 1
2
,1]

f3 = χ[0, 1
4

] f4 = χ[ 1
4
, 1
2

] f5 = χ[ 1
2
, 3
4

] f6 = χ[ 3
4
,1]

etc.

Then (fn) →P 0, but for any x ∈ [0, 1], fn(x) diverges so we see that convergence in
measure does not imply pointwise convergence.
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24.2 Independent Variables

Definition. A sequence {X1, X2, . . .} of simple random variables is said to be independent
if σ(X1), σ(X2), . . . are independent, that is, if whenever H1, H2, . . . ⊂ Rn,

P [ω : X1(ω) ∈ H1, . . . , Xn(ω) ∈ Hn] = P [ω : X1(ω) ∈ H1] · . . . · P [ω : Xn(ω) ∈ Hn].

Example 24.2.1. Let Ω = Sn, the set of permutations of a set of n elements. Assign the
discrete probability P (ω) = 1

n!
for all ω ∈ Sn. Define a simple random variable

Xk(ω) =

{
1 if position k is the last position in a cycle in ω

0 otherwise.

For example, if ω = (1 4 3)(2 5) then X3 = X5 = 1 and X1 = X2 = X4 = 0. For any

ω ∈ Sn, define S(ω) =
n∑
k=1

Xk(ω). Then S represents the number of disjoint cycles in a cycle

decomposition of ω.

Claim. The Xk are independent with P [ω : Xk(ω) = 1] = 1
n−k+1

.

This is easy to justify heuristically, but the details can be tricky. The idea is that X1 = 1
if and only if ω is a permutation fixing 1; the probability of this happening is 1

n
. If ω(1) = 1

then ω(2) is one of the remaining values 2, . . . , n and thus X2(ω) = 1 if and only if ω(2) = 2;
this happens with probability 1

n−1
. On the other hand, if X1(ω) = 0, then ω(1) = i 6= 1,

so that ω(i) is one of the values 1, . . . , i − 1, i + 1, . . . , n. Then X2(ω) = 1 if and only if
ω(i) = 1 which happens with probability 1

n−1
. This argument can be continued to show that

P [ω : Xk(ω) = 1] = 1
n−k+1

, showing the Xk are indeed independent.

Definition. Let X be a simple random variable, the distribution of X is the probability
measure µ defined for all subsets A ⊂ R by

µ(A) = P [ω : X(ω) ∈ A].

The distribution µ is a discrete probability measure. If {x1, . . . , xn} are the distinct values

in the range of X then pi := µ({xi}) = P [ω : X(ω) = xi] so for any A ⊂ R, µ(A) =
∑
xi∈A

pi. In

particular, this shows that µ(R) = 1, but even better, if B is the range of X, then µ(B) = 1
so µ has finite support.

Theorem 24.2.2. If {µn} is a sequence of probability measures on the class of all subsets
of R such that each µn has finite support, then there exists an independent sequence {Xn} of
simple random variables on some probability space (Ω,F , P ) such that Xn has distribution
µn.

Proof. Let Ω = (0, 1], let F = B the Borel σ-field and let P = λ, the Lebesgue measure on
F . We first consider the case where each µn has range {0, 1}. Set

pn = µn({0}) and qn = 1− pn = µn({1}).
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Divide Ω = (0, 1] into two intervals I0 and I1, where |I0| = p1 and |I1| = q1. Define X1 by

X1(ω) =

{
0 ω ∈ I0

1 ω ∈ I1.

Since P is the Lebesgue measure, we have P [ω : X1(ω) = 0] = p1 and P [ω : X1(ω) = 1] = q1,
so X1 has been constructed so that its distribution is µ1. Next, split I0 into intervals I00 and
I01 of lengths p1p2 and p1q2; likewise split I1 into intervals I10 and I11 of lengths q1p2 and
q1q2. Define the second simple random variable X2 by

X2(ω) =

{
0 ω ∈ I00 ∪ I10

1 ω ∈ I01 ∪ I11.

By construction, P [ω : X1 = X2 = 0] = p1p2 and similarly for the other three choices, so
X1 and X2 are independent and X2 has distribution µ2. Repeat this process to define a
sequence {Xn} of independent s.r.v.’s such that each Xn has distribution µn.

In the general case, µ1 has finite support so instead of dividing Ω into two intervals, we
divide the space into the number of intervals corresponding to the size of the range of µ1.
The above proof is easily adapted to this setup.

Example 24.2.3. A special case of the above construction is called a sequence of Bernoulli
trials. Explicitly, Bernoulli trials are a sequence {Xn} of independent random variables
satisfying P [ω : Xn(ω) = 1] = p and P [ω : Xn(ω) = 0] = 1− p for all n. The dyadic interval
construction introduced in Chapter 22 are the intervals used to construct {Xn} for p = 1

2
.
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24.3 Expected Value and Variance

Definition. Consider a simple random variable X =
∑n

i=1 xiχAi for xi ∈ R and Ai ⊂ R.
The expected value or mean value of X is

E[X] :=
n∑
i=1

xiP (Ai).

Let {xi}ni=1 be the range of X. Then the expected value can be written

E[X] =
n∑
i=1

xiP [ω : X(ω) = xi].

This formulation shows that E[X] only depends on the distribution of X, so if for two simple
random variables X, Y , P [ω : X(ω) = Y (ω)] = 1 then E[X] = E[Y ].

Examples.

1 Suppose X = 1
4
χ(0,1/2] + −1

4
χ(1/2,1]. Another distribution for X is X = 1

4
χ(0,1/4] +

1
2
χ(1/4,1/2] − 1

4
χ(1/4,1].

2 For A ⊆ R, recall that χA is a simple random variable. Then E[χA] = P (A).

3 Let f : R→ R be a function. Recall from Theorem 24.0.4 that if X is a simple random
variable, so is f(X). Then

E[f(X)] =
n∑
i=1

f(xi)P (Ai) =
∑
x

f(x)P [ω : X(ω) = x]

where the last sum is over all x in the range of f(X).

Definition. The kth moment of a simple random variable X is

E[Xk] =
∑
y

yP [ω : Xk(ω) = y]

where the sum is over all y in the range of Xk.

As above, an alternate expression for the kth moment of X is

E[Xk] =
n∑
i=1

xiP [ω : Xk(ω) = xi]

where {xi}ni=1 is the range of X.

Proposition 24.3.1. Let X and Y be two simple random variables given by X =
∑n

i=1 xiχAi
and Y =

∑m
j=1 yjχBj .
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(a) (Linearity) For α, β ∈ R, αX + βY is a simple random variable with expected value

E[αX + βY ] = αE[X] + βE[Y ].

(b) If X(ω) ≤ Y (ω) for all ω ∈ S where S is a support of P , then E[X] ≤ E[Y ].

(c) |E[X − Y ]| ≤ E[|X − Y |].

(d) If X and Y are independent then E[XY ] = E[X]E[Y ].

Proof. (a) We create a mutual refinement of the Ai and Bj by Cij = Ai∩Bj. Then αX+βY =∑
i,j(αxi + βyj)χCij . Therefore expected value is given by

E[αX + βY ] =
∑
i,j

(αxi + βyj)P (Cij) =
∑
i,j

(αxi + βyj)P (Ai ∩Bj)

= α
n∑
i=1

xiP (Ai) + β
m∑
j=1

yjP (Bj) = αE[X] + βE[Y ].

(b) If X(ω) ≤ Y (ω) for all ω ∈ S, then xi ≤ yj whenever Ai ∩Bj is nonempty and thus

E[X] =
∑
i,j

xiP (Ai ∩Bj) ≤
∑
i,j

yiP (Ai ∩Bj) = E[Y ].

(c) Using (b), we have E[−|X|] ≤ E[X] ≤ E[|X|] so |E[X]| ≤ E[|X|]. Moreover, linearity
from part (a) gives us |E[X − Y ]| ≤ E[|X − Y |].

(d) Note that XY =
∑

i,j xiyjχCij , so if Ai = [ω : X(ω) = xi] and Bj = [ω : Y (ω) = yj]
then P (Ai∩Bj) = P (Ai)P (Bj) by definition of independence. Thus E[XY ] = E[X]E[Y ].

Theorem 24.3.2 (Bounded Convergence). Suppose {Xn} is a sequence of simple random
variables that is uniformly bounded, i.e. there is some K > 0 such that |Xn(ω)| ≤ K for all
ω and n. If (Xn) converges pointwise a.e. to X, then limE[Xn] = E[X].

Proof. We know pointwise convergence a.e. implies convergence in measure, so (Xn)→P X.
Choose K large enough so that it bounds |X(ω)| as well as |Xn(ω)|, which is possible since X
takes on finitely many values. Then for any n, |Xn−X| ≤ 2K. If A = [ω : |Xn(ω)−X(ω)| ≥
ε] then for all ω,

|Xn(ω)−X(ω)| ≤ 2KχA(ω) + εχAC (ω) ≤ 2KχA(ω) + ε.

Then by properties of expected value, E[|Xn−X|] ≤ 2KP [ω : |Xn(ω)−X(ω)| ≥ ε]+ε. Since
(Xn) converges in measure to X, P [ω : |Xn(ω)−X(ω)| ≥ ε] −→ 0. Therefore E[|Xn−X|] < ε
for any arbitrary ε, which shows limE[|Xn −X|] = 0. Linearity implies the result.

Definition. For a simple random variable X, the variance of X is

Var[X] = E[(X − E[X])2] = E[X2]− E[X]2.

Proposition 24.3.3. (a) If X is a simple random variable and α, β ∈ R then αX + β is
a simple random variable with variance Var[αX + β] = α2 Var[X].
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(b) If X1, . . . , Xn are independent, simple random variables then

Var

[
n∑
i=1

Xi

]
=

n∑
i=1

Var[Xi].

Proof. (a) We have already seen that functions of simple random variables are simple random
variables, so by properties of expected value,

Var[αX + β] = E[((αX + β)− (αE[X] + β))2] = E[α2(X − E[X])2] = α2 Var[X].

(b) For each i, let mi = E[Xi]. Then by linearity, E [
∑n

i=1Xi] =
∑n

i=1 mi =: m and

E

( n∑
i=1

Xi −m

)2
 = E

( n∑
i=1

(Xi −mi)

)2


=
n∑
i=1

E[(Xi −mi)
2] + 2

∑
1≤i<j≤n

E[(Xi −mi)(Xj −mj)].

If the Xi are independent, each E[(Xi−mi)(Xj−mj)] splits into (E[Xi]−mi)(E[Xj]−mj) = 0
so the second sum vanishes. This implies the result.

Definition. A function ϕ : I → R is convex if for all 0 ≤ p ≤ 1 and x, y ∈ I,

ϕ(px+ (1− p)y) ≤ pϕ(x) + (1− p)ϕ(y).

Notice that a sufficient condition for convexity is that ϕ′′(x) ≥ 0 for all x ∈ I.

Theorem 24.3.4. Let X be a simple random variable with E[X] = m.

(1) (Chebyshev’s Inequality) For any α > 0, P [ω : |X(ω)| ≥ α] ≤ 1

α
E[|X|].

(2) (Markov’s Inequality) For any α > 0, P [ω : |X(ω)| ≥ α] ≤ 1

αk
E[|X|k].

(3) (Chebyshev-Bienaymé Inequality) For α > 0, P [ω : |X −m| ≥ α] ≤ 1

α2
Var[X].

(4) (Jensen’s Inequality) Suppose ϕ is a convex function on an interval containing the
range of X. Then ϕ(E[X]) ≤ E[ϕ(X)].

(5) (Hölder’s Inequality) Suppose p, q > 1 are numbers satisfying 1
p

+ 1
q

= 1. Then

E[|XY |] ≤ E[|X|p]1/p · E[|Y |q]1/q.

The p, q = 2 case of Hölder’s inequality is called Schwartz’s inequality:

E[|XY |] ≤ E[X2]1/2 · E[Y 2]1/2.

Moreover, setting p = β
α

, q = β
β−α for some 0 < α ≤ β, taking Y ≡ 1 and replacing X with

|X|α gives us Lyapounov’s inequality:

E[|X|α]1/α ≤ E[|X|β]1/β.
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24.4 Abstract Laws of Large Numbers

In this section we generalize the strong and weak laws of large numbers (Chapter 22) to a
more general setting involving independent, simple random variables.

Definition. A sequence X1, X2, . . . of simple random variables on a probability space (Ω,F , P )
is said to be identically distributed if their distributions are all the same. In the case that
the Xn are also independent, this is abbreviated i.i.d.

Theorem 24.4.1 (Strong Law). Suppose {Xn} is a sequence of i.i.d. simple random vari-
ables on (Ω,F , P ). For each n, set E[Xn] = m and Sn = X1 + . . .+Xn. Then

P

[
ω : lim

n→∞

1

n
Sn(ω) = m

]
= 1.

Proof. Without loss of generality, we may assume m = 0 by shifting all the Xn. Since they
are identically distributed, it makes sense to set E[Xn] = m for each n. First we show that[
ω : lim 1

n
Sn(ω) = 0

]
is an F -set so that we can define its probability. Note that

lim
n→∞

1

n
Sn = 0 ⇐⇒ for every m ∈ N there is an N ∈ N such that

for all n > N,

∣∣∣∣ 1nSn − 0

∣∣∣∣ < 1

m

⇐⇒

∣∣∣∣∣
n∑
k=1

Xk

∣∣∣∣∣ < n

m
.

Clearly
[
ω : |

∑n
k=1Xk(ω)| < n

m

]
∈ F and we can construct the desired set out of these:[

ω : lim
n→∞

1

n
Sn(ω) = 0

]
=

∞⋂
m=1

∞⋃
N=1

∞⋂
n=N+1

[
ω :

∣∣∣∣∣
n∑
k=1

Xk(ω)

∣∣∣∣∣ < n

m

]
.

We have shown that P
[
lim 1

n
Sn = 0

]
= 1 ⇐⇒ P

[
lim 1

n
Sn ≥ ε i.o.

]
= 0 for any arbitrary ε

so we will prove this equivalent condition. Denote the 2nd and 4th moments of each Xi by
E[X2

i ] = σ2 and E[X4
i ] = ξ4. Then E[S4

n] = nξ4 + 3n(n − 1)σ4 ≤ kn2 for some k (see the
table in Section 22.2 to see where these values come from). By Markov’s inequality,

P [|Sn| ≥ nε] ≤ k

n4ε4
E[|Sn|4] ≤ kn2

n4ε4
=

k

n2ε4
.

As n→∞, this approaches 0 so by the first Borel-Cantelli lemma, P [|Sn| ≥ nε i.o.] = 0. As
discussed above, this implies the result.

Example 24.4.2. Consider the Bernoulli trials

Xn =

{
0 with probability p

1 with probability 1− p.

392



24.4. Abstract Laws of Large Numbers Chapter 24. Simple Random Variables

It doesn’t matter on which subset of the reals the Xn are defined, since by Theorem 24.2.2,
there exists a sequence of independent simple random variables having the prescribed distri-
bution. Clearly E[X] = m, so by the Strong Law, 1

n
Sn → p with probability 1. Moreover,

since Bernoulli trials are independent, variance is given by σ = Var[Xn] = p(1− p).

The main limitation of the Strong Law is that we must have control over the 4th moments
of the Xi, via the i.i.d. condition. The Weak Law is weaker than the Strong Law in its
conclusion but it is useful when we only have control over lower moments.

Theorem 24.4.3 (Weak Law). Let {Xn}, m and Sn be defined as in the Strong Law. Then
for any ε > 0,

lim
n→∞

P

[
ω :

∣∣∣∣ 1nSn −m
∣∣∣∣ ≥ ε

]
= 0.

Proof. By Chebyshev-Bienaymé,

P

[
ω :

∣∣∣∣ 1nSn −m
∣∣∣∣ ≥ ε

]
≤ Var[Sn]

n2ε2

=
nVar[X]

n2ε2
by independence

−→ 0 as n→∞.

Hence the Weak Law is proved.

In general, Var[X] is proportional to the 2nd moment E[X2] which is easier to control
than higher moments such as E[X4].

Example 24.4.4. Recall the probability space Ωn = Sn, the set of permutations of n
symbols, equipped with the cycle completion variables:

Xnk =

{
1 if the kth position finishes a cycle

0 otherwise.

Then for any n, {Xn1, . . . , Xnn} are independent and P [Xnk = 1] = 1
n−k+1

=: mnk. Variance
in this case is σ2

nk = mnk(1−mnk) as with Bernoulli trials. Let Sn = Xn1 + . . .+Xnn so that
for a permutation ω ∈ Ωn, Sn(ω) represents the number of cycles of ω. Define Ln =

∑n
k=1

1
k
.

Then expected value and variance are calculated by

E[Sn] =
n∑
k=1

E[Xnk] =
n∑
k=1

1

n− k + 1
= Ln;

and Var[Sn] =
n∑
k=1

Var[Xnk] by independence

=
n∑
k=1

mnk(1−mnk) < mnk.
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So for any ε > 0,

P

[
ω :

∣∣∣∣Sn(ω)− Ln(ω)

Ln(ω)

∣∣∣∣ ≥ ε

]
= P [ω : |Sn(ω)− Ln(ω)| ≥ εLn(ω)]

≤ 1

L2
nε2

Var[Sn] by Chebyshev-Bienaymé

=
1

L2
nε

2
Ln =

1

Lnε2

but Ln diverges as n→∞, so this fraction approaches 0. Thus the conclusion of the Weak
Law holds and moreover we can see that Sn ∼ Ln ∼ log n. So there are approximately (in
a weak sense) log n cycles in an average permutation of n symbols. The Strong Law cannot
be applied in this case since Ωn is a different space for each n.
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24.5 Second Borel-Cantelli Lemma Revisited

The independence condition in the second Borel-Cantelli lemma (23.4.2) is sometimes too
restrictive. For example, recall simple random variables `n defined as the length of the run of
heads beginning on the nth coin flip in an infinite sequence of flips. The problem is that the
`n are not independent, but in some sense they are independent if the runs are far enough
apart. Although we cannot apply BC2, we will prove a weaker theorem that will apply to
the `n and other non-independent examples.

Let A1, A2, . . . ∈ F and for each n ∈ N, define Nn(ω) = χA1(ω) + . . . + χAn(ω). Then
Nn(ω) represents the number of occurrences of ω in the first n sets in the sequence {Ai}
and more importantly, [ω : ω ∈ An i.o.] = [ω : supNn(ω) = +∞]. Suppose the An are
independent and pn = P (An); set mn = p1 + . . .+ pn. Then

E[Nn] = mn and Var[Nn] =
n∑
k=1

pk(1− pk) < mn.

If x < mn then

P [ω : Nn(ω) ≤ x] ≤ P [ω : |Nn(ω)−mn| ≥ |x−mn|]

≤ Var[Nn]

|x−mn|2
<

mn

(mn − x)2
.

If
∑
pk diverges then mn →∞ so for every x ∈ R, P [ω : Nn(ω) ≤ x] −→ 0. Moreover, since

P [ω : supNn(ω) ≤ x] ≤ P [ω : Nn(ω) ≤ x] for all n and the right term goes to 0, we conclude

P [ω : supNn(ω) <∞] = 0 =⇒ P [ω : ω ∈ An i.o.] = 1.

This is an alternate way to view the second Borel-Cantelli lemma. Notice that the conclusion

still holds, even if the An are not independent, as long as
Var[Nn]

(mn − x)2
−→ 0. It turns out that

this happens when

lim inf
n→∞

∑
i,j≤n P (Ai ∩ Aj)(∑

k≤n P (Ak)
)2 = 1,

as we will see in the proof of the next theorem. In general, this liminf is greater than or
equal to 1, so the variance condition will hold as long as the liminf is less than or equal to 1.

The following generalizes the second Borel-Cantelli lemma.

Theorem 24.5.1. Let {An} be a sequence of (not-necessarily) independent events and sup-
pose

∑∞
n=1 P (An) diverges and

lim inf
n→∞

∑
i,j≤n P (Ai ∩ Aj)(∑

k≤n P (Ak)
)2 ≤ 1.

Then P [ω ∈ An i.o.] = 1.
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Proof. As above, let Nn = χA1(ω) + . . .+ χAn(ω). Set

θn =

∑
i,j≤n P (Ai ∩ Aj)(∑

k≤n P (Ak)
)2

so that the hypothesis reads lim inf θn ≤ 1. By the work in the preceding paragraph, it is
enough to show that

Var[Nn]

(mn − x)2
−→ 0 as n→∞.

First, we estimate variance by

Var[Nn] = E[N2
n]− E[Nn]2

=

(∑
i,j≤n

E[χAiχAj ]

)
−m2

n

=

(∑
i,j≤n

P (Ai ∩ Aj)

)
−m2

n

=

∑
i,j≤n P (Ai ∩ Aj)(∑

k≤n P (Ak)
)2

(∑
k≤n

P (Ak)

)2

−

(∑
k≤n

P (Ak

)2

= (θn − 1)

(∑
k≤n

P (Ak)

)2

= (θn − 1)m2
n.

For a fixed x ∈ R,

P [ω : Nn(ω) ≤ x] ≤ Var[Nn]

(mn − x)2
≤ (θn − 1)m2

n

(mn − x)2

and as n→∞, mn →∞, so if lim inf θn ≤ 1 then the term on the right approaches 0. This
implies P [ω : Nn(ω)→∞] = 1, i.e. P [An i.o.] = 1.

If the An are independent, it turns out that

θn = 1 +

∑
k≤n(pk − p2

k)(∑
k≤n pk

)2 .

This ratio of series goes to 0, so lim inf θn = 1 which implies the original BC2.

Example 24.5.2. Although the sequence {`n} of run-length simple random variables is not
independent, we can use this generalized BC2 to prove the following result.

Claim. P [ω : `n(ω) ≥ rn i.o.] = 1 if and only if
∑∞

n=1 2−rn diverges.

Proof. As before, without loss of generality we can assume the rn are integers. Define
An = [ω : `n(ω) ≥ rn] = [dn(ω) = dn+1(ω) = . . . = dn+rn−1(ω) = 0]. As previously noted, if
j + rj ≤ k then Aj and Ak are independent so P (Aj ∩ Ak) = P (Aj)P (Ak) in that case. On

396



24.5. Second Borel-Cantelli Lemma Revisited Chapter 24. Simple Random Variables

the other hand, if j < k < j + rj then P (Aj ∩ Ak) ≤ P [dj = dj+1 = . . . = dk−1 = 0 | Ak].
These events are now independent, so

P (Aj ∩ Ak) ≤ P [dj = dj+1 = . . . = dk−1 = 0]P (Ak) =
1

2k−j
P (Ak).

Putting all the cases together, we have∑
j,k≤n

P (Aj ∩ Ak) ≤
∑
k≤n

P (Ak) + 2
∑
j<k≤n
j+rj<k

P (Aj)P (Ak) + 2
∑

j<k<j+rj

1

2k−j
P (Ak)

< 3
∑
k≤n

P (Ak) +

(∑
k≤n

P (Ak)

)2

since
∑ 1

2k−j
< 1.

Therefore if
∑∞

n=1 P (An) =
∑∞

n=1 2−rn diverges, we have

θn =
3
∑

k≤n P (Ak) +
(∑

k≤n P (Ak)
)2(∑

k≤n P (Ak)
)2 −→ 1.

So by Theorem 24.5.1 we get the desired conclusion, i.e. P [ω : `n(ω) ≥ rn i.o.] = 1. On the
other hand, the first Borel-Cantelli lemma applies even in the non-independent case to give
us the converse. Hence P [ω : `n(ω) ≥ rn i.o.] = 1 ⇐⇒

∑
2−rn diverges.
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24.6 Bernstein’s Theorem

Definition. Suppose f is a real-valued function on [0, 1]. The nth Bernstein polynomial
for f is defined by

Bn(x) =
n∑
k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k.

Theorem 24.6.1 (Bernstein). If f is continuous on [0, 1] then the sequence (Bn) converges
to f uniformly on [0, 1].

Notice that Bernstein’s Theorem is just a restatement of the Weierstrass Approximation
Theorem. In functional analysis we typically prove Weierstrass’s theorem using function
convolution. Here, we instead have defined an interpolation of f for each n. We will explicitly
prove that the Bn converge to f uniformly.

Proof. Since f is continuous on [0, 1], f is bounded and uniformly continuous. Set M =
sup
x∈[0,1]

|f(x)| and δ(ε) = sup |f(x) − f(y)| over all x, y ∈ [0, 1] such that |x − y| < ε. This

value δ(ε) is sometimes called the modulus of continuity of f . We will show that

sup
x∈[0,1]

|f(x)−Bn(x)| ≤ δ(ε) +
2M

nε2

which will imply the result since if ε = n−1/3, sup |f(x) − Bn(x)| ≤ δ(n−1/3) + 2M
n1/3 which

approaches 0 as n→∞.
Fix n ∈ N, x ∈ [0, 1] and let X1, X2, . . . be simple random variables such that for each

i, P [Xi = 1] = x and P [Xi = 0] = 1 − x. Set Sn = X1 + . . . + Xn. Then for any
k, P [Sn = k] =

(
n
k

)
xk(1 − x)n−k so the probabilities are the coefficients in the Bernstein

polynomials. This implies E[f(Sn)] =
n∑
k=0

f(k)P [Sn = k] so

E

[
f

(
Sn
n

)]
=

n∑
k=0

f

(
k

n

)
P [Sn = k]

=
n∑
k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k = Bn(x).

This implies |f(x) − Bn(x)| =
∣∣f(x)− E

[
f
(
Sn
n

)]∣∣ ≤ E
[∣∣f(x)− f

(
Sn
n

)∣∣] so we will esti-
mate E

[∣∣f(x)− f
(
Sn
n

)∣∣]. Note that when
∣∣Sn
n
− x
∣∣ < ε,

∣∣f (Sn
n

)
− f(x)

∣∣ < δ(ε), and when∣∣Sn
n
− x
∣∣ ≥ ε,

∣∣f (Sn
n

)
− f(x)

∣∣ < 2M . Then

E
[∣∣f(x)− f

(
Sn
n

)∣∣] ≤ δ(ε)P
[∣∣Sn

n
− x
∣∣ < ε

]
+ 2M · P

[∣∣Sn
n
− x
∣∣ ≥ ε

]
≤ δ(ε) + 2M · P

[∣∣Sn
n
−m

∣∣ ≥ ε
]

where m = E
[
Sn
n

]
= δ(ε) + 2M · P [|Sn − nx| ≥ nε]

≤ δ(ε) + 2M · Var[Sn]

n2ε2
by Chebyshev’s inequality.
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By independence,

Var[Sn] =
n∑
k=1

Var[Xk] = nVar[Xk] = nx(1− x) ≤ n,

so our estimate for the above expected value is

E
[∣∣f(x)− f

(
Sn
n

)∣∣] ≤ δ(ε) +
2M

nε2
.

Finally, apply the comments from above and the fact that |f(x)−Bn(x)| ≤ E
[∣∣f(x)− f

(
Sn
n

)∣∣]
for all x ∈ [0, 1] to finish the proof.
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24.7 Gambling

In this section, our goal is to convince the reader that, in simple terms, gambling is a bad idea.
We will show that, under some fallacious assumptions often made by gamblers, the standard
casino game roulette is heavily biased in the casino’s favor. The techniques developed in this
section are easily adapted to any game involving a ‘unit bet’, that is, a bet of a fixed sum
which is either doubled with a win or lost with a loss.

Suppose {Xi}∞i=1 is an independent sequence of simple random variables on a probability
space (Ω,F , P ) where each variable is defined by

Xi(ω) =

{
1 with probability p

−1 with probability q = 1− p.

As usual, set Sn = X1 + . . .+Xn and S0 = 0 (i.e. you can’t win if you don’t play).

Definition. If p > 1
2
, the game is said to be favorable; if p = 1

2
, it is a fair game; and if

p < 1
2
, the game is said to be unfavorable.

Example 24.7.1. The standard casino setup for the game of roulette is as follows. A wheel
with 38 slots is spun and a ball is dropped in so that it lands in one of the slots by the
time the wheel stops spinning. There are 18 red slots and 18 black slots which together are
labelled with the numbers 1 through 36. In addition, there are two green slots labelled 0 and
00. Set p = 18

38
and q = 1− p = 20

38
. We will assume the player places a $1 bet on a single red

or black number, with a 2:1 payout. The odds against the player winning on a single spin
are ρ = q

p
= 10

9
.

Suppose the player starts with a capital of a dollars and plays $1 per spin (or per trial
for a general game). She plays until reaching a fixed goal of c dollars (success) or until she
loses her money, i.e. reaches 0 dollars (ruin). After n plays, the player has a total of a+ Sn
dollars. Set

Aa,n = [ω : a+ Sn(ω) = c] ∩ [ω : 0 < a+ Si(ω) < c for all i = 1, . . . , n− 1]

Ba,n = [ω : a+ Sn(ω) = 0] ∩ [ω : 0 < a+ Si(ω) < c for all i = 1, . . . , n− 1]

and sc(a) = the probability of success = P

(
∞⋃
n=1

Aa,n

)
=
∞∑
n=1

P (Aa,n).

Fixing c and allowing a to vary, we want to study the optimal starting capital for achieving
success. Later we will investigate other strategies for success. By convention, set Aa,0 = ∅
and Ac,0 = Ω so that sc(0) = 0 and sc(c) = 1. Given a, sc(a) = psc(a+ 1) + qsc(a− 1) which
is really a second order boundary value problem:

sc(a) = psc(a+ 1) + qsc(a− 1)

sc(0) = 0

sc(c) = 1.
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Let ρ = q
p
. It turns out (see Billingsley) that the solutions to this boundary value problem

are of the form

sc(a) =

{
A+Bρa if ρ 6= 1

A+Ba if ρ = 1.

Suppose ρ 6= 1, i.e. the game is unfavorable. Given the first boundary condition, we see that
0 = A+B =⇒ A = −B, so the second boundary condition gives us

1 = A+Bρc = −B +Bρc =⇒ B =
1

ρc − 1
.

Thus the solution for an unfavorable game is

sc(a) =
ρa − 1

ρc − 1
.

On the other hand, if the game is favorable (ρ = 1), then A = 0 and A + Bc = 1, implying
B = 1

c
. This gives the solution

sc(a) =
a

c
.

Examples.

1 Suppose the player starts with a = $900 and has a goal of reaching c = $1000. In the
fair game, sc(a) = .9 which is reasonably high. However, when ρ = 10

9
as in roulette,

sc(a) = .00003, an extremely low probability.

2 Things are worse when c = $20, 000. In the fair case, sc(a) = .005 which is unsurpris-
ingly low. But in the unfavorable case, sc(a) ≈ 3× 10−911.

Remark. Ruin is symmetric with success, i.e. the boundary value problem

rc(a) = prc(a+ 1) + qrc(a− 1)

rc(0) = 1

rc(c) = 0

has the same solution in terms of ruin:

rc(a) =


ρc−1 − 1

ρc − 1
if ρ 6= 1

c− a
c

if ρ = 1.

Notice that for any choices of c and a, rc(a) + sc(s) = 1, to the probability of the game
ending (in success or ruin) is always 1.

What if our player had infinite capital? What are the odds of ever achieving the goal?
Suppose a, b > 0 and define Ha,b to be the event of reaching +b before −a. For any finite
capital a, this can be written

Ha,b =
∞⋃
n=1

(
[ω : Sn(ω) = b] ∩

(
n−1⋂
k=1

[ω : −a < Sk(ω) < b]

))
.
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We can write the probability of one of these events as P (Ha,b) = sa+b(a). Also set Hb to be
the event of ever gaining +b, that is the event of success with infinite capital:

Hb =
∞⋃
a=1

Ha,b.

Notice that for a fixed b, {Ha,b} is a monotone increasing sequence that converges to Hb so
by continuity from below (Proposition 17.2.1),

P (Hb) = lim
a→∞

P (Ha,b) = lim
a→∞

sa+b(a)

=


lim
a→∞

a

a+ b
if ρ = 1

lim
a→∞

1− ρa

1− ρa+b
if ρ 6= 1

=

{
1 if ρ ≤ 1

ρ−b if ρ > 1.

Examples. Use the same setup as before.

1 If c = $1000 and ρ = 1 then lim sa+c(a) = 1, but if ρ = 10
9

then lim sa+c(a) = .00003
— the same as before.

2 If c = $20, 000 and ρ = 1 then lim sa+c(a) = 1, but on the other hand when ρ = 10
9

,
lim sa+c(a) ≈ 3× 10−911. This shows that having infinite capital helps in the fair game
(this is to be expected) but has no effect on the unfavorable game.

What if we have some sort of ‘strategy’ for when to place our bets? We will see that this
does not change the unfavorable game’s outcome either.

Suppose {Xn} are i.i.d. simple random variables and define an additional random variable

Bn =

{
1 if we bet on the nth trial

0 if we don’t bet on the nth trial.

The way Bn is defined can only depend on X1, . . . , Xn−1, i.e. Bn cannot ‘predict the future’.
In other words, Bn is measurable with respect to Fn−1 = σ(X1, . . . , Xn−1). Recall that this
means Bn = f(X1, . . . , Xn−1) for a function f . Set Nn to be the time the nth bet is placed –
notice Nn is not simple random. We will assume P [Bn = 1 i.o.] = 1 so that the game always
terminates.

Definition. Given {Xn} a sequence of i.i.d. simple random variables, a choice of Bn that
satisfies the above conditions is called a selection scheme.

Theorem 24.7.2. The sequence {Yn}, where Yn = XNn, is independent with P [Yn = 1] = p
and P [Yn = −1] = q. In other words, selection schemes do not change the outcome of a
game.
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Proof omitted.

Set F0 = a, the ‘initial fortune’ of the player and for each n, let Fn be her/his fortune
after the nth trial. We next define a way of altering the player’s wagers for each trial in
order to potentially optimize the odds of winning.

Definition. Define the random variable Wn to represent the player’s wager (in dollars, e.g.)
on the nth trial of a game. If Wn = gn(F0, X1, . . . , Xn−1), that is, Wn ∈ σ(X1, . . . , Xn−1)
and Wn depends on initial fortune, and in addition Wn ≥ 0 for all n, then the choice of Wn

is called a betting system.

Our player’s fortune can thus be written Fn = Fn−1 +WnXn.

Example 24.7.3. If X1 = . . . = Xn−1 = −1 then an example of a betting system is the
double-or-nothing approach, Wn = 2n−1 for all n ≥ 1.

As we have it defined, Wn is not a simple random variable since it depends on F0, which
can take on any finite positive value. However, fixing F0 makes Wn a simple random variable.
Also notice that Wn is independent of Xn, so we can write

E[WnXn] = E[Wn]E[Xn] = (p− q)E[Wn].

If p = q then E[Fn] = E[Fn−1 + WnXn] = E[Fn−1] + E[Wn] · 0 = E[Fn−1]. In other words,
if the game is fair then E[Fn] = F0 for every n ≥ 1. If the game is unfavorable, then
E[Fn] ≤ E[Fn−1] and so E[Fn] ≤ F0 for all n. This shows that a betting scheme cannot
make an unfavorable game fair (or favorable) but it can increase one’s odds.

Definition. Suppose τ(F0, ω) is a function assigning values in N ∪ {0} for all ω ∈ Ω and
F0 ≥ 0 by τ = n when the player bets on the first n games and then stops. If for all n,
[ω : τ(F0, ω) = n] ∈ σ(X1, . . . , Xn) and τ is finite with probability 1, then τ is called a
stopping time.

The dependence condition requires that τ does not depend on future information, only
the previous trials of the game. The finite with probability 1 condition allows for some set
of measure 0 on which τ has infinite values. Therefore τ is not a simple random variable
because a game can be arbitrarily long.

Definition. A gambling policy, denoted π, is a betting system Wn for a particular initial
capital F0 together with a stopping time τ .

Example 24.7.4. A selection scheme is a betting system defined by Wn = Bn ∈ {0, 1}.
A stopping time for this Wn is τ = n where n is the first loss. To see this, note that
P [ω : τ(ω) > n] = pn and since 0 < p < 1 (assuming an unfavorable game),

P [ω : τ(ω) is not finite] = P

(
∞⋂
n=1

[ω : τ(ω) > n]

)
= lim

n→∞
P [ω : τ(ω) > n] = lim

n→∞
pn = 0.

Thus τ is finite on a set of probability 1. Now consider

[ω : τ(ω) = n] =

(
n−1⋂
k=1

[ω : Xk(ω) = 1]

)
∩ [ω : Xn(ω) = −1]
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which lies in Fn := σ(X1, . . . , Xn). Hence τ is a stopping time so a selection scheme is a
gambling policy. As Theorem 24.7.2 above shows, a selection scheme is an example of a
policy that does not increase one’s odds of winning.

Suppose π = (F0,Wn, τ) is a gambling policy. Define

F ∗n =

{
Fn n ≤ τ

Fτ n > τ
and W ∗

n = χ[ω:n≤τ(ω)]Wn.

Then F ∗n = F ∗n−1 + W ∗
nXn so we can embed the stopping time into our betting system.

Explicitly, this system tells the player to bet Wn = 0 when n is later than the stopping
time. It still follows that E[Fn] = E[Fn−1] = . . . = F0 for any n in the fair scenario and
E[Fn] ≤ E[Fn−1] ≤ F0 in the unfavorable scenario.

In a finite capital scenario, stopping times cannot make an unfavorable game profitable.
However, things are different in the infinite capital world. Assuming the game terminates,
F ∗n converges to Fτ with probability 1 so by the bounded convergence theorem (24.3.2),
limE[Fn] = E[Fτ ] if the F ∗n are uniformly bounded. In this case, E[Fτ ] = F0 if the game is
fair and E[Fτ ] ≤ F0 if the game is unfavorable. If the F ∗n are not uniformly bounded, this
means either the gambler or casino started with access to infinite capital, so the uniform
bound condition is realistic.

Suppose p ≤ 1
2

and F0 = a. If the player stops when either Fn = c or Fn = 0 then

sc(a) < (1− sc)(0) + sc(c) = a
c
.

On the other hand, if the player plays until Fn = c, possibly allowing for Fn < 0, then Fτ =
c > a =⇒ E[Fτ ] > F0 — wait what? There is a possibility of raising the expected fortune
above that of starting levels even in an unfair game! Of course this is only possible with
access to infinite capital, so in the real world the probabilities behave closer to expectation.

There is a strategy that optimizes winning conditions. First, rescale the fortune scale so
that Fn ∈ [0, 1] for n = 0, 1, 2, . . . and set τ to be the stopping time when one of 0 or 1 is
reached for the first time. The gambling policy πb with this stopping time and

Wn =

{
Fn−1 if 0 ≤ Fn−1 ≤ 1

2

1− Fn−1 if 1
2
≤ Fn−1 ≤ 1

is called bold play. Informally, it says that if the player can’t reach her goal on the next
trial, she wagers everything in a ‘double-or-nothing’ strategy. If she can reach her goal, she
wagers exactly the amount that would guarantee her to have fortune 1 with a win. To see
that πb is a valid policy, we just need to check that τ is a stopping time. It’s clear that τ
only depends on X1, . . . , Xn so it suffices to check the finite property. Consider

P [ω : τ(ω) > n | τ(ω) > n− 1] = P [ω : Fn(ω) = 0, 1 | Fn−1ω) 6= 0, 1].

If Fn−1 ≤ 1
2
, the outcomes can be split into

Fn = Fn−1 + Fn−1 = 2Fn−1 if Xn = 1; happens with probability p

Fn = Fn−1 − Fn−1 = 0 if Xn = −1; happens with probability q.
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On the other hand, if Fn−1 ≥ 1
2

then

Fn = Fn−1 + (1− Fn−1) = 1 if Xn = 1; happens with probability p

Fn = Fn−1 − (1− Fn−1) = 2Fn−1 − 1 if Xn = −1; happens with probability q.

The game terminates in the second and third cases, so the conditional probability is

P [ω : τ(ω) > n | τ(ω) > n− 1] ≤ max{p, q}.

Setting m = max{p, q}, we have P [ω : τ(ω) > n] ≤ mn which tends to 0 as n →∞. Hence
τ is a valid stopping time.

Theorem 24.7.5 (Dubins-Savage). Bold play is optimal in the unfavorable case.

Proof sketch. Assume Fτ = 0 or 1 so that τ is a simple random variable. Write Qπ(x) =
P [Fτ = 1 | F0 = x] for any gambling policy π and for each x ∈ [0, 1]. Also set Q(x) = Qπb(x)
for bold play. One can check that for any π, Qπ(0) = 0, Qπ(1) = 1 and 0 ≤ Qπ(x) ≤ 1. The
theorem then reduces to proving that for every π on a game with p ≤ 1

2
, Qπ(x) ≤ Q(x). The

bold play function has the following properties:

� Q is increasing on [0, 1].

� Q is a continuous function of x.

� Q(x) =

{
pQ(2x) 0 ≤ x ≤ 1

2

p+ qQ(2x− 1) 1
2
≤ x ≤ 1

These can be used to show Q(x) ≥ pQ(x+ t)+qQ(x− t) whenever 0 ≤ x− t < x < x+ t ≤ 1
which implies the result.

Remark. This optimal policy is not unique; however the Dubins-Savage theorem shows that
bold play is one optimal policy. It is also known that the optimal probability of success sc(a)
is computable.

Examples.

1 Set a = $900 and c = $1000 as before. In the fair case, sc(a) = .9 and for any policy
π, Qπ(x) = x for every x. In the roulette odds, i.e. p = 10

9
, recall that unit stakes give

us sc(a) = .00003. However, bold play yields substantially better odds: Q(.9) = .88.

2 Set a = $100 and c = $20, 000. This generates the following probabilities of success:

sc(a) =


.005 fair game

3× 10−911 roulette odds

.003 bold play.

Notice that in both examples, bold play gives us odds that are on the same order of
magnitude as the fair game odds.
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24.8 Markov Chains

Definition. Let S be a countable set and consider a doubly-indexed sequence {pij}i,j∈S such
that pij ≥ 0 and for each i,

∑
j∈S pij = 1. A Markov chain on a probability space (Ω,F , P )

is a sequence {Xn}∞n=0 of random variables on (Ω,F , P ) such that

(i) For each n, Xn(Ω) ⊂ S.

(ii) For every subset {i0, i1, . . . , in} ⊂ S such that P [X0 = i0, . . . , Xn = in] > 0,

P [Xn+1 = j | X0 = i0, . . . , Xn = in] = P [Xn+1 = j | Xn = in] = pinj.

The pij are called the transition probabilities for the Markov chain, each Xn is called the
nth state and S is referred to as the state space.

The Markov property (ii) implies independence of history, that is, each state only depends
on the previous state and ‘forgets’ what has happened before that. Also, property (ii) also
implies that the states are autonomous, i.e. they don’t depend on n – if n is thought of
as a time variable, then the outcome has the same dependence on the previous outcome no
matter the current time.

We will denote the initial probabilities by P [X0 = i] = αi for each i ∈ S. Notice that∑
i∈S αi = 1 and αi ≥ 0 for every i ∈ S. The transition probabilities pij correspond to a

matrix P = (pij) called a transition matrix. The conditions on the pij mean that the
transition matrix P = (pij) is stochastic.

Examples.

1 Markov chains are useful for describing change in physical models. Consider the fol-
lowing (oversimplified) representation of diffusion. Suppose we have 2 buckets, a left
and a right one, which are each filled with r balls that are either black or white. We
know that there are k white balls, and therefore r − k black balls, in the left bucket
and k black balls, and therefore r − k white balls, in the right bucket.

r balls
k white

r − k black

r balls
r − k white
k black

Consider the state space S = {0, 1, . . . , r} where a state k ∈ S corresponds to there
being k white balls in the left bucket. The example above is at state k = 3. The
Markov process will be to draw one ball from the left bucket and one ball from the
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right bucket simultaneously, and to swap them and place each ball in the opposite
bucket. We will compute the transition probabilities. Given Xn = k, the possible
states for Xn+1 are:

left right probability Xn+1

white white

(
k

r

)(
r − k
r

)
k

white black

(
k

r

)(
k

r

)
k − 1

black white

(
r − k
r

)(
r − k
r

)
k + 1

black black

(
r − k
r

)(
k

r

)
k

Thus the transition probabilities are given by

pk(k+1) =
(r − k)2

r2

pkk =
2k(r − k)

r2

pk(k−1) =
k2

r2

pkj = 0 if |j − k| ≥ 2.

Notice that for each k, pkj ≥ 0 for all j and
∑

j pkj = 1.

2 Random walks are another classic example of Markov chains. Suppose a person,
dubbed the ‘walker’, is standing on the number line consisting of integer points. First
consider the finite state space S = {0, 1, . . . , r} and assume the walker starts at one of
the points in S. We also assume in the finite random walk scenario that the endpoints
are absorbing, i.e. if Xn = 0 or r then Xn+j = Xn for all j ≥ 1. At time n, the walker
moves to the right with probability p and moves left with probability q = 1− p. Thus
each Xn is a simple random variable. The transition probabilities are as follows:

pij =



p if j = i+ 1, 0 < i < r

q if j = i− 1, 0 < i < r

0 if |j − i| ≥ 2, 0 < i < r

1 if i = j = 0 or r

0 if i 6= j = 0 or r.

We typically assume αi = 1 for some i ∈ S and αj = 0 for all j 6= i. That is, there is
a positive probability that the walker starts on one of the endpoints.

3 Most of the time we consider an unrestricted random walk, where the state space is
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S = Z. Here the transition probabilities are

pij =


p if j = i+ 1

q if j = i− 1

0 otherwise.

If p = q, the random walk is said to be symmetric. In the symmetric case, the
probability is 1 that the walker returns to her starting point.

4 For higher dimensional random walks, the state space is S = Zk, k ≥ 2. Each point
y ∈ Zk has 2k ‘neighbors’ so the notation would be pretty ugly to write down explicitly.
Things are even worse if the probabilities of the walker moving to a particular neighbor
are not uniform, so let’s assume the random walk is symmetric. Then

pyx =

{
1
2k

if x is a neighbor of y

0 otherwise.

It turns out that for k = 2, the probability that the walker returns to her starting
location is still 1, but for any k > 2, the probability is 0. This suggests something
subtle about the geometry of random walks. For this reason, random walks are an
active area of modern research.

5 The following is known as either the Princess Problem or the Secretary Problem (in the
latter, the princess is replaced by a businessperson trying to hire a secretary). Suppose
a princess is trying to find a suitor. The rules are: the suitors appear in random order
(e.g. they do not appear in order of increasing wealth or attractiveness); they appear
one at a time; after meeting each suitor, the princess must decide whether to accept the
suitor, at which point the process ends, or reject the suitor and continue the process.
We also assume that the princess has some way of determining how the current suitor
relates to every previous suitor in terms of desirability. If a suitor is more desirable
than every previous suitor, we will say this suitor is dominant.

Let S1, . . . , Sr be the suitors in the order they appear, so that S = {S1, . . . , Sr} is the
state space. Set X1 = 1 and for each n ≥ 2, set Xn to be the position of the nth
dominant suitor, or r + 1 if the last dominant suitor has already occurred.

For example, suppose S = {S1, S2, S3, S4, S5, S6} and these are ranked in the order
S3 < S6 < S2 < S1 < S4. The dominant suitors are S1 (which will always occur) and
S4, so X1 = S1, X2 = S4 and X3 = X4 = . . . = r + 1 = 7.

In general,

P [Sk is dominant] =
(k − 1)!

k!
=

1

k

P [Sj is the next dominant suitor] =
(j − 2)!

j!
=

1

j(j − 1)
if j > i and 0 otherwise

P [Xn+1 = r + 1 | Xn = k] =
(r−1)!
r!
1
k

=
k

r
.
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Thus the transition probabilities are

pkj =



k

j(j − 1)
if k < j ≤ r

0 if j ≤ k < r
k
r

if j = r + 1

1 if j = i = r

0 otherwise.

The princess’ strategy will be to pick a dominant suitor according to some stopping
time τ . If she stops at Xτ then we want to know the probability that she picked the
overall best suitor; this is expressed by f(Xτ ) where f(k) = k

r
. Given r the number

of suitors, we also want to compute E[f(Xτ )] for different choices of τ but first we
need to learn about expected values for Markov chains. We will return to the Princess
Problem.

The Markov condition of independence of history allows us to calculate higher order
transitions by stepping through one state at a time:

P [X0 = i0, X1 = i1, . . . , Xn = in] = αi0pi0i1pi1i2 · · · pin−1in

and in general,

P [Xm+t = jt, t = 0, . . . , n | Xs = is for 0 ≤ s ≤ m] = pimj1pj1j2 · · · pjn−1jn .

We will denote a transition of degree n by p
(n)
ij . These can be written

p
(n)
ij = P [Xm+n = j | Xm = i] =

∑
k1,...,kn−1∈S

pik1pk1k2 · · · pkn−1j.

If S is a finite state space then the transition matrix is (p
(n)
ij ) = P n where P = (pij). Notice

that P0 = I and p
(0)
ij = δij, the Kronecker delta. If S is countably infinite, the transition

probabilities correspond to an infinite matrix which really lives in a Hilbert space.

Theorem 24.8.1. Suppose (pij) is a doubly-indexed sequence of nonnegative real numbers
such that for all i,

∑
j pij = 1 and suppose αi ≥ 0 satisfy

∑
i αi = 1. Then there exists

a probability space (Ω,F , P ) and a Markov chain {Xn}∞n=0 on (Ω,F , P ) with the pij as its
transition probabilities and the αi as its initial probabilities.

Proof sketch. Let Ω = (0, 1]; F = B, the Borel σ-field; and P = λ, the Lebesgue measure
on B. First we want X0 to equal i with probability αi for each i. By Theorem 24.2.2, this
is possible in theory but we want to explicitly construct the random variable X0 so that
we may continue the process in the next steps. Construct a collection of intervals I

(0)
i with

length αi for each i by the following process: set I
(0)
1 = (0, α1], I

(0)
2 = (α1, α1 + α2], etc. It is

evident that X0 satisfies the desired properties. Next, we want X1 to satisfy

P [X1 = j,X0 = i] = P [X0 = i]P [X1 = j | X0 = i].
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Subdivide each I
(0)
i into I

(1)
ij by a similar process as above, so that each I

(0)
ij has length αipij.

Repeating this process of subdivision constructs a collection of intervals I
(n)
i0i1···in with length

αi0pi0i1 · · · pin−1in . Finally, set

Xn(ω) =

i if ω ∈
⋃

i0,...,in−1

I
(n)
i0i1···in−1i

0 otherwise.

By construction, {Xn} is a Markov chain with the given initial and transition probabilities.
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24.9 Transience and Persistence

Let {Xn}∞n=0 be a Markov chain. First, let’s set up some notation. If a probability is
conditioned on X0 = i, we will denote this by Pi. Define

f
(n)
ij = Pi[X1 6= j,X2 6= j, . . . , Xn−1 6= j,Xn = j]

which represents the probability that the first occurrence of state j is at time n, given X0 = i.

Also set fij = Pi

(
∞⋃
n=1

[Xn = j]

)
=
∞∑
n=1

f
(n)
ij .

Definition. For a Markov chain {Xn}∞n=0 on state space S, a state i is persistent if fij = 1
and transient if fij < 1.

Suppose n1 < n2 < . . . < nk and consider

Pi[X1 6= j,X2 6= j, . . . , Xn1 = j, . . . , Xnk = j] = f
(n1)
ij f

(n2−n1)
jj · · · f (nk−nk−1)

jj .

Then

Pi[Xn = j at least k times] ≥
∑

n1,...,nk

f
(n1)
ij f

(n2−n1)
jj · · · f (nk−nk−1)

jj

= fijfjj · · · fjj = fijf
k−1
jj .

Therefore

Pi[Xn = j i.o.] =

{
0 if fjj < 1

1 if fjj = 1.

Theorem 24.9.1. A state i is transient ⇐⇒ Pi[Xn = i i.o.] = 0 ⇐⇒
∑

n p
(n)
ii converges.

Similarly, a state i is persistent ⇐⇒ Pi[Xn = i i.o.] = 1

Proof. By the first Borel-Cantelli lemma, if
∑

n p
(n)
ij < ∞ then Pi[Xn = i i.o.] = 0. Based

on the calculation above, fii < 1 so by definition i is transient. This proves
∑

n p
(n)
ii <

∞ =⇒ Pi[Xn = i i.o.] = 0 =⇒ i transient. To close the logic loop, we must show

fii < 1 =⇒
∑

n p
(n)
ii <∞. For any i, j, consider

p
(n)
ij = Pi[Xn = j]

=
n−1∑
s=0

Pi[X1 6= j, . . . , Xn−s−1 6= j,Xn−s = j,Xn = j]

=
n−1∑
s=0

Pi[X1 6= j, . . . , Xn−s−1 6= j,Xn−s = j]Pj[Xs = j] by autonomy

=
n−1∑
s=0

f
(n−s)
ij p

(s)
jj .
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Next, we compute the sum of the p
(n)
ii :

n∑
t=1

p
(t)
ii =

n∑
t=1

t−1∑
s=0

f
(t−s)
ii p

(s)
ii

=
n−1∑
s=0

p
(s)
ii

n∑
t=s+1

f
(t−s)
ii switching order of summation

≤
n−1∑
s=0

p
(s)
ii fii ≤

n∑
s=0

p
(s)
ii fii

=
n∑
t=1

p
(t)
ii fii + fii since p

(0)
ii = 1 by a previous calculation.

Rearranging this gives us (1− fii)
n∑
t=1

p
(t)
ii ≤ fii so if 0 < fii < 1,

n∑
t=1

p
(t)
ii ≤

fii
1− fii

=⇒
∞∑
t=1

p
(t)
ii ≤

fii
1− fii

and hence the sum converges. The statement for persistence is proven in a similar fashion.

Example 24.9.2. We will prove Pólya’s Theorem for symmetric k-dimensional random
walks, which we state below. First, in order to employ Theorem 24.9.1 we want to know
if
∑

n an converges or not. If k = 1 then the only way to return to one’s starting position
is after an even number of moves, so a2n+1 = 0 for all n. On the other hand, if the walker
returns to the start after 2n moves then she had to move left an equal number of times as
she moved right. This means a2n =

(
2n
n

)
2−2n. A well-known result called Stirling’s Formula

says that

n! ∼
√

2πn
(n
e

)n
.

Using this on a2n, we have

a2n =
(2n)!

(n!)222n
=

√
4πn

(
2n
e

)2n(√
2πn

(
n
e

)n)2
22n

=
2
√
πn

2πn

22nn2n

22nn2n

1
e2n

1
e2n

=
1√
πn

.

Then clearly
∑

n an diverges (e.g. by a comparison test) so Theorem 24.9.1 tells us that each
state in the state space is persistent.

Next, suppose k = 2. By similar logic as above,

a2n =
n∑
u=0

(2n)!

u!u!(n− u)!(n− u)!
4−2n

and another application of Stirling’s Formula yields

a2n ∼
1

πn
.
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So
∑

n an diverges, and thus the states are persistent in the k = 2 case.
It turns out that for k ≥ 3, a2n ∼ 1

nk/2
which corresponds to a convergent series, so in

these cases the states are all transient. Pólya’s Theorem states this formally:

Theorem 24.9.3 (Pólya). A symmetric, k-dimensional random walk is persistent when
k = 1, 2 and transient otherwise.

Definition. A Markov chain is said to be irreducible if for every i, j there exists an n such
that p

(n)
ij > 0. In other words, in an irreducible chain there is always a finite sequence of

transitions between any pair of states.

Theorem 24.9.4. If a chain is irreducible then either every state is transient or every state
is persistent. Furthermore,

(1) Transience is equivalent to Pi

(⋃
j[Xn = j i.o.]

)
= 0 and also to

∑
n p

(n)
ij <∞ for all

states i, j ∈ S.

(2) Persistence is equivalent to Pi

(⋃
j[Xn = j i.o.]

)
= 1 and also to

∑
n p

(n)
ij =∞ for all

i, j ∈ S.

Proof. Irreducibility implies for all i, j ∈ S there exist r, s such that p
(r)
ij > 0 and p

(s)
ji > 0.

Then p
(r+s+n)
ii ≥ p

(r)
ij p

(n)
jj p

(s)
ji so if

∑
n p

(n)
ii converges then

∑
n p

(n)
jj converges as well. By

Theorem 24.9.4, this shows that if any one state is transient then they all are. If this is the
case, then fjj < 1 so

Pi

(⋃
j

[Xn = j i.o.]

)
≤

∞∑
n=1

Pi[Xn = j i.o.] =
∞∑
j=1

fjj =
∞∑
j=1

0 = 0.

Hence Pi

(⋃
j[Xn = j i.o.]

)
= 0. In addition,

∑
n

p
(n)
ij =

∑
n

n∑
v=1

f
(v)
ij p

(n−v)
jj

=
∞∑
v=1

f
(v)
ij

∞∑
n=v

p
(n)
jj switching the summation

≤
∞∑
v=1

f
(v)
ij

∞∑
n=0

p
(n)
jj

≤
∞∑
n=0

p
(n)
ij <∞ since fij ≤ 1 for all i, j.

Hence
∑

n p
(n)
ij converges.
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On the other hand, if every state is persistent then Pj[Xn = j i.o.] = 1 by Theorem 24.9.4.
Then

p
(m)
ii = Pj[Xm = i] = Pj([Xm = i] ∩ [Xn = j i.o.])

≤
∑
n>m

Pj[Xm = i,Xm+1 6= i, . . . , Xn = j]

=
∑
n>m

p
(m)
ji f

(n−m)
ij = p

(m)
ji fij.

So p
(m)
ji ≤ p

(m)
ji fij which shows that fij ≥ 1. But fij is a probability so fij = 1. Then

by definition Pi[Xn = j i.o.] = 1. Finally, by the contrapositive to the first Borel-Cantelli

lemma,
∑

n p
(n)
ij must diverges.

Examples.

1 Suppose we have an irreducible Markov chain modeling a restricted random walk.
Theorem 24.9.4 can be used to show that the probability of the random walker returning
to her initial state infinitely often is 1. In other words, there are no transient states in
a finite state space – if transient states exist (in an irreducible chain) then they imply
the random walk will exit any finite subset of the state space.

2 Consider an asymmetric random walk, i.e. one where p < 1
2
. Suppose the state space

is unrestricted, e.g. S = Z. Then f01 = p
q
< 1 so every state is transient. Notice in this

case that f10 = 1 so it’s not true that fij < 1 for every i, j ∈ S. The previous results
only guarantee that fii < 1 for all i. When p < 1

2
(if p is the probability of the walker

moving right), it appears that the chain of right movements is persistent while the left
movements are transient.

3 If the unrestricted walk is symmetric, i.e. p = q = 1
2
, and 2 | (n+ j − i) then

p
(n)
ij =

(
n

n+j−i
2

)
1

2n
∼ 1√

n
.

If |j − i| = −1, 0, 1 then lim p
(n)
ij = 0 even though the chain is persistent.

Definition. A matrix Q = (qij) is said to be substochastic if qij ≥ 0 for every i and the
row sums satisfy

∑
j qij ≤ 1 for every i.

Write Qn = (q
(n)
ij ) and σ

(n)
i =

∑
j q

(n)
ij so that

σ
(n+1)
i =

∑
j

qijσ
(n)
j ≤

∑
j

σ
(n)
j .

This implies that σ
(1)
i ≤ 1 and σ

(n+1)
i ≤ σ

(n)
i for all i, n. So (σ

(n)
i ) is a bounded, monotone

sequence and hence σi = limn σ
(n)
i exists. Each σi satisfies a difference equation:

σi =
∑
j

qijσj.

414



24.9. Transience and Persistence Chapter 24. Simple Random Variables

As it turns out, the σi are the maximal solutions to the boundary value problem

xi =
∑
j

qijxj, 1 ≤ i ≤ n

0 ≤ xi ≤ 1.

(This is easily shown using the fact that σ
(n+1)
i ≤ σ

(n)
i for all n.) Now if U ⊂ S is a subset of

the state space then (pij)U is a substochastic matrix and σ
(n)
i = Pi[Xt ∈ U, t ≤ n]. Therefore

by the above computations,

σi = lim
n→∞

σ
(n)
i = Pi[Xt ∈ U for all t ≥ 1].

Example.

4 Consider a half-random walk where the state space is U = N ∪ {0}, the right half of
S = Z. The difference equation from before is now a boundary value problem:

x0 = px1

xi = pxi+1 + qxi−1, i ≥ 1

0 ≤ xi ≤ 1.

If ρ = q
p

then the solutions are of the form xn = A+Bn if p = q or xn = A+Bρn−1 if
p 6= q. Notice that when p ≤ q, the solution is necessarily unbounded. However, when
p > q, the solution is bounded. We want 0 ≤ x ≤ 1 so we must have A = 0 in the case
when p = q, or B = −A in the case when p 6= q. Thus the solutions are

xn =

{
A− An ρ = 1

A− Aρn−1 ρ 6= 1.

Theorem 24.9.5. A state i0 is transient ⇐⇒ there exists a nontrivial solution to the
system

xi =
∑
j 6=i0

pijxj, 0 ≤ xi ≤ 1 for all i 6= i0.

Proof. On one hand, suppose i0 is persistent. By the discussion above, Pi[Xn 6= i0 for all n]
is a maximal solution to this system. But Pi[Xn 6= i0 for all n] = 1 − fii0 so there is a
nontrivial solution ⇐⇒ fii0 < 1 for some i 6= i0 but this is impossible in the persistent case.

On the other hand, we proved that transience implies fi0i0 < 1, but

fi0i0 = Pi0 [X1 = i0] +
∞∑
n=2

∑
i 6=i0

Pi0 [X1 = i,X2 6= i0, . . . , Xn = i0]

= pi0i0 +
∑
i 6=i0

pi0ifii0 .

If the fii0 were all 1, this would add up to 1 but fi0i0 < 1 so the above shows that fii0 < 1
for some i 6= i0. Hence there is a nontrivial solution.
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Example.

5 Queueing is used to model physical situations, such as customers standing in line,
as well as computer processing. Suppose we have a state space S = N ∪ {0} which
represents the number of people currently in line. At each time k, one person at the
front of the line is helped and then leaves, and simultaneously, 0, 1 or 2 people enter
the line with probabilities t0, t1 and t2, respectively. These satisfy t0 + t1 + t2 = 1 and
we assume t0, t2 > 0 so that the chain is irreducible. The queueing ‘matrix’ here is
infinite:

P =


t0 t1 t2 0 0 0 · · ·
t0 t1 t2 0 0 0 · · ·
0 t0 t1 t2 0 0 · · ·
0 0 t0 t1 t2 0 · · ·
...

...
...

...
...

...
. . .


Notice that the first row is different than the random walk’s transition matrix: if i = 0,
no one is served until someone enters the line. Fix i0 = 0 – since the chain is irreducible,
either every state is persistent or every state is transient so no generality is lost. The
system here is

x1 = t1x1 + t2x2

xk = t0xk−1 + t1xk + t2xk+1, k ≥ 2.

This is essentially the same as the system for a half-random walk (see Example 4 ).
So there is a nontrivial solution, i.e. i0 is transient, if and only if t2 > t0 and conversely
i0 is persistent if and only if t2 ≤ t0.

Definition. A distribution is a sequence πi satisfying 0 ≤ πi ≤ 1,
∑

i∈S πi = 1 and∑
i∈S πipij = πj for all i, j ∈ S. Additionally, the distribution is stationary if P [X0 = j] =

πj implies P [Xn = j] = πj for all n.

Definition. A state j ∈ S has period t if whenever p
(n)
ij > 0 for any i, t | n. If 1 is a period

for j then we say j is aperiodic.

Example 24.9.6. A 1-dimensional random walk has period 2 since the walker must return
to her starting position after an even number of moves.

Remark. In an irreducible chain, all periods are equal. We will usually assume that {Xn}
is an aperiodic, irreducible chain, such as in the next lemma.

Lemma 24.9.7. Suppose a chain {Xn} is an aperiodic, irreducible Markov chain. Then for

every i, j ∈ S, there exists an n0 ∈ N such that p
(n)
ij > 0 for all n ≥ n0.

Proof. Let Mj = {n ∈ N | p(n)
ij > 0}. Then p

(m+n)
ij ≥ p

(m)
ij p

(n)
ij for all n so Mj is closed under

addition. Since the chain is aperiodic, gcd(Mj) = 1 so by elementary number theory there
exists an n0 such that n ∈ Mj for all n ≥ n0. Let i, j ∈ S. Since the chain is irreducible,

there exists an r such that p
(r)
ij > 0. If we let nij = nj + r, then every n ≥ nij satisfies

p
(n)
ij ≥ p

(r)
ij p

(n−r)
jj > 0 · 0 = 0.
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Theorem 24.9.8. Let {Xn} be an aperiodic, irreducible Markov chain and suppose a sta-

tionary distribution πj exists. Then the chain is persistent, limn p
(n)
ij = πj, πi > 0 for all i

and the distribution is unique.

Proof. First suppose the chain is transient. Then p
(n)
ij → 0 as n→∞ for any j ∈ S. By the

Weierstrass M -test,
∑

j p
(n)
ij πj converges absolutely and uniformly in n, so

πi = lim
n

(∑
j

p
(n)
ij πj

)
=
∑
j

(
lim
n
p

(n)
ij

)
πj = 0.

Hence πi ≡ 0 so πiπi 6= 1 and therefore no stationary distribution exists, contradicting the
hypotheses. Therefore the chain is persistent.

Consider the double-indexed state space S × S. Define p(ij, kl) = pikpjl to form a direct
product of Markov chains Xn× Yn. One can prove that this is still irreducible and aperiodic
given the assumptions on Xn. Then for all i, j, i0 ∈ S, Pij[(Xn, Yn) = (i0, i0) i.o.] = 1; that
is, the two chains meet in finite time with probability 1. Let τ = infn[(Xn, Yn) = (i0, i0)].
Then another way of saying the previous statement is that τ <∞ with probability 1. This
implies

|p(n)
ik − p

(n)
jk | ≤ Pij[τ > n]→ 0

by the M -test. So i and j really don’t affect the outcome after time τ . Note that

πj − p(n)
jk =

∑
i

πip
(n)
ik −

∑
j

πjp
(n)
jk

=
∑
i

πi(p
(n)
ik − p

(n)
jk )

and the combined sum approaches 0 by the M -test. Thus πk = limn p
(n)
ij for any j ∈ S and

by uniqueness of limits, πj is unique. Also, for n sufficiently large, πk =
∑

i πip
(n)
ik > 0. This

finishes everything we needed to check.

Example.

5 continued. For the queueing model described before, we can plug in the row sums to
obtain:

π0 = π0t0 + π1t1

πk = πk−1t0 + πkt1 + πk+1t2, k ≥ 1.

This has a nontrivial solution if the chain is persistent:

πk =


A− Ak t0 = t2

A− A
(
t0
t2

)k−1

t0 6= t2.

Of course the system is persistent if t0 ≥ t2 and in particular there is a stationary

distribution if t0 > t2, in which case the solution
∑
k

(
A− A

(
t0
t2

)k−1
)

is a geometric
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series which we may evaluate. On the other hand, if t0 = t2 there is no stationary
distribution even though the chain is persistent.

The examples illustrate our three possibilities so far for a Markov chain {Xn}:

� The chain is transient. In this case, p
(n)
ij → 0 and the mean return time for a state

j ∈ S is µj =
∑

n nf
(n)
jj =∞.

� The chain is persistent but has no stationary distribution; this is called nullpersistence.
In this case for all j ∈ S, p

(n)
ij → πj and µj =∞.

� The chain is positive persistent, i.e. persistent with a stationary distribution. Here
p

(n)
ij → πj and µj = 1

πj
<∞.

Our k-dimensional random walks for different k values illustrate all three scenarios. For
k = 1, the chain is positive persistent; for k = 2, the chain is nullpersistent; and finally for
k ≥ 3, the chain is transient.
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25.1 Topological Vector Spaces

Definition. A topological field is a field k with a topology with respect to which the
addition, multiplication and inversion maps + : k × k → k, · : k × k → k and (−)−1 : k → k
are continuous, where k × k has the product topology.

Definition. For a topological field k, a topological vector space over k is a k-vector
space V with a topology such that V is a topological abelian group and the structure map
k × V → V is continuous.

Example 25.1.1. Let k be a topological field. Then any abstract k-vector space V is
isomorphic to a direct sum of copies of k, ϕ : V

∼−→
⊕

Ω k, indexed by some set Ω. Then V
inherits a topology by pulling back the subspace topology on

⊕
Ω k ⊆

∏
Ω k along ϕ and this

makes V into a topological vector space.

Example 25.1.2. If V is a Banach space over R or C, then V is a topological vector space
with respect to the norm topology.

We will assume for the rest of these notes that all topological vector spaces are T1

(and therefore Hausdorff by homogeneity). For a topological vector space V/k, let Aut(V )
denote the k-automorphisms of V and let Auttop(V ) denote the subspace of continuous k-
automorphisms of V having continuous inverses.

For a real or complex vector space V and a subset S ⊆ V , we say S is convex if for all
x, y ∈ S, tx+ (1− t)y ∈ S for every value t ∈ [0, 1]. We say V is locally convex if there exists
a topological basis of V consisting of convex sets.

Example 25.1.3. When V is a Banach space, the metric balls {B(0, ε) | ε > 0} form a
system of convex neighborhoods around 0, so by homogeneity V is locally convex.

Definition. Suppose G is a locally compact topological group and V is a locally convex topo-
logical vector space over C. A topological representation of G is a group representation
ρ : G→ Aut(V ) such that the associated map

G× V −→ V

(g, v) 7−→ ρg(v)

is continuous (with respect to the product topology on G× V ).

Note that if ρ is a topological representation of G, then ρ(G) ⊆ Auttop(V ). The converse
is not immediately true, but in a moment we will give conditions under which this does hold.

Definition. Let X be a topological space, V a topological vector space and let Map(X, V ) be
the space of set maps X → V . A set F ∈ Map(X, V ) is said to be equicontinuous if for
all x ∈ X and every neighborhood U ⊆ V of 0, there exists a neighborhood W ⊆ X such that
f(y) ∈ U + f(x) for every y ∈ W and f ∈ F .

Proposition 25.1.4. Suppose ρ : G → Aut(V ) is a representation of a locally compact
group. Then ρ is a topological representation if and only if the following conditions are met:
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(1) For every compact set K ⊆ G, ρ(K) is equicontinuous.

(2) For all v ∈ V , the map G→ V, g 7→ ρg(v) is continuous.

Proof. ( =⇒ ) Suppose ρ is a topological representation. Then for all v ∈ V , the map
G → V, g 7→ ρg(v) factors as a composition G → G × V → V , where G → G × V is the
first coordinate inclusion (hence continuous), and G × V → V is (g, x) 7→ ρg(x), which is
continuous by hypothesis. Hence (2) holds.

For (1), fix a compact set K ⊆ G. It will suffice to show equicontinuity about 0 ∈ V , i.e.
for all neighborhoods U ⊆ V of 0, there exists a neighborhood W ⊆ V of 0 such that for all
y ∈ W and g ∈ K, ρg(y) ∈ U . We know G× V → V is continuous, so for each g ∈ G, there
exists a neighborhood Hg ⊆ G of g and a neighborhood Wg ⊆ V of 0 for which ρh(Wg) ⊆ U
for all h ∈ Hg. Since K is compact and covered by the Hg, there exist g1, . . . , gn such that
K ⊆

⋃n
i=1Hgi . Set W =

⋂n
i=1Wgi , which is then a neighborhood of 0 in V . Then for all

g ∈ K and w ∈ W , we have ρg(w) ∈ W by construction. Hence ρ(K) is equicontinuous.
( =⇒) Given (1) and (2), we want to show that G× V → V is continuous, i.e. for fixed

(g, x) ∈ G × V and for any neighborhood U ⊆ V of 0, there exist neighborhoods H ⊆ G
of g and W ⊆ V of 0 such that ρh(x + w) − ρg(x) ∈ U for all h ∈ H,w ∈ W . Since V is
locally convex, we can find a convex neighborhood of 0 contained in U , so we may assume
U itself is convex. Also, since G is locally compact, there exists a compact neighborhood of
g, say K ⊆ G. Now by (1), ρ(K) is equicontinuous so there exists a neighborhood W ⊆ V
of 0 such that ρh(w) ∈ 1

2
U for all h ∈ K,w ∈ W . And by (2), there exists a neighborhood

H ⊆ G of g such that ρh(x)− ρg(x) ∈ 1
2
U for all h ∈ H. We may assume that H ⊆ K. Now

we have that for all h ∈ H,w ∈ W ,

ρh(x+ w)− ρg(x) = ρh(w) + ρh(x)− ρg(x) ∈ 1
2
U + 1

2
U

but since U is convex, 1
2
U + 1

2
U = U and hence ρh(x + w) − ρg(x) ∈ U . Hence ρ is a

topological representation.

Example 25.1.5. If V is a Banach space, we may topologize Aut(V ) as follows. Note that
Map(V, V ) ∼=

∏
v∈V V so the product topology on

∏
v∈V V induces a topology on Map(V, V )

and in turn a subspace topology on Aut(V ) ⊆ Map(V, V ) (this also induces a topology
on Auttop(V )). In fact, this topology on Aut(V ) is equivalent to the topology of pointwise
convergence. Under this topology, every abstract representation ρ : G→ Aut(V ) of a locally
compact group is continuous. In particular, if K ⊆ G is a compact set then ρ(K) is always
compact in Aut(V ). This allows us to cut down the conditions in Proposition 25.1.4.

Corollary 25.1.6. Suppose V is a Banach space and G is a locally compact group. Then
a group representation ρ : G → Aut(V ) is a topological representation if and only if for all
x ∈ V , the map G→ V, g 7→ ρg(x) is continuous.

Let ρ : G→ Aut(V ) be a representation.

Definition. A G-invariant subspace of V is a subspace W ⊆ V such that ρg(W ) ⊆ W
for all g ∈ G.

422



25.1. Topological Vector Spaces Chapter 25. Locally Compact Groups

Definition. A representation ρ : G → Aut(V ) is said to be algebraically irreducible if
V has no proper G-invariant subspaces, i.e. V is simple as a C[G]-module. We say ρ is
topologically irreducible if V has no proper, closed G-invariant subspaces.

Definition. An equivalence of G-representations (ρ, V ) ∼ (ρ′, V ′) is a homeomorphism
T : V → V ′ such that the diagram

V V ′

V V ′

T

ρg ρ′g

T

commutes for every g ∈ G, or equivalently T is a C[G]-module homomorphism.
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25.2 Banach Algebras

Suppose A and B are complex vector spaces and Hom(A,B) is the set of continuous (or
equivalently, bounded) linear maps A → B. Then by Theorem 15.2.5, Hom(A,B) is a
Banach space with respect to the operator norm

||T ||op = sup
a∈A

||Ta||B
||a||A

.

When A = B, we write End(A) = Hom(A,A).

Definition. A Banach algebra is a C-algebra A with 1A ∈ A (and possibly noncommuta-
tive) that admits the structure of a complex Banach space which is submultiplicative, i.e.
||ab|| ≤ ||a|| ||b|| for all a, b ∈ A, and is normalized so that ||1A|| = 1.

Let A be a Banach algebra. Each a ∈ A defines a linear map

ρa : A −→ A

b 7−→ ab.

Then ρa ∈ End(A) and it follows from ||1A|| = 1 that ||ρa||op = ||a|| for all a ∈ A. This
determines an embedding ρ : A ↪→ End(A). Let A× be the units of A and observe that, by
submultiplicativity, if a ∈ A such that ||a|| < 1, then 1− a ∈ A× (this follows from the fact
that

∑∞
n=1 a

n converges in A).

Proposition 25.2.1. Let A be a Banach algebra. Then A× ⊆ A is an open subset and
A× → A×, a 7→ a−1 is a homeomorphism.

Proof. Let a ∈ A× and take b ∈ B(a, ||a−1||−1). (Since || · || is only submultiplicative,
||a−1||−1 ≤ ||a|| but not necessarily equal.) Then ||a− b|| < ||a−1||−1 so multiplying by a−1,
we get

||a−1(a− b)|| ≤ ||a−1|| ||a− b|| < 1

which by the remark above implies 1 − a−1(a − b) ∈ A×. Multiplying by a gives b =
a− (a− b) ∈ A×, so we have an open neighborhood around a in A×. The second statement
is an easy consequence.

Definition. Let A be a Banach algebra and a ∈ A. The spectrum of a is

sp(a) = {λ ∈ C | λ1A − a 6∈ A×}.

The spectral radius of a is r(a) = sup{|λ| : λ ∈ sp(a)} and the complement C r sp(a) is
called the resolvent set of a.

Lemma 25.2.2. For all a ∈ A, r(a) ≤ ||a||.

Proof. Suppose λ ∈ Cr {0} such that |λ| > ||a||. Then

||λ−1a|| < 1 =⇒ 1A − λ−1a ∈ A× =⇒ λ1A − a ∈ A×

so λ 6∈ sp(A).
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Theorem 25.2.3. Let A be a Banach algebra and a ∈ A. Then

(1) sp(a) is a nonempty, compact subset of C.

(2) lim
n→∞

||an||1/n = r(a).

Proof. (1) Define ϕa : C → A by λ 7→ λ1A − a. Then ϕa is continuous and ϕ−1
a (A×) =

Cr sp(a), so the resolvent set is open by Proposition 25.2.1, so sp(a) is closed. Since sp(a)
is also bounded, it is compact.

(2) omitted.

Corollary 25.2.4 (Gelfand-Mazur Theorem). If A is a Banach algebra which is a division
ring, then A ∼= C.

Proof. Take a ∈ A. By assumption A× = Ar {0}, so if λ1A − a 6∈ A× for some λ ∈ C then
a = λ1A. By (1) of Theorem 25.2.3, sp(a) 6= ∅ so such a λ ∈ C exists. Define A → C by
mapping a 7→ λ. This gives the desired isomorphism.

Suppose J ⊆ A is a two-sided ideal. Then A/J is an algebra admitting a seminorm

||a+ J || = inf
x∈J
||a− x||.

Proposition 25.2.5. Suppose J ⊆ A is a closed, two-sided ideal. Then

(1) || · || is a norm on A/J .

(2) A/J is a Banach space with respect to this norm.

Proof. (1) If (xn) is a sequence in J converging to a ∈ A, then a ∈ J since J is closed. Hence
whenever ||a+J || = 0, we have a ∈ J , so || · || is a nondegenerate. Further, suppose a, b ∈ A.
Then

||a+ J || ||b+ J || = inf
x∈J
||a− x|| inf

y∈J
||b− y||

≥ inf
x,y∈J

||a− x|| ||b− y||

≥ inf
x,y∈J

||(a− x)(b− y)|| by submultiplicativity

= inf
x,y∈J

||ab− xb− ay + xy||

= inf
x,y∈J

||ab− (xb+ ay − xy)||

≥ ||ab+ J || since xb+ ay − xy ∈ J.

Hence || · || is a norm.
(2) is straightforward.

Remark. It is useful to note that for any two-sided ideal of A, the topological closure J is
also a two-sided ideal of A, by submultiplicativity.
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25.3 The Gelfand Transform

Suppose A is a commutative Banach algebra.

Definition. A character of A is a C-algebra homomorphism χ : A → C. The set of
characters of A is denoted Â.

Note that any character χ : A→ C is surjective.

Proposition 25.3.1. Let A be a commutative Banach algebra. Then

(1) If J ⊆ A is a maximal ideal, then J is closed.

(2) The map

Â −→ MaxSpec(A)

χ 7−→ kerχ

is a bijection.

(3) Every character χ ∈ Â is continuous.

(4) For all a ∈ A, sp(a) = {χ(a) | χ ∈ Â}.

Proof. (1) By Proposition 25.2.1, A× is open in A so an ideal J is proper if and only if J is
proper. This implies that maximal ideals are closed.

(2) Given a character χ ∈ Â, there is a factorization through the quotient:

A

A/ kerχ

C
χ

p χ

Since χ is surjective, χ is surjective, so A/ kerχ is a field and thus kerχ is a maximal ideal.
On the other hand, for any m ∈ MaxSpec(A), the Gelfand-Mazur theorem (Corollary 25.2.4)
implies

χm : A/m −→ C
λ1A 7−→ λ

is the unique C-algebra isomorphismA/m ∼= C. Hence m defines a character χm := χm◦p ∈ Â:

A

A/m

C
χm

p χm
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(3) Any χ ∈ Â factors as χ : A
p−→ A/ kerχ

χ−→ C as above, and both maps are continuous.
(4) Let a ∈ A. Then

λ ∈ sp(a) ⇐⇒ λ1A − a 6∈ A×

⇐⇒ λ1A − a ∈ m for some maximal ideal m

⇐⇒ χ(λ1A − a) = 0 for some χ ∈ Â by (2)

⇐⇒ λ = χ(a) for some χ ∈ Â.

Thus sp(a) = {χ(a) | χ ∈ Â}.

This allows us to view Â as a subring of A∗ = Homtop(A,C), the topological dual of A.
We could equip A∗ with the norm topology, but this turns out to be too strong of a topology
for our purposes.

Definition. The weak topology on A∗ is the topology generated by all maps A∗ → C in
A∗∗. The weak∗ topology on A∗ is the toplogy generated by all of the evaluation maps
eva ∈ A∗∗ for a ∈ A, defined by

eva : A∗ −→ C
ϕ 7−→ ϕ(a).

We endow Â with the subspace topology induced by the weak∗ topology on A∗; this is
called the Gelfand topology on Â.

Lemma 25.3.2. The weak∗ topology makes A∗ into a locally convex topological vector space.

Theorem 25.3.3 (Alaoglu). Let B∗ = {f ∈ A∗ : ||f ||op ≤ 1} be the unit ball in A∗. Then
B∗ is compact in the weak∗ topology.

Lemma 25.3.4. For any commutative Banach algebra A,

(1) Â ⊆ B∗.

(2) Â is compact and Hausdorff in the Gelfand topology.

Proof. (1) For all a ∈ A and χ ∈ Â, χ(a) ∈ sp(a) by (4) of Theorem 25.3.1, so

|χ(a)| ≤ r(a) ≤ ||a||

by Lemma 25.2.2. Hence ||χ|| ≤ 1.

(2) Since A∗ is Hausdorff (this is easy to prove), the subspace Â is Hausdorff. To show Â

is compact, it suffices by (1) to show that Â is closed in A∗. Suppose (χn) is a sequence in

Â converging to χ ∈ A∗. Convergence in the weak∗ topology means that for all a ∈ A, the
sequence (χn(a)) converges, say to χ(a). This defines χ : A → C. Further, since each χn is

a C-algebra homomorphism, so is χ. Hence χ ∈ Â, so Â is closed.
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For all a ∈ A, let the evaluation map Â → C, χ 7→ χ(a) be denoted by â. Let C(Â) be

the C-algebra of continuous maps Â→ C, which is a Banach space with respect to the sup
norm ||f ||∞ supχ∈Â |f(χ)|.

Definition. The Gelfand transform of a commutative Banach algebra A is the map

Γ : A −→ C(Â)

a 7−→ â.

Theorem 25.3.5. For any commutative Banach algebra A,

(1) Γ is a C-algebra homomorphism which decreases in norm.

(2) The image Γ(A) ⊆ C(Â) separates points.

(3) For all a ∈ A, â(Â) = sp(a) and ||â||∞ = r(a).

(4) ker Γ = r(A), the Jacobson radical of A.

(5) Γ is injective if and only if A is semisimple as a ring.

Proof. The proofs of all five properties are straightforward from the definitions.
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25.4 Spectral Theorems

Suppose A is a complex vector space of complex-valued functions on some space X.

Definition. A complex function space A is self-adjoint if A is closed under complex con-
jugation, that is, for all T ∈ A, the function T : X → C, x 7→ Tx := Tx is also in A.

Remark. Let AR = A ∩ C(X,R) be the subspace of real-valued functions in A. Then A is
self-adjoint if and only A can be written A = AR + iAR.

Now suppose X is a compact Hausdorff space. Set C(X) = C(X,C) to distinguish from
C(X,R). The Stone-Weierstrass theorem is an important result from functional analysis
which in some ways gives a function space analogue of Hilbert’s Nullstellensatz.

Theorem 25.4.1 (Stone-Weierstrass). If A ⊆ C(X,R) is a closed subalgebra that separates
points in X, then either

(1) A = C(X,R), or

(2) A = {f ∈ C(X,R) | f(x) = 0} for some x ∈ X.

Further, if A is a unital algebra, then only (1) is possible.

The following is a complex analogue of the Stone-Weierstrass theorem.

Corollary 25.4.2. Let A be a self-adjoint, unital subalgebra of C(X) that separates points
in X. Then A is dense in C(X).

Proof. By the remark, we may write A = AR + iAR. Since A separates points, so does AR, so
by the Stone-Weierstrass theorem for this real function space, we get AR = C(X,R). Hence
A = AR + iAR = C(X,R) + iC(X,R) = C(X).

Let H be a Hilbert space (see Section 20.2) and consider End(H), the space of continuous
(bounded) linear maps H → H. Then End(H) is a Banach algebra. By Proposition 20.2.18,
for each T ∈ End(H), there is a unique adjoint operator T ∗ ∈ End(H) satisfying

〈Tx, y〉 = 〈x, T ∗y〉 for all x, y ∈ H.

This defines an involution End(H)→ End(H), T 7→ T ∗. Recall that an operator T ∈ End(H)
is

� self-adjoint if T = T ∗;

� unitary if T−1 = T ∗;

� normal if TT ∗ = T ∗T .

Proposition 25.4.3. If T ∈ End(H) is normal then ||T || = r(T ), the spectral radius of T .
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Proof. On one hand, we have r(T ) ≤ ||T || by Lemma 25.2.2. Note that when T is normal,
the operator TT ∗ is self-adjoint. This allows us to write the following for any n ≥ 1:

||T ||2n =
(
||T ||2

)2n−1

= ||TT ∗||2n−1

by Lemma 20.2.19(ii)

= ||(TT ∗)2n||1/2 since TT ∗ is self-adjoint

= ||T 2n(T ∗)2n||1/2 since T is normal

= ||T 2n(T 2n)∗||1/2

=
(
||T 2n||2

)1/2
by Lemma 20.2.19(ii) again

= ||T 2n||.

Recall from (2) of Theorem 25.2.3 that r(T ) = limn→∞ ||T n||1/n. Then the above shows that
r(T ) ≥ limn→∞ ||T 2n||2−n = limn→∞ ||T || = ||T || so we conclude that r(T ) = ||T ||.

Proposition 25.4.4. Let T ∈ End(H). Then

(a) If T is unitary, then sp(T ) ⊆ S1.

(b) If T is self-adjoint, then sp(T ) ⊆ R.

Proof. (a) Note that in general, λ ∈ sp(T ) if and only if λ−1 ∈ sp(T−1). So if T is unitary,
meaning TT ∗ = 1, then it follows from Lemma 20.2.19(i) that ||T || = ||T−1|| = 1. Thus
if λ ∈ sp(T ), then |λ| ≤ 1, but at the same time λ−1 ∈ sp(T−1) implies |λ−1| ≤ 1. Hence
|λ| = 1, or λ ∈ S1.

(b) The operator

exp(iT ) =
∞∑
n=0

(iT )n

n!

is well-defined (the sum converges) and we have

(exp(iT ))∗ =
∞∑
n=0

((iT )∗)n

n!
=
∞∑
n=0

(−iT )n

n!
= exp(−iT ).

Therefore exp(iT ) is unitary, so for λ ∈ sp(T ), exp(iλ) ∈ sp(exp(iT )) ⊆ S1 by part (a), so
we must have | exp(iλ)| = 1 and therefore λ ∈ R.

Suppose A and B are complex Banach algebras, each with an involution ∗ that is
conjugate-linear, anti-multiplicative and satisfies ||xx∗|| = ||x||2 for all x ∈ A (resp. x ∈ B).
Such an algebra is called a C∗-algebra and a ∗-morphism is an algebra homomorphism
ϕ : A→ B such that ϕ(x∗) = (ϕ(x))∗ for all x ∈ A.

Proposition 25.4.5. Let A be a self-adjoint, unital, closed, commutative subalgebra of
End(H). Then the Gelfand transform Γ : A→ C(Â) is an isometry and a ∗-isomorphism of

C-algebras with respect to the adjoint on A and complex conjutation on C(Â).
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Proof. Since A is commutative and self-adjoint, any T ∈ A is normal. Thus by Proposi-
tion 25.4.3 and Theorem 25.3.5, ||T || = r(T ) = ||T̂ ||, so Γ is an isometry. It remains to show
Γ is surjective and is a ∗-morphism.

Notice that if T ∈ A is self-adjoint, then for any γ ∈ Â, T̂ (γ) = γ(T ) ∈ sp(T ) ⊆ R
by Proposition 25.4.4(b). More generally, any T ∈ A can be written T = T0 + iT1 for the
self-adjoint operators T0 = T+T ∗

2
and T1 = T−T ∗

2i
. Then Γ(T0),Γ(T1) ∈ C(A,R), so

Γ(T ∗) = Γ((T0 + iT1)∗)

= Γ(T ∗0 − iT ∗1 ) by Lemma 20.2.19(iii)

= Γ(T0 − iT1) by self-adjointness

= Γ(T0)− iΓ(T1) by Theorem 25.3.5

= Γ(T0) + iΓ(T1) since Γ(T0),Γ(T1) ∈ R
= Γ(T ).

Hence Γ respects the involutions on A and C(Â).
For surjectivity, recall from Theorem 25.3.5 that Γ(A) separates points and is unital.

Further, Γ(A) is self-adjoint since Γ is a ∗-morphism. Finally, A is isometric and isomorphic

as a complex algebra to Γ(A) ⊆ C(Â), but A ⊆ End(H) is closed which implies that Γ(A) ⊆
C(Â) is also closed. Hence by Corollary 25.4.2, Γ(A) = C(Â) so Γ is surjective.

For a normal operator T ∈ End(H), let AT denote the smallest subalgebra of End(H)
containing T which is self-adjoint, unital, closed and commutative. Equivalently, AT is the
subalgebra of End(H) generated by {1, T, T ∗}.

Theorem 25.4.6 (First Spectral Theorem). Let T ∈ End(H) be a normal operator. Then
there is a map

Φ : C(sp(T )) −→ AT

which is an isometry and a ∗-isomorphism of unitary C-algebras. Further, if iT : sp(T ) ↪→ C
is the natural inclusion, then Φ(iT ) = T .

Proof. Consider the map Ψ : C(sp(T ))→ C(ÂT ) which sends f 7→ f ◦T̂ , which is well-defined

since im T̂ = spAT (T ), the spectrum of T in the subalgebra AT . Then to prove the theorem,
we will show Ψ is an isometry and a ∗-isomorphism and spAT (T ) = sp(T ), so that we can
define Φ by

C(sp(T )) C(ÂT )

AT

Ψ

Φ
Γ

since Γ is an isometry and a ∗-isomorphism by Proposition 25.4.5.
To show spAT (T ) = sp(T ), note that sp(T ) ⊆ spAT (T ) always holds. On the other hand,

for λ ∈ spAT (T ), the Hahn-Banach theorem (in the form of Corollary 20.1.7) implies that
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there exists a function f ∈ C(spAT (T )) satisfying f(λ) = 1, ||f || = 1 and f ≡ 0 outside an
ε-neighborhood of λ, i.e. for some ε > 0, f(µ) = 0 whenever |µ − λ| ≥ ε. Set P = Φ(f).
Then for the inclusion i : spAT (T ) ↪→ C, we have

||(T − λ1H)P || = ||Φ−1((T − λ1H)P )|| = ||(i− λ)f || ≤ ε

since for any µ, ((i−λ)f)(µ) = (µ−λ)f(µ). If T −λ1H had an inverse in End(H), we would
have

1 = ||P || = ||(T − λ1H)−1(T − λ1H)P || ≤ ||(T − λ1H)−1||ε

by submultiplicativity of || · ||, but this would imply

1

ε
≤ ||(T − λ1H)−1||

for all ε > 0, which is impossible. Hence T − λ1H is not a unit in End(H), so λ ∈ sp(T ),
which proves spAT (T ) ⊆ sp(T ).

Now to show Ψ is an isometry and a ∗-isomorphism, note that T̂ : ÂT → spAT (T ) =

sp(T ) is surjective and continuous by Proposition 25.3.1. Moreover, if T̂ (γ1) = T̂ (γ2) for

γ1, γ2 ∈ ÂT , then γ1(T ) = γ2(T ), which is equivalent to

γ1(T ∗) = γ1(T ) = γ2(T ) = γ2(T ∗)

since Γ is a ∗-morphism. By definition AT is generated by {1, T, T ∗}, so this implies that

γ1 = γ2 on AT , but since AT is closed, γ1 = γ2 identically. Thus T̂ is injective, hence a
continuous bijection. By Lemma 25.3.4, ÂT is compact, so T̂ is also a closed map and hence
a homeomorphism. We have thus proven that Ψ is an isomorphism (and it’s not to hard to

show it preserves adjoints), so finally, notice that f and f ◦ T̂ each take on the same values

in C. Therefore ||f || = ||f ◦ T̂ ||, so Ψ is an isometry.
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25.5 Unitary Representations

Definition. Let G be a locally compact group and ρ : G → Aut(H) be a topological repre-
sentation, where H is a Hilbert space. Then ρ is unitary if for all g ∈ G, ρg is unitary, i.e.
ρ∗g = ρ−1

g .

Notice that when ρ is a unitary representation, we have 〈x, y〉 = 〈ρg(x), ρg(y)〉 for all
g ∈ G and x, y ∈ H.

Proposition 25.5.1. Let H be a Hilbert space and T ∈ End(H) be a normal operator. Then
the following are equivalent:

(1) sp(T ) is a singleton.

(2) AT ∼= C as C∗-algebras.

(3) T = λ1H for some λ ∈ C.

Proof. (1) =⇒ (2) If sp(T ) = ∗, then C(sp(T )) ∼= C so the spectral theorem (25.4.6) implies
that AT ∼= C.

(2) =⇒ (3) If AT ∼= C, then T may be viewed as λ1H ∈ AT for some λ ∈ C.
(3) =⇒ (1) For any µ ∈ sp(T ), (µ − λ)1H = µ1H − λ1H 6∈ End(H)×, but this is only

possible when µ− λ = 0, i.e. µ = λ. Therefore λ is the only element of sp(T ).

Recall Schur’s Lemma from representation theory.

Theorem 25.5.2 (Schur’s Lemma). Let G be an abstract group and suppose ρ : G→ Aut(V )
and ρ′ : G → Aut(V ′) are irreducible representations. Then any T ∈ HomG(V, V ′) is either
trivial or a k-vector space isomorphism.

This generalizes to the case of topological representations of locally compact groups as
follows.

Theorem 25.5.3. Suppose G is a locally compact group, H is a Hilbert space and ρ : G→
Aut(H) is a topological representation that is topologically irreducible and unitary. Then any
normal operator T ∈ EndG(H) is of the form T = λ1H for some λ ∈ C. In particular, for
every operator T , TT ∗ = λ1H for some λ ∈ C.

Proof. For any T ∈ EndG(H), let T ∗ be the adjoint. Then for all g ∈ G and x, y ∈ H,

〈ρg(x), T ∗ρg(y)〉 = 〈Tρg(x), ρg(y)〉
= 〈ρg(Tx), ρg(y)〉 since T is G-equivariant

= 〈Tx, y〉 since ρ is unitary

= 〈x, T ∗y〉 by adjunction

= 〈ρg(x), ρg(T
∗y)〉 by unitary again.

In particular, for x = 1H , this gives 〈1, T ∗ρg(y)〉 = 〈1, ρg(Ty)〉, but 〈1, ·〉 is injective, so this
implies T ∗ρg = ρgT

∗ for all g ∈ G. Hence T ∗ is G-equivariant. Since AT is generated as a
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subalgebra of End(H) by {1, T, T ∗} and all of these are now G-equivariant, it follows that
AT ⊆ EndG(H).

Now take T to be normal and suppose λ1, λ2 ∈ sp(T ) are distinct. Since sp(T ) is Haus-
dorff, there are disjoint neighborhoods U1, U2 ⊆ sp(T ) of λ1 and λ2, respectively. Choose
functions f1, f2 ∈ C(sp(T )) such that for i = 1, 2, fi(sp(T ) r {Ui}) = 0 and fi(λi) = 1,
again using Corollary 20.1.7 for example. Then f1, f2 6= 0 but since U1 ∩ U2 = ∅, f1f2 = 0.
Let Φ : C(sp(T )) → AT be the isomorphism from the spectral theorem (25.4.6). Then
since f1 6= 0, Φ(f1)(H) is nonzero. On the other hand, Φ(f1) ∈ AT ⊆ EndG(H) by
the first paragraph, so Φ(f1)(H) is a nonzero, G-equivariant subspace of EndG(H) and
by the same argument, so is its closure. Since ρ is topologically irreducible, this means
Φ(f1)(H) = H. Applying this again for Φ(f2), we conclude that Φ(f2)Φ(f1)(H) = H, but
Φ(f2f1)(H) = Φ(0)(H) = {0}, contradicting the fact that Φ is an algebra homomorphism.
Hence sp(T ) can only consist of one point, so Proposition 25.5.1 shows that T = λ1H for
some λ ∈ C.

Corollary 25.5.4. Suppose G is a locally compact abelian group, H is a Hilbert space and
ρ : G→ Aut(H) is a unitary, irreducible topological representation. Then dimC(H) = 1.

Proof. Because ρ is unitary, every g ∈ G acts by a unitary normal operator ρg ∈ End(H),
so Theorem 25.5.3 shows that ρg = χ(g)1H for some χ(g) ∈ C. In fact, χ(g) ∈ S1 by
Proposition 25.4.4(a). Then for any x ∈ H, Cx is a G-invariant, closed subspace of H so by
irreducibility of ρ, H = Cx.
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Duality

Let G be a topological abelian group and let S1 be the unit circle in C. The multiplicative
group of characters

Ĝ = {f : G→ S1 | f is a continuous homomorphism}

is called the Pontrjagin dual of G. Endowed with the compact-open topology, Ĝ becomes a
topological group and one can prove the following properties:

Proposition 26.0.1. For a topological abelian group G with Pontrjagin dual Ĝ,

(1) If G is discrete, Ĝ is compact.

(2) If G is compact, Ĝ is discrete.

(3) If G is locally compact then so is Ĝ.

The Pontrjagin dual is the key ingredient in establishing the Fourier transform and prov-
ing the Pontrjagin duality theorem for locally compact groups.
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26.1 Functions of Positive Type

Assume G is a locally compact abelian group with (left) Haar measure ds and set

Cc(G) = {f : G→ C | f is continuous with compact support}.

Then Cc(G) is dense in Lp(G) for all 1 ≤ p ≤ ∞.

Definition. A Haar measurable function ϕ ∈ L∞(G) is of positive type if for all f ∈
Cc(G), ∫∫

G×G
ϕ(s−1t)f(s) ds f(t) dt ≥ 0.

Let ϕ be a function of positive type. Then

〈f1, f2〉ϕ =

∫∫
G×G

ϕ(s−1t)f1(s) ds f2(t) dt

defines a sesquilinear form on Cc(G). Set Wϕ = {f ∈ Cc(G) | 〈f, f〉ϕ = 0}.

Lemma 26.1.1. For all functions ϕ of positive type on G, Wϕ is a vector subspace of Cc(G)
and 〈·, ·〉ϕ descends to a positive definite, Hermitian form on the the quotient Cc(G)/Wϕ.

Let Vϕ be the completion of the normed space (Cc(G)/Wϕ, 〈·, ·〉ϕ). By abuse of notation
we will also denote the extension of 〈·, ·〉ϕ to this completion by 〈·, ·〉ϕ.

Proposition 26.1.2. For every function ϕ of positive type on G, Vϕ is a Hilbert space.

Now for f : G→ C and s ∈ G, define the function Lsf : G→ C by Lsf(t) = f(s−1t).

Lemma 26.1.3. For any f : G→ C and s ∈ G,

(a) If f ∈ Cc(G) then Lsf ∈ Cc(G).

(b) If ϕ is a function of positive type and f ∈ Cc(G), then 〈Lsf, Lsf〉ϕ = 〈f, f〉ϕ.

(c) The assignment G→ Cc(G), s 7→ Lsf is continuous for each f ∈ Cc(G).

Proof. (a) and (c) are routine. For (b), we have

〈Lsf, Lsf〉ϕ =

∫∫
G×G

ϕ(t−1u)f(s−1t) dt f(s−1u) du

=

∫∫
G×G

ϕ((s−1t)−1(s−1u))f(s−1t) dt f(s−1u) du

=

∫∫
G×G

ϕ(t−1u)f(t) dt f(u) du by left-invariance of Haar measure

= 〈f, f〉ϕ.
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Theorem 26.1.4. Let G be a locally compact group and ϕ a function of positive type on G.
Then s 7→ Ls induces a unitary representation of G on Vϕ.

Proof. Lemma 26.1.3 implies that s 7→ Ls is a unitary representation of G abstractly, so
it will suffice to show it is also a topological representation. By Corollary 25.1.6, it’s even
enough to show that for each f ∈ Cc(G), s 7→ Lsf is continuous, but this can be shown by
normal analytical methods (see Ramakrishnan-Valenza for the proof).

Definition. Let f and g be complex-valued Borel functions on a locally compact topological
group G, equipped with a (left) Haar measure ds. Then the convolution of f and g is the
function

f ∗ g(t) :=

∫
G

g(s−1t)f(s) ds =

∫
g

g(s−1)f(ts) ds.

Proposition 26.1.5. Let G be a locally compact abelian group. Then

(i) If f ∗ g(x) exists for some x ∈ G, then g ∗ f(x) exists and f ∗ g(x) = g ∗ f(x).

(ii) If f, g ∈ L1(G) then f ∗ g(x) exists for almost all x ∈ G. Moreover, ||f ∗ g||1 ≤
||f ||1||g||1 so in particular f ∗ g ∈ L1(G).

(iii) For f, g, h ∈ L1(G), (f ∗ g) ∗ h = f ∗ (g ∗ h).

Proof. Straightforward from the definitions.

Corollary 26.1.6. L1(G) is a Banach algebra with respect to ∗.

We will mainly be interested in convolutions of functions f ∈ Cc(G) and ϕ ∈ L∞(G) of
positive type. In this case, f ∗ ϕ exists everywhere and is continuous.

Theorem 26.1.7. Let ϕ be a function of positive type on G. Then there exists xϕ ∈ Vϕ such
that ϕ(s) = 〈xϕ, Lsxϕ〉ϕ for almost all s ∈ G.

Proof. Let {Uα} be a system of open neighborhoods of e ∈ G. Since G is Hausdorff,
⋂
α Uα =

{e}. The index set {α} is a directed set under the partial ordering defined by α ≤ β
if Uβ ⊆ Uα. By Urysohn’s lemma for locally compact spaces, for each α there exists a
continuous function gα : G→ R+ such that the support of gα is a compact subset of Uα and∫
G
gα(s) ds = 1. This defines a net {gα ds}α of positive linear functionals on Cc(G); explicitly,

f 7→
∫
G
f(s)gα(s) ds. These functionals weakly converge to the Dirac measure δe : f 7→ f(e).

Let f ∈ Cc(G). Then for any α, Fubini’s theorem (18.4.3) gives∫∫
G×G

ϕ(s−1t)f(s) ds gα(t) dt =

∫
G

(f ∗ ϕ)(t)gα(t) dt

which exists because f ∗ ϕ is continuous and gα has compact support. Define

Φ(f) := lim
α
〈f, gα〉ϕ = lim

α

∫
G

(f ∗ ϕ)(t)gα(t) dt.
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This determines a linear form Φ on Vϕ which, after replacing f ∗ϕ by (f ∗ϕ)h for a function
h with compact support and such that h ≡ 1 on a neighborhood eventually containing the
support of gα, is of the form

Φ(f) = (f ∗ ϕ)(e) =

∫
G

ϕ(s−1)f(s) ds. (26.1)

Since Vϕ is a Hilbert space, it is reflexive by the Riesz representation theorem (20.2.13),
meaning there is some xϕ ∈ Vϕ such that Φ(ξ) = 〈ξ, xϕ〉ϕ for all ξ ∈ Vϕ. Then {gα}
converges weakly to xϕ in Vα, so for any ξ ∈ Vϕ and s ∈ G we have

〈ξ, Lsxϕ〉ϕ = lim
α
〈ξ, Lsxϕ〉ϕ

= lim
α

∫∫
G×G

ϕ(t−1u)ξ(t) dt gα(s−1u) du

=

∫
G

ϕ(t−1s)ξ(t) dt by (1).

On the other hand,

〈Lsxϕ, ξ〉 = lim
α
〈Lsgα, ξ〉ϕ

= lim
α

∫∫
G×G

ϕ(t−1u)gα(s−1t) dt ξ(u) du

=

∫
G

ϕ(s−1u)ξ(u) du by (1).

Combining these we get

〈ξ, Lsxϕ〉ϕ =

∫
G

ϕ(t−1s)ξ(t) dt =

∫
G

ϕ(s−1t)ξ(t) dt (26.2)

and in particular for s = e,

〈ξ, xϕ〉ϕ =

∫
G

ϕ(t)ξ(t) dt. (26.3)

Now for any h ∈ Cc(G), consider

〈ξ, h〉ϕ =

∫∫
G×G

ϕ(s−1t)ξ(s) ds h(t) dt

=

∫
G

〈ξ, Ltxϕ〉ϕh(t) dt by (2).

Extend this by continuity to all of Vϕ and consider the CG-submodule V ′ of Vϕ generated by
xϕ. If ξ ∈ V ′ for some ξ ∈ Vϕ, then the above shows 〈ξ, Ltxϕ〉ϕ = 0 for all t ∈ G, so ξ ≡ 0.
Hence V ′ = Vϕ. Now taking ξ = xϕ in (3) shows that for all ψ ∈ Vϕ,∫

G

ϕ(s)ψ(s) ds = 〈xϕ, ψ〉ϕ =

∫
G

〈xϕ, Lsxϕ〉ϕψ(s) ds.

Hence ϕ(s) = 〈xϕ, Lsxϕ〉ϕ for almost all s ∈ G.
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Corollary 26.1.8. Let ϕ be a function of positive type on G. Then ϕ is equal almost every-
where to a continuous function of positive type on G. If, moreover, ϕ is itself continuous,
then

(i) ϕ(e) ≥ 0, where e ∈ G is the identity.

(ii) ϕ(e) = sup
s∈G
|ϕ(s)|.

(iii) For all s ∈ G, ϕ(s−1) = ϕ(s).

Proof. By Theorem 26.1.7, ϕ(s) = 〈xϕ, Lsxϕ〉ϕ a.e. for some xϕ ∈ Vϕ, but the latter is
continuous. Now assume ϕ is continuous.

(i) Since 〈·, ·〉ϕ is positive definite on Vϕ, ϕ(e) = 〈xϕ, Lexϕ〉ϕ = 〈xϕ, xϕ〉ϕ ≥ 0.
(ii) For any s ∈ G, consider

|ϕ(s)|2 = |〈xϕ, Lsxϕ〉ϕ|2

≤ |〈xϕ, xϕ〉ϕ| |〈Lsxϕ, Lsxϕ〉ϕ| by Cauchy-Schwarz (20.2.4)

= 〈xϕ, xϕ〉ϕ〈xϕ, xϕ〉ϕ by Lemma 26.1.3(b)

= (〈xϕ, xϕ〉ϕ)2 = ϕ(e)2.

Taking the square root of both sides, we get ϕ(e) = sup
s∈G
|ϕ(s)|.

(iii) For s ∈ G,

ϕ(s−1) = 〈xϕ, Ls−1xϕ〉ϕ
= 〈Lsxϕ, xϕ〉ϕ by Theorem 26.1.4

= 〈xϕ, Lsxϕ〉ϕ by Hermitian property

= ϕ(s).

Set P(G) = {ϕ : G → C | ϕ is continuous, of positive type and ||ϕ||∞ ≤ 1}. Observe
that for any ϕ of positive type, if ||ϕ||∞ ≤ 1 then ϕ(e) ≤ 1 by Corollary 26.1.8(ii).

Definition. We say a function ϕ ∈ P(G) is elementary if ϕ(e) = 1 and for any decomposi-
tion ϕ = ϕ1 +ϕ2, with ϕ1, ϕ2 ∈ P(G), there exist scalars λ1, λ2 ∈ R≥0 satisfying λ1 +λ2 = 1,
ϕ1 = λ1ϕ and ϕ2 = λ2ϕ. Let E(G) be the set of all elementary functions on G, together with
the zero map.

Theorem 26.1.9. Let ϕ be a continuous function of positive type on G satisfying ϕ(e) = 1.
Then ϕ ∈ E(G) if and only if the unitary representation s 7→ Ls of G into Vϕ is irreducible.

Theorem 26.1.10. Let G be a locally compact abelian group. Then the elementary functions
of positive type on G are precisely the continuous characters of G, i.e. E(G) r {0} = Ĝ.

Proof. Given ϕ of positive type on G such that ϕ(e) = 1, consider the following two condi-
tions:
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(i) The unitary representation of G on Vϕ given by s 7→ Ls is irreducible.

(ii) ϕ is a character of G.

By Theorem 26.1.10, showing that (i) and (ii) are equivalent will imply the statement of this
theorem.

(ii) =⇒ (i) Take ϕ ∈ Ĝ and f ∈ Cc(G). Then

〈f, f〉ϕ =

∫∫
G×G

ϕ(s−1t)f(s) ds f(t) dt

=

∣∣∣∣∫
G

ϕ(s)f(s) ds

∣∣∣∣2
by Fubini’s theorem (18.4.3), which shows that Wϕ has codimension 1 in Cc(G) and hence
dimVϕ = 1. Since G is abelian, Vϕ is an irreducible G-module.

(i) =⇒ (ii) By Corollary 25.5.4, if the unitary representation s 7→ Ls is irreducible, it is
one-dimensional. So for all ξ ∈ Vϕ, Ls(ξ) = λ(s)ξ for λ a continuous function of s. Since Ls
is unitary, Proposition 25.4.4 shows that ||Ls|| = 1, which implies |λ(s)| = 1, and thus λ is
a character of G. Finally, for all s ∈ G,

ϕ(s) = 〈xϕ, Lsxϕ〉ϕ
= λ(s)〈xϕ, xϕ〉ϕ
= λ(s)ϕ(e) = λ(s).

Hence ϕ(s) is a character of G.

440



26.2. Fourier Inversion Chapter 26. Duality

26.2 Fourier Inversion

Let G be a locally compact abelian group with (bi-invariant) Haar measure dx and character

group Ĝ.

Definition. The Fourier transform of a function f ∈ L1(G) is the function f̂ : Ĝ → C
defined by

f̂(χ) =

∫
G

f(y)χ(y) dy

for all χ ∈ Ĝ.

Note that |f̂(χ)| ≤ ||f ||1 for all χ ∈ Ĝ.

Example 26.2.1. Let G = R. Then each t ∈ R may be identified with a group character
s 7→ eist. Then the Fourier transform of any f ∈ L1(R) is the standard Fourier transform:

f̂(t) =

∫
R
f(s)e−ist ds.

Let V (G) denote the space of continuous functions of positive type in Cc(G) and set
V 1(G) = V (G) ∩ L1(G). The goal of this section is to prove the Fourier inversion formula:

Theorem 26.2.2 (Fourier Inversion Formula). Let G be a locally compact abelian group with

Haar measure dx. Then there exists a Haar measure dχ on Ĝ which satisfies

f(y) =

∫
Ĝ

f̂(χ)χ(y) dχ

for all f ∈ V 1(G). Moreover, the assignment f 7→ f̂ defines a bijection V 1(G) ∼= V 1(Ĝ).

Definition. The measure dχ on Ĝ is called the dual measure to dx.

To prepare for the proof of the Fourier inversion formula, we relate the Fourier and
Gelfand transforms by the following result. Let B = L1(G) and let B̂ = HomC(B,C)× be

the space of complex characters of B. For χ ∈ Ĝ and f ∈ L1(G), define

ν̂χ(f) := f̂(χ) =

∫
G

f(y)χ(y) dy.

Proposition 26.2.3. For each χ ∈ Ĝ, ν̂χ ∈ B̂ and the assignment

Ĝ −→ B̂

χ 7−→ ν̂χ

is a bijection.

Definition. The ring of Fourier transforms of G is Â(G) = {f̂ | f ∈ L1(G)}.
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By Proposition 26.2.3, each Fourier transform f̂ ∈ Â = Â(G) can be viewed as the
Gelfand transform of f . Explicitly,

f̂(ν̂χ) := f̂(χ) = ν̂χ(f).

Let Ĝ have the transform topology induced by Â, i.e. the weakest topology with respect to
which each f̂ ∈ Â is continuous. Also, let C0(Ĝ) denote the C-algebra of rapidly-decaying
maps on G, or equivalently, the space of continuous functions on the one-point compactifi-
cation of Ĝ which are 0 at the point at infinity.

Proposition 26.2.4. The ring of Fourier transforms Â = Â(G) separates points and is a

self-adjoint, dense subalgebra of C0(Ĝ).

Moving towards the proof of Theorem 26.2.2, we now discuss Fourier transforms of char-
acter measures. For a locally compact group G with character group Ĝ, let µ̂ be a Radon
measure on Ĝ with finite total mass, that is, µ̂(Ĝ) <∞. A standard analysis result is:

Lemma 26.2.5. On a locally compact, Hausdorff space X, there is a bijective correspondence
between finite Radon measures µ and linear functionals f 7→

∫
X
f dµ on C0(X).

Definition. For a finite Radon measure µ̂ on Ĝ, the Fourier transform of µ̂ is the function
Tµ̂ : G→ C defined for each y ∈ G by

Tµ̂(y) :=

∫
Ĝ

χ(y) dµ̂(χ).

Lemma 26.2.6. For any finite Radon measure µ̂,

(a) The Fourier transform Tµ̂ is continuous and bounded on G.

(b) For all f ∈ L1(G), ∫
Ĝ

f̂(χ) dµ̂(χ) =

∫
G

f(y)Tµ̂(y) dy.

Proof. (a) Continuity is clear. Boundedness follows from the fact that Tµ̂(y) ≤ µ̂(Ĝ) for all
y ∈ G.

(b) By Fubini’s theorem (18.4.3) and the definitions of f̂ and Tµ̂,∫
Ĝ

f̂(χ) dµ̂(χ) =

∫∫
G×Ĝ

f(y)χ(y) dy dµ̂(χ)

=

∫∫
Ĝ×G

f(y)χ(y) dµ̂(χ) dy

=

∫
G

f(y)Tµ̂(y) dy.

Proposition 26.2.7. Let µ̂ be a finite Radon measure on Ĝ. If Tµ̂(y) = 0 for all y ∈ G,
then µ̂ = 0. That is, µ̂ is completely determined by its Fourier transform.
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Proof. Suppose Tµ̂(y) = 0 for all y ∈ G. Then by Lemma 26.2.6(b),∫
Ĝ

f̂(χ) dµ̂(χ) =

∫
G

f(y)Tµ̂(y) dy = 0

for all f ∈ L1(G). Since the ring of Fourier transforms Â = Â(G) is dense in C0(G) by
Proposition 26.2.4, this implies that ∫

Ĝ

g(χ)dµ̂(χ) = 0

for all continuous functions g : Ĝ→ C with compact support. Finally, Lemma 26.2.5 shows
that µ̂ = 0.

As in Section 26.1, let P(G) be the set of continuous functions of positive type on G with
norm at most 1.

Theorem 26.2.8 (Bochner). Let G be a locally compact abelian group. The functions in

P(G) are precisely the Fourier transforms of Radon measures µ̂ on Ĝ with finite total mass

µ̂(Ĝ) ≤ 1.

Proof. (Sketch) Let M̂ = {µ̂ | µ̂ is a Radon measure on Ĝ, µ̂(Ĝ) ≤ 1}. If µ̂ ∈ M̂ is a point-

measure of total mass 1 concentrated at some χ ∈ Ĝ, then for any y ∈ G, the Fourier
transform of µ̂ can be written

Tµ̂(y) =

∫
G

χ(y) dµ̂(χ) = χ(y).

Thus the Fourier transform of µ̂ is the character χ which is a function of positive type on
G such that ||χ||∞ ≤ 1, by Theorem 26.1.10. The general case is obtained by taking weakly
convergent limits of point-measures of total mass 1.

Conversely, by Lemma 26.2.6(a), the Fourier transform is a continuous map M̂ → P(G).
Then the same argument using weakly convergent limits of point-measures can be used to
show that the image of M̂ is (weakly) compact, hence closed in P(G). Finally, one observes

that the image of M̂ in P(G) is convex and contains Ĝ∪{0}, and then the characterization of
elementary functions as extreme points of P(G), together with Theorem 26.1.10, will imply
that this image is all of P(G).

Let G be a locally compact abelian group and set V = V (G), the complex vector space of
continuous functions of positive type on G. Then Corollary 26.1.8(ii) implies the functions
of V are bounded. Put V 1 = V 1(G) = V ∩ L1(G).

Corollary 26.2.9. Each function f ∈ V uniquely determines a Radon measure µ̂f of finite

total mass on Ĝ such that f is the Fourier transform of µ̂f .

Proof. Existence is given by Bochner’s theorem, while uniqueness is guaranteed by Proposi-
tion 26.2.7.
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As a result, we may view any function f ∈ V as f(y) =

∫
Ĝ

χ(y) dµ̂f (χ).

Lemma 26.2.10. There exists a net of functions {f} on V 1 = V 1(G) such that the associated
sequence of Fourier transforms {f̂} converges uniformly to the constant function 1 on all

compact subsets of Ĝ.

Lemma 26.2.11. Let f, g ∈ V 1. Then ĝ dµ̂f = f̂ dµ̂g as measures on Ĝ.

Proof. By Proposition 26.2.7, it’s enough to show the equality on the corresponding Fourier
transforms. For any y ∈ G, consider

Tĝ dµ̂f (y) =

∫
Ĝ

χ(y)ĝ(χ) dµ̂f (χ) =

∫∫
G×Ĝ

χ(y)g(z)χ(z) dz dµ̂f (χ) by definition of ĝ

=

∫∫
Ĝ×G

χ(y)g(z)χ(z) dµ̂f (χ) dz by Fubini’s theorem (18.4.3)

=

∫∫
Ĝ×G

χ(z−1y)g(z) dµ̂f (χ) dz after a change of variables

=

∫
G

f(z−1y)g(z) dz by Corollary 26.2.9

but this equals f ∗ g, the convolution of f and g. Since f ∗ g is symmetric with respect to f
and g, this implies Tĝ dµ̂f = Tf̂ dµ̂g .

Let F be the set of bounded continuous functions ϕ : Ĝ → C for which there exists a
Radon measure ν̂ϕ on Ĝ with finite total mass that satisfies ϕdµ̂f = f̂ dν̂ϕ for all f ∈ V 1.
Then Lemma 26.2.11 shows that the Fourier transforms of the functions in V 1 lie in F . In
particular, F is nonempty.

Lemma 26.2.12. Let ϕ ∈ F . Then

(i) The associated measure ν̂ϕ is unique.

(ii) If ϕ = f̂ for some f ∈ L1(G), then ν̂ϕ = µ̂f , where µ̂f is the unique Radon measure
corresponding to f in Corollary 26.2.9.

(iii) If ϕ is positive, then ν̂ϕ is positive.

(iv) Let CB(Ĝ) be the ring of bounded continuous functions on Ĝ. Then F is a CB(Ĝ)-
module and the map ϕ 7→ ν̂ϕ gives a module homomorphism of F into the space of

complex Radon measures on Ĝ of finite total mass.

(v) Every translation of ϕ lies in F .

Proof. (i) Let {f} be as in Lemma 26.2.10. Then

dν̂ϕ = lim
f
ϕdµ̂f

and the µ̂f are unique by Corollary 26.2.9, so this implies ν̂ϕ is unique.
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(ii) This already holds for f ∈ V 1 by the paragraph proceeding this lemma, and now (i)
implies the property for all f ∈ L1(G).

(iii) This uses the same argument as in (i).
(iv) Again, use Lemma 26.2.10 and the fact that limits are linear.

(v) For any measure µ, element z ∈ Ĝ and subset E ⊆ Ĝ, set µz(E) = µ(z−1E). To

prove the statement fix χ0 ∈ Ĝ and suppose ψ(χ) = ϕ(χ−1
0 χ). Then for all h ∈ Cc(G) and

f ∈ L1(G),∫
Ĝ

h(χ)ψ(χ) dµ̂f (χ) =

∫
Ĝ

h(χ)ϕ(χ−1
0 χ) dµ̂f (χ) =

∫
Ĝ

h(χ0χ)ϕ(χ) dµ̂
χ−1
0
f (χ)

by a change of variables. We claim that dµ̂
χ−1
0
f = dµ̂χ−1

0 f . Indeed, by Bochner’s theorem

(26.2.8),

f(y) =

∫
Ĝ

χ(y) dµ̂f (χ) =

∫
Ĝ

(χ0χ)(y) dµ̂f (χ0χ)

so χ−1
0 f(y) =

∫
Ĝ

χ(y) dµ̂
χ−1
0
f (χ)

but by uniqueness of µ̂χ−1
0 f , this proves dµ̂χ−1

0 f = dµ̂
χ−1
0
f . Now continuing with the above

computation, we have∫
Ĝ

h(χ)ψ(χ) dµ̂f (χ) =

∫
Ĝ

h(χ0χ)ϕ(χ) dµ̂χ−1
0 f (χ)

=

∫
Ĝ

h(χ0χ)(χ0f̂)(χ)dν̂ϕ(χ) by ϕ ∈ F

=

∫
Ĝ

h(χ0χ)f̂(χ0χ) dν̂ϕ(χ) by definition of f̂

=

∫
Ĝ

h(χ)f̂(χ) dν̂χ0
ϕ (χ) by a change of variables.

Hence ψ dµ̂f = f̂ dν̂χ0
ϕ for all f ∈ L1(G), but dν̂χ0

ϕ = dν̂ψ, so we get ψ ∈ F as desired.

We now prove the main statement in the Fourier inversion formula (Theorem 26.2.2).

Theorem 26.2.13. Let G be a locally compact abelian group. Then there exists a Haar
measure dχ on Ĝ such that for all f ∈ V 1(G),

f(y) =

∫
Ĝ

f̂(y)χ(y) dχ.

Proof. By Corollary 26.2.9, any f ∈ V 1 = V 1(G) can be written

f(y) =

∫
Ĝ

χ(y) dµ̂f (χ)

so it will suffice to show dµ̂f = f̂ dχ as measures on Ĝ.
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We first show that Cc(Ĝ) ⊆ F . Take ψ ∈ Cc(Ĝ) and let K ⊆ Ĝ be a compact set
containing the support of ψ. Using Lemma 26.2.10, one can construct a function f ∈ V 1

such that f̂ is bounded away from 0 on K. Then a = ψ

f̂
is a bounded, continuous function

on K. Extend a to all of Ĝ by setting a ≡ 0 on the complement of K. Then a ∈ CB(Ĝ), and

f̂ ∈ F from before, so by Lemma 26.2.12(iv), ψ = f̂a ∈ F . Thus Cc(Ĝ) ⊆ F .
Next, define a map

η : Cc(Ĝ) −→ C

ϕ 7−→
∫
Ĝ

1 dν̂ϕ(χ).

Since any ϕ ∈ Cc(Ĝ) is also in F , this is well-defined. We claim η is a nonzero linear
functional. If f ∈ V 1 is not identically zero, then Corollary 26.2.9 implies µ̂f is a nonzero

measure. Thus there exists some a ∈ CB(Ĝ) such that a dµ̂f 6= 0. Take ψ = af̂ , so that by the
Radon-Nikodym derivative formula (Theorem 19.2.6), dν̂ψ = a dµ̂f . Then by the preceding
observation, dν̂ψ 6= 0, so η is nonzero. Linearity of η is given by Lemma 26.2.12(iv).

Now, the correspondence between Radon measures and linear functionals in Lemma 26.2.5
shows that η determines a Radon measure dχ of finite total mass on Ĝ. Moreover, since ν̂ϕ
is positive for all functions ϕ of positive type (by Lemma 26.2.12(iii)), it follows that dχ is a

positive Radon measure. To show dχ is in fact a Haar measure on Ĝ, it will suffice to show
η is left-invariant. For any χ0 ∈ Ĝ, let Lχ0 be the left-translation operator ψ 7→ χ0ψ. Then
we have

η(Lχ0ψ) =

∫
Ĝ

1 dν̂Lχ0ψ(χ)

=

∫
Ĝ

1 dν̂χ0

ψ (χ) by Lemma 26.2.12(v)

=

∫
Ĝ

Lχ−1
0
dν̂ψ(χ) by a change of variables

=

∫
Ĝ

1 dν̂ψ(χ) since Lχ−1
0

is a homeomorphism

= η(ψ).

Hence η is left-invariant, so it follows that dχ is a Haar measure. Explicitly, this satisfies∫
Ĝ

ψ(χ) dχ =

∫
Ĝ

1 dν̂ψ(χ)

for all ψ ∈ Cc(Ĝ).

Finally, we show the Fourier inversion formula. For ϕ ∈ F and a ∈ Cc(Ĝ), Lemma 26.2.12(iv)
shows that ∫

Ĝ

a(χ)ϕ(χ) dχ =

∫
Ĝ

1 dν̂aϕ(χ) =

∫
Ĝ

a(χ) dν̂ϕ(χ).

Hence ϕdχ = dν̂ϕ for all ϕ ∈ F . In particular, for f ∈ V 1 we know f̂ ∈ F from before, and

f̂ dχ = dµ̂f by Lemma 26.2.12(ii), so we get

f(y) =

∫
Ĝ

χ(y) dµ̂f (χ),
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proving the formula.

Corollary 26.2.14. For f ∈ L1(G),

(1) If f is continuous and of positive type, then f̂ is nonnegative.

(2)
∫
G
f(y) dy is nonnegative.

(3) If f is nonnegative then f̂ is a function of positive type on Ĝ.

Finally, we obtain half of the second statement in Theorem 26.2.2, namely, that any
function in V 1 can be recovered from its Fourier transform.

Corollary 26.2.15. The map V 1(G)→ V 1(Ĝ), f 7→ f̂ , is injective.

Proof. Suppose f̂ = ĝ. Then by Theorem 26.2.13,

f(y) =

∫
Ĝ

f̂(y)χ(y) dχ =

∫
Ĝ

ĝ(y)χ(y) dχ = g(y).

It remains to show f 7→ f̂ is surjective. This will be proven using Pontrjagin duality in
the next section.
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26.3 Pontrjagin Duality

Let G be a topological abelian group, S1 ⊆ C the complex unit circle and Ĝ = Homcts(G,S
1)

the Pontrjagin dual of G. An element χ ∈ Ĝ is called a (complex) character of G. We endow

Ĝ with the compact-open topology, namely the topology generated by open sets of the form
W (K,V ) where K ⊆ G is compact, V ⊆ S1 is open and W (K,V ) contains the trivial
character 1 : G→ S1, g 7→ 1.

Lemma 26.3.1. Ĝ is a topological abelian group with respect to the compact-open topology.

Our goal in this section is to prove:

Theorem 26.3.2 (Pontrjagin Duality). Let G be a locally compact, Hausdorff abelian group.
Then the map

α : G −→ ̂̂
G

y 7−→ (ey : χ 7→ χ(y))

is an isomorphism of topological abelian groups.

For each y ∈ G, the map α(y) = ey is called the evaluation map at y. Fix χ ∈ Ĝ, y ∈ G
and take an open neighborhood U ⊆ S1 of χ(y). Since G is locally compact, we can
choose a sufficiently small compact neighborhood K ⊆ G of y such that χ ∈ W (K,U)
and ey(W (K,U)) ⊆ U . This shows that α is continuous at ey(χ) = χ(y), so ey is continuous
and hence α is well-defined. Now let us show that α is injective.

Lemma 26.3.3. Let G be a locally compact, Hausdorff abelian group. For f ∈ Cc(G), set
f̃(y) := f(y−1). Then

(i) For every f ∈ Cc(G), f ∗ f̃ is a continuous function of positive type on G.

(ii) For any neighborhood V ⊆ G containing the identity e, there is a continuous function
of positive type g on G such that V contains the support of g and g(e) = 1.

Lemma 26.3.4. The map α : G→ ̂̂
G, y 7→ ey is injective.

Proof. This amounts to saying that Ĝ separates points in G. Suppose z ∈ Gr{e}. We must

produce a character χ ∈ Ĝ for which χ(z) 6= χ(e). Assume to the contrary that χ(z) = 1 for

all χ ∈ Ĝ. Then for all f ∈ L1(G),

L̂zf(χ) =

∫
G

f(zy)χ(y) dy =

∫
G

f(zy)χ(zy) dy = f̂(χ)

so f̂ = Lzf . By Corollary 26.2.15, we know the Fourier transform is injective, so f = Lzf
holds for all f ∈ V 1(G). Now since G is Hausdorff, there exists a neighborhood U ⊆ G of e
such that z−1U ∩ U = ∅. By Lemma 26.3.3(ii), there exists a continuous, nonzero function
f of positive type, with compact support contained in U , such that f(e) = 1. Now f = Lzf
is impossible since z−1U is disjoint from U and therefore cannot intersect the support of f .
Hence χ(z) 6= 1 for some character χ.
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Let 1 ∈ Ĝ be the trivial character. Then the sets

W (K̂, V ) = {ψ ∈ ̂̂G | ψ(χ) ∈ V for all χ ∈ K̂},

where K̂ is a compact neighborhood of 1 ∈ Ĝ and V is an open neighborhood of 1 ∈ S1,

form a neighborhood basis of the trivial element 1̂ ∈ ̂̂G. Define

WG(K̂, V ) = α−1(W (K̂, V )) = {y ∈ G | χ(y) ∈ V for all χ ∈ K̂}.

Proposition 26.3.5. The subsets WG(K̂, V ), where K̂ ranges over all compact neighbor-

hoods of 1 ∈ Ĝ and V ranges over all open neighborhoods of 1 ∈ S1, form a neighborhood
basis for the topology on G.

Proof. Let U ⊆ G be an open neighborhood of the identity e. By Lemma 26.3.3(ii), there
exists a continuous function g of positive type on G, with compact support contained in U ,
satisfying g(e) = 1. Then by Corollary 26.2.14, ĝ ≥ 0, so Fourier inversion (Theorem 26.2.13)
gives us

1 = g(e) =

∫
Ĝ

ĝ(χ) dχ.

Note that ĝ dχ is a finite, positive Radon measure so in particular it is inner regular. Thus
for all ε > 0, there exists a compact set K̂ ⊆ Ĝ such that

∫
K̂
ĝ(χ) dχ ≥ 1 − ε. By Fourier

inversion again, we can write g(y) for any y ∈ G as

g(y) =

∫
K̂

ĝ(χ)χ(y) dχ+

∫
K̂c

ĝ(χ)χ(y) dχ.

Taking V to be a sufficiently small open neighborhood of 1 ∈ S1, we get∣∣∣∣1− ∫
K̂

ĝ(χ)χ(y) dχ

∣∣∣∣ < ε

for all y ∈ WG(K̂, V ). On the other hand,∣∣∣∣∫
K̂c

ĝ(χ)χ(y) dχ

∣∣∣∣ < ε

always holds. Thus |g(y)| ≥ 1 − 2ε for all y ∈ WG(K̂, V ) so in particular WG(K̂, V ) is

contained in the support of g, hence WG(K̂, V ) ⊆ U .

Corollary 26.3.6. α : G→ ̂̂
G is a homeomorphism onto its image.

Proof. According to Proposition 26.3.5, α induces a bijection on neighborhood bases of G

and α(G) ⊆ ̂̂G.

Corollary 26.3.7. α(G) is closed in
̂̂
G.
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Proof. Since α(G) is a locally compact, dense subset of α(G), general topology says that it
is also open in α(G). But in a topological group, open subgroups are also closed, so this
implies α(G) is closed in α(G), hence α(G) = α(G).

Thus to prove Pontrjagin duality, we only need to show that α(G) is dense in
̂̂
G. This

requires an important sequence of results culminating in Plancherel’s theorem.
For f ∈ L1(G), let f̃(y) = f(y−1) as in Lemma 26.3.3.

Lemma 26.3.8. For any f ∈ L1(G) and χ ∈ Ĝ, ˆ̃f(χ) = f̂(χ).

Proof. By Lemma 26.3.3, we have

ˆ̃f(χ) =

∫
G

f̃(y)χ(y) dy =

∫
G

f(y−1)χ(y−1) dy

=

∫
G

f(y)χ(y) dy =

∫
G

f(y)χ(y) dy = f̂(χ).

Lemma 26.3.9. If f ∈ L1(G) ∩ L2(G), then ||f ||2 = ||f̂ ||2.

Proof. For any f ∈ L1(G)∩L2(G), set g = f∗f̃ . Then by the same logic as in Lemma 26.3.3(i),
g is of positive type. Consider∫

G

|f(y)|2 dy =

∫
G

f(y) f(y) dy =

∫
G

f(y−1) f(y−1) dy by a change of variables

=

∫
G

f(y−1)f̃(y) dy = g(e) =

∫
Ĝ

ĝ(χ) dχ by Fourier inversion

=

∫
Ĝ

f̂(χ)f̃(χ) dχ =

∫
Ĝ

f̂(χ) ˆ̃f(χ) dχ by Lemma 26.3.8

=

∫
Ĝ

f̂(χ)f̂(χ) dχ =

∫
Ĝ

|f̂(χ)|2 dχ.

Taking the square root of both sides, we get ||f ||2 = ||f̂ ||2.

Corollary 26.3.10. The Fourier transform defines an isometric embedding

L1(G) ∩ L2(G) ↪→ L2(Ĝ).

Let Â = Â(G) be the ring of Fourier transforms of L1(G) and set

Â1 = {f̂ | f ∈ L1(G) ∩ L2(G)} ⊆ Â.

Lemma 26.3.11. Â1 is an α(G)-invariant subspace of Â.
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Proof. For any y0 ∈ G, f ∈ L1(G) ∩ L2(G) and χ ∈ Ĝ,

(α(y0)f̂)(χ) = χ(y0)

∫
G

f(y)χ(y) dy

=

∫
G

f(y)χ(y−1
0 )χ(y) dy

=

∫
G

f(y)χ(y−1
0 y) dy since χ is a character

=

∫
G

f(y0y)χ(y) dy by a change of variables

= L̂y0f(χ).

Clearly Ly0f ∈ L1(G) ∩ L2(G), so we see that α(y0)f ∈ Â1.

Lemma 26.3.12. Â1 is dense in L2(Ĝ).

Proof. First, L2(Ĝ) is a Hilbert space, so by the Riesz representation theorem (20.2.13),

L2(Ĝ) can be identified with its dual space of linear functionals L2(Ĝ)∗ = {〈·, χ〉 | χ ∈
L2(Ĝ)}. By Corollary 20.2.12, if Â1 is not dense in L2(Ĝ) then there exists a nonzero

g ∈ L2(Ĝ) that is orthogonal to all of Â1. Since α(G)Â1 ⊆ Â1 by Lemma 26.3.11, we see

that for all f ∈ Â1 and y ∈ G, α(y−1)f ∈ Â1 and so∫
Ĝ

g(χ)f(χ)χ(y) dχ =

∫
G

g(χ)(α(y−1)f)(χ) dχ = 〈g, α(y−1f)〉 = 0.

Thus the Fourier transform of the measure gf̄ dχ is trivial. Moreover, gf̄ ∈ L1(Ĝ) and
dχ is a finite Radon measure, which means gf̄ dχ is also a finite Radon measure, so that
gf̄ dχ = 0 implies gf̄ = 0 a.e. by Proposition 26.2.7. Note that for any χ ∈ Ĝ and h ∈ L1(G),

χ̂h = Lχĥ. Therefore if f ∈ Â1 is nonzero and continuous, then for every χ ∈ Ĝ, there exist a

continuous element of Â1, namely a translate of f , that is nonzero at χ. By Lemma 26.3.11,
such an f is guaranteed to exist, so gf̄ = 0 a.e. then implies that g = 0 a.e., that is, g = 0
in L2(Ĝ). This contradicts our initial assumption, so Â1 is dense in L2(Ĝ).

This proves:

Theorem 26.3.13 (Plancherel). Let G be a locally compact, Hausdorff abelian group. Then

the Fourier transform L1(G) ∩ L2(G)→ L2(Ĝ), f 7→ f̂ extends by continuity to a map

F : L2(G) −→ L2(Ĝ)

which is an isomorphism of Hilbert spaces – in particular, an isometry.

The map F is called the Plancherel transform of G. We will denote the Plancherel
transform of a function f ∈ L2(G) by f̂ , even though technically this is an extension of the
Fourier transform.
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Corollary 26.3.14 (Parseval’s Identity). For all f, g ∈ L2(G),∫
G

f(y)g(y) dy =

∫
Ĝ

f̂(χ)ĝ(χ) dχ.

The Plancherel transform also gives us a converse to the reciprocity formula of Lemma 26.2.11.

Corollary 26.3.15. Let f, g ∈ L2(G), h ∈ L1(G) and suppose h = fg pointwise. Then
ĥ = f̂ ∗ ĝ.

Proof. For any χ0 ∈ Ĝ, we have

ĥ(χ0) =

∫
G

f(y)g(y)χ0(y) dy

=

∫
G

f(y)g(y)χ0(y) dy

=

∫
Ĝ

f̂(χ)(̂̄gχ0)(χ) dχ

=

∫
Ĝ

f̂(χ)ĝ(χ−1χ0) dχ

= (f̂ ∗ ĝ)(χ0).

Therefore ĥ = f̂ ∗ ĝ.

Corollary 26.3.16. Set C2(Ĝ) = {f ∗ g | f, g ∈ L2(Ĝ)}. Then Â = C2(Ĝ).

Proof. Take h ∈ L1(G). Then h can be written as a product of L2(G) functions, e.g. as
h = r · |r| where

r(y) =


h(y)√
|h(y)|

, h(y) 6= 0

0, h(y) = 0.

Then ĥ = f̂ ∗ ĝ by Corollary 26.3.15, so Â ⊆ C2(Ĝ). Conversely, Plancherel’s theorem gives

a bijection L2(G) ↔ L2(Ĝ) so any element f ∗ g ∈ C2(Ĝ) corresponds to f̂ ∗ ĝ = f̂ g ∈ Â.

This shows that C2(Ĝ) ⊆ Â.

Proposition 26.3.17. If U ⊆ Ĝ is a nonempty open set, then there exists a nonzero Fourier
transform f̂ ∈ Â with support contained in U .

Proof. Since U is nonempty and open, it has (finite) positive measure so by inner regularity,
there exists a compact set K ⊆ U with vol(K) > 0. For all x ∈ K, we can find an open

neighborhood Vx ⊆ Ĝ containing 1 and an open neighborhood Ux ⊆ Ĝ containing x such
that UxVx ⊆ U . Since K is compact, there is a compact neighborhood V ⊆ Ĝ containing
1 such that vol(V ) > 0 and KV ⊆ U . Define f̂ = χK ∗ χV where χK , χV ∈ L2(Ĝ) are the

characteristic functions on K,V , respectively. Then by Corollary 26.3.16, f̂ ∈ Â. Finally,
the support of f̂ by definition is KV ⊆ U , and we have∫

Ĝ

f̂(χ) dχ = vol(K) vol(V ) > 0,

so f̂ is nonzero.
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We are now prepared to prove Pontrjagin duality.

Proof of Theorem 26.3.2. In light of Corollaries 26.3.6 and 26.3.7, it remains to show that

α(G) is dense in
̂̂
G. Suppose to the contrary that α(G) is not dense. Then α(G)

c
is a

nonempty open set in
̂̂
G, so by Proposition 26.3.17, there exists a nonzero function ϕ ∈ L1(Ĝ)

such that ϕ̂|α(G) = 0. This implies that for any y ∈ G,∫
Ĝ

ϕ(χ)χ(y−1) dχ = ϕ̂(α(y)) = 0,

so ϕdχ = 0. By Lemma 26.2.6, ϕ = 0 a.e., contradicting our assumption that ϕ was nonzero
in L1(Ĝ). Hence α(G) is dense in G as claimed.

Corollary 26.3.18. For any locally compact abelian group G, the Fourier transform induces
a bijection V 1(G)↔ V 1(Ĝ).

Proof. By Corollary 26.2.15, the map is injective so it remains to show surjectivity. Take
F ∈ V 1(Ĝ) and define a function f : G→ C by

f(y) =

∫
Ĝ

F (χ)χ(y) dχ =

∫
Ĝ

F (χ)α(y−1)(χ) dχ = F̂ (α(y−1)).

By Pontrjagin duality (Theorem 26.3.2), we can identify F̂ (α(y−1)) = F̂ (y−1), which is a

continuous function of positive type on G =
̂̂
G. Then Corollary 26.2.14 says that f ∈ V 1(G).

Finally, by Theorem 26.2.13, we have

F (χ) =

∫
G

F̂ (y)χ(y) dy =

∫
G

f(y−1)χ(y) dy

=

∫
G

f(y)χ(y) dy = f̂(χ).

Hence the Fourier transform V 1(G)→ V 1(Ĝ) is surjective, so it is a bijection.

453


	I Real Analysis
	Introduction
	The Natural Numbers
	The Rational Numbers
	The Real Numbers
	A Note About Infinity

	Sequences and Series
	Sequences
	Basic Limit Theorems
	Monotone Sequences
	Subsequences
	liminf and limsup
	Series
	The Integral Test
	Alternating Series

	Functions
	Continuous Functions
	Properties of Continuous Functions
	Uniform Continuity
	Limits of Functions
	Power Series
	Uniform Convergence
	Applications of Uniform Convergence

	Calculus
	Differentiation and Integration of Power Series
	The Derivative
	The Mean Value Theorem
	Taylor's Theorem
	The Integral
	Properties of Integrals


	II Complex Analysis
	Introduction
	The Complex Plane
	A Formal View of Complex Numbers
	Properties of Complex Numbers
	Subsets of the Complex Plane

	Complex-Valued Functions
	Functions and Limits
	Infinite Series
	Exponential and Logarithmic Functions
	Trigonometric Functions

	Calculus in the Complex Plane
	Line Integrals
	Differentiability
	Power Series
	Cauchy's Theorem
	Cauchy's Integral Formula
	Analytic Functions
	Harmonic Functions

	Meromorphic Functions and Singularities
	Laurent Series
	Isolated Singularities
	The Residue Theorem
	Some Fourier Analysis

	Riemann Surfaces
	Holomorphic and Meromorphic Maps
	Covering Spaces

	Elliptic Functions
	Elliptic Functions
	Elliptic Curves
	The Classical Jacobian
	Jacobians of Higher Genus Curves


	III Functional Analysis
	Introduction
	Normed Linear Spaces and Banach Spaces
	Normed Linear Spaces
	Generalizing the Reals
	Sequences Spaces

	Function Spaces
	Norms on Function Spaces
	The Arzela-Ascoli Theorem
	Approximation
	Contraction Mapping
	Differentiable Function Spaces
	Completing a Metric Space
	Sobolev Space

	Calculus on Normed Linear Spaces
	Differentiability
	Linear Operators
	Rules of Differentiation
	The Mean Value Theorem
	Mixed Partials
	Directional Derivatives
	Sard's Theorem
	Inverse Function Theorem


	IV Measure Theory
	Introduction
	The Discrete Sum

	Measure Theory
	-Algebras
	Measures
	Borel Measures
	Measurable Functions

	Integration Theory
	Lebesgue Integration
	Properties of Integration
	Types of Convergence
	Product Measures
	Lebesgue Integration on Rn

	Signed Measures and Differentiation
	Signed Measures
	Lebesgue-Radon-Nikodym Theorem
	Complex Measures
	Complex Lebesgue Integration
	Functions of Bounded Variation

	Function Spaces
	More on Banach Spaces
	Hilbert Spaces
	Lp Spaces


	V Probability Theory
	Introduction
	Probability and Normal Numbers
	The Weak Law of Large Numbers
	The Strong Law of Large Numbers
	Properties of Normal Numbers

	Probability Measures
	Probability Measures
	Convergence in Probability
	Independence
	The Borel-Cantelli Lemmas

	Simple Random Variables
	Convergence in Measure
	Independent Variables
	Expected Value and Variance
	Abstract Laws of Large Numbers
	Second Borel-Cantelli Lemma Revisited
	Bernstein's Theorem
	Gambling
	Markov Chains
	Transience and Persistence


	VI Fourier Analysis
	Locally Compact Groups
	Topological Vector Spaces
	Banach Algebras
	The Gelfand Transform
	Spectral Theorems
	Unitary Representations

	Duality
	Functions of Positive Type
	Fourier Inversion
	Pontrjagin Duality



